TI AFE1302Y/2K

AFE1302
AF E
130
2
www.ti.com
ADSL ANALOG FRONT-END
●
●
●
●
FEATURES
● NOISE FLOOR: –144dBm/Hz
● MULTIRATE COMPATIBLE
8.8M TO 1.1MWords/s WORD RATE
FIVE GENERAL-PURPOSE OUTPUTS
570mW POWER DISSIPATION
TQFP-48 PACKAGE
● VCXO CIRCUITRY AND DAC
DESCRIPTION
Burr-Brown’s Analog Front-End from Texas Instruments reduces the size and cost of an ADSL-compliant
system by providing the active analog circuitry needed
to connect an ADSL Digital Signal Processor (DSP) to
an external line driver, receiver, TX/RX filters, hybrid, transformer, and POTS filter. The AFE1302 is
designed for downstream data rates of 4Mbps and
higher, and operation at a clock rate of 35.328MHz,
with an output word rate of up to 8.832MWords/s.
Functionally, this unit consists of a transmit (TX) channel, a receive (RX) channel, a VCXO (Voltage Controlled Crystal Oscillator) control Digital-to-Analog
Converter (DAC), and VCXO active circuitry. The TX
section converts, filters, and buffers outgoing Discrete
Multi Tone (DMT) data from the ADSL DSP.
The receive section amplifies, filters, and digitizes the
DMT data received on the twisted pair line.
This IC operates on a single 5V supply. The digital
circuitry in the unit can be connected to a supply voltage
ranging from 3.3V to 5V. The chip uses only 570mW.
The AFE1302 is designed to be used with external
amplifiers and filters for noise reduction and dynamicrange improvement.
The RX channel consists of a low-noise PGA, a switched
capacitor low-pass filter, and fourth-order delta-sigma
Analog-to-Digital Converter (ADC). The delta-sigma
modulator operating at a 32X oversampling ratio produces a 16-bit output at word rates up to 8832kHz.
The TX channel consists of a fourth-order delta-sigma
DAC, switched-capacitor low-pass filter, programmable attenuator, and buffer. The buffer drives offchip into a low-noise line driver configured as a 3-pole
active filter to produce an overall low-noise high-drive
TX output signal on a twisted pair line.
Patents Pending
AFE1302
Interpolation
Filter
16-Bit
DAC
LP
Filter
16-Bit
ADC
LP
Filter
Atten
Buffer
TX Output
Digital
Loopback
Decimation
Filter
From DSP
Digital
Interface
Copyright © 2000, Texas Instruments Incorporated
PGA
VCXO
Active Ckts
VCXO
DAC
SBWS014
Analog
Loop Back
General Purpose
Digital Output
RX Input
5
Printed in U.S.A. December, 2000
SPECIFICATIONS
Typical at 25°C, AVDD = +5V, DVDD = +3.3V, fCLK = 35.328MHz, TX output and RX input measured differentially, unless otherwise specified.
AFE1302Y
PARAMETER
RECEIVE CHANNEL
Input Signal (CMV = AVDD/2)
Common-Mode Voltage
Input Impedance
Input Capacitance
Programmable Amplifier Range
Gain Step Size
Input Noise
Output Word Rate
Output Word Resolution
ADC Sampling Rate
Low-Pass Frequency Corner
Passband Droop
SINAD
THD
MTPR (MultiTone Power Ratio)
TRANSMIT CHANNEL
Input Word Rate
Input Word Resolution
Peak Signal Amplitude
Common-Mode Voltage
Load Resistance
Load Capacitance
Programmable Attenuator Range
Attenuator Step Size
Attenuator Step Accuracy
Low-Pass Filter Corner Frequency
Passband Ripple
Group Delay Variation
Output Noise
TYP
Differential, G = –6dB
9.0
9.6
AVDD/2
2.8
30
–6
Monotonicity Guaranteed
PGA = +40dB(1)
MAX
40
1
–148
1.104
(15 Bits + 1 Sign Bit) or (14 Bits + 2 Sign Bits)
–144
8.832
16
35.328
One Pole Analog Filter
At 550kHz
PGA Gain = 40dB, Input Referred
PGA Gain = 0dB
Single Tone, PGA = 0dB
1.1
1
100
68
75
84
75
1.104
