HITACHI HA12228F

HA12228F/HA12229F
Audio Signal Processor for Car Deck
(Decode only Dolby B-type NR* with PB Amp.)
ADE-207-325A
2nd Edition
Dec. 2000
Description
HA12228F/HA12229F are silicon monolithic bipolar IC providing Dolby noise reduction system*, music
sensor, PB equalizer system in one chip.
Notes: 1. Dolby is a trademark of Dolby Laboratories Licensing Corporation.
A license from Dolby Laboratories Licensing Corporation is required for the use of this IC.
2. HA12229F is not built-in Dolby B-NR.
Functions
• PB equalizer
× 2 channel
• Music sensor
× 1 channel
• Dolby B-NR (Only HA12228F)
× 2 channel
• Line mute SW
× 2 channel
Features
• Different type of PB equalizer characteristics selection (120 µs/70 µs) is available with fully electronic
control switching built-in.
• Easy interface with the PB head. (The PB-EQ resistance self-containing)
• Changeable to Forward, Reverse-mode for PB head with fully electronic control switching built-in.
• Available to change music sensing level by external resistor.
• Available to change response of music sensor by external capacitor.
• Music sensing level, built-in switch to change a band (MSGV).
• NR ON/OFF fully electronic control switching built-in. (Only HA12228F)
• Line mute control switching built-in.
• Available to connect direct with MPU.
• These ICs are strong for a cellular phone noise.
HA12228F/HA12229F
Ordering Information
Operating Voltage
Product
Min
Max
Unit
HA12228F
6.5
12
V
HA12229F
Note:
1. These ICs are designed to operate on single supply.
Standard Level
Product
Package
PB-OUT Level
HA12228F
FP-40B
300 mVrms
HA12229F
Function
Product
PB-EQ
HA12228F
❍
❍
❍
❍
HA12229F
❍
❍
❍
×
Rev.2, Dec. 2000, page 2 of 51
Music Sensor
Mute
Dolby B-NR
HA12228F/HA12229F
Pin Description, Equivalent Circuit (VCC = 9 V single supply, Ta = 25°C, No Signal,
The value in the table shows typical value.)
Pin No.
Terminal Name
Note
13
MSI
V = VCC/2
Equivalent Circuit
Description
MS input *
1
V
100 k
VCC/2
4
TAI(L)
27
Tape input
TAI(R)
2
23 *
DET(R)
V = 2.5 V
VCC
Time constant pin for
NR rectifier
V
GND
2
8*
DET(L)
26
RIP
V = VCC/2
Ripple filter
Bias
V = 0.28 V
Dolby bias current
input
3
5*
V
GND
14
MSDET
—
Time constant pin for
1
MS rectifier *
GND
Notes: 1. MS: Music Sensor
2. Non connection regarding HA12229F.
3. Test pin regarding HA12229F. Usually open or pull down to GND with 18 kΩ.
Rev.2, Dec. 2000, page 3 of 51
HA12228F/HA12229F
Pin Description, Equivalent Circuit (VCC = 9 V single supply, Ta = 25°C, No Signal,
The value in the table shows typical value.) (cont.)
Pin No.
Terminal Name
Note
25
PBOUT(R)
V = VCC/2
Equivalent Circuit
Description
VCC
PB output
V
GND
6
PBOUT(L)
12
MAOUT
29
EQOUT(R)
1
MS amp. output *
V = VCC/2
VCC
Equalizer output
V
GND
2
EQOUT(L)
30
M-OUT(R)
V = VCC/2
VCC
Equalizer output for
time constant
V
GND
1
M-OUT(L)
37
FIN(R)
39
FIN(L)
35
RIN(R)
33
RIN(L)
Note:
—
Equalizer input
(FORWARD)
—
Equalizer input
(REVERSE)
1. MS: Music Sensor
Rev.2, Dec. 2000, page 4 of 51
HA12228F/HA12229F
Pin Description, Equivalent Circuit (VCC = 9 V single supply, Ta = 25°C, No Signal,
The value in the table shows typical value.) (cont.)
Pin No.
Terminal Name
Note
20
MUTE ON/OFF
—
Equivalent Circuit
Description
Mode control input
22 k
100 k
GND
1
21 *
NR ON/OFF
19
120/70
17
F/R
18
S/R(MS GV)
16
MSOUT
—
I
200
MS output (to MPU) *
VCC
2
100 k
GND
10
MS Gv(S)
V = VCC/2
MS gain terminal *
2
V
90 k
11
MS Gv(R)
31
NFI(R)
V = VCC/2
VCC
Equalizer output for
time constant
V
to Vref
40
NFI(L)
Notes: 1. Non connection regarding HA12229F.
2. MS: Music Sensor
Rev.2, Dec. 2000, page 5 of 51
HA12228F/HA12229F
Pin Description, Equivalent Circuit (VCC = 9 V single supply, Ta = 25°C, No Signal,
The value in the table shows typical value.) (cont.)
Pin No.
Terminal Name
Note
32
VREF1
V = VCC/2
Equivalent Circuit
HA12228F
28
Description
VCC
Reference output
RAL*1
V 32
38
3
38
VREF2
28
VREF3
3
VREF4
RAL
RAL
GND
HA12229F
VCC
V 32
38
28
RAL*1
RAL
GND
V
3
RAL
The same as
the above.
15
VCC
—
VCC pin
36
GND
—
GND pin
7
NC
—
9
22
24
34
Note:
1. RAL: Parasitic metal resistance
Rev.2, Dec. 2000, page 6 of 51
HA12228F/HA12229F
Block Diagram
HA12228F
NC
NC
RIP
20
MUTE ON/
Dolby B-NR
19
120/
33
18
/REP(MS Gv)
34 NC
17
/REV
35
16
+
−
+
−
LPF
MSOUT
15
VCC
MSDET
DET
14
S/R
37
MSI
13
38
Vref2
Dolby B-NR
2
3
4
5
6
EQOUT(L)
13k
M-OUT(L)
1
MSGv(R)
11
7
8
9
10
NC
18k 120/70
BIAS
270k
TAI(L)
40
Vref4
+
−
MSGv(S)
F/R
+
MAOUT
12
MUTE-ON/OFF
39
180
NFI(L)
21
+
FIN(L)
22
MUTE-ON/OFF
36 GND
FIN(R)
23
DET(L)
RIN(R)
F/R
24
NC
RIN(L)
25
−
+
180
32
Vref1
26
NR ON/
DET(R)
270k
27
TAI(R)
18k 120/70
31
NFI(R)
28
Vref3
30 13k 29
+
M-OUT(R)
EQOUT(R)
PBOUT(R)
PBOUT(L)
Unit R: Ω
C: F
Rev.2, Dec. 2000, page 7 of 51
HA12228F/HA12229F
HA12229F
270k
32
Vref1
F/R
NC
NC
NC
NC
21
RIP
22
MUTE-ON/OFF
20
MUTE ON/
19
120/
33
18
/REP(MS Gv)
34 NC
17
/REV
35
16
+
−
+
−
LPF
MSOUT
15
VCC
MSDET
DET
14
S/R
37
MSI
13
38
Vref2
F/R
+
−
4
5
6
7
8
9
10
MSGv(S)
3
NC
2
EQOUT(L)
13k
M-OUT(L)
1
BIAS
18k 120/70
MSGv(R)
11
TAI(L)
270k
Vref4
40
+
MAOUT
12
MUTE-ON/OFF
39
180
NFI(L)
23
+
FIN(L)
24
−
180 +
36 GND
FIN(R)
25
NC
RIN(R)
26
NC
RIN(L)
27
TAI(R)
18k 120/70
31
NFI(R)
28
Vref3
30 13k 29
+
M-OUT(R)
EQOUT(R)
PBOUT(R)
PBOUT(L)
Unit R: Ω
C: F
Rev.2, Dec. 2000, page 8 of 51
HA12228F/HA12229F
Functional Description
Power Supply Range
HA12228F/HA12229F are provided with three line output level, which will permit on optimum overload
margin for power supply conditions. And these are designed to operate on single supply only.
Table 1
Supply Voltage Range
Product
Single Supply
HA12228F
6.5 V to 12.0 V
HA12229F
Note: The lower limit of supply voltage depends on the line output reference level.
The minimum value of the overload margin is specified as 12 dB by Dolby Laboratories.
Reference Voltage
These devices provide the reference voltage of half the supply voltage that is the signal grounds. As the
peculiarity of these devices, the capacitor for the ripple filter is very small about 1/100 compared with their
usual value. The block diagram is shown as figure 1.
VCC
15
+
−
Rch
Dolby NR circuit
+
−
Lch
Dolby NR circuit
3 Vref4
28 Vref3
38 Vref2
36
26
+
+
−
32 Vref1
Lch equalizer
GND
Rch equalizer
+
−
MS block
: Internal reference voltage
Figure 1a The HA12228F Block Diagram of Reference Supply Voltage
Rev.2, Dec. 2000, page 9 of 51
HA12228F/HA12229F
VCC
3 Vref4
+
−
15
Line Amp. circuit
28 Vref3
38 Vref2
36
+
−
26
32 Vref1
