HITACHI HA13571FR

HA13571FR
Combo (Spindle & VCM) Driver for HDD
ADE-207-269 (Z)
1st Edition
February 1999
Description
The HA13571FR is combination of Spindle and VCM Driver designed for HDD and have following
functions and features.
Functions
•
•
•
•
•
•
•
•
•
2.2 A/phase spindle motor driver
1.5 A VCM driver
Soft switching control circuit
B-EMF detection circuit
Selectable PWM or linear drive (spindle motor driver)
Power down brake & retract
PWM DAC & filter (VCM driver)
5 V, 12 V power supply monitor
Watch dog timer
Features
• Low thermal resistance package (θj-a ≤ 25°C/W)
• Full programable commutation structure
• Low output saturation voltage
 Spindle motor driver
 VCM driver
• Built-in PWM DAC with filter
• Low noise drive by soft switching
HA13571FR
VISENH
NC
VCMP
VCMP
VCMP
VCCV12
SHPWR
POR12VADJ
VCMREF
WDTIN
GND
NC
GND
VISENL
POR5VADJ
CPOR
NC
PORN
VISENS
VCMINP
Pin Arrangement
60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41
RETADJ
NC1
VCMN
NC
NC
BSTFLT
BSTCP1
BSTCP2
OSCTC
GND
GND
SDRVW
NC
SISENH
SISINK
SISINK
NC
SDRVN
SCOMP
SDRVU
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
SDRVV
TEMP
SLOPEC
NC
SPWMTC
NC
NC
VCCS12
NC
SISENL
GND
NC
NC
GND
SLOPER
VCC5
SPWMFLT
SIPWM
SMODE
SCNTL3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
(Top view)
Notes: 1.
2.
3.
4.
2
All same name pins must be connected together.
"NC" and "NC1" denotes no connection pins.
ALL "NC" pins must be connected to GND or opened.
"NC1" pin must be connected to VCMN or opened.
VFLTOUT
VFLTINP
VFLTINP
VREFOUT
VPCNTL
VIPWMH
VIPWML
NC
NC
NC
NC
GND
NC
VCCA12
SENU
SENV
SENWIS
SCNTL1
SCNTL2
GND (CTLAMP)
HA13571FR
Block Diagram
5V
0.1µF
12V
34kΩ
VCC5
16
SLOPER
15
3
SLOPEC
SENU 26
SOFT
SWITCH
CONTROL
SENV 25
MPX
VCCA12
27
SPWMTC
5
SLEEP
V
−
+
W
LOGIC
DECODER
ONE
SHOT
0.75VCC5 INDUCTANCE
MODE
SMODE
COMP
LINEAR
SIPWM 18
SPWMFLT
17
PWM
DECODER
FILTER
−
+
ICOMP
WATCH DOG
TIMER
WDTIN 51
VPCNTL 36
VREFOUT
4.0V
SLEEP
V
1
W
72
−
+
SOFT
SDRVV
SDRVW
75,76
74
ISENSE
AMP +
−
ISENSE
−
+ CONTROL
AMP
0.9V
SLEEP
SLEEP
POR
0.25VCC5
54
RETRACT
DRIVER
61
55
VBST
VREF 1.4V
VIPWMH 35
PWM
DECODER
FILTER
47
60
SLEEP
VBST
OSCTC
69
BOOSTER
VREF 1.4V
5V
POWER
MONITOR
SISENL
SCOMP
SHPWR
RETADJ
VCCV12
VCMN
63
VCMP Rs
56,57,58
VCM
DRIVER
VCCV12/2
SISENH
2 TEMP
VCM ENABLE
VIPWML 34
79
5V
0.75VCC5
VTRI- DISABLE
LEVEL
SISINK
Rnf
10
THERMAL
SHUT
DOWN
TSD
0.5VCC5
SLEEP
0.5VCC5
VREFOUT
37
Icomp
PWM MODE
0.25VCC5
SDRVU
80
DISABLE
SMODE 19
SPN
DRIVER
VBST
−
+
U
TAB
U
SCNTL2 22
0.5VCC5
VCCS12
8
SDRVN
78
SCNTL1 23
SCNTL3 20
0.47µF
SLEEP
SOFT
−
+
SENWIS 24
Rx
470pF
POR
DETECTOR
52
Rf
VISENL
Cf
VISENH
VCMREF
SBD1
43 PORN
POR
5/16 VCC5
67 68
BST BST
CP2 CP2
66 38,39 40
41
42
46
BST VFLT VFLT VCM VISENS POR
FLT INP
OUT INP
5V
ADJ
5/32 VCCV12
53
POR
12V
ADJ
45
CPOR
11,14,21,29,
48,50,70,71
C133
3
HA13571FR
Truth Table
Table 1
Input to Output Drivers
SCNTL1
SCNTL2
SCNTL3
SDRVU
SDRVV
SDRVW
H
H
L
L
Z
H
H
L
L
Z
L
H
H
L
H
H
L
Z
L
L
H
H
Z
L
L
H
H
Z
H
L
L
H
L
L
H
Z
L
L
L
Z
Z
Z
H
H
H
L
L
L
Note: Z = High impedance
Table 2
Spindle Driver Mode Control
SMODE
SIPWM
Spindle Driver Mode
H
Duty ≥ 50%
Linear Mode (High slew rate) * 2
H
Duty ≤ 40%
Linear Mode (Low slew rate) * 2
M
X
Inductive Sense Mode
X
B-EMF Sense in PWM Drive Mode
L
Note:
