HA13571FR Combo (Spindle & VCM) Driver for HDD ADE-207-269 (Z) 1st Edition February 1999 Description The HA13571FR is combination of Spindle and VCM Driver designed for HDD and have following functions and features. Functions • • • • • • • • • 2.2 A/phase spindle motor driver 1.5 A VCM driver Soft switching control circuit B-EMF detection circuit Selectable PWM or linear drive (spindle motor driver) Power down brake & retract PWM DAC & filter (VCM driver) 5 V, 12 V power supply monitor Watch dog timer Features • Low thermal resistance package (θj-a ≤ 25°C/W) • Full programable commutation structure • Low output saturation voltage Spindle motor driver VCM driver • Built-in PWM DAC with filter • Low noise drive by soft switching HA13571FR VISENH NC VCMP VCMP VCMP VCCV12 SHPWR POR12VADJ VCMREF WDTIN GND NC GND VISENL POR5VADJ CPOR NC PORN VISENS VCMINP Pin Arrangement 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 RETADJ NC1 VCMN NC NC BSTFLT BSTCP1 BSTCP2 OSCTC GND GND SDRVW NC SISENH SISINK SISINK NC SDRVN SCOMP SDRVU 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 SDRVV TEMP SLOPEC NC SPWMTC NC NC VCCS12 NC SISENL GND NC NC GND SLOPER VCC5 SPWMFLT SIPWM SMODE SCNTL3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 (Top view) Notes: 1. 2. 3. 4. 2 All same name pins must be connected together. "NC" and "NC1" denotes no connection pins. ALL "NC" pins must be connected to GND or opened. "NC1" pin must be connected to VCMN or opened. VFLTOUT VFLTINP VFLTINP VREFOUT VPCNTL VIPWMH VIPWML NC NC NC NC GND NC VCCA12 SENU SENV SENWIS SCNTL1 SCNTL2 GND (CTLAMP) HA13571FR Block Diagram 5V 0.1µF 12V 34kΩ VCC5 16 SLOPER 15 3 SLOPEC SENU 26 SOFT SWITCH CONTROL SENV 25 MPX VCCA12 27 SPWMTC 5 SLEEP V − + W LOGIC DECODER ONE SHOT 0.75VCC5 INDUCTANCE MODE SMODE COMP LINEAR SIPWM 18 SPWMFLT 17 PWM DECODER FILTER − + ICOMP WATCH DOG TIMER WDTIN 51 VPCNTL 36 VREFOUT 4.0V SLEEP V 1 W 72 − + SOFT SDRVV SDRVW 75,76 74 ISENSE AMP + − ISENSE − + CONTROL AMP 0.9V SLEEP SLEEP POR 0.25VCC5 54 RETRACT DRIVER 61 55 VBST VREF 1.4V VIPWMH 35 PWM DECODER FILTER 47 60 SLEEP VBST OSCTC 69 BOOSTER VREF 1.4V 5V POWER MONITOR SISENL SCOMP SHPWR RETADJ VCCV12 VCMN 63 VCMP Rs 56,57,58 VCM DRIVER VCCV12/2 SISENH 2 TEMP VCM ENABLE VIPWML 34 79 5V 0.75VCC5 VTRI- DISABLE LEVEL SISINK Rnf 10 THERMAL SHUT DOWN TSD 0.5VCC5 SLEEP 0.5VCC5 VREFOUT 37 Icomp PWM MODE 0.25VCC5 SDRVU 80 DISABLE SMODE 19 SPN DRIVER VBST − + U TAB U SCNTL2 22 0.5VCC5 VCCS12 8 SDRVN 78 SCNTL1 23 SCNTL3 20 0.47µF SLEEP SOFT − + SENWIS 24 Rx 470pF POR DETECTOR 52 Rf VISENL Cf VISENH VCMREF SBD1 43 PORN POR 5/16 VCC5 67 68 BST BST CP2 CP2 66 38,39 40 41 42 46 BST VFLT VFLT VCM VISENS POR FLT INP OUT INP 5V ADJ 5/32 VCCV12 53 POR 12V ADJ 45 CPOR 11,14,21,29, 48,50,70,71 