HITACHI HD74ALVCH162831

HD74ALVCH162831
1-bit 4-bit Address Register / Driver with 3-state Outputs
ADE-205-195 (Z)
Preliminary
1st. Edition
March 1998
Description
This 1-bit to 4-bit address register / driver is designed for 2.3 V to 3.6 V VCC operation. The device is ideal
for use in applications in which a single address bus is driving four separate memory locations. The
HD74ALVCH162831 can be used as a buffer or a register, depending on the logic level of the select (SEL)
input. When SEL is logic high, the device is in the buffer mode. The outputs follow the inputs and are
controlled by the two output enable (OE) controls. Each OE controls two groups of nine outputs. When
SEL is logic low, the device is in the register mode. The register is an edge triggered D-type flip flop. On
the positive transition of the clock (CLK) input, data set up at the A inputs is stored in the internal registers.
OE controls operate the same as in buffer mode. When OE is logic low, the outputs are in a normal logic
state (high or low logic level). When OE is logic high, the outputs are in the high impedance state. To
ensure the high impedance state during power up or power down, OE should be tied to V CC through a
pullup registor; the minimum value of the registor is determined by the current sinking capability of the
driver. SEL and OE do not affect the internal operation of the flip flops. Old data can be retained or new
data can be entered while the outputs are in the high impedance state. Active bus hold circuitry is provided
to hold unused or floating data inputs at a valid logic level. All outputs, which are designed to sink up to
12 mA, include 26 Ω resistors to reduce overshoot and undershoot.
Features
• VCC = 2.3 V to 3.6 V
• Typical VOL ground bounce < 0.8 V (@VCC = 3.3 V, Ta = 25°C)
• Typical VOH undershoot > 2.0 V (@VCC = 3.3 V, Ta = 25°C)
• High output current ±12 mA (@VCC = 3.0 V)
• Bus hold on data inputs eliminates the need for external pullup / pulldown resistors.
• All outputs have equivalent 26 Ω series resistors, so no external resistors are required.
HD74ALVCH162831
Function Table
Inputs
Output Y
OE
SEL
CLK
A
H
X
X
X
Z
L
H
X
L
L
L
H
X
H
H
L
L
↑
L
L
L
L
↑
H
H
H : High level
L : Low level
X : Immaterial
Z : High impedance
↑ : Low to high transition
2
HD74ALVCH162831
Pin Arrangement
4Y1
3Y1
GND
2Y1
1Y1
VCC
NC
A1
GND
NC
A2
GND
NC
A3
VCC
NC
A4
GND
CLK
OE1
OE2
SEL
GND
A5
A6
VCC
A7
NC
GND
A8
NC
GND
A9
NC
VCC
4Y9
3Y9
GND
2Y9
1Y9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
1Y2
2Y2
GND
3Y2
4Y2
VCC
1Y3
2Y3
GND
3Y3
4Y3
GND
1Y4
2Y4
VCC
3Y4
4Y4
GND
1Y5
2Y5
3Y5
4Y5
GND
1Y6
2Y6
VCC
3Y6
4Y6
GND
1Y7
2Y7
GND
3Y7
4Y7
VCC
1Y8
2Y8
GND
3Y8
4Y8
(Top view)
3
HD74ALVCH162831
Absolute Maximum Ratings
Item
Symbol
Ratings
Unit
VCC
–0.5 to 4.6
V
VI
–0.5 to 4.6
V
VO
–0.5 to VCC +0.5
V
Input clamp current
I IK
–50
mA
VI < 0
Output clamp current
I OK
±50
mA
VO < 0 or VO > VCC
Continuous output current
IO
±50
mA
VO = 0 to VCC
VCC, GND current / pin
I CC or IGND
±100
mA
Maximum power dissipation
at Ta = 55°C (in still air) *3
PT
1
W
Storage temperature
Tstg
–65 to 150
°C
Supply voltage
Input voltage
*1
Output voltage
Notes:
*1, 2
Conditions
TVSOP
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage
to the device. These are stress ratings only, and functional operation of the device at these or
any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute maximum rated conditions for extended periods may affect device
reliability.
1. The input and output negative voltage ratings may be exceeded if the input and output clamp
current ratings are observed.
2. This value is limited to 4.6 V maximum.
3. The maximum package power dissipation is calculated using a junction temperature of 150°C
and a board trace length of 750 mils.
Recommended Operating Conditions
Item
Symbol
Min
Max
Unit
Supply voltage
VCC
2.3
3.6
V
Input voltage
VI
0
VCC
V
Output voltage
VO
0
VCC
V
High level output current
I OH
—
–6
mA
—
–8
VCC = 2.7 V
—
–12
VCC = 3.0 V
—
6
—
8
VCC = 2.7 V
—
12
VCC = 3.0 V
Low level output current
I OL
mA
Input transition rise or fall rate
∆t / ∆v
0
10
ns / V
Operating temperature
Ta
–40
85
°C
Note: Unused control inputs must be held high or low to prevent them from floating.
