H ar d wa r e Re f er e n c e M a n u a l , D S 1 , F e b . 2 0 0 1 ® SICOFI 2-µC Two Channel Codec Filter with PCM and Microcontroller Interface PE B 2 2 6 6 V e r sio n 2 .2 PE F 2 2 6 6 V e rsio n 2 .2 Wired C om mu n i ca t i o n s N e v e r s t o p t h i n k i n g . Edition 2001-02-20 Published by Infineon Technologies AG, St.-Martin-Strasse 53, D-81541 München, Germany © Infineon Technologies AG 2001. All Rights Reserved. Attention please! The information herein is given to describe certain components and shall not be considered as warranted characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Infineon Technologies is an approved CECC manufacturer. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. H ar d wa r e Ref er e n c e M a n u a l , D S 1 , F e b . 2 0 0 1 ® SICOFI 2-µC Two Channel Codec Filter with PCM and Microcontroller Interface PE B 2 2 6 6 V e r sio n 2 .2 PE F 2 2 6 6 V e rsio n 2 .2 Wired C om mu n i ca t i o n s N e v e r s t o p t h i n k i n g . PEB 2266 PEF 2266 Revision History: Previous Version: Page Current Version 2001-02-20 DS 1 Data Sheet 07.97 DS1 (V 1.1) Delta Sheet 11.98 DS2 (V 1.4) Errata Sheet 05.98 DS1 (V 1.4) Subjects (major changes since last revision) For questions on technology, delivery and prices please contact the Infineon Technologies Offices in Germany or the Infineon Technologies Companies and Representatives worldwide: see our webpage at http://www.infineon.com ABM®, AOP®, ARCOFI®, ARCOFI®-BA, ARCOFI®-SP, DigiTape®, EPIC®-1, EPIC®-S, ELIC®, FALC®54, FALC®56, FALC®-E1, FALC®-LH, IDEC®, IOM®, IOM®-1, IOM®-2, IPAT®-2, ISAC®-P, ISAC®-S, ISAC®-S TE, ISAC®-P TE, ITAC®, IWE®, MUSAC®-A, OCTAT®-P, QUAT®-S, SICAT®, SICOFI®, SICOFI®-2, SICOFI®-4, SICOFI®-4µC, SLICOFI® are registered trademarks of Infineon Technologies AG. ACE™, ASM™, ASP™, POTSWIRE™, QuadFALC™, SCOUT™ are trademarks of Infineon Technologies AG. PEB 2266 PEF 2266 Table of Contents Page Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 1 1.1 1.2 1.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 Logic Symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 Typical Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 2 2.1 2.2 Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 Pin Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 3 3.1 3.2 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 DSP-based Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 Programming and Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 4 4.1 4.1.1 4.1.2 4.2 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6 4.2.7 4.2.8 4.2.8.1 4.2.8.2 4.2.9 4.2.10 4.2.11 4.2.12 4.2.13 4.2.14 4.2.15 4.2.16 4.2.17 4.2.18 Operational Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 Operating States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 Power On . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 Hardware Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 Transmission Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 Overload Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 0 dBm0-Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 Compressor Gain Relative to Coding Law . . . . . . . . . . . . . . . . . . . . . . . .15 Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16 Gain Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 Gain Tracking (Receive and Transmit) . . . . . . . . . . . . . . . . . . . . . . . . . .17 Frequency Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18 Group Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18 Group Delay, Absolute Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18 Group Delay Distortion with Frequency . . . . . . . . . . . . . . . . . . . . . . . .19 Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 Harmonic and Intermodulation Distortion . . . . . . . . . . . . . . . . . . . . . . . .20 Total Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20 Single Frequency Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22 Overload Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22 Crosstalk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22 Out-of-Band Discrimination in Transmit Direction . . . . . . . . . . . . . . . . . .23 Out-of-Band Discrimination in Receive Direction . . . . . . . . . . . . . . . . . . .24 Out-of-Band Idle Channel Noise at Analog Output . . . . . . . . . . . . . . . . .25 Transhybrid Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 5 5.1 5.1.1 Interface Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27 Analog Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27 Coupling Capacitors at the Analog Interface . . . . . . . . . . . . . . . . . . . . . .27 Hardware Reference Manual 2001-02-20 PEB 2266 PEF 2266 Table of Contents Page 5.1.2 5.2 5.2.1 5.2.2 5.3 5.3.1 5.3.2 5.3.3 5.4 5.4.1 5.4.2 5.4.3 5.4.4 Analog Interface Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29 PCM Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 PCM Interface Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 PCM Receive and Transmit Example . . . . . . . . . . . . . . . . . . . . . . . . . . .30 Signaling Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32 