C133 3 HA13571FR Truth Table Table 1 Input to Output Drivers SCNTL1 SCNTL2 SCNTL3 SDRVU SDRVV SDRVW H H L L Z H H L L Z L H H L H H L Z L L H H Z L L H H Z H L L H L L H Z L L L Z Z Z H H H L L L Note: Z = High impedance Table 2 Spindle Driver Mode Control SMODE SIPWM Spindle Driver Mode H Duty ≥ 50% Linear Mode (High slew rate) * 2 H Duty ≤ 40% Linear Mode (Low slew rate) * 2 M X Inductive Sense Mode X B-EMF Sense in PWM Drive Mode L Note: Table 3 1. X = Don’t care 2. Slew rate mode is commutated at synchronized with the up edge of SLOPEC. VCM Control WDTIN VPCNTL VCM Mode H or L X Park M H Enable M M Disable M L Park Table 4 Temp Output TEMP Status H Warning or TSD L Normal 4 HA13571FR Table 5 Output Status PORN SLEEP * 3 TSD TEMP Driver L H Inactive Active L H L SPN Output Brake for Retract Enable X Z X Z X VCM Output Retract (Power off) Enable X Z X Z X H Notes: 1. X = Don’t care 2. Z = High impedance 3. SLEEP SCNTL1 = SCNTL2 = SCNTL3 = Low WDTIN = VPCNTL = Middle 5 HA13571FR Table 6 SCNTL, WDTIN and VPCNTL Mode SCNTL WDTIN VPCNTL Modes of Operation Input States Input State Input State at Power Good (PORN = H) SCNTL1 SCNTL2 SCNTL3 Spindle Driver See Table 1 See Table 1 See Table 1 X X Enable L L L X X Disable H H H X X Brake SCNTL WDTIN VPCNTL Modes of Operation Input States Input State Input State at Power Good (PORN = H) SCNTL1 SCNTL2 SCNTL3 X X X L or H X Park X X X Middle H Enable X X X Middle Z Disable X X X Middle L Park SCNTL WDTIN VPCNTL Modes of Operation Input States Input State Input State at Power Good (PORN = H) SCNTL1 SCNTL2 SCNTL3 L L L VCM Driver Spindle & VCM Driver Middle Z Sleep Mode * Note: Sleep signal is generated by SCNTL and VPCNTL. TEMP output is depend on internal TSD and internal TEMP. (see figure 1) Tsoff TSD (Internal) Thys TEMP (Internal) Twar TSD TEMP TEMP (Output) TEMP output logic (1) Figure 1 TEMP Output Logic 6 TEMP output logic (2) TEMP HA13571FR Table 7 Function Powered on Vs Mode Operation Function UPPER BOOSTER UPPER DRIVERS LOWER DRIVERS COMP CONTROL AMP Spindle enable ON ON ON ON ON Spindle disable ON OFF OFF ON OFF PORN low OFF OFF ON OFF OFF ON ON/OFF ON/OFF ON ON/OFF Sleep * OFF OFF OFF OFF OFF Function ONE SHOT ICOMP (Current comparator) PWM DECODER FILTER SMODE COMP ISENSE AMP LOGIC DECODER Spindle enable ON ON ON ON ON ON Spindle disable ON ON ON ON ON ON PORN low OFF OFF OFF OFF OFF ON ON ON ON ON ON ON Sleep * OFF OFF OFF OFF OFF ON Function PWM DECODER 12V and 5V COMP FILTER AMP PORN DETECTOR RETRACT CIRCUIT TSD VCM enable ON ON ON ON OFF ON VCM disable ON ON ON ON OFF ON 1 ON ON ON ON ON ON Sleep * OFF ON OFF ON OFF ON PORN low OFF ON OFF ON ON ON Function VPCNTL VREFOUT BUF VREFOUT SENSE1 VCM DRIVER SLEEP FUNCTION VCM enable ON ON ON ON ON OFF VCM disable ON ON ON ON OFF OFF 1 ON ON ON ON OFF OFF Sleep * ON OFF OFF OFF OFF ON PORN low ON OFF OFF OFF OFF ON Park * 1 2 Park * 1 2 Park * 2 Park * 2 Note: 1. Park signal is generated by VPCNTL. 