Table 3
1. X = Don’t care
2. Slew rate mode is commutated at synchronized with the up edge of SLOPEC.
VCM Control
WDTIN
VPCNTL
VCM Mode
H or L
X
Park
M
H
Enable
M
M
Disable
M
L
Park
Table 4
Temp Output
TEMP
Status
H
Warning or TSD
L
Normal
4
HA13571FR
Table 5
Output Status
PORN
SLEEP * 3
TSD
TEMP
Driver
L
H
Inactive
Active
L
H
L
SPN Output
Brake for
Retract
Enable
X
Z
X
Z
X
VCM Output
Retract
(Power off)
Enable
X
Z
X
Z
X
H
Notes: 1. X = Don’t care
2. Z = High impedance
3. SLEEP SCNTL1 = SCNTL2 = SCNTL3 = Low
WDTIN = VPCNTL = Middle
5
HA13571FR
Table 6
SCNTL, WDTIN and VPCNTL Mode
SCNTL
WDTIN
VPCNTL
Modes of Operation
Input States
Input State
Input State
at Power Good (PORN = H)
SCNTL1
SCNTL2
SCNTL3
Spindle Driver
See Table 1
See Table 1
See Table 1
X
X
Enable
L
L
L
X
X
Disable
H
H
H
X
X
Brake
SCNTL
WDTIN
VPCNTL
Modes of Operation
Input States
Input State
Input State
at Power Good (PORN = H)
SCNTL1
SCNTL2
SCNTL3
X
X
X
L or H
X
Park
X
X
X
Middle
H
Enable
X
X
X
Middle
Z
Disable
X
X
X
Middle
L
Park
SCNTL
WDTIN
VPCNTL
Modes of Operation
Input States
Input State
Input State
at Power Good (PORN = H)
SCNTL1
SCNTL2
SCNTL3
L
L
L
VCM Driver
Spindle & VCM Driver
Middle
Z
Sleep Mode *
Note: Sleep signal is generated by SCNTL and VPCNTL.
TEMP output is depend on internal TSD and internal TEMP. (see figure 1)
Tsoff
TSD (Internal)
Thys
TEMP (Internal)
Twar
TSD
TEMP
TEMP (Output)
TEMP output logic (1)
Figure 1 TEMP Output Logic
6
TEMP output logic (2)
TEMP
HA13571FR
Table 7
Function Powered on Vs Mode Operation
Function
UPPER
BOOSTER
UPPER
DRIVERS
LOWER
DRIVERS
COMP
CONTROL
AMP
Spindle enable
ON
ON
ON
ON
ON
Spindle disable
ON
OFF
OFF
ON
OFF
PORN low
OFF
OFF
ON
OFF
OFF
ON
ON/OFF
ON/OFF
ON
ON/OFF
Sleep *
OFF
OFF
OFF
OFF
OFF
Function
ONE
SHOT
ICOMP
(Current
comparator)
PWM
DECODER
FILTER
SMODE
COMP
ISENSE
AMP
LOGIC
DECODER
Spindle enable
ON
ON
ON
ON
ON
ON
Spindle disable
ON
ON
ON
ON
ON
ON
PORN low
OFF
OFF
OFF
OFF
OFF
ON
ON
ON
ON
ON
ON
ON
Sleep *
OFF
OFF
OFF
OFF
OFF
ON
Function
PWM
DECODER
12V and
5V COMP
FILTER
AMP
PORN
DETECTOR
RETRACT
CIRCUIT
TSD
VCM enable
ON
ON
ON
ON
OFF
ON
VCM disable
ON
ON
ON
ON
OFF
ON
1
ON
ON
ON
ON
ON
ON
Sleep *
OFF
ON
OFF
ON
OFF
ON
PORN low
OFF
ON
OFF
ON
ON
ON
Function
VPCNTL
VREFOUT
BUF
VREFOUT
SENSE1
VCM
DRIVER
SLEEP
FUNCTION
VCM enable
ON
ON
ON
ON
ON
OFF
VCM disable
ON
ON
ON
ON
OFF
OFF
1
ON
ON
ON
ON
OFF
OFF
Sleep *
ON
OFF
OFF
OFF
OFF
ON
PORN low
ON
OFF
OFF
OFF
OFF
ON
Park *
1
2
Park *
1
2
Park *
2
Park *
2
Note:
1. Park signal is generated by VPCNTL.
2. Sleep signal is generated by SCNTL and VPCNTL.
7
HA13571FR
Timing Chart
1. SPN Input to Output Drivers
• Control Lines
SCNTL1
SCNTL2
SCNTL3
• Output Drivers
PWM Mode
SDRVU
SDRVV
SDRVW
Z
PWM
PWM Z
Z
Z
PWM
Z
Z
PWM
Z
Z
PWM
Z
Z
PWM
Z
Z
PWM
Z
Z
Z
PWM
• Output Drivers
Linear Mode
SDRVU
Z
Z
SDRVV
SDRVW
Z
• Comparators
SENU
SENV
SENW
Note: "Z" = High impedance
8
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
HA13571FR
2. Soft Switching
U
B-EMF
V
W
0
• Control Lines
SCNTL1
SCNTL2
SCNTL3
• Output Voltage
SDRVU
0
SDRVV
0
SDRVW
0
• Output Current
SDRVU
0
SDRVV
0
SDRVW
0
• Comparators
SENU
SENV
SENW
9
HA13571FR
Application
5V
C101
4.7µ
C102
470p
Rx 15
Ry
15
R101
34k
VCC5
C114
1.0µ
VCCA12 VCCS12
SPWMTC
R106
12V
C121
4.4µ
C112
0.47µ
SDRVN
D1
SDRVU
D2
SLOPER
SDRVV
D3
SLOPEC
SDRVW
C113
C118
0.02µ
SISINK
SENU
Rnf
0.33
SISENH
SENWIS
SISENL
SCNTL1
SCOMP
SCNTL2
GND (CTLAMP)
SCNTL3
OSCTC
SMODE
BSTCP1
SIPWM
VIPWML
C103
VIPWMH
SPWMFLT
HA13571FR
ASIC
SENV
0.047µ
C111
0.47µ
C110
390p
C109
0.1µ
C108
BSTCP2
BSTFLT
2.2µ
C107
SHPWR
2.2µ
VCCV12
R108
R2
WDTIN
VCMN
C119
µPC
C115
0.47µ
R1
RETADJ
TEMP
VCMP
PORN
Rs
0.33
C104
ADC
1000p
C117
0.47µ
R102
VPCNTL
VISENL
VFLTINP
VISENH
VREFOUT
VCMREF
VFLTOUT
POR12VADJ
POR5VADJ
VCMINP
R103
TAB
Cf
SBD1
C133
4.7µ
C105
0.22µ
C116
Unit
10
Rf
CPOR
VISENS
R107
C120
0.01µ
C131
220p
C132
220p
R:Ω
C:F
HA13571FR
External Components
Parts No.
Reccomended
Value
Purpose
R1, R2
—
Setting of Retract voltage
R101
34 kΩ
PWM time off for Spindle driver
R102, R103
—
Setting of VCM driver gain
R106
100 kΩ
Time constant for Soft switching
R107
—
Phase compensation for VCM driver
R108
TBD
for Watch dog timer
Rnf
0.33 Ω
Current sensing for Spindle driver
Rs
0.33 Ω
Current sensing for VCM driver
Rx, Ry
15 Ω
for Filter VCCA12 and VCC5
Rf
—
Snubber for VCM driver
C101
4.7 µF
5V power supply by passing
C102
470 pF
PWM time off for Spindle driver
C103
0.047 µF
PWM filter for Spindle driver
C104
1000 pF
PWM filter for VCM driver
C105
0.22 µF
Delay for POR
C107
2.2 µF
Capacitor for Retract voltage supply
C108
2.2 µF
for Booster
C109
0.1 µF
for Booster
C110
390 pF
Time constant for Oscillation
C111
0.47 µF
Phase compensation for Spindle driver
C112
0.47 µF
12V power supply by passing
C113
0.003 µF
Time constant for Soft switching
C114
1.0 µF
12V power supply by passing
C115
0.47 µF
12V power supply by passing
C116
—
Phase compensation for VCM driver
C117
0.47 µF
Reference output by passing
C118
0.02 µF
Prevent from oscillation during PWM drive
C119
TBD
for Watch dog timer
C120
0.01 µF
Reduction of noise from 12V power supply for VCM driver
C121
4.4 µF
Reduction of noise from 12V power supply for VCM driver
C131
220 pF
(Option) Filter for POR12VADJ
C132
220 pF
(Option) Filter for POR5VADJ
C133 *
4.7 µF
Reduction of noise from 12V power supply for VCM driver
11
HA13571FR
External Components (cont)
Parts No.
