HOLTEK HT82V26

HT82V26
16-Bit CCD/CIS Analog Signal Processor
Features
· Operating voltage: 5V
· Internal voltage reference
· Low power consumption at 400mW (Typ.)
· Multiplexed byte-wide output (8+8 format)
· Power-down mode: Under 2mA (Typ.)
· Programmable 3-wire serial interface
· 16-bit 30 MSPS A/D converter
· 3V/5V digital I/O compatibility
· Guaranteed won¢t miss codes
· 3-channel operation up to 30 MSPS
· 1~6 programmable gain
· 2-channel (Even-Odd) operation up to 30 MSPS
· Correlated Double Sampling
· 1-channel operation up to 25 MSPS
· ±250mV programmable offset
· 28-pin SSOP/SOP package (lead-free on request)
· Input clamp circuitry
Applications
Flatbed document scanners
Digital color copiers
Film scanners
Multifunction peripherals
General Description
The 16-bit digital output is multiplexed into an 8-bit output word that is accessed using two read cycles. The internal registers are programmed through a 3-wire serial
interface, which provides gain, offset and operating
mode adjustments.
The HT82V26 is a complete analog signal processor for
CCD imaging applications. It features a 3-channel architecture designed to sample and condition the outputs of
tri-linear color CCD arrays. Each channel consists of an
input clamp, Correlated Double Sampler (CDS), offset
DAC and Programmable Gain Amplifier (PGA), and a
high performance 16-bit A/D converter.
The HT82V26 operates from a single 5V power supply,
typically consumes 400mW of power.
The CDS amplifiers may be disabled for use with sensors such as Contact Image Sensors (CIS) and CMOS
active pixel sensors, which do not require CDS.
Block Diagram
A V D D
V IN R
A V S S
R E F T
R E F B
+
A V D D
C D S
A V S S
D R V D D
P G A
O E
9 - B it
D A C
V IN G
+
B A N D G A P
R e fe re n c e
C D S
C D S
O F F S E T
C D S C L K 1
Rev. 1.50
1 6
1 6 :8
M U X
8
D O U T
+
C o n fig u r a tio n
R e g is te r
M U X
R e g is te r
P G A
6
In p u t
C la m p
B ia s
1 6 - B it
A D C
3 .1
M U X
P G A
9 - B it
D A C
V IN B
D R V S S
9 - B it
D A C
9
R E D
G R E E N
B L U E
R E D
G R E E N
B L U E
G a in
R e g is te r s
D ig ita l
C o n tro l
In te rfa c e
S C L K
S L O A D
S D A T A
O ffs e t
R e g is te r s
C D S C L K 2
A D C C L K
1
June 24, 2004
HT82V26
Pin Assignment
C D S C L K 1
1
2 8
A V D D
C D S C L K 2
2
2 7
A V S S
A D C C L K
3
2 6
V IN R
O E
4
2 5
O F F S E T
D R V D D
5
2 4
V IN G
D R V S S
6
2 3
C M L
D 7 (M S B )
7
2 2
V IN B
D 6
8
2 1
R E F T
D 5
9
2 0
R E F B
D 4
1 0
1 9
A V S S
D 3
1 1
1 8
A V D D
D 2
1 2
1 7
S L O A D
D 1
1 3
1 6
S C L K
D 0 (L S B )
1 4
1 5
S D A T A
H T 8 2 V 2 6
2 8 S S O P -A /S O P -A
Pin Description
Pin No.
Pin Name
I/O
Description
1
CDSCLK1
DI
CDS reference clock pulse input
2
CDSCLK2
DI
CDS data clock pulse input
3
ADCCLK
DI
A/D sample clock input for 3-channels mode
4
OE
DI
Output enable, active low
5
DRVDD
P
Digital driver power
6
DRVSS
P
Digital driver ground
7~14
D7~D0
DO
15
SDATA
DI/DO
16
SCLK
DI
Clock input for serial interface
17
SLOAD
DI
Serial interface load pulse
18, 27
AVSS
P
Analog ground
19, 28
AVDD
P
Analog supply
20
REFB
AO
21
REFT
AO
Reference decoupling
22
VINB
AI
Analog input, blue
23
CML
AO
Internal reference output
24
VING
AI
Analog input, green
25
OFFSET
AO
Clamp bias level decoupling
26
VINR
AI
Analog input, red
Digital data output
Serial data input/output
Reference decoupling
Absolute Maximum Ratings
Supply Voltage ..........................VSS-0.3V to VSS+5.5V
Storage Temperature ...........................-50°C to 125°C
Input Voltage .............................VSS-0.3V to VDD+0.3V
Operating Temperature ..........................-25°C to 75°C
Note: These are stress ratings only. Stresses exceeding the range specified under ²Absolute Maximum Ratings² may
cause substantial damage to the device. Functional operation of this device at other conditions beyond those
listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.