2. Sleep signal is generated by SCNTL and VPCNTL. 7 HA13571FR Timing Chart 1. SPN Input to Output Drivers • Control Lines SCNTL1 SCNTL2 SCNTL3 • Output Drivers PWM Mode SDRVU SDRVV SDRVW Z PWM PWM Z Z Z PWM Z Z PWM Z Z PWM Z Z PWM Z Z PWM Z Z Z PWM • Output Drivers Linear Mode SDRVU Z Z SDRVV SDRVW Z • Comparators SENU SENV SENW Note: "Z" = High impedance 8 Z Z Z Z Z Z Z Z Z Z Z Z HA13571FR 2. Soft Switching U B-EMF V W 0 • Control Lines SCNTL1 SCNTL2 SCNTL3 • Output Voltage SDRVU 0 SDRVV 0 SDRVW 0 • Output Current SDRVU 0 SDRVV 0 SDRVW 0 • Comparators SENU SENV SENW 9 HA13571FR Application 5V C101 4.7µ C102 470p Rx 15 Ry 15 R101 34k VCC5 C114 1.0µ VCCA12 VCCS12 SPWMTC R106 12V C121 4.4µ C112 0.47µ SDRVN D1 SDRVU D2 SLOPER SDRVV D3 SLOPEC SDRVW C113 C118 0.02µ SISINK SENU Rnf 0.33 SISENH SENWIS SISENL SCNTL1 SCOMP SCNTL2 GND (CTLAMP) SCNTL3 OSCTC SMODE BSTCP1 SIPWM VIPWML C103 VIPWMH SPWMFLT HA13571FR ASIC SENV 0.047µ C111 0.47µ C110 390p C109 0.1µ C108 BSTCP2 BSTFLT 2.2µ C107 SHPWR 2.2µ VCCV12 R108 R2 WDTIN VCMN C119 µPC C115 0.47µ R1 RETADJ TEMP VCMP PORN Rs 0.33 C104 ADC 1000p C117 0.47µ R102 VPCNTL VISENL VFLTINP VISENH VREFOUT VCMREF VFLTOUT POR12VADJ POR5VADJ VCMINP R103 TAB Cf SBD1 C133 4.7µ C105 0.22µ C116 Unit 10 Rf CPOR VISENS R107 C120 0.01µ C131 220p C132 220p R:Ω C:F HA13571FR External Components Parts No. Reccomended Value Purpose R1, R2 — Setting of Retract voltage R101 34 kΩ PWM time off for Spindle driver R102, R103 — Setting of VCM driver gain R106 100 kΩ Time constant for Soft switching R107 — Phase compensation for VCM driver R108 TBD for Watch dog timer Rnf 0.33 Ω Current sensing for Spindle driver Rs 0.33 Ω Current sensing for VCM driver Rx, Ry 15 Ω for Filter VCCA12 and VCC5 Rf — Snubber for VCM driver C101 4.7 µF 5V power supply by passing C102 470 pF PWM time off for Spindle driver C103 0.047 µF PWM filter for Spindle driver C104 1000 pF PWM filter for VCM driver C105 0.22 µF Delay for POR C107 2.2 µF Capacitor for Retract voltage supply C108 2.2 µF for Booster C109 0.1 µF for Booster C110 390 pF Time constant for Oscillation C111 0.47 µF Phase compensation for Spindle driver C112 0.47 µF 12V power supply by passing C113 0.003 µF Time constant for Soft switching C114 1.0 µF 12V power supply by passing C115 0.47 µF 12V power supply by passing C116 — Phase compensation for VCM driver C117 0.47 µF Reference output by passing C118 0.02 µF Prevent from oscillation during PWM drive C119 TBD for Watch dog timer C120 0.01 µF Reduction of noise from 12V power supply for VCM driver C121 4.4 µF Reduction