Reccomended
Value
Purpose
Cf
—
Snubber for VCM Driver
D1 to D3
TBD
Power rectification for Retract driver
SBD1 *
HRU0302A
Prevent of malfunction for Retract driver
Note: Retract circuit sometime will be malfunctioning by means of negative voltage on the terminal
VCMREF (pin 52) in the following sequence.
If you want to countermeasure this, you need to avoid the following sequence or to attach the
Schottky Barrier Diode (SBD1) between terminal VCMREF and GND. (see figure 2)
1. Spindle motor driver is active and VCM driver is disable by (VPCNTL = Middle).
2. Power supply goes to low level after above condition 1 and retract circuit becomes active by
(POR = L).
37 VREFOUT
VCMREF 52
C117
0.47µF
C120
0.01µF
C133
4.7µF
Figure 2
12
SBD1
HRU0302A
HA13571FR
Absolute Maximum Ratings (Ta = 25°C)
Item
Symbol
Rating
Unit
Notes
Supply voltage +12V
Vcc12
–0.3 to 13.5
V
1
Supply voltage +5V
Vcc5
–0.3 to 6
V
1
Output voltage +12V (DC)
Vsdrv (DC)
–0.3 to 15
V
5
Output voltage +12V (PEAK)
Vsdrv (PEAK)
–2.0 to 17
V
5, 6
Output voltage +5V
Vout
–0.3 to 6
V
7
Output current spindle driver
Iospn (DC)
2.2
A
2
Output current VCM driver
Iovcm (DC)
1.5
A
2
Input voltage
Vi
–0.3 to Vcc5
V
3
Power dissipation
PT
5
W
4
Junction temperature
Tj
160
°C
1
Storage temperature
Tstg
–55 to +125
°C
Notes: 1. Operating range are as follows.
Vcc12 = 10.8 to 13.2 V
VccA12 = 10.4 to 13.2 V
Vcc5 = 4.3 to 5.5 V
Tjopr = 0 to 130°C
2. Refer to ASO shown below. Operating locus must be within the ASO.
3. Applied to pin SCNTL1, SCNTL2, SCNTL3, SMODE, SIPWM, VPCNTL, VIPWML and VIPWMH.
4. Thermal resistance θj-a ≤ 25°C/W with 4 layer multi glass-epoxy board.
5. Applied to pin SDRVN, SDRVU, SDRVV, SDRVW, VCMN and VCMP.
6. PEAK time must be shorter than 1 ms.
7. Applied to pin PORN and TEMP.
Spindle Driver
VCM Driver
1.0
2.0
Corrector Current Ic (A)
Corrector Current Ic (A)
2.2
2.0
t = 1ms
t = 10ms
t = 100ms
0.5
0.2
0.1
1
2
5
10 15 20
The voltage between Corrector and Emitter Vce (V)
1.0
0.5
t = 1ms
t = 10ms
t = 100ms
0.2
0.1
1
2
5
10 15 20
The voltage between Corrector and Emitter Vce (V)
Figure 3 ASO
13
HA13571FR
Electrical Characteristics (Ta = 25°C, Vcc5 = 5.0 V, Vcc12 = 12 V)
Item
Symbol
Min
Typ
Max
Unit
Test Conditions
Applicable pins
+5V supply current
Icc5s
—
9.0
11.5
mA
Sleep mode
VCC5
Icc5
—
15
18.5
mA
Icc12s
—
3.0
4.5
mA
Sleep mode
VCCS12
VCCV12
VCCA12
Icc12
—
40
50
mA
SMODE = High
IccA12
—
12.5
16
mA
SMODE = High
VCCA12
Total power dissipation
Pdiss
—
81
110
mW
Sleep mode
Vcc5 = 5.0V,
Vcc12 = 12.0V
VCC5
VCCS12
VCCV12
VCCA12
Logic
inputs1
Input current
Iin
—
—
±10
µA
Vin = 0 to Vcc5
SCNTL1
SCNTL2
SCNTL3