Lch equalizer
+
GND
Rch equalizer
+
−
MS block
: Internal reference voltage
Figure 1b The HA12229F Block Diagram of Reference Supply Voltage
Operating Mode Control
HA12228F/HA12229F provides fully electronic switching circuits. And each operating mode control are
controlled by parallel data (DC voltage).
When a power supply of this IC is cut off, for a voltage, in addition to a mode control terminal even though
as do not destruct it, in series for resistance.
Table 2
Threshold Voltage (VTH)
Pin No.
Lo
Hi
Unit
Test Condition
17, 18, 19, 20, 21*
–0.2 to 1.0
3.5 to VCC
V
Input Pin
Measure
V
Note:
*
Non connection regarding HA12229F.
Rev.2, Dec. 2000, page 10 of 51
HA12228F/HA12229F
Table 3
Switching Truth Table
Pin No.
Pin Name
Lo
Hi
17
Forward/Reverse
Forward
Reverse
18
Search/Repeat
Search (FF or REV)
Repeat (Normal speed)
19
120 µ/70 µ
70 µ (Metal or Chrome)
120 µ (Normal)
20
MUTE ON/OFF
MUTE-OFF
MUTE-ON
21*
NR ON/OFF
NR-OFF
NR-ON
Notes: * Non connection regarding HA12229F.
1. Each pins are on pulled down with 100 kΩ internal resistor.
Therefore, it will be low-level when each pins are open.
2. Over shoot level and under shoot level of input signal must be the standardized.
(High: VCC, Low: –0.2 V)
3. Reducing pop noise is so much better for 10 kΩ to 22 kΩ resisitor and 1 µF to 22 µF capacitor
shown figure 2.
Input Pin
10 to 22kΩ
+
MPU
1 to 22µF
Figure 2 Interface for Reduction of Pop Noise
Rev.2, Dec. 2000, page 11 of 51
HA12228F/HA12229F
Input Block Diagram and Level Diagram
R1
5.1kΩ
R2
5.1kΩ
EQOUT
270kΩ
Vref3
C2
0.1µF
TAI
30mVrms
(−28.2dBs)
13kΩ
M-OUT
C1
0.01µF
18kΩ
NFI
− +
180Ω
+
−
Dolby B-NR
circuit *
Vref1
RIN
FIN
0.55mVrms
(−63dBs)
The each level shown above is typical value when offering PBOUT level
to PBOUT pin. (EQ Amp. GV = 40.8dB at f = 1kHz)
Note: HA12229F is not built-in Dolby B-NR.
Figure 3 Input Block Diagram
Adjustment of Playback Dolby Level
After replace R5 and R6 with a half-fix volume of 10 kΩ, adjust playback Dolby level.
Rev.2, Dec. 2000, page 12 of 51
PBOUT
300mVrms
(−8.2dBs)
HA12228F/HA12229F
The Sensitivity Adjustment of Music Sensor
Adjusting MS Amp. gain by external resistor, the sensitivity of music sensor can set up. The music sensor
block diagram is shown in figure 4, and frequency response is shown in figure 5.
DVCC
VCC
C8
+CEX1
R11
0.01µF
330kΩ
REX1
CEX2
REX2
TAI(R)
MS
SER
×1
MS
REP
+
−
IL
MS
DET
RL
90kΩ
L/R signal
addition
−6dB
MA MSI
OUT
+ C6
0.33µF
−
+
LPF
25kHz
MSOUT
DET
MS
Amp.
20dB
GND
Micro
computer
100kΩ
×1
TAI(L)
Note: The impedance of MSI is 100kΩ.
Figure 4 Music Sensor Block Diagram
GV (dB)
GV2
f3
Repeat mode
f1
GV1
10
f4
f2
Search mode
100
1k
f (Hz)
10k
25k
100k
Figure 5 Frequency Response
Rev.2, Dec. 2000, page 13 of 51
HA12228F/HA12229F
1. Search mode
GV1 = 20dB + 20 log 1 + 90k
[dB]
REX2
1
f1 =
[Hz], f2 = 25k [Hz]
2π ⋅ CEX2 ⋅ REX2
2. Repeat mode
GV2 = 20dB + 20 log 1 + 90k
[dB]
REX1
1
f3 =
[Hz], f4 = 25k [Hz]
2π ⋅ CEX1 ⋅ REX1
GVIA: L·R signal addition circuit gain.
The sensitivity of music sensor (S) is computed by the formula mentioned below.
3
S = − GV*1 − 20 log 130*2
30*
= 12.7 − GV
[dB]
Note: 1. Search mode: GV1, Repeat mode: G V2
2. Standard level of TAI pin (Dolby level correspondence) = 30 mVrms
3. Standard sensing level of music sensor = 130 mVrms
Item
REX1, 2
CEX1, 2
GV1, 2
f1, 3
f2, 4
S
(one side
channel)
S
(both
channel)
Search mode
24 kΩ
0.01 µF
33.5 dB
663 Hz
25 kHz
–14.8 dB
–20.8 dB
Repeat mode
2.4 kΩ
1 µF
51.7 dB
66.3 Hz
25 kHz
–33.0 dB
–39.0 dB
Note: S is 6 dB down in case of one-side channel. And this MS presented hysteresis lest MSOUT terminal
should turn over again High level or Low level, in case of thresh S level constantly.
Music Sensor Time Constant
1. Sensing no signal to signal (Attack) is determined by C6, 0.01 µF to 1 µF capacitor C6 can be
applicable.
2. Sensing signal to no signal (Recovery) is determined by C6 and R11, however preceding (1), 100 kΩ to
1 MΩ can be applicable.
Music Sensor Output (MSOUT)
As for the internal circuit of music sensor block, music sensor output pin is connected to the collector of
NPN type directly, therefore, output level will be “high” when sensing no signal. And output level will be
“low” when sensing signal.
IL =
DVCC − MSOUTLO*
RL
* MSOUTLO : Sensing signal (about 1V)
Note: 1. Supply voltage of MSOUT pin must be less than VCC voltage.
Rev.2, Dec. 2000, page 14 of 51
HA12228F/HA12229F
The Tolerances of External Components for Dolby NR (Only HA12228F)
For adequate Dolby NR tracking response, take external components shown below.
Also, leak is small capacity, and please employ a good quality object.
C14
0.1µF
±10%
23
DET(R)
HA12228F
BIAS
5
R10
18kΩ
±2%
DET(L)
8
C7
0.1µF
±10%
Figure 6 Tolerance of External Components
Countermeasure of a Cellular Phone Noise
This IC have reinforced a cellular phone noise countermeasure, to show it hereinafter.
However, it is presumed that this effect change it greatly, by a mount set.
Please sufficiently examine an arrangement of positions, shield method, wiring pattern, in order to oftain a
maximum effect.
A high terminal of a noise sensitivity of this IC is FIN, RIN, NFI and RIP.
ref
HA12228F
1000 p
SG
FIN
180
NFI
M-OUT
0.01µ
+
−
270 k
13 k
EQOUT
AC VM
wait DIN/AUDIO
Note: Test condition
• Use for SG by cellular radio for an evaluation use.
• SG output mode
PDC system, burst
UP Tch (Transmission mode on the side of a movement machine)
• To evaluate a capacitor of 1000 pF as connecting with it directly.
• About EQOUT output, what you measure through DIN/AUDIO filter.
Figure 7 Test Circuit
Rev.2, Dec. 2000, page 15 of 51
HA12228F/HA12229F
0
EQOUT Noise Output (dBs)
−10
FIN → EQOUT,
VCC = 9 V,
Vin = 0 dBm
HA12228F
HA12229F
−20
−30
−40
−50
−60
100
1000
Frequency (MHz)
10000
Figure 8 EQOUT Noise Output vs. Transmission Frequency Characteristic
10
0
EQOUT Noise Output (dBs)
−10
FIN → EQOUT,
VCC = 9 V,
f = 900 MHz
HA12228F
HA12229F
−20
−30
−40
−50
−60
−70
−80
−50
−40
−30
−20
−10
0
Higher Harmonic Input Vin (dBm)
10
20
Figure 9 EQOUT Noise Output vs. Transmission Signal Input Level Characteristic
Rev.2, Dec. 2000, page 16 of 51
HA12228F/HA12229F
Absolute Maximum Ratings (Ta = 25°C)
Item
Symbol
Rating
Unit
Maximum supply voltage
VCC Max
16
V
Power dissipation
Pd
400
mW
Operating temperature
Topr
–40 to +85
°C
Storage temperature
Tstg
–55 to +125
°C
Note
Ta ≤ 85°C
Rev.2, Dec. 2000, page 17 of 51
Rev.2, Dec. 2000, page 18 of 51
120µ
120µ
120µ