of noise from 12V power supply for VCM driver C131 220 pF (Option) Filter for POR12VADJ C132 220 pF (Option) Filter for POR5VADJ C133 * 4.7 µF Reduction of noise from 12V power supply for VCM driver 11 HA13571FR External Components (cont) Parts No. Reccomended Value Purpose Cf — Snubber for VCM Driver D1 to D3 TBD Power rectification for Retract driver SBD1 * HRU0302A Prevent of malfunction for Retract driver Note: Retract circuit sometime will be malfunctioning by means of negative voltage on the terminal VCMREF (pin 52) in the following sequence. If you want to countermeasure this, you need to avoid the following sequence or to attach the Schottky Barrier Diode (SBD1) between terminal VCMREF and GND. (see figure 2) 1. Spindle motor driver is active and VCM driver is disable by (VPCNTL = Middle). 2. Power supply goes to low level after above condition 1 and retract circuit becomes active by (POR = L). 37 VREFOUT VCMREF 52 C117 0.47µF C120 0.01µF C133 4.7µF Figure 2 12 SBD1 HRU0302A HA13571FR Absolute Maximum Ratings (Ta = 25°C) Item Symbol Rating Unit Notes Supply voltage +12V Vcc12 –0.3 to 13.5 V 1 Supply voltage +5V Vcc5 –0.3 to 6 V 1 Output voltage +12V (DC) Vsdrv (DC) –0.3 to 15 V 5 Output voltage +12V (PEAK) Vsdrv (PEAK) –2.0 to 17 V 5, 6 Output voltage +5V Vout –0.3 to 6 V 7 Output current spindle driver Iospn (DC) 2.2 A 2 Output current VCM driver Iovcm (DC) 1.5 A 2 Input voltage Vi –0.3 to Vcc5 V 3 Power dissipation PT 5 W 4 Junction temperature Tj 160 °C 1 Storage temperature Tstg –55 to +125 °C Notes: 1. Operating range are as follows. Vcc12 = 10.8 to 13.2 V VccA12 = 10.4 to 13.2 V Vcc5 = 4.3 to 5.5 V Tjopr = 0 to 130°C 2. Refer to ASO shown below. Operating locus must be within the ASO. 3. Applied to pin SCNTL1, SCNTL2, SCNTL3, SMODE, SIPWM, VPCNTL, VIPWML and VIPWMH. 4. Thermal resistance θj-a ≤ 25°C/W with 4 layer multi glass-epoxy board. 5. Applied to pin SDRVN, SDRVU, SDRVV, SDRVW, VCMN and VCMP. 6. PEAK time must be shorter than 1 ms. 7. Applied to pin PORN and TEMP. Spindle Driver VCM Driver 1.0 2.0 Corrector Current Ic (A) Corrector Current Ic (A) 2.2 2.0 t = 1ms t = 10ms t = 100ms 0.5 0.2 0.1 1 2 5 10 15 20 The voltage between Corrector and Emitter Vce (V) 1.0 0.5 t = 1ms t = 10ms t = 100ms 0.2 0.1 1 2 5 10 15 20 The voltage between Corrector and Emitter Vce (V) Figure 3 ASO 13 HA13571FR Electrical Characteristics (Ta = 25°C, Vcc5 = 5.0 V, Vcc12 = 12 V) Item Symbol Min Typ Max Unit Test Conditions Applicable pins +5V supply current Icc5s — 9.0 11.5 mA Sleep mode VCC5 Icc5 — 15 18.5 mA Icc12s — 3.0 4.5 mA Sleep mode VCCS12 VCCV12 VCCA12 Icc12 — 40 50 mA SMODE = High IccA12 — 12.5 16 mA SMODE = High VCCA12 Total power dissipation Pdiss — 81 110 mW Sleep mode Vcc5 = 5.0V, Vcc12 = 12.0V