HOLTEK HT82V36

HT82V36
16-Bit CCD/CIS Analog Signal Processor
Features
· Operating voltage: 3.3V
· ±200mV programmable offset
· Low power consumption at 56mW
· Input clamp circuitry
· Power-down mode: Under 1mA
· Internal voltage reference
(clock timing keep low)
· Multiplexed byte-wide output (8+8 format)
· 16-bit 6 MSPS A/D converter
· Programmable 3-wire serial interface
· Guaranteed no missing codes
· 3.3V digital I/O compatibility
· Supports CDS/SHA mode
· 28-pin SSOP (209mil) package
· 1~6 programmable gain
Applications
Low power flatbed document scanners
General Description
The 16-bit digital output is multiplexed into an 8-bit output word that is accessed using two read cycles. The internal registers are programmed through a 3-wire serial
interface, which provides gain, offset and operating
mode adjustments.
The HT82V36 is a complete analog signal processor for
CCD imaging applications. It features a 1-channel architecture designed to sample and condition the outputs of
linear CCD arrays. It consists of an input clamp, Correlated Double Sampler (CDS), offset DAC and Programmable Gain Amplifier (PGA), and a low power 16-bit A/D
converter.
The CDS amplifiers may be disabled for use with sensors such as Contact Image Sensors (CIS) and CMOS
active pixel sensors, which do not require CDS.
Block Diagram
B A N D G A P
G IN
C D S
C L A M P
+
1 6
M U X
D 0 ~ D 7
9 B its
D A C
9
Rev. 1.30
1 6 B its
A /D
C o n v e rte r
P G A
6
R E G IS T E R S
1
S L O A D
S D A T A
S C L K
June 29, 2004
HT82V36
Pin Assignment
C D S C L K 1
1
2 8
A V D D
C D S C L K 2
2
2 7
A V S S
A D C C L K
3
2 6
N C
O E
4
2 5
O F F S E T
D R V D D
5
2 4
V IN G
D R V S S
6
2 3
C M L
D 7 (M S B )
7
2 2
N C
D 6
8
2 1
R E F T
D 5
9
2 0
R E F B
D 4
1 0
1 9
A V S S
D 3
1 1
1 8
A V D D
D 2
1 2
1 7
S L O A D
D 1
1 3
1 6
S C L K
D 0 (L S B )
1 4
1 5
S D A T A
H T 8 2 V 3 6
2 8 S S O P -A
Pin Description
Pin No.
Pin Name
I/O
Description
1
CDSCLK1
DI
CDS reference clock pulse input
2
CDSCLK2
DI
CDS data clock pulse input
3
ADCCLK
DI
A/D sample clock input
4
OE
DI
Output enable, active low
5
DRVDD
P
Digital driver power
6
DRVSS
P
Digital driver ground
7~14
D7~D0
DO
15
SDATA
DI/DO
16
SCLK
DI
Clock input for serial interface
17
SLOAD
DI
Serial interface load pulse
18, 27
AVSS
P
Analog ground
19, 28
AVDD
P
Analog supply
20
REFB
AO
Reference decoupling
21
REFT
AO
Reference decoupling
23
CML
AO
Internal reference output
24
VING
AI
Analog input
25
OFFSET
AO
Clamp bias level decoupling
22, 26
NC
¾
No connection
Digital data output
Serial data input/output
Absolute Maximum Ratings
Supply Voltage ..........................VSS-0.3V to VSS+3.6V
Storage Temperature ...........................-50°C to 125°C
Input Voltage .............................VSS-0.3V to VDD+0.3V
Operating Temperature ..........................-25°C to 75°C
Note: These are stress ratings only. Stresses exceeding the range specified under ²Absolute Maximum Ratings² may
cause substantial damage to the device. Functional operation of this device at other conditions beyond those
listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.
Rev. 1.30
2
June 29, 2004
HT82V36
D.C. Characteristics
Symbol
Parameter
Test Conditions
VDD
Conditions
Min.
Typ.
Max.
Unit
¾
¾
V
Logic Inputs
VIH
High Level Input Voltage
¾
¾
0.8´VDD
VIL
Low Level Input Voltage
¾
¾
¾
¾
0.2´VDD
V
IIH
High Level Input Current
¾
¾
¾
10
¾
mA
IIL
Low Level Input Current
¾
¾
¾
10
¾
mA
CIN
Input Capacitance
¾
¾
¾
10
¾
pF
V
Logic Outputs
VOH
High Level Output Voltage
¾
¾
VDD-0.5
¾
¾
VOL
Low Level Output Voltage
¾
¾
¾
¾
0.5
V
IOH
High Level Output Voltage
¾
¾
¾
1
¾
mA
IOL
Low Level Output Voltage
¾
¾
¾
1
¾
mA
Min.