OFF
OFF
OFF






PB-EQ Maximum output level VOM
PB-EQ T.H.D.
THD-EQ
PB-EQ input conversion noise VN
Notes: 1. VCC = 12V
2. VCC = 6.5V
3. For inputting signal to one side channel
VON (1)
VON (2)
VOL
MS output low level
MS output leakage current IOH
Control voltage
VIL
VIH
MS sensing level
OFF
OFF
OFF



120µ
70µ




FOR
FOR/
REV
 FOR/
REV
SER

REP

SER











5k
5k
5k



(1k)
1k
1k
10k
10k
1k
GV EQ 10k(1)
GV EQ 10k(2)
FOR/
REV
FOR
FOR
120µ


GV EQ 1k
PB-EQ gain

1k
1k
1k
1k
1k
1k



FOR














ON OFF
ON OFF
ON OFF


OFF OFF
OFF OFF→
ON
Vo max
S/N
THD
CTRL (1)
CTRL (2)
CT MUTE
Signal handling
Signal to noise ratio
Total Harmonic Distortion
Channel separation
MUTE attenuation



1k
2k
2k
5k
5k
No signal









0



No signal
150
21.0
−2.8
−7.0
−1.7
−6.7
13.0 
80.0 
0.05 0.3
60.0 
80.0 
80.0 
0
20.0
−4.3
−8.5
−3.2
−8.2
−36.0
−18.0