VCC5 VCCS12 VCCV12 VCCA12 Logic inputs1 Input current Iin — — ±10 µA Vin = 0 to Vcc5 SCNTL1 SCNTL2 SCNTL3 High level voltage Vih 3.5 — — V Low level voltage Vil — — 1.5 V High level voltage Vih 3.9 — — V Middle level voltage Vim 1.4 — 3.6 V Low level voltage Vil — — 1.1 V High level current Iih 80 100 133 µA VIN = 5V Low level current Iil –80 –100 –133 µA VIN = 0V High level voltage Vih 3.9 — — V Middle level voltage Vim 1.4 — 3.6 V Low level voltage Vil — — 1.1 V High level current Iih 80 100 133 µA VIN = 5V Low level current Iil –80 –100 –133 µA VIN = 0V High level current Iih 480 600 800 µA VIN = 5V Low level current Iil –80 –100 –133 µA VIN = 0V High level voltage Vih 3.8 — — V Middle level voltage Vim 1.3 — 3.5 V Low level voltage Vil — — 1.0 V Input current Iin — — ±20 µA +12V supply current Logic inputs2 Logic inputs3 Logic inputs4 14 SMODE VPCNTL WDTIN = Middle WDTIN = High or Low WDTIN Vin = 0 to Vcc5 Note 1 HA13571FR Electrical Characteristics (cont) Item SPN output drivers Symbol Min Typ Max Unit Test Conditions Vsatspn — 1.1 1.4 V Iout = 1.2A, Tj = 25°C — 2.0 2.6 V Iout = 2.2A — 2.6 3.74 V Icex1 — — 0.1 mA VIN = 14V Icex2 — 0.6 1.2 mA Test source current from middle phase RL = 11Ω/phase Ifrdu — — 20 mA Vfrdu = 2.0V, Vcc12 = 0V Vfrdl1 — 1.25 1.4 V If = –1.0A Vfrdl2 — 1.75 2.2 V If = –2.2A Overvoltage protection clamp Vclp 14.4 15.4 17 V Iclp = 100mA Input current Iin — — ±300 µA Vin = –0.3 to Vcc5 High level voltage Vh 3.5 — — V Low level voltage Vts — — 1.5 V PWM pulse width Tpwm 23 — — ns Output resistance at Spwmflt Rsout — 34 ±20% kΩ Output voltage Vflt100 — 1.79 ±10% V Duty = 100% Vflt50 — 0.93 ±10% V Duty = 50% Vflt0 — 50 100 mV Duty = 0% Isk 410 580 750 µA Spwmtg = 3.0V Low clamp voltage Vclmp 1.33 1.53 1.73 V for discharging Threshold voltage Vthst 3.0 3.3 3.6 V for discharging Vthend 1.47 1.67 1.87 V for charging Total output saturation voltage Leakage current Recirculating diode forward voltage SPN PWM DAC & filter PWM one shot Sink current Applicable pins Note SDRVU SDRVV SDRVW Tj = 25°C Tj = 125°C 1 SDRVU SDRVV SDRVW 1 SIPWM SPWMFLT SPWMTC 15 HA13571FR Electrical Characteristics (cont) Item Symbol Min Typ Max Unit Test Conditions One-shot off time Toff 9 11 13 µs Ext. R = 34kΩ, C = 470pF One-shot minimum on time Ton 2.1 2.8 3.5 µs B-EMF Common mode compa- input voltage rators Vcm –0.4 — VCC12 –2.0 V Common mode clamp resistor Rclp 7 10 13 kΩ Sdrvn = 6V Offset voltage Vcos — — ±5 mV Sdrvn = 1.0V to Vcc12-2V ∆Vosc — — ±7 mV Variation in U, V, W Vsink — — 0.5 V Isink = 1.0mA Output high voltage Vsource 2.7 — — V Isource = 0.04mA Center tap voltage PWM one shot Output low voltage Control amp & sense amp 16 Applicable pins Note SPWMTC 1 SDRVU SDRVV SDRVW SDRVN SENU SENV SENWIS VCT 1.0 — VCC12 –2.0 V SCNTL1, 2, 3 = “L” RL = 2Ω/phase VPCNTL = “H” or “M” SDRVN Isense input current Isen –10 — 24 µA SISENH = 0 to 0.4V SISENH SISENL Isense amp voltage Ksp gain — 4.9 ±4.6% V/V Ksp = Spwmflt/Sisenh Rs = 0.33Ω SISENH SPWMFLT SISENH voltage — 348 ±18 mV Rnf = 0.33Ω — 348 ±18 mV D = 100% V50 — 170 ±18 mV D = 50% V5 — 7 17 mV D = 5% V0 0.0 0.0 5 mV D = 0% Current loop bandwidth Bwd 1.8 3.0 — kHz Rnf = 0.33W, Rm = 12Ω Lm = 1.0mH, C111 = 0.47µF ICOMP threshold voltage Vth — 180 ±15 mV No Load No Rnf — 80 ±11 mV Smode = 2.5V, Spwmflt = Sisenh = 0 to 5V 0.5V V100 D = 100% SISINK Tj = 125°C Spwmflt = SENWIS 1.0V 1 1 HA13571FR Electrical Characteristics (cont) Symbol Min Typ Max Unit Test Conditions Applicable pins SLOPER Output voltage Vsoftr 1.45 1.90 2.35 V R106 = 100kΩ SLOPER SLOPEC Source current Isource 7 9 12 µA R106 = 100kΩ SLOPEC SLOPEC Sink current Isink 7 9 12 µA R106 = 100kΩ SLOPEC High voltage Vhsoft 3.5 4.4 5.5 V High SR 2.0 2.4 2.8 V Low SR Item Soft Switch VCM PWM DAC SLOPEC Low voltage Vlsoft 0.9 1.1 1.3 V Input current Iin — — ±200 µA Input high voltage Vhi 3.5 — — V Input low voltage Vli — — 1.5 V Input PWM frequency Fpwm — 625 — kHz PWM pulse width Tpwm 23 — — ns — 14 — bits Vflp — Vrefout — +1.0 V Negative full scale Vfln voltage — Vrefout — –1.0 V Current ratio –0.5 32 +1.0 A/A PWM DAC resolution Positive full scale voltage Filter Vin = 0V to 5V Note VIPWML VIPWMH 1 1 VFLTINP 1 1 MSB/LSB Output impedance Rout — 3.75 ±17% kΩ Output impedance Rout — — 40 Ω ∆Vout = 10mV — — 1.2 deg. f = 500Hz, Vfltinp to Vfltout 1 33 50 75 kHz ∆Gv = –3dB 1 — 24 ±10 dB f = 200kHz Phase shift Cutoff frequency Attenuation Fc VFLTOUT 17 HA13571FR Electrical Characteristics (cont) Item Filter Symbol Min Typ Max Unit Test Conditions Vflt0 — Vrefout –2.03 ±0.1 V Vipwml & Vipwmh Duty = 0% Vflt50 — Vrefout ±0.05 V Vipwml & Vipwmh Duty = 50% Vflt100 — Vrefout +2.03 ±0.1 V Vipwml & Vipwmh Duty = 100% Vfltsym — — ±140 mV | Vflt100 – Vrefout | – | Vfit0 – Vrefout | Iin –200 — 400 µA Output offset voltage Vos — 10 ±20 mV Visenh – Visenl = 0V at 1/2 Vcc Output resistance Rout — — 25 Ω Sink and Source Visenl, Visenh operating range Vr1 0 — 12 V Gain and Offset Valid Unity gain bandwidth BW1 2.0 3.0 4.0 MHz Gain G10 3.8 4.0 4.2 V/V VISENH/L = 0V G16 3.8 4.0 4.2 V/V VISENH/L = 6V G112 3.8 4.0 4.2 V/V VISENH/L = 12V ∆G1 — 0 ±2% V/V (G112 – G16)/G16 (G10 – G16)/G16 Power supply rejection ratio PSRR 40 52 — dB F ≤ 20kHz Total output saturation voltage Vsatvcm — 1.5 1.875 V Iout = 1.5A — 1.95 2.85 V Output voltage Output voltage symmetry Current Input current sense amp VCM output driver 18 Output leakage Ilk — — 0.5 mA Output quiescent voltage Vq — Vcc12/2 ±5% V Recircurate diode voltage VRD — 2.0 2.5 V Applicable pins Note