Rev. 1.50
2
June 24, 2004
HT82V26
D.C. Characteristics
Symbol
Parameter
Test Conditions
VDD
Conditions
Min.
Typ.
Max.
Unit
¾
¾
V
Logic Inputs
VIH
High Level Input Voltage
¾
¾
0.8´VDD
VIL
Low Level Input Voltage
¾
¾
¾
¾
0.2´VDD
V
IIH
High Level Input Current
¾
¾
¾
10
¾
mA
IIL
Low Level Input Current
¾
¾
¾
10
¾
mA
CIN
Input Capacitance
¾
¾
¾
10
¾
pF
V
Logic Outputs
VOH
High Level Output Voltage
¾
¾
VDD-0.5
¾
¾
VOL
Low Level Output Voltage
¾
¾
¾
¾
0.5
V
IOH
High Level Output Voltage
¾
¾
¾
1
¾
mA
IOL
Low Level Output Voltage
¾
¾
¾
1
¾
mA
Min.
Typ.
Max.
Unit
A.C. Characteristics
Symbol
Parameter
Test Conditions
VDD
Conditions
Power Supplies
VADD
AVDD
¾
¾
4.75
5
5.25
V
VDRDD
DRVDD
¾
¾
3
5
5.25
V
Maximum Conversion Rate
tMAX3
3-channel Mode with CDS
¾
¾
30
¾
¾
MSPS
tMAX2
2-channel Mode with CDS
¾
¾
30
¾
¾
MSPS
tMAX1
1-channel Mode with CDS
¾
¾
25
¾
¾
MSPS
ADC Resolution
¾
¾
¾
16
¾
Bits
Integral Nonlinear (INL)
¾
¾
¾
±32
¾
LSB
Differential Nonlinear (DNL)
¾
¾
-1
¾
1
LSB
Offset Error
¾
¾
-100
¾
100
mV
Gain Error
¾
¾
¾
5
¾
%FSR
2.0
¾
Vp-p
Accuracy (Entire Signal Path)
Analog Inputs
RFS
Full-scale Input Range
¾
¾
¾
Vi
Input Limits
¾
¾
AVSS-0.3
¾
AVDD+0.3
V
Ci
Input Capacitance
¾
¾
¾
10
¾
pF
Ii
Input Current
¾
¾
¾
10
¾
nA
Amplifiers
Rev. 1.50
PGA Gain at Minimum
¾
¾
¾
1
¾
V/V
PGA Gain at Maximum
¾
¾
¾
5.85
¾
V/V
PGA Gain Resolution
¾
¾
¾
6
¾
Bits
Programmable Offset at Minimum
¾
¾
¾
-250
¾
mV
Programmable Offset at Maximum
¾
¾
¾
250
¾
mV
Offset Resolution
¾
¾
¾
9
¾
Bits
3
June 24, 2004
HT82V26
Symbol
Parameter
Test Conditions
Min.
Typ.
Max.
Unit
¾
0
¾
70
°C
¾
¾
400
¾
mW
VDD
Conditions
¾
¾
Temperature Range
tA
Operating
Power Consumption
Ptot
Total Power Consumption
Timing Specification
Symbol
Parameter
Min.
Typ.
Max.