−0.2
3.5
−32.0
−14.0
1.0
0.0


0.7
300 600
 0.1
25
dB
dB
37
37
39
39
29
29
27
27
27



4
4
4



25
25




1.5 µVrms 37/35 39/33 29
−28.0 dB
−10.0 dB
1.5
V
2.0 µA
V
1.0
VCC V
6
6
6




2
2
2
2
2
2
16
16
16
16
17 to
21
3
3
2
1
L COM Remark
15

6
6
6
6
6
4
25
6
4
25
6
4
25
6
39 29→2 2→29
4 25→6 6→25
4
25
6

27
27
27
37
27
27

27
27
27
27
27
R

25
25
25
25
25
dB 37/35 39/33 29
dB
dB
%
dB
dB
dB
mV
dB
dB
dB
dB
dB
L

4
4
4
4
4
R

Application Terminal
Input
Output
 mVrms 37 39 29
0.3 % 37/35 39/33 29
33.9 36.9 39.9
29.6 32.6 35.6
37.8 40.8 43.8
12.0
70.0

50.0
70.0
70.0
−150
19.0
−5.8
−10.0
−4.7
−9.7
Min Typ Max Unit
4.0 9.5 15.0 mA
Specification
Rg=680Ω, DIN-AUDIO 

THD=1%
+14dB
0
0
0
THD=1%


Rg=10kΩ, CCIR/ARM

(+20)















(0)
0

(+12)
(+12)

0
−20
−30
−20
−30
fin
PBOUT EQOUT
(Hz) level (dB) level (dB)
Other
No signal




MUTE 120µ/ SER/ FOR/
ON/OFF 70µ REP REV
OFF 70µ SER FOR


OFF



OFF

OFF



OFF



OFF



OFF OFF→
ON
NR
ON/OFF
OFF
OFF
ON
ON
ON
ON
Vofs
IQ
GVIA
DEC 2k (1)
DEC 2k (2)
DEC 5k (1)
DEC 5k (2)
Symbol
Test Condition
PBOUT offset
Item
Quiescent current
Input Amp. gain
B-type decode cut
IC Condition
(Ta = 25°C, VCC = 9 V, Dolby level 0 dB = PBOUT level 0 dB = 300 mVrms, EQOUT level 0 dB = 60 mVrms)
HA12228F/HA12229F
Electrical Characteristics
HA12228F
120µ
120µ
120µ



PB-EQ Maximum output level VOM
PB-EQ T.H.D.
THD-EQ
PB-EQ input conversion noise VN
OFF
OFF
OFF



Notes: 1. VCC = 12V
2. VCC = 6.5V
3. For inputting signal to one side channel
VON (1)
VON (2)
MS output low level
VOL
MS output leakage current IOH
Control voltage
VIL
VIH
MS sensing level






120µ
70µ
FOR
FOR/
REV
 FOR/
REV

SER
REP


SER










5k
5k
5k



(1k)
1k
1k
10k
10k
1k


FOR/
REV
FOR
FOR
GV EQ 10k(1)
GV EQ 10k(2)

120µ

GV EQ 1k
PB-EQ gain
MUTE attenuation
1k
1k
1k
1k
1k
1k



FOR














OFF
OFF
OFF

OFF
OFF→
ON
Vo max
S/N
THD
CTRL (1)
CTRL (2)
CT MUTE
Signal handling
Signal to noise ratio
Total Harmonic Distortion
Channel separation

OFF→
ON



0










(0)
0

(+12)
(+12)

No signal







No signal
Rg=680Ω, DIN-AUDIO

THD=1%
+14dB
0
0
0
THD=1%

Rg=10kΩ, CCIR/ARM


(+20)



fin
PBOUT EQOUT
(Hz) level (dB) level (dB)
Other

No signal


1k

0

Vofs
MUTE 120µ/ SER/ FOR/
ON/OFF 70µ REP REV
OFF 70µ SER FOR



OFF

GVIA
PBOUT offset
IQ
Symbol
Item
Quiescent current
Input Amp. gain
IC Condition
150
13.0 
80.0 
0.05 0.3
60.0 
80.0 
80.0 
0
25
25
29
29
−36.0
−18.0


−0.2
3.5
−32.0
−14.0
1.0
0.0


0.7
−28.0 dB
−10.0 dB
V
1.5
2.0 µA
V
1.0
VCC V
27
27
27



4
4
4



25
25




1.5 µVrms 37/35 39/33 29
39
39

37
37
 mVrms 37 39 29
0.3 % 37/35 39/33 29
dB
dB
6
6
6
6




2
2
2
2
2
2
16
16
16
16
17 to
20
3
3
2
1
L COM Remark

15
4
25
6
4
25
6
4
25
6
39 29→2 2→29
4 25→6 6→25
25
6
4

27
27
27
37
27
27

27
R

dB 37/35 39/33 29
dB
dB
%
dB
dB
dB
mV
L

4
R

Application Terminal
Input
Output
300 600
 0.1
33.9 36.9 39.9
29.6 32.6 35.6
37.8 40.8 43.8
12.0
70.0