(15 Bits + 1 Sign Bit) or (14 Bits + 2 Sign Bits)
Differential, G = 0dB
4.4
Differential
Differential
8.832
16
4.8
AVDD/2
400
10
VCXO WITH EXTERNAL CIRCUITRY
Frequency
Tuning Range
DAC Resolution
DIGITAL INTERFACE
Logic Levels
VIH
VIL
VOH
VOL
CONTROL INTERFACE (GC0, GC1, GP0, GP1, GP2)
Logic Levels
VOH
VOL
MWords/s
Bits
Vp-p
35.328
±100
10
MHz
ppm
Bits
10
Measured at 50kHz
Measured at 200kHz
FS Output 0dB
FS Output –6dB
See Note (2)
Vp-p
V
kΩ
pF
dB
dB
dBm/Hz
MWords/s
Bits
MSamples/s
MHz
dB
dB
dB
dB
dB
–110
–116
65
73
–98
70
0
1.0
0.5
127
–0.1
Fourth-Order, 0.1dB Programmable
UNITS
Ω
pF
dB
dB
dB
kHz
dB
µs
dBm/Hz
dBm/Hz
dBc
dBc
dBVrms
dB
–31
Monotonicity Guaranteed
SFDR in RX Band (20 Tone Test)
MTPR
TEMPERATURE RANGE
Operation
Thermal Resistance, θJA
MIN
Pin-to-AVDD
THD Distortion
POWER
Analog Power Supply Voltage
Analog Dissipated Power
Digital Power Supply Voltage
Digital Dissipated Power
CONDITIONS
Sensitive to PCB Layout
Monotonicity Guaranteed
|IIH| < 10µA
|IIL| < 10µA
IOH = –20µA
IOL = 20µA
DVDD – 1
–0.3
DVDD – 0.5
IOH = 1mA
IOL = 1mA
DVDD – 0.5
AVDD
4.75
DVDD
VDD = 3.3V
3.0
DVDD
0
5
470
3.3
100
0
DVDD + 0.3
0.8
0.4
V
V
V
V
0.4
V
V
5.25
5.5
70
56.5
V
mW
V
mW
°C
°C/W
NOTES: (1) With TX in operation, no RX data, referred to 100Ω. (2) With TX reverb multitone signal (25.875kHz to 138kHz at a 4.3125kHz step), measured signal
level beyond 150kHz at TXP, TXN.
2
AFE1302
SBWS014
PIN CONFIGURATION
CLKNIB
DVSS2
AVSS1
XTALO
XTALI
AVDD1
VCXO
VREF2
AVDD2
AVSS2
AVSS5
TQFP
CLKM
Top View
48
47
46
45
44
43
42
41
40
39
38
37
CLWD
1
36 AVSS4
CTRLIN
2
35 TXP
DVDD1
3
34 AVDD4
DVSS1
4
33 TXN
TX3
5
32 AVSS6
TX2
6
TX1
7
30 CMO
TX0
8
29 VREF1
RX3
9
28 VRNTX
RX2 10
27 VRPTX
RX1 11
26 VRNRX
RX0 12
25 VRPRX
31 CMI
16
17
18
19
20
21
PDOWN
RESETN
GP2
GP1
GP0
RXN
RXP
AVDD3
ABSOLUTE MAXIMUM RATINGS
22
23
24
GC0
15
GC1
14
AVSS3
13
CLIP
AFE1302
ELECTROSTATIC
DISCHARGE SENSITIVITY
Analog Inputs: Current ............................................. ±100mA, Momentary
±10mA, Continuous
Voltage ................................. AGND –0.3V to AVDD +0.3V
Analog Outputs Short Circuit to Ground (+25°C) ................... Continuous
AVDD to AGND ....................................................................... –0.3V to 6V
DVDD to DGND ....................................................................... –0.3V to 6V
Digital Input Voltage to DGND ................................ –0.3V to DVDD +0.3V
Digital Output Voltage to DGND ............................. –0.3V to DVDD +0.3V
AGND, DGND, Differential Voltage .................................................... 0.3V
Junction Temperature (TJ) ............................................................ +150°C
Storage Temperature Range ......................................... –40°C to +125°C
Lead Temperature (soldering, 3s) ................................................. +260°C
Power Dissipation .......................................................................... 700mW
This integrated circuit can be damaged by ESD. Burr-Brown
recommends that all integrated circuits be handled with
appropriate precautions. Failure to observe proper handling
and installation procedures can cause damage.
ESD damage can range from subtle performance degradation
to complete device failure. Precision integrated circuits may
be more susceptible to damage because very small parametric
changes could cause the device not to meet its published
specifications.