Unit
Clock Parameters
tPRA
3-channel pixel rate
100
¾
¾
ns
tPRB
2-channel (Even-Odd) pixel rate
66
¾
¾
ns
tPRC
1-channel pixel rate
40
¾
¾
ns
tADCLK
ADCCLK Pulse Width
16
¾
¾
ns
tC1
CDSCLK1 Pulse Width
12
¾
¾
ns
tC2
CDSCLK2 Pulse Width
12
¾
¾
ns
tC1C2
CDSCLK1 Falling to CDSCLK2 Rising
0
¾
¾
ns
tADC1
ADCCLK Rising to CDSCLK1 Falling
0
¾
¾
ns
tADC2
ADCCLK Rising to CDSCLK2 Falling
0
¾
¾
ns
tAD
Analog Sampling Delay
5
¾
¾
ns
3-Channel Mode Only
taC2C1
CDSCLK2 Falling to CDSCLK1 Rising
30
¾
¾
ns
taC2ADR
CDSCLK2 Falling to ADCCLK Rising
30
¾
¾
ns
2-Channel Mode Only
tbC2ADR
CDSCLK2 Falling to ADCCLK Rising
30
¾
¾
ns
tbC1ADR
CDSCLK1 Rising to ADCCLK Rising
15
¾
¾
ns
tbC2C1
CDSCLK2 Falling to CDSCLK1 Rising
15
¾
¾
ns
1-Channel Mode Only
tcC2C1
CDSCLK2 Falling to CDSCLK1 Rising
15
¾
¾
ns
tcC1ADF
CDSCLK1 Rising to ADCCLK Falling
0
¾
¾
ns
tcC2ADR
CDSCLK2 Falling to CDSCLK1 Rising
20
¾
¾
ns
Serial Interface
fSCLK
Maximum SCLK Frequency
10
¾
¾
MHz
tLS
SLOAD to SCLK Setup Time
10
¾
¾
ns
tLH
SCLK to SLOAD Hold Time
10
¾
¾
ns
tDS
SDATA to SCLK Rising Setup Time
10
¾
¾
ns
tDH
SCLK Rising to SDATA Hold Time
10
¾
¾
ns
tRDV
Falling to SDATA Valid
10
¾
¾
ns
Output Delay
¾
8
¾
ns
Latency (Pipeline Delay)
¾
9
¾
Cycles
Data Output
tOD
Rev. 1.50
4
June 24, 2004
HT82V26
Functional Description
The offset error is the deviation of the actual first code
transition level from the ideal level.
Integral Nonlinear (INL)
Integral nonlinear error refers to the deviation of each individual code from a line drawn from zero scale through
a positive full scale. The point used as zero scale occurs
1/2 LSB before the first code transition. A positive full
scale is defined as a level 1/2 LSB beyond the last code
transition. The deviation is measured from the middle of
each particular code to the true straight line.
Gain Error
The last code transition should occur for an analog
value of 1/2 LSB below the nominal full-scale voltage.
Gain error is the deviation of the actual difference between the first and the last code transitions and the ideal
difference between the first and the last code transitions.
Differential Nonlinear (DNL)
An ideal ADC exhibits code transitions that are exactly 1
LSB apart. DNL is the deviation from this ideal value.
Thus every code must have a finite width. No missing
codes guaranteed for the 16-bit resolution indicates that
all the 65536 codes respectively, are present in the
over-all operating range.
Aperture Delay
The aperture delay is the time delay that occurs when a
sampling edge is applied to the HT82V26 until the actual
sample of the input signal is held. Both CDSCLK1 and
CDSCLK2 sample the input signal during the transition
from high to low, so the aperture delay is measured from
each clock¢s falling edge to the instant the actual internal sample is taken.
Offset Error
The first ADC code transition should occur at a level 1/2
LSB above the nominal zero scale voltage.
Internal Register Descriptions
Address
Data Bits
Register
Name
A2
A1
A0
D8
D7
D6
D5
D4
D3
D2
D1
D0
Configuration
0
0
0
0
0
1
3-CH
CDS
on
Clamp
Voltage
Enable
Power
Down
Output
Delay
1 byte out
MUX
0
0
1
0
RGB/
Red Green Blue
BGR
Delay
enable
Red PGA
0
1
0
0
0
0
MSB
LSB
Green PGA
0
1
1
0
0
0
MSB
LSB
Blue PGA
1
0
0
0
0
0
MSB
LSB
Red Offset
1
0
1
MSB
LSB
Green Offset
1
1
0
MSB
LSB
Blue Offset
1
1
1
MSB
LSB
CDSCLK1 CDSCLK2 ADCCLK
delay
delay
delay
Internal Register Map
Configuration Register
The configuration register controls the HT82V26¢s operating mode and bias levels. Bits D6 should always be set high.
Bit D5 will configure the HT82V26 for the 3-channel (high) mode of operation. Setting the bit D4 high will enable the
CDS mode of operation, and setting this bit low will enable the SHA mode of operation.