50.0
70.0
70.0
−150
Min Typ Max Unit
3.0 5.0 8.0 mA
19.0 20.0 21.0 dB
Specification
(Ta = 25°C, VCC = 9 V, PBOUT level 0 dB = 300 mVrms, EQOUT level 0 dB = 60 mVrms)
Test Condition
HA12228F/HA12229F
HA12229F
Rev.2, Dec. 2000, page 19 of 51
AUDIO SG
SW1
OFF
SW2
Lch
TAI
FIN
RIN
FIN
TAI
RIN
C21
22µ
C19
22µ
C1
22µ
C2
22µ
+
C3
0.01µ
NFI(L)
R2
680
R1
680
R27
680
R26
680
180
40
39
270k
+
−
F/R
1
13k
18k 120/70
180
38
Vref2
37
36 GND
35
34 NC
33
F/R
−
+
270k
2
R8
5.1k
R7
5.1k
EQOUT(L)
30 13k 29
18k 120/70
32
Vref1
31
NFI(R)
Notes: 1. Resistor tolerance ±1%
2. Capacitor tolerance ±1%
3. Unit R: Ω, C: F
AC VM1
ON
Rch
SW4
SW3
C18
0.01µ
EQOUT(R)
R21
5.1k
EQ
C20
1µ
EQ
SW6
4
3
R9
10k
EX
C4
0.1µ
5
R10
18k
MUTE-ON/OFF
+
−
MUTE-ON/OFF
26
27
C17
0.1µ
EX
28
SW5
Vref3
Vref4
R20
5.1k
TAI(R)
TAI(L)
M-OUT(R)
M-OUT(L)
RIP
BIAS
EQ
PB
R11
10k
2.2µ
7
SW8
8
C7
0.1µ
S/R
+
−
9
MUTE ON/
21
22
C14
0.1µ
23
Dolby B-NR
LPF
+C6
6
24
Dolby B-NR
25
C15
2.2µ
R18
10k
PB SW7
EQ
NC
DET(R)
19
20
10
R17
24k
C13
0.01µ
MSGv(R)
11
MAOUT
12
MSI
13
MSDET
DET
14
VCC
15
MSOUT
16
/REV 17
/REP(MS Gv) 18
120/
NR
ON/
NC
NC
+
DET(L)
+
NC
+
MSGv(S)
+
Rev.2, Dec. 2000, page 20 of 51
SW12
OFF
ON
EXT
R16 C12
2.4k 1µ
OFF
ON
EXT
SW13
C11
0.01µ
R15
330k
C10
0.33µ
R14
3.9k
SW11
+
+
+
R19
10k
SW14
70
120
EXT
SW15
SER
REP
EXT
100µ
+C22
FOR
REV
EXT
DC SOURCE1
DC SOURCE3
DC SOURCE2 (5V)
Lch
Rch
SW10
PBL
PBR
MS
DC VM
NOISE METER
WITH CCIR/ARM FILTER
AND DIN/AUDIO FILTER
NOISE
METER
OSCILLO
SCOPE
DISTORTION
ANALYZER
AC VM2
SW9
HA12228F/HA12229F
Test Circuit
HA12228F/HA12229F
Characteristic Curves
Decode Cut vs. Frequency (HA12228F)
0
0dB
−10dB
−20dB
−4
−6
−30dB
−8
−10
−12
100
−40dB
VCC = 9 V
TAI→PBOUT
NR-ON
1k
Frequency (Hz)
10k
20k
Quiescent Current vs. Supply Voltage (HA12228F)
13
all "L"
120µ
NR-ON
No signal
12
Quiescent Current (mA)
Decode Cut (dB)
−2
11
10
9
8
7
6
6
7
8
9
10
11
Supply Voltage (V)
12
13
Rev.2, Dec. 2000, page 21 of 51
HA12228F/HA12229F
Input Amp. Gain vs. Frequency (HA12228F)
30
VCC = 9 V
TAI→PBOUT
NR-OFF
Gain (dB)
20
10
0
−10
−20
10
100
1k
10k
Frequency (Hz)
100k
1M
Total Harmonic Distortion vs. Frequency (HA12228F) (1)
1
−10 dB
0 dB
10 dB
VCC = 9 V
TAI→PBOUT
NR-OFF
T.H.D. (%)
0.1
0.01
0.001
100
Rev.2, Dec. 2000, page 22 of 51
1k
Frequency (Hz)
10k
20k
HA12228F/HA12229F
Total Harmonic Distortion vs. Frequency (HA12228F) (2)
1
−10 dB
0 dB
10 dB
VCC = 9 V
TAI→PBOUT
NR-ON
T.H.D. (%)
0.1
0.01
0.001
100
1k
Frequency (Hz)
10k
20k
T.H.D. (%)
Total Harmonic Distortion vs. Output Level (HA12228F) (1)
10
100 Hz
1 kHz
10 kHz
VCC = 9 V
TAI→PBOUT
0 dB = 300 mVrms
1 NR-OFF
0.1
0.01
−15
−10
−5
0
5
10
Output Level Vout (dB)
15
20
Rev.2, Dec. 2000, page 23 of 51
HA12228F/HA12229F
T.H.D. (%)
Total Harmonic Distortion vs. Output Level (HA12228F) (2)
10
100 Hz
1 kHz
10 kHz
VCC = 9 V
TAI→PBOUT
0 dB = 300 mVrms
1 NR-ON
0.1
0.01
−15
−10
−5
0
5
10
Output Level Vout (dB)
15
20
Total Harmonic Distortion vs. Supply Voltage (HA12228F) (1)
1
100 Hz
1 kHz
10 kHz
TAI→PBOUT = 300 mVrms
NR-OFF
T.H.D. (%)
0.1
0.01
0.001
5
Rev.2, Dec. 2000, page 24 of 51
6
7
8
9
10
Supply Voltage (V)
11
12
13
HA12228F/HA12229F
Total Harmonic Distortion vs. Supply Voltage (HA12228F) (2)
1
100 Hz
1 kHz
10 kHz
TAI→PBOUT = 300 mVrms
NR-ON
T.H.D. (%)
0.1
0.01
0.001
5
6
7
8
9
10
Supply Voltage (V)
11
12
13
Signal Handling (HA12228F)
40
35
NR-OFF
NR-ON
TAI→PBOUT = 300 mVrms
f = 1 kHz, T.H.D. = 1%
Vomax (dB)
30
25
20
15
10
5
0
6
7
8
9
10 11 12 13
Supply Voltage (V)
14
15
16
Rev.2, Dec. 2000, page 25 of 51
HA12228F/HA12229F
Signal to Noise Ratio vs. Supply Voltage (HA12228F)
90
Signal to Noise Ratio (dB)
85
80
75
70
NR-OFF
NR-ON
TAI→PBOUT = 300 mVrms
f = 1 kHz
CCIR/ARM filter
65
6
7
8
9
10
11
Supply Voltage (V)
12
13
EQ Amp. Gain vs. Frequency (HA12228F)
70
60
50
EQ Gain (dB)
120µ
40
30
70µ
20
10
0
−10
10
VCC = 9 V
Fin→EQOUT
100
Rev.2, Dec. 2000, page 26 of 51
1k
10k
Frequency (Hz)
100k
1M
HA12228F/HA12229F
Total Harmonic Distortion vs. Frequency (HA12228F)
1
120µ
70µ
VCC = 9 V
Fin→EQOUT
Vout = +20 dB
0 dB = 60 mVrms
T.H.D. (%)
0.1
0.01
0.001
100
1k
Frequency (Hz)
10k
20k
Total Harmonic Distortion vs. Output Level (HA12228F) (1)
10
T.H.D. (%)
1
0.1
0.01
0.001
−5
100 Hz
1 kHz
10 kHz
VCC = 9 V
Fin→EQOUT
120µ
0 dB = 60 mVrms
0
5
10
15