Signaling Interface Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32 Debouncing Functions and Interrupt Generation . . . . . . . . . . . . . . . . . . .33 Clock Output Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33 Serial Microcontroller Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34 Serial Microcontroller Interface Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . .34 Write Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35 Read Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35 Three-Wire Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36 6 6.1 6.1.1 6.1.2 6.1.3 6.2 Programming Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37 Programming Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37 Register Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37 Register Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38 CRAM Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39 Types of Commands and Data Bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40 7 7.1 7.1.1 7.2 7.2.1 7.3 Application Hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41 Support Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41 Development Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41 Guidelines for Board Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42 Filter Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42 Proposal for SICOFI®2-µC Board Design . . . . . . . . . . . . . . . . . . . . . . . . . .43 8 8.1 8.2 8.3 8.4.1 8.5 8.4 8.6 8.6.1 8.6.2 8.7 8.8 8.8.1 8.8.2 Electrical Characteristics and Timing Diagrams . . . . . . . . . . . . . . . . . .44 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44 Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45 Digital Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45 Coupling Capacitors at the Analog Interface . . . . . . . . . . . . . . . . . . . . . .46 Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46 Analog Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46 PCM-Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47 Single Clocking Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47 Double Clocking Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48 Microcontroller Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49 Signaling Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50 Timing from the µC Interface to the SO/SB-pins . . . . . . . . . . . . . . . . . . .50 Timing from the SI/SB-pins to the µC Interface . . . . . . . . . . . . . . . . . . . .50 Hardware Reference Manual 2001-02-20 PEB 2266 PEF 2266 Table of Contents Page 9 9.1 9.2 9.3 Test Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51 Analog Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51 Digital Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52 Cut-Off’s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53 10 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54 11 Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Hardware Reference Manual 2001-02-20 PEB 2266 PEF 2266 List of Figures Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 Figure 16 Figure 17 Figure 18 Figure 19 Figure 20 Figure 21 Figure 22 Figure 23 Figure 24 Figure 25 Figure 26 Figure 27 Figure 28 Figure 29 Figure 30 Figure 31 Figure 32 Figure 33 Figure 34 Figure 35 Page SICOFI®2-µC Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 SICOFI®2-µC Logic Symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 Pin Configuration of SICOFI®2-µC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 SICOFI®2-µC Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 SICOFI®2-µC State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 Analog and PCM Signal Levels in A-Law Mode . . . . . . . . . . . . . . . . . .15 Analog and PCM Signal Levels in µ-Law Mode . . . . . . . . . . . . . . . . . . .15 Simplified Signal Flow Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16 Total Distortion Measured with Sine-Wave, Receive and Transmit . . . .20 Total Distortion Receive (Noise) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 Total Distortion Transmit (Noise) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 Overload Compression (µ-Law Coding, Transmit Direction) . . . . . . . . .22 Out-of-Band Discrimination in Transmit Direction . . . . . . . . . . . . . . . . .23 Analog Output: Out-of-Band Signals . . . . . . . . . . . . . . . . . . . . . . . . . . .24 Analog Output: Out-of-Band Idle Channel Noise . . . . . . . . . . . . . . . . . .25 Analog Interface to Two Subscriber Line Interface Circuits (SLICs) . . .28 PCM Interface Example: Location of Time Slots . . . . . . . . . . . . . . . . . .31 PCM Interface Example: Detail A . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31 Signaling Example: Two Subscriber Lines. . . . . . . . . . . . . . . . . . . . . . .32 Serial Microcontroller Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34 Example for a Two-Byte Write Access. . . . . . . . . . . . . . . . . . . . . . . . . .35 Example for a One-Byte Read Access . . . . . . . . . . . . . . . . . . . . . . . . .35 Example for a Read Access with Byte-by-Byte Transfer . . . . . . . . . . . .36 Bi-Directional Data Signal: DIN and DOUT Strapped Together. . . . . . .36 Channel-Specific and Common Coefficients . . . . . . . . . . . . . . . . . . . . .39 Development System with STUT 2466 Evaluation Board . . . . . . . . . . .41 SICOFI®2-µC Test Circuit Configuration . . . . . . . . . . . . . . . . . . . . . . . .42 Proposal for a Ground Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43 PCM Interface Timing in Single Clocking Mode. . . . . . . . . . . . . . . . . . .47 PCM Interface Timing in Double Clocking Mode . . . . . . . . . . . . . . . . . .48 Timing of the Microcontroller Interface. . . . . . . . . . . . . . . . . . . . . . . . . .49 Signaling Output Timing (data downstream) . . . . . . . . . . . . . . . . . . . . .50 Analog Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51 Digital Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52 Cut-Off’s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53 Hardware Reference Manual 2001-02-20 PEB 2266 PEF 2266 List of Tables Table 1 Table 2 Table 3 Table 4 Table 5 Table 6 Table 7 Table 8 Table 9 Table 10 Table 11 Table 12 Table 13 Table 14 Table 15 Table 16 Table 17 Table 18 Table 19 Table 20 Table 21 Table 22 Table 23 Table 24 Table 25 Table 26 Table 27 Table 28 Table 29 Table 30 Table 31 Table 32 Table 33 Table 34 Table 35 Table 36 Page Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Register Values and Accessibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Input and Output Pin Behavior. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Maximum Signal Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Analog Voltage Levels Corresponding to 0 dBm0-Level . . . . . . . . . . . 14 Gain Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Gain Deviations with Input Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Attenuation with Frequency in Transmit and Receive Direction. . . . . . 18 Group Delay, Absolute Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Group Delay Distortion with Frequency . . . . . . . . . . . . . . . . . . . . . . . . 19 Idle Channel Noise in Transmit Direction. . . . . . . . . . . . . . . . . . . . . . . 19 Idle Channel Noise in Receive Direction . . . . . . . . . . . . . . . . . . . . . . . 19 Harmonic and Intermodulation Distortion. . . . . . . . . . . . . . . . . . . . . . . 20 Signal-to-Total Distortion Ratio Measured with Sine Wave . . . . . . . . . 20 Signal-to-Total Distortion Ratio Measured with Noise . . . . . . . . . . . . . 21 Crosstalk Between Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Out-of-Band Signals Applied to the Analog Inputs (VINx) . . . . . . . . . . 23 Out-of-Band Signals at the Analog Outputs (VOUTx) . . . . . . . . . . . . . 24 Transhybrid Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Analog Interface Pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 PCM Interface Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 PCM Register Configuration Example . . . . . . . . . . . . . . . . . . . . . . . . . 30 Signaling Interface: Pins and Functions for SLIC Interfaces . . . . . . . . 33 Clock Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Serial Microcontroller Interface: Pins and Functions . . . . . . . . . . . . . . 34 Register Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Read Access to Common Configuration Register (XR) Map . . . . . . . . 38 Write Access to Common Configuration Register (XR) Map . . . . . . . . 38 Channel-Specific Configuration Register (CR) Map (Read & Write) . . 38 Coefficient RAM (CRAM) Structure per Channel . . . . . . . . . . . . . . . . . 39 Coefficient RAM (CRAM) Structure per Set . . . . . . . . . . . . . . . . . . . . . 40 Types of Commands and Data Bytes. . . . . . . . . . . . . . . . . . . . . . . . . . 40 Analog Loop Programming in Register CR3, Bits 7 to 4 . . . . . . . . . . . 51 Digital Loop Programming in Register CR3, Bits 7 to 4 . . . . . . . . . . . . 52 Cut-Off Programming in Register CR2, Bits 7 to 5. . . . . . . . . . . . . . . . 53 Hardware Reference Manual 2001-02-20 PEB 2266 PEF 2266 Preface This document provides detailed technical information about the SICOFI®2-µC. It is intended for anyone considering or using the device for system design or board layout for a broad range of analog telephony applications. All content applies to both the standard PEB 2266 and the extended temperature version, PEF 2266, unless specified. Organization of this Document This Hardware Reference Manual is organized as follows: • Chapter 1, Overview Includes a general description of the architecture, feature list, and logic symbol. • Chapter 2, Pin Descriptions Illustrates the Pin Configuration and provides detailed functional descriptions. • Chapter 3, Functional Description Provides a block diagram and summarizes the major functional blocks. • Chapter 4, Operational Description Begins with a state diagram and description of the operating states of all two channels and concludes with detailed transmission characteristics. • Chapter 5, Interface Descriptions Describes the Analog, PCM, Signaling, and Serial