Bit D3 sets the dc bias level of the HT82V26¢s input clamp. This bit should always be set high for the 4V clamp bias, unless a CCD with a reset feed through transient exceeding 2V is used. Setting the bit D3 low, the clamp voltage is 3V. Bit
D2 controls the power-down mode. Setting bit D2 high will place the HT82V26 into a very low power ²sleep² mode. All
register contents are retained while the HT82V26 is in the power-down state. Setting bit D1 high will configure the
HT82V26 for the digital output (D0~D7) delay 2ns. Bit D0 controls the output mode of the HT82V26. Setting bit D0 high
will enable a single byte output mode where only 8 MSBs of the 16b ADC is output. If bit D0 is set low, then the 16b ADC
output is multiplexed into two bytes.
Rev. 1.50
5
June 24, 2004
HT82V26
D8
D7
D6
D5
D4
D3
D2
D1
D0
3 channels CDS operation Clamp bias Power-down
1 byte out
Output delay (High-byte
only)
1=On*
1=CDS mode* 1=4V*
1=On
1=On
0=Off
0=SHA mode
0=Off (Normal)* 0=Off*
Set to 0 Set to 0 Set to 1
0=3V
1=On
0=Off*
Configuration Register Settings
Note: * Power-on default value
MUX Register
The MUX register controls the sampling channel order and the 2-channel mode configuration in the HT82V26. Bits D8
should always be set low. Bit D7 is used when operating in the 3-channel mode or the 2-channel mode. Setting bit D7
high will sequence the MUX to sample the red channel first, then the green channel, and then the blue channel. When
in the 3-channel mode, the CDSCLK2 rising edge always resets the MUX to sample the red channel first (see timing diagrams). When bit D7 is set low, the channel order is reversed to blue first, green second, and red third. The CDSCLK2
rising edge will always reset the MUX to sample the blue channel first. Bits D6, D5 and D4 are used when operating in 1
or 2-channel mode. Bit D6 is set high to sample the red channel. Bit D5 is set high to sample the green channel. Bit D4
is set high to sample the blue channel. The MUX will remain stationary during 1-channel mode. The two channel mode
is selected by setting two of the channel select bits (D4~D6) high. The MUX samples the channels in the order selected
by bit D7. Bits D0~D3 are used for controlling CDSCLK1, CDSCLK2 and ADCCLK internal delay.
D8
D7
D6
D5
MUX Order
Set to 0 1=R-G-B*
0=B-G-R
D4
D3
Channel Select
1=RED* 1=GREEN
0=Off
0=Off*
D2
D1
Enable Delay CDS1 Delay
1=BLUE
0=Off*
D0
CDS2 Delay ADCK Delay
0=Off
0=2ns*
0=2ns*
0=0ns*
1=On*
1=4ns
1=4ns
1=2ns
MUX Register Settings
Note: * Power-on default value
PGA Gain Registers
There are three PGA registers for use in individually programming the gain in the red, green and blue channels. Bits D8,
D7 and D6 in each register must be set low, and bits D5 through D0 control the gain range in 64 increments. See figure
for a graph of the PGA gain versus PGA register code. The coding for the PGA registers is a straight binary, with an all
zero words corresponding to the minimum gain setting (1x) and an all one word corresponding to the maximum gain
setting (5.85x).
The HT82V26 uses one Programmable Gain Amplifier (PGA) for each channel. Each PGA has a gain range from 1x
(0dB) to 5.85x (15.3dB), adjustable in 64 steps. The Figure shows the PGA gain as a function of the PGA register code.
Although the gain curve is approximately linear in dB, the gain in V/V varies in nonlinear proportion with the register
5.85
code, according to the following the equation: Gain=
63 - G
1+ 4.85 ´´ (
)
63
Where G is the decimal value of the gain register contents, and varies from 0 to 63.
5 .8 5
1 2
5 .0
4 .0
6
3 .0
3
2 .0
G A IN -d B (
9
0
G A IN -V /V (
)
)
1 5
1 .0
0
4
8
1 2
1 6
2 0
2 4
2 8
3 2
3 6
4 0
4 4
4 8
5 2
5 6
6 0 6 3
P G A r e g is te r v a lu e - - D e c im a l
PGA Gain Transfer Function
Rev. 1.50
6
June 24, 2004
HT82V26
D8
D7
D6
D5
D4
Set to 0
Set to 0
Set to 0
MSB
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
D3
D2
D1
D0
Gain
(V/V)
Gain (dB)
1.0
1.013
.