High level voltage
Vih
3.5
—
—
V
Low level voltage
Vil
—
—
1.5
V
High level voltage
Vih
3.9
—
—
V
Middle level voltage
Vim
1.4
—
3.6
V
Low level voltage
Vil
—
—
1.1
V
High level current
Iih
80
100
133
µA
VIN = 5V
Low level current
Iil
–80
–100
–133
µA
VIN = 0V
High level voltage
Vih
3.9
—
—
V
Middle level voltage
Vim
1.4
—
3.6
V
Low level voltage
Vil
—
—
1.1
V
High level current
Iih
80
100
133
µA
VIN = 5V
Low level current
Iil
–80
–100
–133
µA
VIN = 0V
High level current
Iih
480
600
800
µA
VIN = 5V
Low level current
Iil
–80
–100
–133
µA
VIN = 0V
High level voltage
Vih
3.8
—
—
V
Middle level voltage
Vim
1.3
—
3.5
V
Low level voltage
Vil
—
—
1.0
V
Input current
Iin
—
—
±20
µA
+12V supply current
Logic
inputs2
Logic
inputs3
Logic
inputs4
14
SMODE
VPCNTL
WDTIN =
Middle
WDTIN =
High or Low
WDTIN
Vin = 0 to Vcc5
Note
1
HA13571FR
Electrical Characteristics (cont)
Item
SPN
output
drivers
Symbol
Min
Typ
Max
Unit
Test Conditions
Vsatspn
—
1.1
1.4
V
Iout = 1.2A, Tj = 25°C
—
2.0
2.6
V
Iout = 2.2A
—
2.6
3.74
V
Icex1
—
—
0.1
mA
VIN = 14V
Icex2
—
0.6
1.2
mA
Test source current
from middle phase
RL = 11Ω/phase
Ifrdu
—
—
20
mA
Vfrdu = 2.0V,
Vcc12 = 0V
Vfrdl1
—
1.25
1.4
V
If = –1.0A
Vfrdl2
—
1.75
2.2
V
If = –2.2A
Overvoltage
protection clamp
Vclp
14.4
15.4
17
V
Iclp = 100mA
Input current
Iin
—
—
±300
µA
Vin = –0.3 to Vcc5
High level voltage
Vh
3.5
—
—
V
Low level voltage
Vts
—
—
1.5
V
PWM pulse width
Tpwm
23
—
—
ns
Output resistance
at Spwmflt
Rsout
—
34
±20%
kΩ
Output voltage
Vflt100
—
1.79
±10%
V
Duty = 100%
Vflt50
—
0.93
±10%
V
Duty = 50%
Vflt0
—
50
100
mV
Duty = 0%
Isk
410
580
750
µA
Spwmtg = 3.0V
Low clamp voltage Vclmp
1.33
1.53
1.73
V
for discharging
Threshold voltage
Vthst
3.0
3.3
3.6
V
for discharging
Vthend
1.47
1.67
1.87
V
for charging
Total output
saturation voltage
Leakage current
Recirculating
diode forward
voltage
SPN
PWM
DAC &
filter
PWM
one
shot
Sink current
Applicable pins
Note
SDRVU
SDRVV
SDRVW
Tj = 25°C
Tj = 125°C
1
SDRVU
SDRVV
SDRVW
1
SIPWM
SPWMFLT
SPWMTC
15
HA13571FR
Electrical Characteristics (cont)
Item
Symbol Min
Typ
Max
Unit
Test Conditions
One-shot off time
Toff
9
11
13
µs
Ext. R = 34kΩ,
C = 470pF
One-shot minimum
on time
Ton
2.1
2.8
3.5
µs
B-EMF Common mode
compa- input voltage
rators
Vcm
–0.4
—
VCC12
–2.0
V
Common mode
clamp resistor
Rclp
7
10
13
kΩ
Sdrvn = 6V
Offset voltage
Vcos
—
—
±5
mV
Sdrvn = 1.0V to Vcc12-2V
∆Vosc
—
—
±7
mV
Variation in U, V, W
Vsink
—
—
0.5
V
Isink = 1.0mA
Output high voltage Vsource 2.7
—
—
V
Isource = 0.04mA
Center tap voltage
PWM
one
shot
Output low voltage
Control
amp &
sense
amp
16
Applicable pins
Note
SPWMTC
1
SDRVU
SDRVV
SDRVW
SDRVN
SENU