Microcontroller interfaces. • Chapter 6, Programming Overview Illustrates the register model and coefficient RAM structure, provides a register map and summary, and identifies the programming command sequences. • Chapter 7, Application Hints Describes the development system available for the PEB 2266, and provides guidelines and schematics for board layout. • Chapter 8, Electrical Characteristics and Timing Diagrams Provides detailed tables for the electrical characteristics and includes timing diagrams for the Analog, PCM, Serial Microcontroller, and Signaling interfaces. • Chapter 9, Test Configuration Describes the test loops and cut-offs available for functional tests and diagnostics. • Chapter 10, Package Outlines Illustrates the P-MQFP-64 package in which the PEB 2266 is manufactured. • The Appendix Includes a glossary and an index. Related Documentation Other documentation for the PEB 2266 includes a Product Brief, a Product Overview, a Programmer’s Reference Manual, and assorted Application Notes. Similar documentation is also available for the other members of the SICOFI Codec family including the PSB 2132, PSB 2134, and PEB 2466. Documentation is available by accessing our website: http://www.infineon.com/sicofi Hardware Reference Manual 1 2001-02-20 PEB 2266 PEF 2266 Overview 1 Overview The two-channel codec filter PEB 2266 SICOFI®2-µC is built around a central DSP-core which provides independent filter structures for all channels. Its analog I/O pins are used to connect to external subscriber line interface circuits (SLICs). Their signals are internally routed to the analog-to-digital and digital-to-analog converters (ADC, DAC). The signaling pins carry line status and control information to and from the SLICs. Two programmable clock outputs are available. The SICOFI®2-µC connects to the digital switching and transmission system through two PCM Highways. The digitized voice band signals are available as A-Law or µ-Law codes within selectable 8-bit time slots. The SICOFI®2-µC modes, features, and filter characteristics are programmed through a serial interface to a microcontroller. The access mechanism is very simple, and can be implemented with as few as three I/O ports. The PEB 2266 is available for standard temperature range applications (0 °C to +70 °C); the PEF 2266 is available for extended temperature range applications (-40 °C to +85 °C). PEB 2266 SICOFI2-µC SLIC 1 t/r SLIC 2 ADC - DAC Digital Filters Channel 1 Signaling ADC - DAC Digital Filters Channel 2 Signaling PLL, Clocking PCM Interface t/r DSP Core Status and Control Registers Highway A Highway B CRAM Serial Microcontroller Interface 2266_201 Figure 1 SICOFI®2-µC Architecture Hardware Reference Manual 2 2001-02-20 Two Channel Codec Filter with PCM and Microcontroller Interface SICOFI®2-µC Version 2.2 1.1 PEB 2266 PEF 2266 CMOS Features • Two-channel single chip codec with digital filters • High analog driving capability (300 Ω, 50 pF) for direct driving of transformers • Digital Signal Processing (DSP) technique • Programmable digital filters to adapt transmission behavior, especially for: – AC impedance matching P-MQFP-64 – Transhybrid balancing – Frequency response – Signal levels – A/µ-Law compression and expansion • Fulfills international (e.g. ITU-T Q.552, G.712) and country-specific requirements • High performance ADC and DAC for excellent linearity and dynamic gain • Programmable Analog Interface to electronic SLICs or transformer solutions • Seven SLIC-signaling I/O pins per channel with programmable debouncing • Two PCM Highways accessible by on-chip PCM Interface with Programmable time slot assignment and variable data rates from 128 kbit/s to 8 Mbit/s • Easy to use 4-pin Serial Microcontroller Interface (SPI compatible) for read/write access • Single supply voltage (5 V) • Advanced low-power mixed-signal CMOS technology • Two programmable tone generators (DTMF possible) • Level metering function for system tests and for analog input signal testing • Advanced on-chip functions for device and system diagnostics and manufacturing test – Five digital loops – Four analog loops • Support tools include: – Hardware development board — STUT 2466 – QSICOS Coefficient Calculation and Register Configuration Software • Standard P-MQFP-64 package Type Package PEB 2266 Version 2.2 P-MQFP-64 PEF 2266 Version 2.2 P-MQFP-64 Hardware Reference Manual 3 2001-02-20 PEB 2266 PEF 2266 Overview 1.2 Logic Symbol Analog Interface Channel 1 VIN1 VOUT1 Channel 2 VIN2 VOUT2 CHCLK1 CHCLK2 Channel 1 SI1_0 SI1_1 SO1_0 SO1_1 SB1_0 SB1_1 SB1_2 Channel 2 SI2_0 SI2_1 SO2_0 SO2_1 SB2_0 SB2_1 SB2_2 Signaling Interface Ch. 1&2 SICOFI®2-µC PEB 2266 DRA DXA TCA# Highway A DRB DXB TCB# Highway B FSC PCLK PCM Clocks MCLK Master Clock PCM Interface INT12 RESET# DOUT DIN DCLK CS# 2266_203 Microcontroller Interface Figure 2 1.3 SICOFI®2-µC Logic Symbol Typical Applications Many applications will benefit from the versatility of the SICOFI®2-µC codec and filter. The inherent flexibility enables several products to be developed around one basic architecture, thus affording potentially significant savings