PACKAGE/ORDERING INFORMATION
PRODUCT
PACKAGE
PACKAGE
DRAWING
NUMBER
AFE1302Y
TQFP-48
355
0°C to +70°C
AFE1302Y
AFE1302Y/250
Tape and Reel
"
"
"
"
AFE1302Y/2K
Tape and Reel
"
SPECIFIED
TEMPERATURE
RANGE
PACKAGE
MARKING
ORDERING
NUMBER(1)
TRANSPORT
MEDIA
NOTE: (1) Models with a slash (/) are available only in Tape and Reel in the quantities indicated (e.g., /2K indicates 2000 devices per reel). Ordering 2000 pieces
of “AFE1302Y/2K” will get a single 2000-piece Tape and Reel.
AFE1302
SBWS014
3
PIN DESCRIPTIONS
Number
Type
Pin Name
Description
External Connection
GC0
GC1
RXN
RXP
VRPRX
VRNRX
CMO
VRPTX
VRNTX
VREF1
CMI
TXP
TXN
VREF2
VCXO
XTALI
XTALO
External Gain Control Output LSB
External Gain Control Output MSB
Analog Receive Negative Input
Analog Receive Positive Input
RX Reference Positive Output
RX Reference Negative Output
Output Common-Mode voltage
TX Reference Positive Output
TX Reference Negative Output
Unbuffered Bandgap Reference
Unbuffered Common-Mode Voltage
TX Positive Output
TX Negative Output
DAC Reference Voltage
VXCO Control Voltage DAC Output
XTAL Oscillator Input
XTAL Oscillator Output
Optional Swap Amp
Optional Swap Amp
Line Interface
Line Interface
0.1uF,1µF to AVSS3
0.1uF,1µF to AVSS3
0.1uF,1µF to AVSS3
0.1uF,1µF to AVSS3
0.1uF,1µF to AVSS3
0.1uF,1µF to AVSS3
0.1uF,1µF to AVSS3
Line Interface
Line Interface
XTAL Interface
XTAL Interface
XTAL
XTAL
CLKM
CLKNIB
CLWD
CTRLIN
TX3
TX2
TX1
TX0
RX3
RX2
RX1
RX0
CLIP
PDOWN
RESETN
GP2
GP1
GP0
Master Clock Output, f = 35.328MHz
Nibble Clock Output
Word Clock Output
Serial Data Input
Digital Transmit Input
Digital Transmit Input
Digital Transmit Input
Digital Transmit Input
Digital Receive Output
Digital Receive Output
Digital Receive Output
Digital Receive Output
Clipping Detection Output
Power-Down Select, “1” = Power Down
Reset Pin (Active LOW)
General-Purpose Output 2
General-Purpose Output 1
General-Purpose Output 0
DSP
DSP
DSP
DSP
DSP
DSP
DSP
DSP
DSP
DSP
DSP
DSP
DSP
DSP
DSP
—
—
—
Digital Ground 2
Digital Power
Digital Ground 1
Analog Power (Main)
Analog Ground (Main)
Analog Ground for TX Output
Analog Power for TX Output
Analog Ground for TX Output
Analog Clock Ground
Analog Clock Ground
Analog Clock Power
XTAL Power
XTAL Ground
DGND Plane
0.1uF,1µF to DVSS1
DGND Plane
0.1uF,1µF to AVSS3
AGND Plane
AGND Plane
0.1uF,1µF to AVSS4
AGND Plane
AGND Plane
AGND Plane
0.1uF,1µF to AVSS2
0.1uF,1µF to AVSS1
AGND Plane
Analog Interface
23
24
19
20
25
26
30
27
28
29
31
35
33
40
41
43
44
Output
Output
Input
Input
Output
Output
Output
Output
Output
Output
Output
Output
Output
Output
Output
—
—
Digital Interface
48
47
1
2
5
6
7
8
9
10
11
12
13
14
15
16
17
18
Output
Output
Output
Input
Input
Input
Input
Input
Output
Output
Output
Output
Output
Input
Input
Output
Output
Output
Supply voltages
46
3
4
21
22
32
34
36
37
38
39
42
45
4
—
3V or 5V
—
5V
—
—
5V
—
—
—
5V
5V
—
DVSS2
DVDD1
DVSS1
AVDD3
AVSS3
AVSS6
AVDD4
AVSS4
AVSS5
AVSS2
AVDD2
AVDD1
AVSS1
AFE1302
SBWS014
THEORY OF OPERATION
The AFE1302 consists of a transmit (TX) channel, a receive
(RX) channel, and a digital interface to connect to an ADSL
DSP. In addition, VCXO circuitry and a VCXO control
DAC are included for precise clock generation.