20
25
Output Level Vout (dB)
30
35
Rev.2, Dec. 2000, page 27 of 51
HA12228F/HA12229F
Total Harmonic Distortion vs. Output Level (HA12228F) (2)
10
T.H.D. (%)
1
0.1
0.01
100 Hz
1 kHz
10 kHz
VCC = 9 V
Fin→EQOUT
70µ
0 dB = 60 mVrms
0.001
−5
0
5
10
15
20
25
Output Level Vout (dB)
30
35
Total Harmonic Distortion vs. Supply Voltage (HA12228F) (1)
1
T.H.D. (%)
0.1
0.01
100 Hz
1 kHz
10 kHz
Fin→EQOUT
120µ
0 dB = 60 mVrms
Vout = +10 dB
0.001
6
Rev.2, Dec. 2000, page 28 of 51
7
8
9
10
11
Supply Voltage (V)
12
13
HA12228F/HA12229F
Total Harmonic Distortion vs. Supply Voltage (HA12228F) (2)
1
T.H.D. (%)
0.1
0.01
0.001
6
100 Hz
1 kHz
10 kHz
Fin→EQOUT
70µ
0 dB = 60 mVrms
Vout = +10 dB
7
8
9
10
11
Supply Voltage (V)
12
13
12
13
Signal Handling (HA12228F) (1)
40
Vomax (dB)
35
Fin→EQOUT
120µ
0 dB = 60 mVrms
f = 1 kHz
T.H.D. = 1%
30
25
20
15
6
7
8
9
10
11
Supply Voltage (V)
Rev.2, Dec. 2000, page 29 of 51
HA12228F/HA12229F
Signal Handling (HA12228F) (2)
40
Vomax (dB)
35
Fin→EQOUT
70µ
0 dB = 60 mVrms
f = 1 kHz
T.H.D. = 1%
30
25
20
15
6
7
8
9
10
11
Supply Voltage (V)
12
13
Signal to Noise Ratio vs. Supply Voltage (HA12228F)
80
Signal to Noise Ratio (dB)
75
70
120µ
70µ
Fin→EQOUT
0 dB = 60 mVrms
f = 1 kHz
Din-Audio filter
65
60
55
50
45
40
6
Rev.2, Dec. 2000, page 30 of 51
7
8
9
10
11
Supply Voltage (V)
12
13
HA12228F/HA12229F
Ripple Rejection Ratio vs. Frequency (HA12228F) (1)
20
Ripple Rejection Ratio R.R.R. (dB)
10
0
NR-on
NR-off
VCC = 9 V
Vin = 100 mVrms
PBOUT
−10
−20
−30
−40
−50
−60
10
100
1k
Frequency (Hz)
10k
100k
Ripple Rejection Ratio vs. Frequency (HA12228F) (2)
20
Ripple Rejection Ratio R.R.R. (dB)
10
0
70µs
120µs
VCC = 9 V
Vin = 100 mVrms
EQOUT
FOR mode
−10
−20
−30
−40
−50
−60
10
100
1k
Frequency (Hz)
10k
100k
Rev.2, Dec. 2000, page 31 of 51
HA12228F/HA12229F
−40
Channel Separation vs. Frequency (HA12228F) (1)
VCC = 9 V
Fin(L)→EQOUT(L→R)
Vout = +12 dB
Channel Separation (dB)
−50
−60
−70
−80
−90
10
−50
100
1k
Frequency (Hz)
10k
100k
Channel Separation vs. Frequency (HA12228F) (2)
VCC = 9 V
TAI(L)→PBOUT(L→R)
Vout = +12 dB
Channel Separation (dB)
−60
−70
−80
−90
−100
10
Rev.2, Dec. 2000, page 32 of 51
100
1k
Frequency (Hz)
10k
100k
HA12228F/HA12229F
Crosstalk vs. Frequency (HA12228F)
−40
Crosstalk (dB)
−50
VCC = 9 V
Fin(L)→Rin(L)
EQOUT(L)
Vout = +12 dB
−60
−70
−80
−90
10
100
1k
Frequency (Hz)
10k
100k
Mute Attenuation vs. Frequency (HA12228F)
−40
VCC = 9 V
TAI→PBOUT
Vout = +12 dB
Mute Attenuation (dB)
−60
−80
−100
−120
−140
10
100
1k
Frequency (Hz)
10k
100k
Rev.2, Dec. 2000, page 33 of 51
HA12228F/HA12229F
MS Amp. Gain vs. Frequency (HA12228F) (1)
50
VCC = 9 V
TAI (SER mode)
40
Gain (dB)
30
20
MAOUT
10
0
−10
MSI
−20
10
100
1k
Frequency (Hz)
10k
100k
MS Amp. Gain vs. Frequency (HA12228F) (2)
50
40
MAOUT
Gain (dB)
30
20
MSI
10
0
−10
VCC = 9 V
TAI (REP mode)
−20
10
Rev.2, Dec. 2000, page 34 of 51
100
1k
Frequency (Hz)
10k
100k
HA12228F/HA12229F
MS Sensing Level vs. Frequency (HA12228F)
10
MS Sensing Level (dB)
0
−10
SER L→H
SER H→L
REP L→H
REP H→L
VCC = 9 V
TAI→PBOUT
f = 5 kHz
0 dB = 300 mVrms
−20
−30
−40
10
100
1k
Frequency (Hz)
10k
100k
No-Signal Sensing Time vs. Resistance (HA12228F)
No-Signal Sensing Time (ms)
1000
100
SER 0 dB
SER −5 dB
SER −10 dB
REP 0 dB
REP −5 dB
REP −10 dB
VCC = 9 V
TAI→PBOUT
NR off
f = 5 kHz
PBOUT
10
MSOUT
C10
0.33µ
14
VCC
R15
1
10k
100k
1M
10M
Resistance R15 (Ω)
Rev.2, Dec. 2000, page 35 of 51
HA12228F/HA12229F
Signal Sensing Time vs. Capacitance (HA12228F)
Signal Sensing Time (ms)
1000
100
SER 0 dB
SER −5 dB
SER −10 dB
REP 0 dB
REP −5 dB
REP −10 dB
VCC = 9 V
TAI→PBOUT
NR off
f = 5 kHz
PBOUT
10
MSOUT
C10
14
VCC
R15
330k
1
0.001
0.01
0.1
Capacitance C10 (µF)
1
10
Quiescent Current vs. Supply Voltage (HA12229F)
7
all "L"
120µ
No signal
Quiescent Current (mA)
6.5
6
5.5
5
4.5
4
6
Rev.2, Dec. 2000, page 36 of 51
7
8
9
10
11
Supply Voltage (V)
12
13
HA12228F/HA12229F
Input Amp. Gain vs. Frequency (HA12229F)
30
VCC = 9 V
TAI→PBOUT
Gain (dB)
20
10
0
−10
−20
10
100
1k
10k
Frequency (Hz)
100k
1M
Total Harmonic Distortion vs. Frequency (HA12229F)
1
−10 dB
0 dB
10 dB
VCC = 9 V
TAI→PBOUT
T.H.D. (%)
0.1
0.01
0.001
100
1k
Frequency (Hz)
10k
20k
Rev.2, Dec. 2000, page 37 of 51
HA12228F/HA12229F
Total Harmonic Distortion vs. Output Level (HA12229F)