in time to market, inventory costs, and support administration. The following list represents some of the typical applications for which the SICOFI®2-µC codec was designed: Analog linecards for Central Offices and PBXs, Small PBX or Key Systems, Digital Loop Carrier (DLC) Systems, Digital Added Main Lines (DAML) Systems, Pair-Gain Systems, Fiber-to-the-Curb (FTTC) Systems, Radio-in-the-Loop (RITL) Systems, and any Multi-channel, digital voice processing, storage, or communication applications. Refer to the Product Overview, Chapter 5 Application Hints for more information. Hardware Reference Manual 4 2001-02-20 PEB 2266 PEF 2266 Pin Descriptions 2 Pin Descriptions 2.1 Pin Diagram (top view) SI2_1 SI2_0 SB2_2 SB2_1 SB2_0 SO2_1 SO2_0 SO1_0 SO1_1 SB1_0 SB1_1 SB1_2 SI1_0 SI1_1 INT12 CHCLK1 P-MQFP-64 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 GNDA1 VOUT1 VDDA12 VOUT2 GNDA2 VIN2 VREF VDDREF NC GNDA NC VDDA NC GNDA NC 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 SICOFI®2-µC PEB 2266-H 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 NUI NUI NUIO NUIO NUIO NC NC NC NC NUIO NUIO NUIO NUI 1 PCLK FSC DRB DXB TCB# DRA DXA TCA# VDDD RESET# MCLK GNDD DOUT DIN DCLK CS# NUI NC CHCLK2 VIN1 2266_204 Figure 3 Pin Configuration of SICOFI®2-µC Hardware Reference Manual 5 2001-02-20 PEB 2266 PEF 2266 Pin Descriptions 2.2 Pin Definitions and Functions Table 1 Pin Definitions and Functions Pin Symbol Type Function 1, 2 NUI 3, 4, NUIO 5 I I/O 6, 7, NC 8, 9 Ch. Non Usable Input Pins tie directly to digital ground (Pin 21) Non Usable Input/Output Pins tie via a pull-down-resistor to digital ground (Pin 21) Not Connected Pins not connected in this device. 10, 11, 12 NUIO I/O 13, 14 NUI 15 NC 16 CHCLK2 O Chopper Clock Output 2 Provides 256, 512, or 16,384 kHz signal; sync. to MCLK. both 17 CS# I Chip Select Microcontroller Interface chip select, enable to read or write; active low. both 18 DCLK I Data Clock Microcontroller Interface data clock, shifts data from or to device; maximum clock rate 8192 kHz. both 19 DIN I Data Input Microcontroller Interface control data input pin; DCLK determines data rate. both 20 DOUT O Data Output Microcontroller Interface control data output pin; DCLK determines data rate: DOUT is high impedance "Z" if no data is transmitted from the SICOFI®2-µC. both 21 GNDD I Digital Ground Ground reference for all digital signals. Internally isolated from GNDA1 (Pin 50), GNDA2 (Pin 54), and GNDA (Pins 59 and 63). both I Non Usable Input/Output Pins tie via a pull-down-resistor to digital ground (Pin 21) Non Usable Input Pins tie directly to digital ground (Pin 21) Not Connected Pins not connected in this device. Hardware Reference Manual 6 2001-02-20 PEB 2266 PEF 2266 Pin Descriptions Pin Symbol Type Function Ch. 22 MCLK I Master Clock Input 1536, 2048, 4096 or 8192 kHz must be applied for any operation (selected in Register XR5). MCLK, PCLK, FSC must be synchronous. both 23 RESET# I Reset Input Forces the device to default setting mode; active low. both 24 VDDD I Digital Supply Voltage both +5 V supply for digital circuits (use 100 nF blocking cap.). 25 TCA# O Transmit Control Output A PCM Interface: active if data is transmitted via DXA; active low, open drain. both 26 DXA O Data Transmit to PCM-Highway A PCM Interface: PCM data for each channel is transmitted in 8-bit bursts every 125 µs. both 27 DRA I Data Receive from PCM-Highway A PCM Interface: PCM data for each channel is received in 8-bit bursts every 125 µs. both 28 TCB# O Transmit Control Output B PCM Interface: active if data is transmitted via DXB; active low, open drain. both 29 DXB O Data Transmit to PCM-Highway B PCM Interface: data for each channel is transmitted in 8-bit bursts every 125 µs. both 30 DRB I Data Receive from PCM-highway B PCM Interface: data for each channel is received in 8-bit bursts every 125 µs. both 31 FSC I Frame Synchronization Clock 8 kHz; reference for individual time slots, indicates start of PCM frame; MCLK, PCLK, FSC must be synchronous. both 32 PCLK I PCM Data Clock 128 to 8192 kHz; determines the rate at which PCM data is shifted into or out of the PCM-ports. MCLK, PCLK, FSC must be synchronous. both 33 CHCLK1 O Chopper Clock Output 1 Provides programmable (2 … 28 ms) output signal (synchronous to MCLK). both Hardware Reference Manual 7 2001-02-20 PEB 2266 PEF 2266 Pin Descriptions Pin Symbol Type Function Ch. 34 INT12 O Interrupt Output, Channels 1 and 2 Active high. 35 SI1_1 I Signaling Input Channel 1, Pin 1 1 36 SI1_0 I Signaling Input Channel 1, Pin 0 1 37 SB1_2 I/O Bi-directional Signaling, Channel 1 Pin 2 1 38 SB1_1 I/O Bi-directional Signaling, Channel 1 Pin 1 1 39 SB1_0 I/O Bi-directional Signaling, Channel 1 Pin 0 1 40 SO1_1 O Signaling Output, Channel 1, Pin 1 1 41 SO1_0 O Signaling Output, Channel 1, Pin 0 1 42 SO2_0 O Signaling Output, Channel 2, Pin 0 2 43 SO2_1 O Signaling Output, Channel 2, Pin 1 2 44 SB2_0 I/O Bi-directional Signaling, Channel 2 Pin 0 2 45 SB2_1 I/O Bi-directional Signaling, Channel 2 Pin 1 2 46 SB2_2 I/O Bi-directional Signaling, Channel 2 Pin 2 2 47 SI2_0 I Signaling Input, Channel 2, Pin 0 2 48 SI2_1 I Signaling Input, Channel 2, Pin 1 2 49 VIN1 I Analog Voice (Voltage) Input, Channel 1 Requires a coupling capacitor >39 nF to the SLIC. 1 50 GNDA1 I Analog Ground, Channel 1 Not internally connected to GNDD or GNDA2 or GNDA. 1 51 VOUT1 O Analog Voice (Voltage) Output, Channel 1 Requires a coupling capacitor to the SLIC. The capacitor value depends on the SLIC’s input impedance. (See Chapter 5.1, "Analog Interface" on page 27). 