The TX channel receives digital data at the nominal rate of
1.104MWords/s to 8.832MWords/s. These TX data words
are interpolated up to the AFE1302 clock rate of 35.328MHz.
The data is converted to analog form with a 16-bit deltasigma DAC and bandwidth limited with a fourth-order,
switched-capacitor low-pass filter. The filter output is buffered and drives off-chip to an external Burr-Brown linedriver circuit from Texas Instruments. This line driver is
configured as an LC passive filter to provide additional outof-band noise and distortion attenuation (see System section). Transmit power can be reduced with a combination of
digital and analog attenuation to ensure compliance with the
G.992.2 “politeness” rule.
In the RX channel, the analog receive signal is input to a PGA.
The output of the first-order, switched capacitor filter is digitized with a 16-bit delta-sigma ADC. A decimation filter
ensures a compliant word rate (1.104MWords/s to
8.832MWords/s) to the ADSL digital chip.
Precise phase alignment is required to ensure proper operation of the ADSL modem. The active circuitry required to
create a VCXO is included on the AFE1302. This includes
the gain element as well as a 10-bit, monotonic DAC. The
only external components required are a varactor, load
capacitor, and crystal.
TX DISTORTION AND NOISE REQUIREMENTS
The TX output is a DMT signal generated by the AFE1302.
This output contains the desired DMT signal in the TX
frequency band as well as unwanted noise and distortion in
both the TX and RX frequency bands. The inband TX
distortion and noise is specified by the MultiTone Power
Ratio (MTPR) test. Since MTPR is better than 70 dB, fullrate ADSL performance is guaranteed for TX upstream
signals.
However, TX distortion and noise can also limit downstream RX performance. TX noise and distortion can degrade RX signal quality since the TX output is connected to
the RX input through filters, line driver, and hybrid. Three
tests show out-of-band TX performance as used in the
ADSL system. Total harmonic distortion (THD) shows the
overall linearity of the TX signals. The next test uses a
typical ADSL DMT TX signal and measures the largest
distortion tone in the RX band. The largest distortion tone in
the RX band is –98 dBVrms or –124 dBm/Hz as measured
in a 4.3125 kHz bandwidth. In the last test, TX noise is
measured by transmitting no signal. Noise as shaped by the
TX filter is lower than –116dBm/Hz in the RX band.
AFE1302
SBWS014
To insure that TX distortion and noise do not degrade the
RX downstream performance, external filtering and transhybrid loss of greater than 30dB is required. Refer to
Figure 6 for an external circuit and contract TI for a detailed
reference design document.
DIGITAL DATA TRANSMISSION
Data is transmitted to the AFE1302 from the DSP on the
TX[0:3] lines, as shown in Figure 1. The Data TX[0:3]
changes during the rising edge of CLKM within the DSP,
and the Data are valid on the falling edge of CLKM for the
AFE to read. The minimum setup and hold time are 5ns (see
Figure 2); the start of a new sample is indicated by CLWD
being HIGH.
ADSL DSP
TX[0:3]
4
RX[0:3]
4
AFE1302
CTRLIN
Control
Register
CLWD
÷4N
CLKNIB
÷N
CLKM
NOTE: N = 1, 2, 4, 8 set by control register.
FIGURE 1. AFE1302/DSP Interface.
Data is transmitted to the DSP from the AFE1302 on the
RX[0:3] lines, as shown in Figure 1. The Data RX[0:3]
changes during the rising edge of CLKM within the AFE,
and the Data are valid on the falling edge of CLKM for the
DSP to read. The minimum setup and hold time are 5ns (see
Figure 2); the start of a new sample is indicated by CLWD
being HIGH.
During normal operation, a 16-bit TX data word is generated
by the DSP. This TX data is sent from the DSP to the AFE
via four serial lines TX[0:3]. Each serial line is clocked by
CLKM at 35.328MHz or by CLKNIB at 35.328MHz divided by N. CLKNIB and CLWD can be changed by
programming N via the control register.
The RX word output rate and TX word input rate can be
changed by programming N in the control register for values
of 1, 2, 4, or 8. For instance, setting N = 1 sets the TX and
RX data word rate to 8.832Mwords/s.