.
.
5.43
5.85
0.0
0.12
.
.
.
14.7
15.3
LSB
0
0
.
.
.
1
1
0
0
0
0
0*
1
1
1
1
1
0
1
PGA Gain Register Settings
Note: * Power-on default value
Offset Registers
There are three PGA registers for use in individually programming the offset in the red, green, and blue channels. Bits
D8 through D0 control the offset range from -250mV to 250mV in 512 increments.
The coding for the offset registers is sign magnitude, with D8 as the sign bit. The Table shows the offset range as a
function of the bits D8 through D0.
D8
D7
D6
D5
D4
D3
D2
D1
D0
MSB
Offset
(mV)
LSB
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
1
0
0
1
0
0
1
0
0
1
1
1
1
1
0
0
.
.
.
1
0
0
.
.
.
1
0
0
0
0
0*
1
1
0
0
1
0
0
1
0
1
1
1
1
0
0.98
.
.
.
250
0
-0.98
.
.
.
-250
Note: * Power-on default value
Timing Diagrams
S D A T A
A 2
R /W b
tD
A 1
A 0
H
tD
D 8
D 7
D 6
D 5
D 4
D 3
D 2
D 1
D 0
S
S C L K
tL
tL
S
H
S L O A D
Serial Write Operation Timing
S D A T A
R /W b
A 2
A 1
A 0
D 8
tR
D 7
D 6
D 5
D 4
D 3
D 2
D 1
D 0
D V
S C L K
tL
tL
S
H
S L O A D
Serial Read Operation Timing
Rev. 1.50
7
June 24, 2004
HT82V26
A n a lo g In p u t
(R , G , B )
P ix e l ( N + 3 )
tA
P ix e l ( N + 4 )
P ix e l ( N + 5 )
D
tC
tP
1
R A
C D S C L K 1
tC
tC
1 C 2
ta
2
C 2 C 1
C D S C L K 2
tA
ta
D C 2
tA
C 2 A D R
tA
D C 1
tA
D C L K
D C L K
A D C C L K
tO
O u tp u t D a ta
D 7 ~ D 0
G
(N -2 )
H ig h
B y te
G
(N -2 )
B (N -2 ) B (N -2 )
L o w
B y te
H ig h
B y te
R (N -1 )
R (N -1 )
H ig h
B y te
L o w
B y te
L o w
B y te
G
(N -1 ) G
H ig h
B y te
(N -1 )
L o w
B y te
D
B (N -1 )
B (N -1 )
R (N )
R (N )
G
H ig h
B y te
L o w
B y te
H ig h
B y te
L o w
B y te
H ig h
B y te
(N )
G
(N )
B (N )
L o w
B y te
H ig h
B y te
3-Channel CCD Mode Timing (Select R-G-B Mode)
P ix e l ( N + 3 )
A n a lo g In p u t
(G , B )
tC
tA
1
P ix e l ( N + 4 )
P ix e l ( N + 5 )
D
tP
P ix e l ( N + 6 )
R B
C D S C L K 1
tC
tC
1 C 2
2
tb
C 2 C 1
tb
C 1 A D R
C D S C L K 2
tA
tA
D C 2
tA
D C 1
tA
D C L K
D C L K
A D C C L K
tO
O u tp u t D a ta
D 7 ~ D 0
B (N -4 )
B (N -4 )
H ig h
B y te
L o w
B y te
G
(N -3 ) G
H ig h
B y te
(N -3 )
L o w
B y te
B (N -3 )
B (N -3 )
H ig h
B y te
L o w
B y te
G
(N -2 ) G
H ig h
B y te
(N -2 )
L o w
B y te
B (N -2 )
B (N -2 )
H ig h
B y te
L o w
B y te
G
(N -1 ) G
H ig h
B y te
D
(N -1 ) B (N -1 ) B (N -1 )
L o w
B y te
H ig h
B y te
L o w
B y te
G
(N )
H ig h
B y te
2-Channel CCD Mode Timing (Select G-B Mode)
Rev. 1.50
8
June 24, 2004
HT82V26
P ix e l
(N + 5 )
P ix e l
(N + 6 )
tA
A n a lo g In p u t
tC
P ix e l
(N + 7 )
P ix e l
(N + 8 )
P ix e l
(N + 9 )
P ix e l
(N + 1 0 )
P ix e l
(N + 1 1 )
D
tP
1
R C
C D S C L K 1
tC
tC
C 2 C 1
tC
1 C 2
2
C D S C L K 2
tC
tA
C 1 A D F
tA
D C 2
tA
D C L K
D C L K
A D C C L K
tO
O u tp u t D a ta
D 7 ~ D 0
P ix e l
(N -7 )
P ix e l