Typ.
Max.
Unit
¾
¾
MHz
A.C. Characteristics
Symbol
Parameter
Test Conditions
VDD
Conditions
¾
¾
6
ADC Resolution
¾
¾
¾
16
¾
Integral Nonlinear (INL)
¾
¾
¾
±16
¾
LSB
Maximum Conversion Rate
tMAX
CDS/SHA Mode
Accuracy (Entire Signal Path)
Differential Nonlinear (DNL)
¾
¾
-1
¾
2
LSB
Offset Error
¾
¾
-100
TBD
100
mV
Gain Error
¾
¾
¾
TBD
¾
%FSR
1.4
1.6
Vp-p
Analog Inputs
RFS
Full-scale Input Range
¾
¾
1.3
Vi
Input Limits
¾
¾
AVDD-0.3
¾
AVDD+0.3
V
Ci
Input Capacitance
¾
¾
¾
TBD
¾
pF
Ii
Input Current
¾
¾
¾
TBD
¾
mA
PGA Gain at Minimum
¾
¾
¾
1
¾
V/V
PGA Gain at Maximum
¾
¾
¾
5.85
¾
V/V
PGA Gain Resolution
¾
¾
¾
6
¾
Bits
Programmable Offset at Minimum
¾
¾
¾
-200
¾
mV
Programmable Offset at Maximum
¾
¾
¾
200
¾
mV
Offset Resolution
¾
¾
¾
9
¾
Bits
¾
¾
0
¾
70
°C
Amplifiers
Temperature Range
tA
Operating
Power Supplies
VADD
AVDD
¾
¾
3
3.3
3.6
V
VDRDD
DRVDD
¾
¾
3
3.3
3.6
V
¾
¾
¾
56
¾
mW
Power Consumption
Ptot
Rev. 1.30
Total Power Consumption
3
June 29, 2004
HT82V36
Timing Specification
Symbol
Parameter
Min.
Typ.
Max.
Unit
¾
ns
Clock Parameters
tADCLK
Pixel Rate Clock
166
¾
tADH
ADCCLK Pulse High Width
80
¾
ns
tADL
ADCCLK Pulse Low Width
80
¾
ns
tC1
CDSCLK1 Pulse Width
20
¾
¾
ns
tC2
CDS Mode CDSCLK2 Pulse Width
20
¾
¾
ns
tC3
SHA Mode CDSCLK2 Pulse Width
40
¾
¾
ns
tC2ADF
CDSCLK2 Falling to ADCCLK Falling
60
¾
¾
ns
tADFC1
ADCCLK Falling to CDSCLK1 Rising
2
¾
¾
ns
tADFC2
ADCCLK Falling to CDSCLK2 Rising
2
¾
¾
ns
tAD
Analog Sampling Delay
5
¾
¾
ns
Serial Interface
fSCLK
Maximum SCLK Frequency
10
¾
¾
MHz
tLS
SLOAD to SCLK Setup Time
10
¾
¾
ns
tLH
SCLK to SLOAD Hold Time
10
¾
¾
ns
tDS
SDATA to SCLK Rising Setup Time
10
¾
¾
ns
tDH
SCLK Rising to SDATA Hold Time
10
¾
¾
ns
tRDV
Falling to SDATA Valid
10
¾
¾
ns
Output Delay
¾
8
¾
ns
Latency (Pipeline Delay)
¾
9
¾
Cycles
Data Output
tOD
Functional Description
The offset error is the deviation of the actual first code
transition level from the ideal level.
Integral Nonlinear (INL)
Integral nonlinear error refers to the deviation of each individual code from a line drawn from zero scale through
positive full scale. The point used as zero scale occurs 1
/2 LSB before the first code transition. Positive full scale
is defined as a level 1/2 LSB beyond the last code transition. The deviation is measured from the middle of each
particular code to the true straight line.
Gain Error
The last code transition should occur for an analog
value 1/2 LSB below the nominal full-scale voltage.
Gain error is the deviation of the actual difference between first and last code transitions and the ideal difference between the first and last code transitions.