10
100 Hz
1 kHz
10 kHz
VCC = 9 V
TAI→PBOUT
0 dB = 300 mVrms
T.H.D. (%)
1
0.1
0.01
−15
−10
−5
0
5
10
Output Level Vout (dB)
15
20
Total Harmonic Distortion vs. Supply Voltage (HA12229F)
1
100 Hz
1 kHz
10 kHz
TAI→PBOUT = 300 mVrms
T.H.D. (%)
0.1
0.01
0.001
5
Rev.2, Dec. 2000, page 38 of 51
6
7
8
9
10
Supply Voltage (V)
11
12
13
HA12228F/HA12229F
Signal Handling (HA12229F)
40
35
TAI→PBOUT = 300 mVrms
f = 1 kHz, T.H.D. = 1%
Vomax (dB)
30
25
20
15
10
5
0
6
7
8
9
10 11 12 13
Supply Voltage (V)
14
15
16
Signal to Noise Ratio vs. Supply Voltage (HA12229F)
90
TAI→PBOUT = 300 mVrms
f = 1 kHz
CCIR/ARM filter
Signal to Noise Ratio (dB)
85
80
75
70
65
6
7
8
9
10
11
Supply Voltage (V)
12
13
Rev.2, Dec. 2000, page 39 of 51
HA12228F/HA12229F
EQ Amp. Gain vs. Frequency (HA12229F)
70
60
50
EQ Gain (dB)
120µ
40
30
70µ
20
10
0
−10
10
VCC = 9 V
Fin→EQOUT
100
1k
10k
Frequency (Hz)
100k
1M
Total Harmonic Distortion vs. Frequency (HA12229F)
1
120µ
70µ
VCC = 9 V
Fin→EQOUT
Vout = +20 dB
0 dB = 60 mVrms
T.H.D. (%)
0.1
0.01
0.001
100
Rev.2, Dec. 2000, page 40 of 51
1k
Frequency (Hz)
10k
20k
HA12228F/HA12229F
Total Harmonic Distortion vs. Output Level (HA12229F) (1)
10
T.H.D. (%)
1
0.1
0.01
0.001
−5
100 Hz
1 kHz
10 kHz
VCC = 9 V
Fin→EQOUT
120µ
0 dB = 60 mVrms
0
5
10
15
20
25
Output Level Vout (dB)
30
35
Total Harmonic Distortion vs. Output Level (HA12229F) (2)
10
T.H.D. (%)
1
0.1
0.01
0.001
−5
100 Hz
1 kHz
10 kHz
VCC = 9 V
Fin→EQOUT
70µ
0 dB = 60 mVrms
0
5
10
15
20
25
Output Level Vout (dB)
30
35
Rev.2, Dec. 2000, page 41 of 51
HA12228F/HA12229F
Total Harmonic Distortion vs. Supply Voltage (HA12229F) (1)
1
T.H.D. (%)
0.1
0.01
100 Hz
1 kHz
10 kHz
Fin→EQOUT
120µ
0 dB = 60 mVrms
Vout = +10 dB
0.001
6
7
8
9
10
11
Supply Voltage (V)
12
13
Total Harmonic Distortion vs. Supply Voltage (HA12229F) (2)
1
T.H.D. (%)
0.1
0.01
100 Hz
1 kHz
10 kHz
Fin→EQOUT
70µ
0 dB = 60 mVrms
Vout = +10 dB
0.001
6
Rev.2, Dec. 2000, page 42 of 51
7
8
9
10
11
Supply Voltage (V)
12
13
HA12228F/HA12229F
Signal Handling (HA12229F) (1)
40
Vomax (dB)
35
Fin→EQOUT
120µ
0 dB = 60 mVrms
f = 1 kHz
T.H.D. = 1%
30
25
20
15
6
7
8
9
10
11
Supply Voltage (V)
12
13
12
13
Signal Handling (HA12229F) (2)
40
Vomax (dB)
35
Fin→EQOUT
70µ
0 dB = 60 mVrms
f = 1 kHz
T.H.D. = 1%
30
25
20
15
6
7
8
9
10
11
Supply Voltage (V)
Rev.2, Dec. 2000, page 43 of 51
HA12228F/HA12229F
Signal to Noise Ratio vs. Supply Voltage (HA12229F)
80
Signal to Noise Ratio (dB)
75
70
120µ
70µ
Fin→EQOUT
0 dB = 60 mVrms
f = 1 kHz
Din-Audio filter
65
60
55
50
45
40
6
7
8
9
10
11
Supply Voltage (V)
12
13
Ripple Rejection Ratio vs. Frequency (HA12229F) (1)
20
Ripple Rejection Ratio R.R.R. (dB)
10
VCC = 9 V
Vin = 100 mVrms
PBOUT
0
−10
−20
−30
−40
−50
−60
10
Rev.2, Dec. 2000, page 44 of 51
100
1k
Frequency (Hz)
10k
100k
HA12228F/HA12229F
Ripple Rejection Ratio vs. Frequency (HA12229F) (2)
20
Ripple Rejection Ratio R.R.R. (dB)
10
0
120µs
70µs
VCC = 9 V
Vin = 100 mVrms
EQOUT
FOR mode
−10
−20
−30
−40
−50
−60
10
−40
100
1k
Frequency (Hz)
10k
100k
Channel Separation vs. Frequency (HA12229F) (1)
VCC = 9 V
Fin(L)→EQOUT(L→R)
Vout = +12 dB
Channel Separation (dB)
−50
−60
−70
−80
−90
10
100
1k
Frequency (Hz)
10k
100k
Rev.2, Dec. 2000, page 45 of 51
HA12228F/HA12229F
−50
Channel Separation vs. Frequency (HA12229F) (2)
VCC = 9 V
TAI(L)→PBOUT(L→R)
Vout = +12 dB
Channel Separation (dB)
−60
−70
−80
−90
−100
10
100
Crosstalk (dB)
10k
100k
Crosstalk vs. Frequency (HA12229F)
−40
−50
1k
Frequency (Hz)
VCC = 9 V
Fin(L)→Rin(L)
EQOUT(L)
Vout = +12 dB
−60
−70
−80
−90
10
Rev.2, Dec. 2000, page 46 of 51
100
1k
Frequency (Hz)
10k
100k
HA12228F/HA12229F
Mute Attenuation vs. Frequency (HA12229F)
−40
VCC = 9 V
TAI→PBOUT
Vout = +12 dB
Mute Attenuation (dB)
−60
−80
−100
−120
−140
10
100
1k
Frequency (Hz)
10k
100k
MS Amp. Gain vs. Frequency (HA12229F) (1)
50
VCC = 9 V
TAI (SER mode)
40
Gain (dB)
30
20
MAOUT
10
0
−10
MSI
−20
10
100
1k
Frequency (Hz)
10k
100k
Rev.2, Dec. 2000, page 47 of 51
HA12228F/HA12229F
MS Amp. Gain vs. Frequency (HA12229F) (2)
50
40
MAOUT
Gain (dB)
30
20
10
MSI
0
−10
VCC = 9 V
TAI (REP mode)
−20
10
100
1k
Frequency (Hz)
10k
100k
MS Sensing Level vs. Frequency (HA12229F)
10
MS Sensing Level (dB)
0
−10
SER L→H
SER H→L
REP L→H
REP H→L
VCC = 9 V