(N -6 )
H ig h
B y te
P ix e l
(N -6 )
L o w
B y te
P ix e l
(N -5 )
H ig h
B y te
P ix e l
(N -5 )
L o w
B y te
P ix e l
(N -4 )
H ig h
B y te
P ix e l
(N -4 )
L o w
B y te
P ix e l
(N -3 )
H ig h
B y te
P ix e l
(N -3 )
L o w
B y te
P ix e l
(N -2 )
H ig h
B y te
P ix e l
(N -2 )
L o w
B y te
P ix e l
(N -1 )
H ig h
B y te
P ix e l
(N -1 )
L o w
B y te
D
P ix e l
(N )
H ig h
B y te
P ix e l
(N )
L o w
B y te
P
(N
H
B
ix e l
+ 1 )
ig h
y te
1-Channel CCD Mode Timing
P ix e l ( N + 3 )
A n a lo g In p u t
(R , G , B )
tA
tC
P ix e l ( N + 5 )
P ix e l ( N + 4 )
D
tP
2
R A
C D S C L K 2
tA
D C 2
ta
tA
C 2 A D R
tA
D C 2
D C L K
A D C C L K
tO
O u tp u t D a ta
D 7 ~ D 0
G
(N -2 )
H ig h
B y te
G
(N -2 )
L o w
B y te
B (N -2 ) B (N -2 )
H ig h
B y te
L o w
B y te
R (N -1 )
R (N -1 )
H ig h
B y te
L o w
B y te
G
(N -1 ) G
H ig h
B y te
(N -1 )
L o w
B y te
B (N -1 )
B (N -1 )
R (N )
R (N )
G
H ig h
B y te
L o w
B y te
H ig h
B y te
L o w
B y te
H ig h
B y te
D
(N )
G
(N )
L o w
B y te
B (N )
H ig h
B y te
3-Channel SHA Mode Timing (Select R-G-B Mode)
Rev. 1.50
9
June 24, 2004
HT82V26
P ix e l ( N + 5 )
P ix e l ( N + 3 )
P ix e l ( N + 4 )
A n a lo g In p u t
(G , B )
tA
tC
tb
2
P ix e l ( N + 6 )
D
tb
C 2 A D R
P R B
C D S C L K 2
tA
D C L K
tA
tA
D C 2
tb
D C 2
tA
C 2 A D R
D C L K
A D C C L K
tO
O u tp u t D a ta
D 7 ~ D 0
B (N -4 )
B (N -4 )
H ig h
B y te
L o w
B y te
(N -3 ) G
G
H ig h
B y te
(N -3 )
L o w
B y te
B (N -3 )
B (N -3 )
H ig h
B y te
L o w
B y te
G
(N -2 ) G
H ig h
B y te
(N -2 )
L o w
B y te
B (N -2 )
B (N -2 )
H ig h
B y te
L o w
B y te
G
(N -1 ) G
H ig h
B y te
D
(N -1 ) B (N -1 ) B (N -1 )
L o w
B y te
H ig h
B y te
L o w
B y te
G
(N )
H ig h
B y te
2-Channel SHA Mode Timing (Select G-B Mode)
P ix e l
(N + 6 )
P ix e l
(N + 5 )
P ix e l
(N + 8 )
A n a lo g In p u t
tA
P ix e l
(N + 1 0 )
P ix e l
(N + 7 )
P ix e l
(N + 1 1 )
P ix e l
(N + 9 )
D
tC
tP
2
R C
C D S C L K 2
tC
tA
C 2 A D F
tA D C 2
D C 2
tC
tA
C 2 A D F
tA
D C L K
D C L K
A D C C L K
tO
O u tp u t D a ta
D 7 ~ D 0
P ix e l
(N -7 )
P ix e l
(N -6 )
H ig h
B y te
P ix e l
(N -6 )
L o w
B y te
P ix e l
(N -5 )
H ig h
B y te
P ix e l
(N -5 )
L o w
B y te
P ix e l
(N -4 )
H ig h
B y te
P ix e l
(N -4 )
L o w
B y te
P ix e l
(N -3 )
H ig h
B y te
P ix e l
(N -3 )
L o w
B y te
P ix e l
(N -2 )
H ig h
B y te
P ix e l
(N -2 )
L o w
B y te
P ix e l
(N -1 )
H ig h
B y te
P ix e l
(N -1 )
L o w
B y te
D
P ix e l
(N )
H ig h
B y te
P ix e l
(N )
L o w
B y te
P
(N
H
B
ix e l
+ 1 )
ig h
y te
1-Channel SHA Mode Timing
Rev. 1.50
10
June 24, 2004
HT82V26
Application Circuits
The recommended circuit configuration for the 3-channel CDS mode operation is shown in the figure below. The recommended input coupling capacitor value is 0.1mF.