VFLTOUT VISENS VISENH VISENL 1 1 Tj = 25°C Tj = 125°C VCMN VCMP 1 Tj = 25°C BSTFLT = VCCV12 = 14V Io = –1.5A 1 HA13571FR Electrical Characteristics (cont) Item Applicable pins Symbol Min Typ Max Unit Test Conditions Output offset current Ios — — ±28 mA Rs = 0.33Ω, Rl = 10Ω, VISENH R102 = 10kΩ, R103 = 6.6kΩ C106, R107 = OPEN Transconductance Gm — 0.5 ±5% A/V Vin = FLTOUT –3dB bandwidth BW — 300 ±30% kHz Vout = VCMN, Rl = 15Ω Total harmonic distortion THD — 1.0 2.5 % f = 1kHz, Vout = 1Vrms Time of crossover distortion Tcro — 2 5 µs Ramp input VCMINP 20µs R102 = 10kΩ, R103 = 6.6kΩ C106, R107 = OPEN Symmetry Vcm drivers VCMN VCMP RATIO = I2/I1 0.95 1.02 1.09 Ratio I2 = Irvcm at D = 10% I1 = Irvcm at D = 90% I0 = Irvcm at D = 50% Rs = 0.33Ω, RL = 10Ω R103/R102 = 10k/6.6k Linearity Vcm drivers VCMN VCMP L= 0.99 | I2–I0 |/ | I1–I0 | 1.02 1.05 Ratio Overvoltage protection clamp Vclp2 15.8 17.0 V Iclp2 = 100mA Reference volatge Vvcmref — Vcc12/2 ±5% V 20kΩ/20kΩ VCMREF Output voltage Vretout 0.65 0.9 1.3 V Rs = 0.33Ω, RL = 15Ω R1 = 33kΩ, R2 = 10kΩ VPCNTL = “L” VCMN Saturation voltage (Lower) VsatL — 0.12 0.25 V Min. retract current Iret 15 — — mA VIN = VSHPWR + VF(IM10) VCMN VIN = 2.0–VFSub(@20mA) VCMP Max. retract voltage Vret (VCMN–VCMP) — — 1.3 V VIN = 8V, Rm 4Ω, R1 = 33kΩ, R2 = 10kΩ Brake Brake voltage Vbrks — 0.5 0.8 V Ibrk = 1.2A SCNTL1 to 3 = High SDRVU SDRVV SDRVW Vrefout Output voltage Vref — 4.0 ±0.2 V Io = 10.0mA, Cl = 10nF VREFOUT Booster Output voltage Vbst Vcc12 — +0.8 Vcc12 V +3.7 Ispn = 0A, Ivcm = 0A BSTFLT Vcc12 — +0.8 Vcc12 V +3.7 Ispn = 2.2A, Ivcm = 0A Vcc12 — +0.8 Vcc12 V +3.7 Ispn = 0.5A, Ivcm = 1.5A VCM output driver Retract (Power on) Retract (Power off) 14.6 Note 1 VCMN VCMP VCMP 19 HA13571FR Electrical Characteristics (cont) Symbol Min Typ Max Unit Test Conditions Applicable pins +12V Threshold voltage Vt12 — 9.0 ±0.3 V Vcc5 = 5V VCC12 +5V Threshold voltage Vt5 — 4.5 ±0.1 V Vcc12 = 12V VCC5 Hysteresis on Vcc12 Hv12 — 200 ±60 mV VCC12 Hysteresis on Vcc5 Hv5 — 50 ±15 mV VCC5 POR12VADJ voltage V12adj — 1.86 ±2% V 19.2kΩ/3.52kΩ POR12V ADJ POR5VADJ voltage V5adj — 1.54 ±2% V 9.6kΩ/4.27kΩ POR5V ADJ Output low level voltage Vol — — 0.5 V Iol = 2mA, Vcc5 = 4.35V Vcc12 = 8.7V PORN Output high level voltage Voh Vcc5 –0.15 — — V Vcc5 = 4.7V, Vcc12 = 9.5V PORN pull-up resistance Rpu — 15 ±20% kΩ Charge current for CPOR Icpor 5 8 12 µA CPOR threshold voltage Vcpor — 1.4 — V POR delay Tdpor — 40 — ms Power supply Max. pulse duration Trpulse 5.0 — — µs Twar 130 145 160 °C 2 Shut-down temperature Tsoff 145 160 175 °C 2 Difference temperature ∆T 10 15 20 °C Thermal hysteresis Thys — 30 ±10 °C OSC Frequency range fosc 200 250 300 kHz TEMP Output low voltage Vol2 — — 1.0 V Pull-up resistnace Rpu2 — 50 ±20% kΩ Leakage current Ilk2 — — ±10 µA Item Power Monitor POR detector Thermal Warning temperature shutdown Note: 20 1. Guaranteed by design. 