SENV
SENWIS
VCT
1.0
—
VCC12
–2.0
V
SCNTL1, 2, 3 = “L”
RL = 2Ω/phase
VPCNTL = “H” or “M”
SDRVN
Isense input current Isen
–10
—
24
µA
SISENH = 0 to 0.4V
SISENH
SISENL
Isense amp voltage Ksp
gain
—
4.9
±4.6%
V/V
Ksp = Spwmflt/Sisenh
Rs = 0.33Ω
SISENH
SPWMFLT
SISENH voltage
—
348
±18
mV
Rnf = 0.33Ω
—
348
±18
mV
D = 100%
V50
—
170
±18
mV
D = 50%
V5
—
7
17
mV
D = 5%
V0
0.0
0.0
5
mV
D = 0%
Current loop
bandwidth
Bwd
1.8
3.0
—
kHz
Rnf = 0.33W, Rm = 12Ω
Lm = 1.0mH, C111 = 0.47µF
ICOMP threshold
voltage
Vth
—
180
±15
mV
No Load
No Rnf
—
80
±11
mV
Smode = 2.5V,
Spwmflt =
Sisenh = 0 to 5V 0.5V
V100
D = 100% SISINK
Tj = 125°C
Spwmflt = SENWIS
1.0V
1
1
HA13571FR
Electrical Characteristics (cont)
Symbol
Min
Typ
Max
Unit
Test Conditions
Applicable pins
SLOPER
Output voltage
Vsoftr
1.45
1.90
2.35
V
R106 = 100kΩ
SLOPER
SLOPEC
Source current
Isource
7
9
12
µA
R106 = 100kΩ
SLOPEC
SLOPEC
Sink current
Isink
7
9
12
µA
R106 = 100kΩ
SLOPEC
High voltage
Vhsoft
3.5
4.4
5.5
V
High SR
2.0
2.4
2.8
V
Low SR
Item
Soft
Switch
VCM
PWM
DAC
SLOPEC
Low voltage
Vlsoft
0.9
1.1
1.3
V
Input current
Iin
—
—
±200
µA
Input high voltage Vhi
3.5
—
—
V
Input low voltage
Vli
—
—
1.5
V
Input PWM
frequency
Fpwm
—
625
—
kHz
PWM pulse width
Tpwm
23
—
—
ns
—
14
—
bits
Vflp
—
Vrefout —
+1.0
V
Negative full scale Vfln
voltage
—
Vrefout —
–1.0
V
Current ratio
–0.5
32
+1.0
A/A
PWM DAC
resolution
Positive full scale
voltage
Filter
Vin = 0V to 5V
Note
VIPWML
VIPWMH
1
1
VFLTINP
1
1
MSB/LSB
Output
impedance
Rout
—
3.75
±17%
kΩ
Output
impedance
Rout
—
—
40
Ω
∆Vout = 10mV
—
—
1.2
deg.
f = 500Hz,
Vfltinp to Vfltout
1
33
50
75
kHz
∆Gv = –3dB
1
—
24
±10
dB
f = 200kHz
Phase shift
Cutoff frequency
Attenuation
Fc
VFLTOUT
17
HA13571FR
Electrical Characteristics (cont)
Item
Filter
Symbol
Min
Typ
Max
Unit
Test Conditions
Vflt0
—
Vrefout
–2.03
±0.1
V
Vipwml & Vipwmh
Duty = 0%
Vflt50
—
Vrefout
±0.05
V
Vipwml & Vipwmh
Duty = 50%
Vflt100
—
Vrefout
+2.03
±0.1
V
Vipwml & Vipwmh
Duty = 100%
Vfltsym
—
—
±140
mV
| Vflt100 – Vrefout |
– | Vfit0 – Vrefout |
Iin
–200
—
400
µA
Output offset
voltage
Vos
—
10
±20
mV
Visenh – Visenl = 0V
at 1/2 Vcc
Output resistance
Rout
—
—
25
Ω
Sink and Source
Visenl, Visenh
operating range
Vr1
0
—
12
V
Gain and Offset
Valid
Unity gain
bandwidth
BW1
2.0
3.0
4.0
MHz
Gain
G10
3.8
4.0
4.2
V/V
VISENH/L = 0V
G16
3.8
4.0
4.2
V/V
VISENH/L = 6V
G112
3.8
4.0
4.2
V/V
VISENH/L = 12V
∆G1
—
0
±2%
V/V
(G112 – G16)/G16
(G10 – G16)/G16
Power supply
rejection ratio
PSRR
40
52
—
dB
F ≤ 20kHz
Total output
saturation voltage
Vsatvcm —
1.5
1.875
V
Iout = 1.5A
—
1.95
2.85
V
Output voltage
Output voltage
symmetry
Current Input current
sense
amp
VCM