A single ground plane is recommended for the HT82V26. A separate power supply may be used for DRVDD, the digital
driver supply, but this supply pin should still be decoupled to the same ground plane as with the rest of the HT82V26.
The loading of the digital outputs should be minimized, either by using short traces to the digital ASIC, or by using external digital buffers. To minimize the effect of digital transients during major output code transitions, the falling edge of the
CDSCLK2 should occur in coincidence with or before the rising edge of ADCCLK. All 0.1mF decoupling capacitors
should be located as close as possible to the HT82V26 pins. When operating in a single channel mode, the unused analog inputs should be grounded.
V
C lo c k
In p u ts
1
2
3
A V D D
C D S C L K 2
A V S S
A D C C L K
5 V /3 V
4
O E
5
6
7
8
9
1 0
1 1
1 2
1 3
D a ta
In p u ts
C D S C L K 1
1 4
V IN R
O F F S E T
D R V D D
V IN G
D R V S S
C M L
D 7 (M S B )
V IN B
D 6
R E F T
D 5
R E F B
D 4
A V S S
D 3
A V D D
D 2
S L O A D
D 1
S C L K
D 0 (L S B )
S D A T A
D D
2 8
0 .1 m F
2 7
2 6
0 .1 m F
2 4
0 .1 m F
2 3
2 2
0 .1 m F
0 .1 m F
2 0
1 9
0 .1 m F 1 0 m F
1 8
2
3
4
C D S C L K 2
A V S S
O E
5
6
7
8
9
1 0
1 1
1 2
1 3
Note:
A V D D
A D C C L K
5 V /3 V
D a ta
In p u ts
C D S C L K 1
5 V
1 6
1 5
1 4
V IN R
O F F S E T
D R V D D
V IN G
D R V S S
C M L
D 7 (M S B )
V IN B
D 6
R E F T
D 5
R E F B
D 4
A V S S
D 3
A V D D
D 2
S L O A D
D 1
S C L K
D 0 (L S B )
S D A T A
H T 8 2 V 2 6 (S H A M o d e )
2 8
0 .1 m F
0 .1 m F
1 7
S e r ia l
In p u ts
V
1
1 .0 m F
0 .1 m F
2 1
H T 8 2 V 2 6 (C D S M o d e )
C lo c k
In p u ts
0 .1 m F
2 5
D D
0 .1 m F
R e d In p u t
G re e n In p u t
B lu e In p u t
2 7
2 6
2 5
2 4
2 3
R e d In p u t
G re e n In p u t
B lu e In p u t
D C
L e v e l
0 .1 m F
2 2
2 1
0 .1 m F
2 0
1 9
1 8
1 7
1 6
1 5
0 .1 m F 1 0 m F
0 .1 m F
0 .1 m F
5 V
S e r ia l
In p u ts
For the 3-channel SHA mode, all of the above considerations also apply for this configuration, except that the
analog input signals are directly connected to the HT82V26 without the use of coupling capacitors. The OFFSET pin should be grounded if the inputs to the HT82V26 are to be referenced to ground, or a DC offset voltage
should be applied to the OFFSET pin in the case where a coarse offset needs to be removed from the inputs.
The analog input signals must already be dc-biased between 0V and 2V, if OFFSET is connected to ground.
Rev. 1.50
11
June 24, 2004
HT82V26
Package Information
28-pin SSOP (209mil) Outline Dimensions
1 5
2 8
A
B
1 4
1
C
C '
G
H
D
E
Symbol
Rev. 1.50
a
F
Dimensions in mil
Min.