1 52 VDDA12 I Analog Supply Voltage, Channels 1 and 2 +5 V (100 nF blocking capacitor required). 53 VOUT2 O Analog Voice (Voltage) Output, Channel 2 Requires a coupling capacitor to the SLIC. The capacitor value depends on the SLIC’s input impedance. (See Chapter 5.1, "Analog Interface" on page 27). 2 54 GNDA2 I Analog Ground, Channel 2 Not internally connected to GNDD or GNDA1 or GNDA. 2 55 VIN2 I Analog Voice (Voltage) Input, Channel 2 Requires a coupling capacitor >39 nF to the SLIC. 2 Hardware Reference Manual 8 both both 2001-02-20 PEB 2266 PEF 2266 Pin Descriptions Pin Symbol Type Function 56 VREF 57 VDDREF 58 NC 59 GNDA 60 NC 61 VDDA 62 NC 63 GNDA 64 NC Ch. I/O Reference Voltage Must connect to a 220 nF cap. to ground. both I Analog Supply Reference Voltage +5 V (100 nF blocking capacitor required). both Not Connected Pin not connected in this device. I Analog Ground Internally isolated from GNDD (Pin 21), GNDA1(Pin 50), and GNDA2 (Pin 54). Not Connected Pin not connected in this device. I Analog Supply Voltage +5 V (100 nF blocking capacitor required). Not Connected Pin not connected in this device. I Analog Ground Internally isolated from GNDD (Pin 21), GNDA1(Pin 50), and GNDA2 (Pin 54). Not Connected Pin not connected in this device. Hardware Reference Manual 9 2001-02-20 PEB 2266 PEF 2266 Functional Description 3 Functional Description The telephone subscriber loop is a bi-directional two-wire line. The Subscriber Line Interface Circuit (SLIC) on the network side converts the two-wire interface to a four-wire interface which communicates with the SICOFI®2-µC via separate receive and transmit signals, VIN and VOUT. The SLIC can be either a transformer or an electronic circuit with operational amplifiers. It must have a defined input impedance towards the subscriber line for maximum signal power transfer and return loss. The requirements for the input impedance vary from country to country and demand impedance matching to the different environments. Country-specific adaptations are also required for the transhybrid loss, which is a loss between the transmit and the receive ports of the twowire to four-wire hybrid. 3.1 DSP-based Architecture The impedance matching and transhybrid balancing functions are performed by loop filters between the transmit path (analog to PCM) and the receive path (PCM to analog). The filter characteristics must be adjusted according to the local requirements of each market. In the analog domain, filters must be optimized in hardware; this is generally both tedious and time-consuming. This is not the case with the DSP-based SICOFI®2µC two-channel codec. Its integrated signal processor implements the impedance matching and transhybrid balancing functions as digital, programmable filters. It also performs frequency response corrections and level adjustments to enable the design of a truly universal and internationally applicable telephone linecard. Transmission characteristics and frequency behavior are enhanced by the accuracy of the digital filters, which do not fluctuate over temperature or with age. As an additional benefit of its DSP-based architecture, the PEB 2266 also provides two tone generators per channel. An on-chip level-metering unit allows line-characterization without extra hardware; it can also be used to detect specific tones, e.g., modem tones. 3.2 Programming and Control A very simple Microcontroller Interface is used to program the SICOFI®2-µC functions. The same port provides access to 14 general purpose I/O pins of the Signaling Interface. This allows efficient and convenient monitoring and control of other linecard functions, such as on-/off-hook detection, ground-key detection, switching of ring signals and test relays. The Serial Microcontroller Interface provides a programming and control interface and is generic and non-proprietary for use with any microcontroller. It can be implemented with as few as three signal lines, since the data receive and data transmit pins may be strapped together. Hardware Reference Manual 10 2001-02-20 PEB 2266 PEF 2266 Functional Description Figure 4 SICOFI®2-µC Block Diagram Highway A PEB 2266, SICOFI2-µC VIN1 ADC VOUT1 DAC VIN2 ADC VOUT2 DAC MCLK CHCLK1 CHCLK2 Hardware Filters Programmable Filters and Gain A-Law or µ-Law PCMInterface DXA DRA TCA# Hardware Filters Programmable Filters and Gain A-Law or µ-Law with FSC PCLK Time Slot Assignment Digital Signal Processing Compander DXB DRB TCB# PLL, Clocking Highway B Registers and CRAM SIx_y SOx_y Signaling Interface Serial Microcontroller Interface SBx_y INT12 DCLK CS# DIN DOUT 2266_205 Figure 4 shows the functional blocks and the interface pins of the SICOFI®2-µC: • Two independent bi-directional voice channels; • Oversampling sigma-delta A/D and D/A converters with excellent resolution, dynamic range, linearity, accuracy and signal-to-noise performance; • Hardware filters for decimation and interpolation of the ADC and DAC bit stream, and pre-processing of the voice data to reduce the load of the DSP; • DSP core with programmable, channel-independent filter structures for impedance matching, transhybrid balancing, frequency correction and level adjustments; • Configurable A-Law or µ-Law compressor and expander units; • Two PCM port with data rates from 128 kbps to 8 Mbps per highway; • Programmable time slot assignment for each channel; • Fourteen signaling input and output pins, accessible through registers; • On-chip PLL for an internal 16,384 kHz clock; • Two programmable versatile clock outputs; • Eight common configuration registers (XR-Registers) affecting all two channels; • Two sets of six channel-specific registers (CR-Registers); and • Coefficient RAM (CRAM) for filter coefficients storage for each channel. Hardware Reference Manual 11 2001-02-20 PEB 2266 PEF 2266 Operational Description 4 Operational Description Each channel of the SICOFI®2-µC can be in one of two stable states: “Standby” and “Operating”. These states can be switched by programming Bit 0 (PU) in the channel-specific configuration register CR1. “Standby” is a power-saving state. Keeping any unused channels in this state reduces the overall system power dissipation. The third state, “Reset”, is transient and is reached after applying power to the device (Power On), after asserting a logic low signal to the RESET#-pin (HW-Reset), or after issuing an XOP command with Bit 7 (RST) set to "1" (SW-Reset). Both channels would be affected in any case. 4.1 Operating States Power-On HW-Reset SW-Reset Reset (both channels) Standby Ch.1 Standby Ch.2 Power Down Ch.1 Power Down Ch.2 Power Up Ch.1 Power Up Ch.2 Operating Ch.1 Operating Ch.2 2266_206 Figure 5 4.1.1 SICOFI®2-µC State Diagram Power On All input pins must be at GND level before applying VDD to the SICOFI®2-µC. Otherwise, the device may not enter the Reset State. In this case, the SICOFI®2-µC can be reset by HW- or SW-Reset, or can be initialized by setting all registers to zero. 4.1.2 Hardware Reset Voltage levels lower than 1.2 V applied to Pin 23 (RESET#) for more than 3 µs will reset the SICOFI®2-µC. Spikes that are shorter than 1 µs will be ignored. When RESET# is released the SICOFI®2-µC will enter Standby State. Hardware Reference Manual 12 2001-02-20 PEB 2266 PEF 2266 Operational Description Table 2 Register Values and Accessibility SICOFI®2-µC State Register Reset Standby Operating CR0 ... CR4 00H user configurable user configurable XR0 ... XR7 00H user configurable user configurable CRAM unchanged user configurable user configurable Table 3 Input and Output Pin Behavior SICOFI®2-µC State Pin Reset Standby Operating DIN ignored serial input serial input DOUT high impedance serial output serial output DRA, DRB ignored ignored active receive time slot DXA, DXB high impedance high impedance active transmit time slot TCA#, TCB# high high low during active transmit time slot VOUT1 , VOUT2 high impedance high impedance analog output VIN1 , VIN2 ignored ignored analog input SBx_y configured as input programmable as input or output programmable as input or output SOx_y GNDD digital output digital output SIx_y ignored digital input digital input CHCLK1 high programmable frequency programmable frequency CHCLK2 high programmable freq. (not 16,384 kHz) programmable frequency Table 4 Power Dissipation No. of Channels Operating Typical Power Dissipation None 2.5 mW 1 70 mW 2 90 mW Hardware Reference Manual 13 2001-02-20 PEB 2266 PEF 2266 Operational Description 4.2 Transmission Characteristics 4.2.1 Overload Point The overload point of the SICOFI®2-µC A/D converters is at 2.223 V. This is the peak amplitude of a sine wave level of 1.572 Vrms. Higher input signal levels will be distorted. Theoretical load capacities for A-Law and µ-Law encoded signals are defined in ITU-T Recommendation G.711. These values correspond to the SICOFI®2-µC overload point: Table 5 Maximum Signal Levels PCM Interface Analog Interface Encoding Law Theoretical Load Capacity (according to ITU-T G.711) Max. Sine Wave Level (SICOFI®2-µC Overload Point) A-Law 3.14 dBm0 µ-Law 3.17 dBm0 4.2.2 1.572 Vrms 0 dBm0-Levels The analog voltage levels corresponding to a 0 dBm0 sine wave signal can be calculated from the maximum signal levels shown in Table 5. The results are shown in Table 6. Table 6 Analog Voltage Levels Corresponding to 0 dBm0-Level Encoding Law Analog Sine Wave Level corresponding to 0 dBm0 PCM Level A-Law 1.572 Vrms*10^(-3.14/20) = 1.095 V rms µ-Law 1.572 Vrms*10^(-3.17/20) = 1.091 V rms Note: Periodic PCM codes for a 1 kHz sine wave signal with 0 dBm0 level can be found in ITU-T G.711. Hardware Reference Manual 14 2001-02-20 PEB 2266 PEF 2266 Operational Description 4.2.3 Compressor Gain Relative to Coding Law The µ-Law compressor unit of the SICOFI®2-µC automatically adds 1.94 dB gain, which has