4
Conditions
VCC = 2.3 V
VCC = 2.3 V
HD74ALVCH162831
Logic Diagram
OE1
20
OE2
21
CLK
5
19
4
CLK
2
A1
8
D
2Y1
3Y1
Q
1
SEL
1Y1
4Y1
22
To eight other channels
5
HD74ALVCH162831
Electrical Characteristics (Ta = –40 to 85°C)
Item
Symbol
VCC (V)
Input voltage
VIH
Max
Unit Test Conditions
2.3 to 2.7 1.7
—
V
2.7 to 3.6 2.0
—
2.3 to 2.7 —
0.7
2.7 to 3.6 —
0.8
2.3 to 3.6 VCC–0.2
—
2.3
1.9
—
I OH = –4 mA, VIH = 1.7 V
2.3
1.7
—
I OH = –6 mA, VIH = 1.7 V
2.7
2.4
—
I OH = –6 mA, VIH = 2.0 V
3.0
2.0
—
I OH = –8 mA, VIH = 2.0 V
3.0
2.0
—
I OH = –12 mA, VIH = 2.0 V
2.3 to 3.6 —
0.2
I OL = 100 µA
2.3
—
0.4
I OL = 4 mA, VIL = 0.7 V
2.3
—
0.55
I OL = 6 mA, VIL = 0.7 V
3.0
—
0.55
I OL = 6 mA, VIL = 0.8 V
2.7
—
0.6
I OL = 8 mA, VIL = 0.8 V
3.0
—
0.8
I OL = 12 mA, VIL = 0.8 V
I IN
3.6
—
±5
I IN (hold)
2.3
45
—
VIN = 0.7 V
2.3
–45
—
VIN = 1.7 V
3.0
75
—
VIN = 0.8 V
3.0
–75
—
VIN = 2.0 V
3.6
—
±500
VIN = 0 to 3.6 V *1
I OZ
3.6
—
±10
µA
VOUT = VCC or GND
Quiescent supply current I CC
3.6
—
40
µA
VIN = VCC or GND
750
µA
VIN = one input at (VCC–0.6) V,
other inputs at V CC or GND
VIL
Output voltage
VOH
VOL
Input current
Off state output current
∆I CC
Note:
6
Min
3.0 to 3.6 —
V
µA
I OH = –100 µA
VIN = VCC or GND
1. This is the bus hold maximum dynamic current required to switch the input from one state to
another.
HD74ALVCH162831
Switching Characteristics (Ta = –40 to 85°C)
Item
Symbol VCC (V)
Min
Typ
Max
Unit
Maximum clock frequency
f max
2.5±0.2
150
—
—
MHz
2.7
150
—
—
3.3±0.3
150
—
—
t PLH
2.5±0.2
1.1
—
4.7
t PHL
2.7
—
—
4.8
3.3±0.3
1.5
—
4.3
2.5±0.2
1.0
—
5.3
2.7
—
—
5.3
3.3±0.3
1.4
—
4.7
2.5±0.2
1.1
—
6.0
2.7
—
—
6.2
3.3±0.3
1.5
—
4.8
t ZH
2.5±0.2
1.0
—
5.9
t ZL
2.7
—
—
5.9
3.3±0.3
1.1
—
5.1
t HZ
2.5±0.2
1.4
—
6.3
t LZ
2.7
—
—
5.4
3.3±0.3
1.6
—
5.1
2.5±0.2
2.0
—
—
2.7
2.0
—
—
3.3±0.3
1.6
—
—
2.5±0.2
0.7
—
—
2.7
0.5
—
—
3.3±0.3
1.1
—
—
2.5±0.2
3.3
—
—
2.7
3.3
—
—
3.3±0.3
3.3
—
—
3.3
—
4.5
—
3.3
—
5.0
—
3.3
—
7.5
—
Propagation delay time
Output enable time
Output disable time
Setup time
Hold time
Pulse width
Input capacitance
Output capacitance
t su
th
tw
CIN
CO
FROM
(Input)
TO
(Output)
A
Y
CLK
Y
SEL
Y
ns
OE
Y
ns
OE
Y
ns
ns
ns
ns
pF
Control inputs
Data inputs
pF
7
HD74ALVCH162831
Switching Characteristics (Ta = 0 to 65°C)
Item
Symbol VCC (V)
Propagation delay time
t PLH , t PHL 3.3±0.15 1.9
8
Min
Typ
Max
Unit
FROM
(Input)
TO
(Output)
—
4.5
ns
CLK
Y
HD74ALVCH162831
Test Circuit
See under table
500 Ω
S1
OPEN
GND
*1
CL
500 Ω
Load Circuit for Outputs
Symbol
t PLH / t PHL
t su / t h / t w
t ZH/ t HZ
t ZL / t LZ
CL
Note:
1.
Vcc=2.5±0.2V
Vcc=2.7V,
3.3±0.3V
OPEN
OPEN
GND
GND
2 × VCC
30 pF
6.0 V
50 pF
CL includes probe and jig capacitance.