TAI→PBOUT
f = 5 kHz
0 dB = 300 mVrms
−20
−30
−40
10
Rev.2, Dec. 2000, page 48 of 51
100
1k
Frequency (Hz)
10k
100k
HA12228F/HA12229F
No-Signal Sensing Time vs. Resistance (HA12229F)
No-Signal Sensing Time (ms)
1000
100
SER 0 dB
SER −5 dB
SER −10 dB
REP 0 dB
REP −5 dB
REP −10 dB
VCC = 9 V
TAI→PBOUT
f = 5 kHz
PBOUT
10
MSOUT
C10
0.33µ
14
VCC
R15
1
10k
100k
1M
10M
Resistance R15 (Ω)
Signal Sensing Time vs. Capacitance (HA12229F)
Signal Sensing Time (ms)
1000
100
SER 0 dB
SER −5 dB
SER −10 dB
REP 0 dB
REP −5 dB
REP −10 dB
VCC = 9 V
TAI→PBOUT
f = 5 kHz
PBOUT
10
MSOUT
C10
14
VCC
R15
330k
1
0.001
0.01
0.1
Capacitance C10 (µF)
1
10
Rev.2, Dec. 2000, page 49 of 51
HA12228F/HA12229F
Package Dimensions
31
20
40
11
10
0.575
0.10
*Dimension including the plating thickness
Base material dimension
Rev.2, Dec. 2000, page 50 of 51
M
*0.17 ± 0.05
0.15 ± 0.04
0.13
1.40
1.70 Max
1
*0.25 ± 0.05
0.22 ± 0.04
0.09
0.13 +– 0.05
9.0 ± 0.2
9.0 ± 0.2
7.0
30
21
0.65
Unit: mm
1.0
0.575
0˚ – 8˚
0.50 ± 0.10
Hitachi Code
JEDEC
EIAJ
Mass (reference value)
FP-40B
—
Conforms
0.2 g
HA12228F/HA12229F
Disclaimer
1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent,
copyright, trademark, or other intellectual property rights for information contained in this document.
Hitachi bears no responsibility for problems that may arise with third party’s rights, including
intellectual property rights, in connection with use of the information contained in this document.
2. Products and product specifications may be subject to change without notice. Confirm that you have
received the latest product standards or specifications before final design, purchase or use.
3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However,
contact Hitachi’s sales office before using the product in an application that demands especially high
quality and reliability or where its failure or malfunction may directly threaten human life or cause risk
of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation,
traffic, safety equipment or medical equipment for life support.
4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly
for maximum rating, operating supply voltage range, heat radiation characteristics, installation
conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used
beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable
failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other
consequential damage due to operation of the Hitachi product.
5. This product is not designed to be radiation resistant.
6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without
written approval from Hitachi.
7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor
products.
Sales Offices
Hitachi, Ltd.
Semiconductor & Integrated Circuits.
Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109
URL
NorthAmerica
: http://semiconductor.hitachi.com/
Europe
: http://www.hitachi-eu.com/hel/ecg
Asia
: http://sicapac.hitachi-asia.com
Japan
: http://www.hitachi.co.jp/Sicd/indx.htm
For further information write to:
Hitachi Semiconductor
(America) Inc.
179 East Tasman Drive,
San Jose,CA 95134
Tel: <1> (408) 433-1990
Fax: <1>(408) 433-0223
Hitachi Europe GmbH
Electronic Components Group
Dornacher Straße 3
D-85622 Feldkirchen, Munich
Germany
Tel: <49> (89) 9 9180-0
Fax: <49> (89) 9 29 30 00
Hitachi Europe Ltd.
Electronic Components Group.
Whitebrook Park
Lower Cookham Road
Maidenhead
Berkshire SL6 8YA, United Kingdom
Tel: <44> (1628) 585000
Fax: <44> (1628) 585160
Hitachi Asia Ltd.
Hitachi Tower
16 Collyer Quay #20-00,
Singapore 049318
Tel : <65>-538-6533/538-8577
Fax : <65>-538-6933/538-3877
URL : http://www.hitachi.com.sg
Hitachi Asia Ltd.
(Taipei Branch Office)
4/F, No. 167, Tun Hwa North Road,
Hung-Kuo Building,
Taipei (105), Taiwan
Tel : <886>-(2)-2718-3666
Fax : <886>-(2)-2718-8180
Telex : 23222 HAS-TP
URL : http://www.hitachi.com.tw
Hitachi Asia (Hong Kong) Ltd.
Group III (Electronic Components)
7/F., North Tower,
World Finance Centre,
Harbour City, Canton Road
Tsim Sha Tsui, Kowloon,
Hong Kong
Tel : <852>-(2)-735-9218
Fax : <852>-(2)-730-0281
URL : http://www.hitachi.com.hk
Copyright  Hitachi, Ltd., 2000. All rights reserved. Printed in Japan.
Colophon 2.0
Rev.2, Dec. 2000, page 51 of 51