2. Function test only. Note CPOR Cpor = 0.22µF PORN Tsoff – Twar 2 1 OSCTC Iol = 0.1mA Vcc5 = 6V, Vo = 6V TEMP HA13571FR Package Dimensions Unit: mm ( ) : reference value 16.4 ± 0.2 16.0 ± 0.2 14.0 (12.2) 41 80 21 0.5 20 1.0 M 1.40 1.70 Max 0.08 2.25 0.08 *Dimension including the plating thickness Base material dimension 0° − 8° 0.50 ± 0.2 0.07 +0.03 −0.07 0.60 1 *0.22 ± 0.05 0.20 ± 0.04 *0.17± 0.05 0.15 ± 0.04 40 16.4 ± 0.2 16.0 ± 0.2 61 (12.2) 60 Hitachi Code JEDEC EIAJ Weight (reference value) FP-80TA 1.3 g 21 Cautions 1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party’s rights, including intellectual property rights, in connection with use of the information contained in this document. 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use. 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi’s sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support. 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product. 5. This product is not designed to be radiation resistant. 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi. 7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor products. Hitachi, Ltd. Semiconductor & Integrated Circuits. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109 URL NorthAmerica : http:semiconductor.hitachi.com/ Europe : http://www.hitachi-eu.com/hel/ecg Asia (Singapore) : http://www.has.hitachi.com.sg/grp3/sicd/index.htm Asia (Taiwan) : http://www.hitachi.com.tw/E/Product/SICD_Frame.htm Asia (HongKong) : http://www.hitachi.com.hk/eng/bo/grp3/index.htm Japan : http://www.hitachi.co.jp/Sicd/indx.htm For further information write to: Hitachi Semiconductor (America) Inc. 179 East Tasman Drive, San Jose,CA 95134 Tel: <1> (408) 433-1990 Fax: <1>(408) 433-0223 Hitachi Europe GmbH Electronic components Group Dornacher Stra§e 3 D-85622 Feldkirchen, Munich Germany Tel: <49> (89) 9 9180-0 Fax: <49> (89) 9 29 30 00 Hitachi Europe Ltd. Electronic Components Group. Whitebrook Park Lower Cookham Road Maidenhead Berkshire SL6 8YA, United Kingdom Tel: <44> (1628) 585000 Fax: <44> (1628) 778322 Hitachi Asia Pte. Ltd. 16 Collyer Quay #20-00 Hitachi Tower Singapore 049318 Tel: 535-2100 Fax: 535-1533 Hitachi Asia Ltd. Taipei Branch Office 3F, Hung Kuo Building. No.167, Tun-Hwa North Road, Taipei (105) Tel: <886> (2) 2718-3666 Fax: <886> (2) 2718-8180 Hitachi Asia (Hong Kong) Ltd. Group III (Electronic Components) 7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Tsim Sha Tsui, Kowloon, Hong Kong Tel: <852> (2) 735 9218 Fax: <852> (2) 730 0281 Telex: 40815 HITEC HX Copyright ' Hitachi, Ltd., 1999. All rights reserved. Printed in Japan.