9
HD74ALVCH162831
Waveforms – 1
tf
tr
90 %
Input
VIH
90 %
Vref
Vref
10 %
10 %
GND
t PHL
t PLH
VOH
Output
Vref
Vref
VOL
Waveforms – 2
tr
VIH
90 %
Vref
Timing Input
10 %
tsu
GND
th
VIH
Data Input
Vref
Vref
GND
tw
VIH
Input
Vref
Vref
GND
10
HD74ALVCH162831
Waveforms – 3
tf
tr
Output
Control
VIH
90 %
90 %
Vref
Vref
10 %
t ZL
10 %
GND
t LZ
≈VOH1
Vref
Waveform - A
t ZH
Waveform - B
Vref1
VOL
t HZ
VOH
Vref2
Vref
≈VOL1
TEST
VIH
Vref
Vref1
Vref2
VOH1
VOL1
Notes:
1.
2.
3.
4.
Vcc=2.5±0.2V
Vcc=2.7V,
3.3±0.3V
VCC
2.7 V
1/2 VCC
1.5 V
VOL +0.15 V VOL +0.3 V
VOH–0.15 V VOH–0.3 V
VCC
3.0 V
GND
GND
All input pulses are supplied by generators having the following characteristics :
PRR ≤ 10 MHz, Zo = 50 Ω, t r ≤ 2.0 ns, tf ≤ 2.0 ns. (VCC = 2.5±0.2 V)
PRR ≤ 10 MHz, Zo = 50 Ω, t r ≤ 2.5 ns, tf ≤ 2.5 ns. (VCC = 2.7 V, 3.3±0.3 V)
Waveform – A is for an output with internal conditions such that the output is low except
when disabled by the output control.
Waveform – B is for an output with internal conditions such that the output is high except
when disabled by the output control.
The output are measured one at a time with one transition per measurement.
11
HD74ALVCH162831
Package Dimensions
Unit : mm
17.10 Max
41
6.20 Max
80
1
40
0.07 M
12° Max
0.75 Max
Hitachi code
EIAJ code
JEDEC code
12
8.40 Max
1.20 max
0.08
0.15 Min
0.16 Typ
0.23 Max
0.40
—
—
—
Cautions
1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent,
copyright, trademark, or other intellectual property rights for information contained in this document.
Hitachi bears no responsibility for problems that may arise with third party’s rights, including
intellectual property rights, in connection with use of the information contained in this document.
2. Products and product specifications may be subject to change without notice. Confirm that you have
received the latest product standards or specifications before final design, purchase or use.
3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However,
contact Hitachi’s sales office before using the product in an application that demands especially high
quality and reliability or where its failure or malfunction may directly threaten human life or cause risk
of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation,
traffic, safety equipment or medical equipment for life support.
4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly
for maximum rating, operating supply voltage range, heat radiation characteristics, installation
conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used
beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable
failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other
consequential damage due to operation of the Hitachi product.
5. This product is not designed to be radiation resistant.
6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without
written approval from Hitachi.
7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor
products.
Hitachi, Ltd.
Semiconductor & Integrated Circuits.
Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109
URL
NorthAmerica
: http:semiconductor.hitachi.com/
Europe
: http://www.hitachi-eu.com/hel/ecg
Asia (Singapore)
: http://www.has.hitachi.com.sg/grp3/sicd/index.htm
Asia (Taiwan)
: http://www.hitachi.com.tw/E/Product/SICD_Frame.htm
Asia (HongKong) : http://www.hitachi.com.hk/eng/bo/grp3/index.htm
Japan
: http://www.hitachi.co.jp/Sicd/indx.htm
For further information write to:
Hitachi Semiconductor
(America) Inc.
179 East Tasman Drive,
San Jose,CA 95134
Tel: <1> (408) 433-1990
Fax: <1>(408) 433-0223
Hitachi Europe GmbH
Electronic components Group
Dornacher Stra§e 3
D-85622 Feldkirchen, Munich
Germany
Tel: <49> (89) 9 9180-0
Fax: <49> (89) 9 29 30 00
Hitachi Europe Ltd.
Electronic Components Group.
Whitebrook Park
Lower Cookham Road
Maidenhead
Berkshire SL6 8YA, United Kingdom
Tel: <44> (1628) 585000
Fax: <44> (1628) 778322
Hitachi Asia Pte. Ltd.
16 Collyer Quay #20-00
Hitachi Tower
Singapore 049318
Tel: 535-2100
Fax: 535-1533
Hitachi Asia Ltd.
Taipei Branch Office
3F, Hung Kuo Building. No.167,
Tun-Hwa North Road, Taipei (105)
Tel: <886> (2) 2718-3666
Fax: <886> (2) 2718-8180
Hitachi Asia (Hong Kong) Ltd.
Group III (Electronic Components)
7/F., North Tower, World Finance Centre,
Harbour City, Canton Road, Tsim Sha Tsui,
Kowloon, Hong Kong
Tel: <852> (2) 735 9218
Fax: <852> (2) 730 0281
Telex: 40815 HITEC HX
Copyright ' Hitachi, Ltd., 1999. All rights reserved. Printed in Japan.