output
driver
18
Output leakage
Ilk
—
—
0.5
mA
Output quiescent
voltage
Vq
—
Vcc12/2
±5%
V
Recircurate diode
voltage
VRD
—
2.0
2.5
V
Applicable pins
Note
VFLTOUT
VISENS
VISENH
VISENL
1
1
Tj = 25°C
Tj = 125°C
VCMN
VCMP
1
Tj = 25°C
BSTFLT = VCCV12 = 14V
Io = –1.5A
1
HA13571FR
Electrical Characteristics (cont)
Item
Applicable pins
Symbol Min
Typ
Max
Unit
Test Conditions
Output offset
current
Ios
—
—
±28
mA
Rs = 0.33Ω, Rl = 10Ω,
VISENH
R102 = 10kΩ, R103 = 6.6kΩ
C106, R107 = OPEN
Transconductance
Gm
—
0.5
±5%
A/V
Vin = FLTOUT
–3dB bandwidth
BW
—
300
±30% kHz
Vout = VCMN, Rl = 15Ω
Total harmonic
distortion
THD
—
1.0
2.5
%
f = 1kHz, Vout = 1Vrms
Time of crossover
distortion
Tcro
—
2
5
µs
Ramp input
VCMINP 20µs
R102 = 10kΩ, R103 = 6.6kΩ
C106, R107 = OPEN
Symmetry Vcm
drivers VCMN
VCMP
RATIO
= I2/I1
0.95
1.02
1.09
Ratio
I2 = Irvcm at D = 10%
I1 = Irvcm at D = 90%
I0 = Irvcm at D = 50%
Rs = 0.33Ω, RL = 10Ω
R103/R102 = 10k/6.6k
Linearity Vcm
drivers VCMN
VCMP
L=
0.99
| I2–I0 |/
| I1–I0 |
1.02
1.05
Ratio
Overvoltage
protection clamp
Vclp2
15.8
17.0
V
Iclp2 = 100mA
Reference volatge
Vvcmref —
Vcc12/2
±5%
V
20kΩ/20kΩ
VCMREF
Output voltage
Vretout
0.65
0.9
1.3
V
Rs = 0.33Ω, RL = 15Ω
R1 = 33kΩ, R2 = 10kΩ
VPCNTL = “L”
VCMN
Saturation voltage
(Lower)
VsatL
—
0.12
0.25
V
Min. retract current
Iret
15
—
—
mA
VIN = VSHPWR + VF(IM10) VCMN
VIN = 2.0–VFSub(@20mA) VCMP
Max. retract voltage Vret
(VCMN–VCMP)
—
—
1.3
V
VIN = 8V, Rm 4Ω,
R1 = 33kΩ, R2 = 10kΩ
Brake
Brake voltage
Vbrks
—
0.5
0.8
V
Ibrk = 1.2A
SCNTL1 to 3 = High
SDRVU
SDRVV
SDRVW
Vrefout
Output voltage
Vref
—
4.0
±0.2
V
Io = 10.0mA, Cl = 10nF
VREFOUT
Booster Output voltage
Vbst
Vcc12 —
+0.8
Vcc12 V
+3.7
Ispn = 0A, Ivcm = 0A
BSTFLT
Vcc12 —
+0.8
Vcc12 V
+3.7
Ispn = 2.2A, Ivcm = 0A
Vcc12 —
+0.8
Vcc12 V
+3.7
Ispn = 0.5A, Ivcm = 1.5A
VCM
output
driver
Retract
(Power
on)
Retract
(Power
off)
14.6
Note
1
VCMN
VCMP
VCMP
19
HA13571FR
Electrical Characteristics (cont)
Symbol
Min
Typ
Max
Unit
Test Conditions
Applicable pins
+12V Threshold
voltage
Vt12
—
9.0
±0.3
V
Vcc5 = 5V
VCC12
+5V Threshold
voltage
Vt5
—
4.5
±0.1
V
Vcc12 = 12V
VCC5
Hysteresis on Vcc12
Hv12
—
200
±60
mV
VCC12
Hysteresis on Vcc5
Hv5
—
50
±15
mV
VCC5
POR12VADJ voltage
V12adj
—
1.86
±2%
V
19.2kΩ/3.52kΩ
POR12V
ADJ
POR5VADJ voltage
V5adj
—
1.54
±2%
V
9.6kΩ/4.27kΩ
POR5V
ADJ
Output low level
voltage
Vol
—
—
0.5
V
Iol = 2mA, Vcc5 = 4.35V
Vcc12 = 8.7V
PORN
Output high level
voltage
Voh
Vcc5
–0.15
—
—
V
Vcc5 = 4.7V, Vcc12 = 9.5V
PORN pull-up
resistance
Rpu
—
15
±20%
kΩ
Charge current for
CPOR
Icpor
5
8
12
µA
CPOR threshold
voltage
Vcpor
—
1.4
—
V
POR delay
Tdpor
—
40
—
ms
Power supply Max.