5
CLKM/CLKNIB
CLWD
tS
tH
RX[0:3]/TX[0:3]
N0
N1
N2
N3
NOTE: CLKM = 35.328; For N = 1, CLKNIB = 35.328MHz, CLWD = 8.832MHz; tS: Setup Time, min tS = 5ns; tH: Hold Time, min tH = 5ns.
FIGURE 2. AFE1302 Transmit/Receive Timing Diagram.
TRANSMIT DATA
RECEIVE DATA
Transmit data TX[0:3] passed to the AFE1302 will be
Binary Two’s Complement with one or two sign bits depending on bit 9 in the AFE1302 control register at address
001 (see Table V). Bit 9 = 0 is two sign bits and bit 9 = 1
is one sign bit. Please refer to Tables I and II.
Data RX[0:3] received from the AFE1302 will be in the
format shown in Tables III and IV:
BIT MAP\NIBBLE
TX0
TX1
TX2
TX3
N0
data bit
data
data
data
N1
0 (LSB)
bit 1
bit 2
bit 3
data
data
data
data
bit
bit
bit
bit
N2
4
5
6
7
N3
data bit 8 data bit 12
data bit 9 data bit 13
data bit 10 data sign
data bit 11 data sign
BIT MAP\NIBBLE
RX0
RX1
RX2
RX3
N0
data bit
data
data
data
N1
0 (LSB)
bit 1
bit 2
bit 3
data
data
data
data
bit
bit
bit
bit
N2
4
5
6
7
N3
data bit 8 data bit 12
data bit 9 data bit 13
data bit 10 data sign
data bit 11 data sign
TABLE III. AFE1302 RX Data Format, Address 001,
Bit 9 = 0.
TABLE I. AFE1302 TX Data Format, Address 001, Bit 9 = 0.
This corresponds to the internal data structure as follows
(sign bit is repeated):
INTERNAL DATA BIT
EXTERNAL DATA BIT
15
14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
This corresponds to the internal data structure as follows
(sign bit is repeated):
INTERNAL DATA BIT Sign Sign 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EXTERNAL DATA BIT
TX0
TX1
TX2
TX3
14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Sign Sign 13 12 11 10 9 8 7 6 5 4 3 2 1 0
BIT MAP\NIBBLE
BIT MAP\NIBBLE
15
N0
data bit
data
data
data
N1
0 (LSB)
bit 1
bit 2
bit 3
data
data
data
data
bit
bit
bit
bit
N2
4
5
6
7
N3
data bit 8 data bit 12
data bit 9 data bit 13
data bit 10 data bit 14
data bit 11 data sign
RX0
RX1
RX2
RX3
N0
data bit
data
data
data
N1
0 (LSB)
bit 1
bit 2
bit 3
data
data
data
data
bit
bit
bit
bit
N2
4
5
6
7
N3
data bit 8 data bit 12
data bit 9 data bit 13
data bit 10 data bit 14
data bit 11 data sign
TABLE IV. AFE1302 RX Data Format, Address 001, Bit 9 = 1.
TABLE II. AFE1302 TX Data Format, Address 001, Bit 9 = 1.
This corresponds to the internal data structure as follows:
This corresponds to the internal data structure as follows:
INTERNAL DATA BIT
INTERNAL DATA BIT
EXTERNAL DATA BIT
6
15
14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EXTERNAL DATA BIT
Sign 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
15
14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Sign 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
AFE1302
SBWS014
CLIP EVENT
PROGRAMMING THE AFE1302
Receive data (AFEG_RX) is generated in the AFE1302 with
additional headroom. For the one sign-bit case, if AFEG_RX
data is greater than 7FFF, it will be clipped to 7FFF.
If AFEG_RX data is less than 8000, it will be clipped to
8000. For the two sign-bit case, if AFEG_RX data is greater
than 3FFF, it will be clipped to 3FFF. If AFEG_RX data is
less than C000, it will be clipped to C000. During clip, pin
CLIP will be asserted HIGH for monitoring purposes. Pin
CLIP will remain HIGH until 0 is written to address = 010,
bit 3 in AFE1302 control register.
The internal AFE control register, as shown in Table V, is
used to set the programmable features of the AFE1302 and to
set the VCXO frequency. Serial data is sent from the DSP to
the AFE control register on the CTRLIN pin in 16-bit blocks.
This data is clocked into the AFE1302 on the falling edge of
CLWD. AFEREG data is valid when followed by at least 16
stop bits (HIGH). The timing is shown in Figure 3. During
programming, all AFE1302 functions are active. Data ID
code 0 through 5 must be configured for normal operation;
data ID code 6 and 7 are reserved for future use.