Differential Nonlinear (DNL)
Aperture Delay
An ideal ADC exhibits code transitions that are exactly 1
LSB apart. DNL is the deviation from this ideal value.
Thus every code must have a finite width. No missing
codes guaranteed to 16-bit resolution indicates that all
4096 codes, respectively, must be present over all operating ranges.
The aperture delay is the time delay that occurs when a
sampling edge is applied to the HT82V36 until the actual
sample of the input signal is held. Both CDSCLK1 and
CDSCLK2 sample the input signal during the transition
from high to low, so the aperture delay is measured from
each clock¢s falling edge to the instant the actual internal sample is taken.
Offset Error
The first ADC code transition should occur at a level 1/2
LSB above the nominal zero scale voltage.
Rev. 1.30
4
June 29, 2004
HT82V36
Internal Register Descriptions
Address
Data Bits
Register
Name
A2
A1
A0
D8
D7
D6
D5
D4
Configuration
0
0
0
0
0
1
1
CDS on
Reserved
0
0
1
Reserved
0
1
0
PGA
0
1
1
X
0
0
MSB
Reserved
1
0
0
Reserved
1
0
1
Offset
1
1
0
Reserved
1
1
1
D3
D2
D1
D0
Enable
Output 1byte
Clamp
Power
Delay
out
Voltage
Down
LSB
MSB
LSB
Internal Register Map
D8
D7
D6
D5
D4
Set to 0 Set to 0 Set to 1 Set to 1
D3
D2
D1
D0
CDS operation Clamp bias Power-down
Output delay
1 byte out
(High-byte only)
1=CDS mode* 1=2.5V*
1=On
1=On
1=On
0=SHA mode
0=Off (Normal)* 0=Off*
0=2V
0=Off*
Configuration Register Settings
Note: * Power-on default value
PGA Gain Register
Bits D7 and D6 in the register must be set low, and bits D5 through D0 control the gain range in 64 increments. See figure for a graph of the PGA gain versus PGA register code. The coding for the PGA register is straight binary, with an all
zero words corresponding to the minimum gain setting (1x) and an all one word corresponding to the maximum gain
setting (5.85x).
The PGA has a gain range from 1x (0dB) to 5.85x (15.3dB), adjustable in 64 steps. The Figure shows the PGA gain as a
function of the PGA register code. Although the gain curve is approximately linear in dB, the gain in V/V varies in non5.85
linear proportion with the register code, according to the following the equation: Gain=
63 - G
1+ 4.85 ´
´(
)
63
Where G is the decimal value of the gain register contents, and varies from 0 to 63.
5 .8 5
1 2
5 .0
4 .0
6
3 .0
3
2 .0
G A IN -d B (
9
0
G A IN -V /V (
)
)
1 5
1 .0
0
4
8
1 2
1 6
2 0
2 4
2 8
3 2
3 6
4 0
4 4
4 8
5 2
5 6
6 0 6 3
P G A r e g is te r v a lu e - - D e c im a l
PGA Gain Transfer Function
Rev. 1.30
5
June 29, 2004
HT82V36
D8
D7
D6
D5
D4
Set to 0
Set to 0
Set to 0
MSB
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
D3
D2
D1
D0
Gain
(V/V)
Gain (dB)
1.0
1.013
.
.
.
5.43
5.85
0.0
0.12
.
.
.
14.7
15.3
LSB
0
0
.
.
.
1
1
0
0
0
0
0*
1
1
1
1
1
0
1
PGA Gain Register Settings
Note: * Power-on default value
Offset Register
Bits D8 through D0 control the offset range from -200mV to 200mV in 512 increments.
The coding for the offset registers is sign magnitude, with D8 as the sign bit. The Table shows the offset range as a
function of the bits D8 through D0.
D8
D7
D6
D5
D4
D3
D2
D1
D0
MSB
Offset
(mV)
LSB
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
1
0
0
1
0
0
1
0
0
1
1
1
1
1
0
0
.
.
.
1
0
0
.
.
.
1
0
0
0
0
0*
1
1
0
0
1
0
0
1
0
1
1
1
1
0
0.78
.
.
.
200
0
-0.78
.
.
.
