SCLS099F − DECEMBER 1982 − REVISED SEPTEMBER 2003 SN54HC112 . . . J OR W PACKAGE SN74HC112 . . . D OR N PACKAGE (TOP VIEW) Wide Operating Voltage Range of 2 V to 6 V Outputs Can Drive Up To 10 LSTTL Loads Low Power Consumption, 40-µA Max ICC Typical tpd = 13 ns ±4-mA Output Drive at 5 V Low Input Current of 1 µA Max 1CLK 1K 1J 1PRE 1Q 1Q 2Q GND description/ordering information The ’HC112 devices contain two independent J-K negative-edge-triggered flip-flops. A low level at the preset (PRE) or clear (CLR) inputs sets or resets the outputs, regardless of the levels of the other inputs. When PRE and CLR are inactive (high), data at the J and K inputs meeting the setup time requirements are transferred to the outputs on the negative-going edge of the clock (CLK) pulse. Clock triggering occurs at a voltage level and is not directly related to the fall time of the CLK pulse. Following the hold-time interval, data at the J and K inputs may be changed without affecting the levels at the outputs. These versatile flip-flops perform as toggle flip-flops by tying J and K high. 1 16 2 15 3 14 4 13 5 12 6 11 7 10 8 9 VCC 1CLR 2CLR 2CLK 2K 2J 2PRE 2Q 1K 1CLK NC VCC 1CLR SN54HC112 . . . FK PACKAGE (TOP VIEW) 4 3 2 1 20 19 18 5 17 6 16 7 15 8 14 9 10 11 12 13 2Q GND NC 2Q 1J 1PRE NC 1Q 1Q 2CLR 2CLK NC 2K 2J 2PRE D D D D D D NC − No internal connection ORDERING INFORMATION PDIP − N −40°C to 85°C −55°C −55 C to 125 125°C C ORDERABLE PART NUMBER PACKAGE† TA TOP-SIDE MARKING Tube of 25 SN74HC112N Tube of 40 SN74HC112D Reel of 2500 SN74HC112DR Reel of 250 SN74HC112DT CDIP − J Tube of 25 SNJ54HC112J SNJ54HC112J CFP − W Tube of 150 SNJ54HC112W SNJ54HC112W LCCC − FK Tube of 55 SNJ54HC112FK SOIC − D SN74HC112N HC112 SNJ54HC112FK † Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Copyright 2003, Texas Instruments Incorporated !"#$ % &'!!($ #% )'*+&#$ ,#$(!,'&$% &!" $ %)(&&#$% )(! $.( $(!"% (/#% %$!'"($% %$#,#!, 0#!!#$1- !,'&$ )!&(%%2 ,(% $ (&(%%#!+1 &+',( $(%$2 #++ )#!#"($(!%- )!,'&$% &")+#$ $ 3454 #++ )#!#"($(!% #!( $(%$(, '+(%% $.(!0%( $(,- #++ $.(! )!,'&$% )!,'&$ )!&(%%2 ,(% $ (&(%%#!+1 &+',( $(%$2 #++ )#!#"($(!%- POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 SCLS099F − DECEMBER 1982 − REVISED SEPTEMBER 2003 FUNCTION TABLE OUTPUTS INPUTS PRE CLR CLK L H X H L X J K Q Q X X H L X X H H† L L X X X L H† H H ↓ L L Q0 Q0 H H ↓ H L H L H H ↓ L H L H H ↓ H H H Toggle H H H X X Q0 Q0 † This configuration is nonstable; that is, it does not persist when either PRE or CLR returns to its inactive (high) level. logic diagram, each flip-flop (positive logic) PRE C J C Q TG TG K C CLK C C C TG TG C C C C Q CLR 2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SCLS099F − DECEMBER 1982 − REVISED SEPTEMBER 2003 absolute maximum ratings over operating free-air temperature range† Supply voltage range, VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 7 V Input clamp current, IIK (VI < 0 or VI > VCC) (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 mA Output clamp current, IOK (VO < 0 or VO > VCC) (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 mA Continuous output current, IO (VO = 0 to VCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±25 mA Continuous current through VCC or GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±50 mA Package thermal impedance, θJA (see Note 2): D package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73°C/W N package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67°C/W Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed. 2. The package thermal impedance is calculated in accordance with JESD 51-7. recommended