CLWD
CTRLIN
Start Bit
12 Data Bits
Data ID
3 Bit
≥ 16 HIGH Stop Bits
CLWD
tS
tH
CTRLIN
NOTE: CLWD = 8.832MHz/N; tS: Setup Time, min tS = 10ns; tH: Hold Time, min tH = 10ns.
FIGURE 3. AFE1302 Program Timing.
AFE1302
SBWS014
7
START
BIT
DATA ID
DATA BITS
M
S
B
L
S
B
15 14 13 12 11
0
0
0
0
0
0
0
0
9
0
0
X
1
0
0
X
0
0
0
X
1
5
4
0
0
X
1
2
1
0
RX REGISTER
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
External Gain Control GC1 (1 Bit)
External Gain Control GC0 (1 Bit)
AGC RX Gain Setting –6dB (6 Bits)
AGC RX Gain Setting –5dB (6 Bits)
AGC RX Gain Setting X dB (6 Bits)
AGC RX Gain Setting 40dB (6 Bits)
X = 1, Filter Setting 1.1MWords/s; X = 0, Filter Setting 8.8MWords/s
Reserved, Must Be Set As Shown
0
0
X
1
0
0
X
1
0
0
X
1
2
1
0
TX REGISTER
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
1
Transmit Attenuator Setting = 0dB (5 Bits)
Transmit Attenuator Setting = –1dB (5 Bits)
Transmit Attenuator Setting = X dB (5 Bits)
Transmit Attenuator Setting = –31dB (5 Bits)
GP2 (General-Purpose Output 2)
GP1 (General-Purpose Output 1)
GP0 (General-Purpose Output 0)
X = 1, RX and TX Data Format Has 1 Sign Bit and 15 Data Bits
X = 0, RX and TX Data Format Has 2 Sign Bits and 14 Data Bits
Reserved, Must Be Set As Shown
2
1
0
AFE REGISTER
0
1
0
0
1
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
Digital Loopback TX to RX Through Digital Section (1 Bit)
X = 1, Loopback Mode; X = 0, Normal Operation Mode
Analog Loopback TX to RX Through Analog Section (1 Bit)
X = 1, Loopback Mode; X = 0, Normal Operation Mode
X = 1, RX Enable Mode
Data Word Clock Divider (2 Bits)
Data Word Clock = 8.832MHz (2 Bits)
Data Word Clock = 4.416MHz (2 Bits)
Data Word Clock = 2.208MHz (2 Bits)
Data Word Clock = 1.104MHz (2 Bits)
Clear CLIP Signal: X = 1, RX is Clipping; X = 0, CLIP Cleared
Reserved, Must Be Set As Shown
3
2
1
0
VCXO DAC VALUE REGISTER
0
0
0
0
0
0
1
1
1
1
1
1
1
1
VCXO DAC Input Word (10 Bits)
VCXO DAC Input Word = 0 (10 Bits)
VCXO DAC Input Word = +FS (10 Bits)
Reserved, Must Be Set As Shown
4
3
2
1
0
INTERFACE REGISTER
1
1
0
0
0
0
1
0
0
1
0
0
0
1
0
0
Reserved
X = 0, TX[3:0] Should Be Latched On Falling CLKNIB
X = 1, TX[3:0] Should Be Latched On Rising CLKNIB
X = 0, RX[3:0] Should Be Latched On Falling CLKNIB
X = 1, RX[3:0] Should Be Latched On Rising CLKNIB
Digital Loopback RX Into TX:
X = 1 Loopback Mode; X = 0 Normal Mode
Reserved, Must Be Set As Shown
0
1
X
0
0
0
X
1
0
0
X
1
10
9
8
7
0
0
0
6
5
4
3
0
1
X
1
X
X
X
10
9
0
0
1
8
7
6
5
4
3
X
X
0
0
0
0
0
0
0
0
X
X
0
0
1
1
X
0
1
0
1
X
15 14 13 12 11
X
0
1
X
0
1
X
0
1
X
0
1
15 14 13 12 11
X
X
X
X
0
0
1
0
0
1
10
9
X
0
1
X
0
1
8
7
6
5
4
X
0
1
X
0
1
X
0
1
X
0
1
10
9
8
7
X
X
X
X
6
5
X
0
X
0
X
0
15 14 13 12 11
0
0
0
3
X
0
0
0
6
X
15 14 13 12 11
0
0
0
0
7
X
0
0
8
X
15 14 13 12 11
0
0
0
0
0
0
0
0
10
1
X
X
1
X
X
1
X
X
1
X
X
REGISTER DESCRIPTIONS
10
9
8
7
6
5
4
3
2
1
0
RESERVED
1
X
X
0
X
X
1
X
X
1
X
X
1
X
X
1
X
X
1
X
X
1
X
X
1
1
1
0
1
1
1
0
1
Reserved, Must Be Set As Shown
Reserved, Data ID 6
Reserved, Data ID 7
NOTE: All registers are initially set to zero.