pulse duration
Trpulse
5.0
—
—
µs
Twar
130
145
160
°C
2
Shut-down
temperature
Tsoff
145
160
175
°C
2
Difference
temperature
∆T
10
15
20
°C
Thermal hysteresis
Thys
—
30
±10
°C
OSC
Frequency range
fosc
200
250
300
kHz
TEMP
Output low voltage
Vol2
—
—
1.0
V
Pull-up resistnace
Rpu2
—
50
±20%
kΩ
Leakage current
Ilk2
—
—
±10
µA
Item
Power
Monitor
POR
detector
Thermal Warning temperature
shutdown
Note:
20
1. Guaranteed by design.
2. Function test only.
Note
CPOR
Cpor = 0.22µF
PORN
Tsoff – Twar
2
1
OSCTC
Iol = 0.1mA
Vcc5 = 6V, Vo = 6V
TEMP
HA13571FR
Package Dimensions
Unit: mm
( ) : reference value
16.4 ± 0.2
16.0 ± 0.2
14.0
(12.2)
41
80
21
0.5
20
1.0
M
1.40
1.70 Max
0.08
2.25
0.08
*Dimension including the plating thickness
Base material dimension
0° − 8°
0.50 ± 0.2
0.07 +0.03
−0.07
0.60
1
*0.22 ± 0.05
0.20 ± 0.04
*0.17± 0.05
0.15 ± 0.04
40
16.4 ± 0.2
16.0 ± 0.2
61
(12.2)
60
Hitachi Code
JEDEC
EIAJ
Weight (reference value)
FP-80TA


1.3 g
21
Cautions
1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent,
copyright, trademark, or other intellectual property rights for information contained in this document.
Hitachi bears no responsibility for problems that may arise with third party’s rights, including
intellectual property rights, in connection with use of the information contained in this document.
2. Products and product specifications may be subject to change without notice. Confirm that you have
received the latest product standards or specifications before final design, purchase or use.
3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However,
contact Hitachi’s sales office before using the product in an application that demands especially high
quality and reliability or where its failure or malfunction may directly threaten human life or cause risk
of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation,
traffic, safety equipment or medical equipment for life support.
4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly
for maximum rating, operating supply voltage range, heat radiation characteristics, installation
conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used
beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable
failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other
consequential damage due to operation of the Hitachi product.
5. This product is not designed to be radiation resistant.
6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without
written approval from Hitachi.
7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor
products.
Hitachi, Ltd.
Semiconductor & Integrated Circuits.
Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109
URL
NorthAmerica
: http:semiconductor.hitachi.com/
Europe
: http://www.hitachi-eu.com/hel/ecg
Asia (Singapore)
: http://www.has.hitachi.com.sg/grp3/sicd/index.htm
Asia (Taiwan)
: http://www.hitachi.com.tw/E/Product/SICD_Frame.htm
Asia (HongKong) : http://www.hitachi.com.hk/eng/bo/grp3/index.htm
Japan
: http://www.hitachi.co.jp/Sicd/indx.htm
For further information write to:
Hitachi Semiconductor
(America) Inc.
179 East Tasman Drive,
San Jose,CA 95134
Tel: <1> (408) 433-1990
Fax: <1>(408) 433-0223
Hitachi Europe GmbH
Electronic components Group
Dornacher Stra§e 3
D-85622 Feldkirchen, Munich
Germany
Tel: <49> (89) 9 9180-0
Fax: <49> (89) 9 29 30 00
Hitachi Europe Ltd.
Electronic Components Group.
Whitebrook Park
Lower Cookham Road
Maidenhead
Berkshire SL6 8YA, United Kingdom
Tel: <44> (1628) 585000
Fax: <44> (1628) 778322
Hitachi Asia Pte. Ltd.
16 Collyer Quay #20-00
Hitachi Tower
Singapore 049318
Tel: 535-2100
Fax: 535-1533
Hitachi Asia Ltd.
Taipei Branch Office
3F, Hung Kuo Building. No.167,
Tun-Hwa North Road, Taipei (105)
Tel: <886> (2) 2718-3666
Fax: <886> (2) 2718-8180
Hitachi Asia (Hong Kong) Ltd.
Group III (Electronic Components)
7/F., North Tower, World Finance Centre,
Harbour City, Canton Road, Tsim Sha Tsui,
Kowloon, Hong Kong
Tel: <852> (2) 735 9218
Fax: <852> (2) 730 0281
Telex: 40815 HITEC HX
Copyright ' Hitachi, Ltd., 1999. All rights reserved. Printed in Japan.