-200
Note: * Power-on default value
Timing Diagrams
S D A T A
A 2
R /W b
tD
A 1
A 0
H
tD
D 8
D 7
D 6
D 5
D 4
D 3
D 2
D 1
D 0
S
S C L K
tL
tL
S
H
S L O A D
Serial Write Operation Timing
S D A T A
R /W b
A 2
A 1
A 0
D 8
tR
D 7
D 6
D 5
D 4
D 3
D 2
D 1
D 0
D V
S C L K
tL
tL
S
H
S L O A D
Serial Read Operation Timing
Rev. 1.30
6
June 29, 2004
HT82V36
P ix e l
(N + 3 )
P ix e l
(N + 4 )
P ix e l
(N + 5 )
P ix e l
(N + 6 )
P ix e l
(N + 7 )
P ix e l
(N + 8 )
P ix e l
(N + 9 )
P ix e l
(N + 1 0 )
A n a lo g In p u t
tA
tC
D
1
C D S C L K 1
tC
2
C D S C L K 2
tA
tC
F C 1
tA
2 A D F
tA
D C L K
tA
D L
D H
A D C C L K
tO
O u tp u t D a ta
D 7 ~ D 0
D
P ix e l
P ix e l
P ix e l
P ix e l
P ix e l
P ix e l
P ix e l
P ix e l
P ix e l
P ix e l
P ix e l
P ix e l
P ix e l
P ix e l
P ix e l
P ix e l
P ix e l
(N -7 )
(N -6 )
(N -6 )
(N -5 )
(N -5 )
(N -4 )
(N -4 )
(N -3 )
(N -3 )
(N -2 )
(N -2 )
(N -1 )
(N -1 )
(N )
(N )
(N + 1 )
(N + 1 )
L o w
B y te
H ig h
B y te
L o w
B y te
H ig h
B y te
L o w
B y te
H ig h
B y te
H ig h
B y te
L o w
B y te
H ig h
B y te
L o w
B y te
L o w
B y te
H ig h
B y te
L o w
B y te
H ig h
B y te
L o w
B y te
H ig h
B y te
L o w
B y te
1-Channel CDS Mode Timing
P ix e l
(N + 5 )
P ix e l
(N + 4 )
P ix e l
(N + 6 )
P ix e l
(N + 7 )
A n a lo g In p u t
tA
D
tC
3
tC
2 A D F
P ix e l
(N + 9 )
P ix e l
(N + 8 )
P ix e l
(N + 1 1 )
P ix e l
(N + 1 0 )
C D S C L K 2
tA
D C L K
tA
tA
D F C 2
D H
tA
D L
A D C C L K
tO
O u tp u t D a ta
D 7 ~ D 0
P ix e l
P ix e l
P ix e l
P ix e l
P ix e l
P ix e l
(N -7 )
(N -6 )
(N -6 )
(N -5 )
(N -5 )
(N -4 )
L o w
B y te
H ig h
B y te
L o w
B y te
H ig h
B y te
L o w
B y te
H ig h
B y te
P ix e l
(N -4 )
L o w
B y te
P ix e l
P ix e l
(N -3 )
(N -3 )
H ig h
B y te
L o w
B y te
P ix e l
(N -2 )
H ig h
B y te
P ix e l
(N -2 )
L o w
B y te
D
P ix e l
(N -1 )
H ig h
B y te
P ix e l
(N -1 )
L o w
B y te
P ix e l
P ix e l
(N )
(N )
H ig h
B y te
L o w
B y te
P ix e l
P ix e l
(N + 1 )
(N + 1 )
H ig h
B y te
L o w
B y te
1-Channel SHA Mode Timing
Rev. 1.30
7
June 29, 2004
HT82V36
Application Circuits
The recommended circuit configuration for 1-channel CDS mode operation is shown below.
The recommended input coupling capacitor value is 0.1mF (see circuit operation section for more details).
A single ground plane is recommended for the HT82V36. A separate power supply may be used for DRVDD, the digital
driver supply, but this supply pin should still be decoupled to the same ground plane as the rest of the HT82V36. The
loading of the digital outputs should be minimized, either by using short traces to the digital ASIC, or by using external
digital buffers. All 0.1mF decoupling capacitors should be located as close as possible to the HT82V36 pins.