TABLE V. AFE1302 Control Register.
8
AFE1302
SBWS014
DIGITAL-TO-ANALOG CONVERTER
LAYOUT
The Digital-to-Analog Converter (DAC) data for the TX
channel is deserialized and written in four 4-bit registers and
coded in two’s complement, as shown in Table VI.
The analog front-end of an ADSL system has a number of
conflicting requirements. It must accept and deliver digital
outputs at fairly high rates of speed, and convert the line
input to a high precision (14-bit) digital output. Thus, there
are two sections of the AFE1302: the digital section, and the
analog section. The recommended VCXO circuit layout is
shown in Figure 4.
DAC/ADC HEXDATA
1 SIGN BIT
Positive Full-Scale
Mid-Scale
Negative Full-Scale
7FFF
0000
8000
DIGITAL LAYOUT
TABLE VI. One Sign Bit.
The power supply for the digital section of the AFE1302 can
range from 3.3V to 5V. This supply should be decoupled to
digital ground with a ceramic 0.1µF capacitor placed as
close as possible to digital ground (DVSS) and digital power
(DVDD). Ideally, both a digital power-supply plane and a
digital ground plane should run to and underneath the digital
pins of the AFE1302. However, DVDD may be supplied by
a wide printed circuit board trace. A digital ground plane
underneath all digital pins is strongly recommended.
ANALOG-TO-DIGITAL CONVERTER
The Analog-to-Digital Converter (ADC) data from the RX
channel is stored in four 4-bit registers and coded in two’s
complement, as shown in Table VII.
DAC/ADC HEXDATA
2 SIGN BITS
ANALOG I/O
Positive Full-Scale
Mid-Scale
Negative Full-Scale
3FFF
0000
C000
ANALOG LAYOUT
The remaining portion of the AFE1302 should be considered
analog. Note that AVDD must be in the 4.75V to 5.25V
range. All AVSS pins should be connected directly to a
common analog ground plane and all AVDD pins should be
connected to an analog 5V power plane. Both of these planes
should have a low impedance path to the power supply. The
analog power-supply pins should be decoupled to analog
ground with both a 10µF tantalum capacitor and a 0.1µF
ceramic capacitor. The ceramic capacitors should be placed
as close to the AFE1302 as possible. The placement of the
tantalum capacitor is not as critical, but should be close to
the pin. In each case, the capacitor should be connected
between AVDD and AVSS.
TABLE VII. Two Sign Bits.
SCALABLE TIMING
The AFE1302 scales operation with the clock frequency.
All internal filters change frequency with the clock speed so
that the unit can be used at different frequencies just by
changing the clock speed.
For the RX channel, the digital filtering of the delta-sigma
converter scales directly with the clock speed. For the TX
channel, the power spectral density scales directly with the
clock rate. The transformer and external filter need to be
changed for different frequency requirements.
68.1kΩ
Ground
Plane
Sensitive Points
68.1kΩ
No Ground/Power Planes
Or Other Traces In This Area
XTAL
ANALOG I/O
To AFE1302 Pin #41
FIGURE 4. VCXO Circuit Layout, Approximately Two Times Actual Size.
AFE1302
SBWS014
9
proper system operation. An on-chip fourth-order low-pass
transmit filter has been included on the AFE1302 to reduce
transmit noise in the receive bandwidth. However, external
filtering, as shown in the reference design in Figure 6, is
required on the transmitter output to optimize the receive
path noise mask. The reference design circuit not only
implements extra filtering for the transmit noise, but also
includes the drivers necessary to achieve the G.992.2
specified +13dBm output power on the line, thus achieving
a minimum component solution.
SYSTEM
This analog front-end will give the best performance only
when included in an optimized system. This section describes external components that will work best with the
AFE1302. See Figure 5 for the basic connection diagram.