operating conditions (see Note 3) SN54HC112 VCC VIH Supply voltage High-level input voltage VCC = 2 V VCC = 4.5 V VCC = 6 V VCC = 2 V VIL VI VO tt‡ Low-level input voltage MIN NOM MAX 2 5 6 MIN NOM MAX 2 5 6 1.5 1.5 3.15 3.15 4.2 4.2 VCC = 4.5 V VCC = 6 V Input voltage 0 Output voltage 0 Input transition (rise and fall) time SN74HC112 VCC = 2 V VCC = 4.5 V VCC = 6 V 0.5 1.35 1.35 1.8 1.8 0 0 V V 0.5 VCC VCC UNIT VCC VCC 1000 1000 500 500 400 400 V V V ns TA Operating free-air temperature −55 125 −40 85 °C ‡ If this device is used in the threshold region (from VILmax = 0.5 V to VIHmin = 1.5 V), there is a potential to go into the wrong state from induced grounding, causing double clocking. Operating with the inputs at tt = 1000 ns and VCC = 2 V does not damage the device; however, functionally, the CLK inputs are not ensured while in the shift, count, or toggle operating modes. NOTE 3: All unused inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 3 SCLS099F − DECEMBER 1982 − REVISED SEPTEMBER 2003 electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS IOH = −20 µA VOH IOL = 20 µA VI = VCC or 0 VI = VCC or 0, TA = 25°C TYP MAX MIN MAX SN74HC112 MIN 2V 1.9 1.998 1.9 1.9 4.4 4.499 4.4 4.4 6V 5.9 5.999 5.9 5.9 4.5 V 3.98 4.3 3.7 3.84 6V 5.48 5.8 5.2 MAX UNIT V 5.34 2V 0.002 0.1 0.1 0.1 4.5 V 0.001 0.1 0.1 0.1 6V 0.001 0.1 0.1 0.1 4.5 V 0.17 0.26 0.4 0.33 6V 0.15 0.26 0.4 0.33 6V ±0.1 ±100 ±1000 ±1000 nA 4 80 40 µA 3 10 10 10 pF IO = 0 6V Ci SN54HC112 4.5 V VI = VIH or VIL IOL = 4 mA IOL = 5.2 mA II ICC MIN VI = VIH or VIL IOH = −4 mA IOH = −5.2 mA VOL VCC 2 V to 6 V V timing requirements over recommended operating free-air temperature range (unless otherwise noted) VCC fclock Clock frequency PRE or CLR low tw Pulse duration CLK high or low Data (J, K) tsu Setup time before CLK↓ PRE or CLR inactive th 4 Hold time, data after CLK↓ POST OFFICE BOX 655303 TA = 25°C MIN MAX SN54HC112 MIN MAX SN74HC112 MIN MAX 2V 5 3.4 4 4.5 V 25 17 20 6V 29 20 24 2V 100 150 125 4.5 V 20 30 25 6V 17 25 21 2V 100 150 125 4.5 V 20 30 25 6V 17 25 21 2V 100 150 125 4.5 V 20 30 25 6V 17 25 21 2V 100 150 125 4.5 V 20 30 25 6V 17 25 21 2V 0 0 0 4.5 V 0 0 0 6V 0 0 0 • DALLAS, TEXAS 75265 UNIT MHz ns ns ns SCLS099F − DECEMBER 1982 − REVISED SEPTEMBER 2003 switching characteristics over recommended operating free-air temperature range, CL = 50 pF (unless otherwise noted) (see Figure 1) PARAMETER FROM (INPUT) TO (OUTPUT) fmax PRE or CLR Q or Q tpd CLK tt Q or Q Q or Q VCC MIN TA = 25°C TYP MAX SN54HC112 MIN MAX SN74HC112 MIN 2V 5 10 3.4 4 4.5 V 25 50 17 20 6V 29 60 20 24 MAX UNIT MHz 2V 54 165 245 205 4.5 V 16 33 49 41 6V 13 28 42 35 2V 56 125 185 155 4.5 V 16 25 37 31 6V 13 21 31 26 2V 29 75 110 95 4.5 V 9 15 22 19 6V 8 13 19 16 ns ns operating characteristics, TA = 25°C PARAMETER Cpd TEST CONDITIONS Power dissipation capacitance No load POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TYP 35 UNIT pF 5 SCLS099F − DECEMBER 1982 − REVISED SEPTEMBER 2003 PARAMETER MEASUREMENT INFORMATION From Output Under Test VCC High-Level Pulse Test Point 50% 50% 0V tw CL = 50 pF (see Note A) VCC Low-Level Pulse 50% 50% 0V LOAD CIRCUIT VOLTAGE WAVEFORMS PULSE DURATIONS Input VCC 50% 50% 0V tPLH Reference Input VCC 50% In-Phase Output 0V tsu Data Input 50% 10% 90% tr tPHL VCC 50% 10% 0 V 90% 90% tr th 90% 50% 10% tPHL Out-of-Phase Output 90% VOLTAGE WAVEFORMS SETUP AND HOLD AND INPUT RISE AND FALL TIMES tPLH 50% 10% tf tf VOH 50% 10% VOL tf 50% 10% 90% VOH VOL tr VOLTAGE WAVEFORMS PROPAGATION DELAY AND OUTPUT TRANSITION TIMES NOTES: A. CL includes probe and test-fixture capacitance. B. Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators having the following characteristics: PRR ≤ 1 MHz, ZO = 50 Ω, tr = 6 ns, tf = 6 ns. C. For clock inputs, fmax is measured when the input duty cycle is 50%. D. The outputs are measured one at a time with one input transition per measurement. E. tPLH and tPHL are the same as tpd. Figure 1. Load Circuit and Voltage Waveforms 6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 PACKAGE OPTION ADDENDUM www.ti.com 26-Sep-2005 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Drawing Pins Package Eco Plan (2) Qty Lead/Ball Finish MSL Peak Temp (3) 84088012A ACTIVE LCCC FK 20 1 TBD Call TI Level-NC-NC-NC 8408801EA ACTIVE CDIP J 16 1 TBD Call TI Level-NC-NC-NC 8408801FA ACTIVE CFP W 16 1 TBD Call TI Level-NC-NC-NC JM38510/65305BEA ACTIVE CDIP J 16 1 TBD Call TI Level-NC-NC-NC SN54HC112J ACTIVE CDIP J 16 1 TBD Call TI Level-NC-NC-NC SN74HC112D ACTIVE SOIC D 16 40 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74HC112DE4 ACTIVE SOIC D 16 40 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74HC112DR ACTIVE SOIC D 16 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74HC112DRE4 ACTIVE SOIC D 16 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74HC112DT ACTIVE SOIC D 16 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74HC112DTE4 ACTIVE SOIC D 16 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74HC112N ACTIVE PDIP N 16 25 Pb-Free (RoHS) CU NIPDAU Level-NC-NC-NC SN74HC112N3 OBSOLETE PDIP N 16 TBD Call TI SN74HC112NE4 ACTIVE PDIP N 16 25 Pb-Free (RoHS) CU NIPDAU Call TI Level-NC-NC-NC SNJ54HC112FK ACTIVE LCCC FK 20 1 TBD Call TI Level-NC-NC-NC SNJ54HC112J ACTIVE CDIP J 16 1 TBD Call TI Level-NC-NC-NC SNJ54HC112W ACTIVE CFP W 16 1 TBD Call TI Level-NC-NC-NC (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. Addendum-Page 1 PACKAGE OPTION ADDENDUM www.ti.com 26-Sep-2005 In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 2 MECHANICAL DATA MLCC006B – OCTOBER 1996 FK (S-CQCC-N**) LEADLESS CERAMIC CHIP CARRIER 28 TERMINAL SHOWN 18 17 16 15 14 13 NO. OF TERMINALS ** 12 19 11 20 10 A B MIN MAX MIN MAX 20 0.342 (8,69) 0.358 (9,09) 0.307 (7,80) 0.358 (9,09) 28 0.442 (11,23) 0.458 (11,63) 0.406 (10,31) 0.458 (11,63) 21 9 22 8 44 0.640 (16,26) 0.660 (16,76) 0.495 (12,58) 0.560 (14,22) 23 7 52 0.739 (18,78) 0.761 (19,32) 0.495 (12,58) 0.560 (14,22) 24 6 68 0.938 (23,83) 0.962 (24,43) 0.850 (21,6) 0.858 (21,8) 84 1.141 (28,99) 1.165 (29,59) 1.047 (26,6) 1.063 (27,0) B SQ A SQ 25 5 26 27 28 1 2 3 4 0.080 (2,03) 0.064 (1,63) 0.020 (0,51) 0.010 (0,25) 0.020 (0,51) 0.010 (0,25) 0.055 (1,40) 0.045 (1,14) 0.045 (1,14) 0.035 (0,89) 0.045 (1,14) 0.035 (0,89) 0.028 (0,71) 0.022 (0,54) 0.050 (1,27) 4040140 / D 10/96 NOTES: A. B. C. D. E. All linear dimensions are in inches (millimeters). This drawing is subject to change without notice. This package can be hermetically sealed with a metal lid. The terminals are gold plated. Falls within JEDEC MS-004 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Applications Amplifiers amplifier.ti.com Audio www.ti.com/audio Data Converters dataconverter.ti.com Automotive www.ti.com/automotive DSP dsp.ti.com Broadband www.ti.com/broadband Interface interface.ti.com Digital Control www.ti.com/digitalcontrol Logic logic.ti.com Military www.ti.com/military Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork Microcontrollers microcontroller.ti.com Security www.ti.com/security Telephony www.ti.com/telephony Video & Imaging www.ti.com/video Wireless www.ti.com/wireless Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265 Copyright 2005, Texas Instruments Incorporated