Nom.
Max.
A
291
¾
323
B
196
¾
220
C
9
¾
15
C¢
396
¾
407
D
65
¾
73
E
¾
25.59
¾
F
4
¾
10
G
26
¾
34
H
4
¾
8
a
0°
¾
8°
12
June 24, 2004
HT82V26
28-pin SOP (300mil) Outline Dimensions
2 8
1 5
A
B
1
1 4
C
C '
G
H
D
E
Symbol
Rev. 1.50
a
F
Dimensions in mil
Min.
Nom.
Max.
A
394
¾
419
B
290
¾
300
C
14
¾
20
C¢
697
¾
713
D
92
¾
104
E
¾
50
¾
F
4
¾
¾
G
32
¾
38
H
4
¾
12
a
0°
¾
10°
13
June 24, 2004
HT82V26
Product Tape and Reel Specifications
Reel Dimensions
D
T 2
A
C
B
T 1
SOP 28W (300mil)
Symbol
Description
Dimensions in mm
A
Reel Outer Diameter
330±1.0
B
Reel Inner Diameter
62±1.5
C
Spindle Hole Diameter
13.0+0.5
-0.2
D
Key Slit Width
2.0±0.5
T1
Space Between Flange
24.8+0.3
-0.2
T2
Reel Thickness
30.2±0.2
Rev. 1.50
14
June 24, 2004
HT82V26
Carrier Tape Dimensions
P 0
D
P 1
t
E
F
W
C
D 1
B 0
P
K 0
A 0
SOP 28W (300mil)
Symbol
Description
Dimensions in mm
W
Carrier Tape Width
24.0±0.3
P
Cavity Pitch
12.0±0.1
E
Perforation Position
1.75±0.1
F
Cavity to Perforation (Width Direction)
11.5±0.1
D
Perforation Diameter
1.5+0.1
D1
Cavity Hole Diameter
1.5+0.25
P0
Perforation Pitch
4.0±0.1
P1
Cavity to Perforation (Length Direction)
2.0±0.1
A0
Cavity Length
10.85±0.1
B0
Cavity Width
18.34±0.1
K0
Cavity Depth
2.97±0.1
t
Carrier Tape Thickness
0.35±0.01
C
Cover Tape Width
Rev. 1.50
21.3
15
June 24, 2004
HT82V26
Holtek Semiconductor Inc. (Headquarters)
No.3, Creation Rd. II, Science Park, Hsinchu, Taiwan
Tel: 886-3-563-1999
Fax: 886-3-563-1189
http://www.holtek.com.tw
Holtek Semiconductor Inc. (Taipei Sales Office)
4F-2, No. 3-2, YuanQu St., Nankang Software Park, Taipei 115, Taiwan
Tel: 886-2-2655-7070
Fax: 886-2-2655-7373
Fax: 886-2-2655-7383 (International sales hotline)
Holtek Semiconductor Inc. (Shanghai Sales Office)
7th Floor, Building 2, No.889, Yi Shan Rd., Shanghai, China 200233
Tel: 021-6485-5560
Fax: 021-6485-0313
http://www.holtek.com.cn
Holtek Semiconductor Inc. (Shenzhen Sales Office)
43F, SEG Plaza, Shen Nan Zhong Road, Shenzhen, China 518031
Tel: 0755-8346-5589
Fax: 0755-8346-5590
ISDN: 0755-8346-5591
Holtek Semiconductor Inc. (Beijing Sales Office)
Suite 1721, Jinyu Tower, A129 West Xuan Wu Men Street, Xicheng District, Beijing, China 100031
Tel: 010-6641-0030, 6641-7751, 6641-7752
Fax: 010-6641-0125
Holmate Semiconductor, Inc. (North America Sales Office)
46712 Fremont Blvd., Fremont, CA 94538
Tel: 510-252-9880
Fax: 510-252-9885
http://www.holmate.com
Copyright Ó 2004 by HOLTEK SEMICONDUCTOR INC.
The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used
solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable
without further modification, nor recommends the use of its products for application that may present a risk to human life
due to malfunction or otherwise. Holtek¢s products are not authorized for use as critical components in life support devices
or systems. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information,
please visit our web site at http://www.holtek.com.tw.
Rev. 1.50
16
June 24, 2004