TRANSMIT
The key noise specification for an ADSL analog front-end
is the noise that is added to the RX channel. It is essential
to reduce the transmit noise that reaches the receiver for
VREF1 VRNRX
VRPRX
VRNTX
VRPTX
CMO
CMI
ADSL DSP
TX[0:3]
TXP
TXN
GP0
GP1
RX[0:3]
CTRLIN
AFE1302
CLWD
GC0
GC1
RXP
RXN
CLKNIB
CLKM
DVDD1
AFE
External
Circuit
Telephone Line
AVDD1, 2, 3, and 4
3.3V to 5V Digital
5V Analog
FIGURE 5. Basic Connection Diagram.
AFE1302
CPE
0.8:1
UTP Line
CO
HP POTS
Filter
Hybrid
LC Passive
TX Filter/Line Driver
TX
DSP
High-Pass/
AA Filter
Computer
G
Receive
Amp
RX
G
FIGURE 6. CPE Block Diagram (contact factory for detatiled reference design).
10
AFE1302
SBWS014
The specifications for the complete system solution are given
in Table VIII. The numbers include the effects of both the
AFE1302 and the surrounding external components, including a Burr-Brown TX line driver from Texas Instruments.
RECEIVE
Receive channel external components include a hybrid, receive
amplifier, fifth-order high-pass passive filter, and first-order,
low-pass, anti-alias filter. The ADSL system is frequency
division multiplexed on a single twisted pair. Filters are used to
separate the transmit and receive signals. When the AFE1302
drives long twisted-pair loops, the transmit signal is much
larger than the receive signal. The hybrid will ideally eliminate
all of the transmit signal at the receive input. However, for
poorly matched lines, the actual reduction may be quite small.
Without external filtering between the transmit output and the
receive input, the transmit signal will clip the receive input
before the on-chip receive filter can reduce the transmit signal.
Therefore, external receive filters are required to eliminate
transmit noise. Refer to Figure 6 for an external circuit and
contact the factory for a detailed reference design document.
ADSL FRONT-END SYSTEM PERFORMANCE
PARAMETER
TX PATH
Peak Signal Amplitude to Telephone Line
Load Impedance
Output Power
Low-Pass Filter Corner Frequency
Passband Ripple
Group Delay Variation
Output Noise, Out of Band
RX PATH
RX Input
MTPR
Noise Floor
External High-Pass Filter Corner Frequency
Anti-Alias Filter Corner Frequency
Passband Ripple
CONDITIONS
To Line (100Ω Match)
See Note (2)
PGA = 40dB
VALUE
UNITS
12
100
13
127
3
15
–142
Vp-p
Ω
dBm
kHz
dB
ms
dBm/Hz
12.5
70
–142
157
1.1
3
Vp-p
dB
dBm/Hz
kHz
MHz
dB
NOTE: (1) dBm referenced from average tone power and spread over 4kHz receive tone bins. (2) Measured at 200kHz with typical ADSL multitone transmission signal.
TABLE VIII. ADSL Front-End System Performance when using the AFE1302 in a Texas Instruments Reference Design
Evaluation Board. Typical at 25°C, AVDD = +5V, DVDD = +3.3V, fCLK = 35.328MHz, TX output and RX input
measured at line side.
AFE1302
SBWS014
11
PACKAGE OPTION ADDENDUM
www.ti.com
3-Oct-2003
PACKAGING INFORMATION
ORDERABLE DEVICE
STATUS(1)
PACKAGE TYPE
PACKAGE DRAWING
PINS
PACKAGE QTY
AFE1302Y/250
ACTIVE
TQFP
PFB
48
250
AFE1302Y/2K
ACTIVE
TQFP
PFB
48
2000
(1) The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in
a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:
Products
Amplifiers
Applications
amplifier.ti.com
Audio
www.ti.com/audio
Data Converters
dataconverter.ti.com
Automotive
www.ti.com/automotive
DSP
dsp.ti.com
Broadband
www.ti.com/broadband
Interface
interface.ti.com
Digital Control
www.ti.com/digitalcontrol
Logic
logic.ti.com
Military
www.ti.com/military
Power Mgmt
power.ti.com
Optical Networking
www.ti.com/opticalnetwork
Microcontrollers
microcontroller.ti.com
Security
www.ti.com/security
Telephony
www.ti.com/telephony
Video & Imaging
www.ti.com/video
Wireless
www.ti.com/wireless
Mailing Address:
Texas Instruments
Post Office Box 655303 Dallas, Texas 75265
Copyright  2003, Texas Instruments Incorporated