V
1
2
3
C D S C L K 1
A V D D
C D S C L K 2
A V S S
3 .3 V
A D C C L K
4
5
O E
6
7
D R V D D
V IN G
D R V S S
C M L
D 7 (M S B )
8
9
1 0
1 1
1 2
1 3
1 4
N C
O F F S E T
N C
D 6
R E F T
D 5
R E F B
D 4
A V S S
D 3
A V D D
D 2
S L O A D
D 1
S C L K
D 0 (L S B )
S D A T A
D D
0 .1 m F
2 8
2 7
2 6
0 .1 m F
2 5
2 4
0 .1 m F
2 3
0 .1 m F
In p u t
1 .0 m F
2 2
2 1
0 .1 m F
2 0
0 .1 m F 1 0 m F
1 9
1 8
0 .1 m F
0 .1 m F
1 7
3 .3 V
1 6
1 5
H T 8 2 V 3 6 (C D S M o d e )
V
1
2
3
C D S C L K 1
A V D D
C D S C L K 2
A V S S
A D C C L K
3 .3 V
4
O E
5
6
7
9
1 0
1 1
1 2
1 3
1 4
O F F S E T
D R V D D
V IN G
D R V S S
C M L
D 7 (M S B )
8
N C
N C
D 6
R E F T
D 5
R E F B
D 4
A V S S
D 3
A V D D
D 2
S L O A D
D 1
S C L K
D 0 (L S B )
S D A T A
2 8
D D
0 .1 m F
2 7
2 6
2 5
2 4
2 3
D C
L e v e l
In p u t
0 .1 m F
2 2
2 1
0 .1 m F
2 0
1 9
1 8
1 7
1 6
0 .1 m F 1 0 m F
0 .1 m F
0 .1 m F
3 .3 V
1 5
H T 8 2 V 3 6 (S H A M o d e )
Note:
For the SHA Mode, all of the above considerations also apply, except that the analog input signal is directly
connected to the HT82V36 without using a coupling capacitor. The OFFSET pin should be grounded if the input to the HT82V36 is to be referenced to ground, or a dc offset voltage should be applied to the OFFSET pin in
situation where a coarse offset needs to be removed from the input.
Rev. 1.30
8
June 29, 2004
HT82V36
Package Information
28-pin SSOP (209mil) Outline Dimensions
1 5
2 8
A
B
1 4
1
C
C '
G
H
D
E
Symbol
Rev. 1.30
a
F
Dimensions in mil
Min.
Nom.
Max.
A
291
¾
323
B
196
¾
220
C
9
¾
15
C¢
396
¾
407
D
65
¾
73
E
¾
25.59
¾
F
4
¾
10
G
26
¾
34
H
4
¾
8
a
0°
¾
8°
9
June 29, 2004
HT82V36
Holtek Semiconductor Inc. (Headquarters)
No.3, Creation Rd. II, Science Park, Hsinchu, Taiwan
Tel: 886-3-563-1999
Fax: 886-3-563-1189
http://www.holtek.com.tw
Holtek Semiconductor Inc. (Taipei Sales Office)
4F-2, No. 3-2, YuanQu St., Nankang Software Park, Taipei 115, Taiwan
Tel: 886-2-2655-7070
Fax: 886-2-2655-7373
Fax: 886-2-2655-7383 (International sales hotline)
Holtek Semiconductor Inc. (Shanghai Sales Office)
7th Floor, Building 2, No.889, Yi Shan Rd., Shanghai, China 200233
Tel: 021-6485-5560
Fax: 021-6485-0313
http://www.holtek.com.cn
Holtek Semiconductor Inc. (Shenzhen Sales Office)
43F, SEG Plaza, Shen Nan Zhong Road, Shenzhen, China 518031
Tel: 0755-8346-5589
Fax: 0755-8346-5590
ISDN: 0755-8346-5591
Holtek Semiconductor Inc. (Beijing Sales Office)
Suite 1721, Jinyu Tower, A129 West Xuan Wu Men Street, Xicheng District, Beijing, China 100031
Tel: 010-6641-0030, 6641-7751, 6641-7752
Fax: 010-6641-0125
Holmate Semiconductor, Inc. (North America Sales Office)
46712 Fremont Blvd., Fremont, CA 94538
Tel: 510-252-9880
Fax: 510-252-9885
http://www.holmate.com
Copyright Ó 2004 by HOLTEK SEMICONDUCTOR INC.
The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used
solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable
without further modification, nor recommends the use of its products for application that may present a risk to human life
due to malfunction or otherwise. Holtek¢s products are not authorized for use as critical components in life support devices
or systems. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information,
please visit our web site at http://www.holtek.com.tw.
Rev. 1.30
10
June 29, 2004