to be considered for the total gain calculation. The accumulated gain of all programmable transmit filters (AX1+AX2+FRX) must not exceed 7 dB if the device is set to µ-Law operation. If the device is set to A-Law operation, then the accumulated gain must not exceed 9 dB. Transmit 1014 Hz 1.095 Vrms VIN VOUT 1.095 Vrms A/D 0 dB Gain A-Law Compressor DXA/B D/A 0 dB Gain A-Law Expander DXA/B 1014 Hz 0 dBm0 2266_207 Receive Figure 6 0 dBm0 Analog and PCM Signal Levels in A-Law Mode Transmit 1014 Hz 1.091 Vrms VIN VOUT 1.091 Vrms A/D 0 dB Gain µ -Law Compressor [+1.94 dB] D/A 0 dB Gain µ -Law Expander DXA/B DXA/B Receive Figure 7 1.94 dBm0 1014 Hz 0 dBm0 2266_208 Analog and PCM Signal Levels in µ-Law Mode Hardware Reference Manual 15 2001-02-20 PEB 2266 PEF 2266 Operational Description 4.2.4 Operating Conditions The specifications to which the SICOFI®2-µC are tested are tighter than the ITU-T Q.552 Specification to guardband various SLIC implementations. The guaranteed transmission characteristics of the SICOFI®2-µC under test conditions ensure that the final linecard design will meet the ITU-T specification. The figures in this document are based on the subscriber-line board requirements. Proper adjustment of the programmable filters (transhybrid balancing, impedance matching, frequency-response correction) requires a complete knowledge of the analog environment in which the SICOFI®2-µC is to be used. Unless otherwise stated, the transmission characteristics are guaranteed within the following operating conditions: • • • • • • • • • TA = 0 °C to 70 °C (PEB 2266), TA = -40 °C to 85 °C (PEF 2266); VDD = 5 V ± 5%; GNDA1,2,3,4 = GNDD = 0 V; Load on VOUT: RL > 300 Ω; CL < 50 pF; H(IM) = H(TH) = 0; H(R1) = H(FRX) = H(FRR) = 1; HPR and HPX enabled; AR = 0 to –9 dB (AR = AR1 + AR2 + FRR + R1); AX = 0 to +9 dB for A-Law, AX = 0 to +7 dB for µ-Law (AX = AX1 + AX2 + FRX); • f = 1014 Hz; 0 dBm0; A-Law or µ-Law; • AGX = 0 dB, +6.02 dB; and • AGR = 0 dB, –6.02 dB. Transmit Path Analog AGX ADC AX2 FRX AX1 HPX CMP PCM Output FRR AR1 HPR EXP PCM Input Input IM TH Analog AGR DAC R1 AR2 Output Receive Path 2266_209 Figure 8 Simplified Signal Flow Diagram Hardware Reference Manual 16 2001-02-20 PEB 2266 PEF 2266 Operational Description 4.2.5 Gain Accuracy Table 7 Gain Accuracy Parameter Symbol Limit Values min. typ. max. Unit Test Conditions TA = 25 °C,VDD = 5 V, –0.20 ±0.10 +0.20 dB Variation with Temperature ±0.05 dB TA = –40 °C to 85 °C Variation with Supply Voltage ±0.05 dB VDD = 5 V ± 5% Variation with Analog Gain ±0.05 dB AGX= +6.02 dB, AGR= –6.02 dB Absolute Gain 4.2.6 G AGX = AGR = 0 dB Gain Tracking (Receive and Transmit) The gain deviation for a 1014 Hz sine-wave input signal will stay within limits shown in Table 8. All values are relative to the gain of a 0 dBm0 input signal. Table 8 Gain Deviations with Input Level Input Level Symbol Gain Deviation min. typ. max. Unit Test Conditions 1014 Hz sine-wave test signal. Reference level is at 0 dBm0. -55 to -50 dBm0 ∆G ±1.4 dB -50 to -37 dBm0 ∆G ±0.5 dB -37 to 3 dBm0 ∆G ±0.25 dB Hardware Reference Manual 17 2001-02-20 PEB 2266 PEF 2266 Operational Description 4.2.7 Frequency Response Table 9 Attenuation with Frequency in Transmit and Receive Direction Input Frequency Receive Loss min. max. Transmit Loss min. max. Unit Test Conditions 0 dBm0 input signal level. 1014 Hz reference frequency 0 Hz to 100 Hz 0 >2 dB 100 Hz to 200 Hz 0 0 dB 200 Hz to 300 Hz -0.125 -0.125 300 Hz to 3.0 kHz -0.125 3.0 kHz to 3.2 kHz 1 dB 0.125 -0.125 0.125 dB -0.125 0.3 -0.125 0.3 dB 3.2 kHz to 3.4 kHz -0.125 0.65 -0.125 0.65 dB > 3.4 kHz 0 0 dB 4.2.8 Group Delay 4.2.8.1 Group Delay, Absolute Values Table 10 shows the limit values for the Absolute Group Delay. The maximum delays are valid when the SICOFI®2-µC is operating with H(TH) = H(IM) = 0, and H(FRR) = H(FRX) = 1, and include the delay through the A/D and D/A converters. The typical delays are the average of all different time slot delays during one PCM frame. Table 10 Group Delay, Absolute Values Parameter Symbol Transmit Delay DXA DRA Receive Delay Hardware Reference Manual Limit Values Unit Test Conditions 450 µs 450 µs 0 dBm0 input signal level, fTest at TGmin. min. typ. max. 300 375 300 375 18 2001-02-20 PEB 2266 PEF 2266 Operational Description 4.2.8.2 Group Delay Distortion with Frequency The Group Delay Distortion in transmit and receive direction will stay within the limits shown in Table 11. Group Delay Distortion values are referenced to the minimum value of Group Delay (TGmin). Table 11 Group Delay Distortion with Frequency Symbol Frequency Limit Values min. typ. Unit Test Conditions 0 dBm0 input signal level, reference point is at TGmin. max. 500 Hz to 600 Hz ∆tG 300 µs 600 Hz to 1.0 kHz ∆tG 150 µs 1.0 kHz to 2.6 kHz ∆tG 100 µs 2.6 kHz to 3.0 kHz ∆tG 300 µs 4.2.9 Noise Table 12 Idle Channel Noise in Transmit Direction Parameter Symbol A-Law, psophometric (VIN = 0 V) min. typ. NTP NTC NTC µ-Law, C-message (VIN = 0 V) µ-Law, C-message (VIN = 0 V) Table 13 Limit Values max. Unit –67.4 dBm0p 17.5 dBmc 17.5 dBrnC0 Idle Channel Noise in Receive Direction Parameter Symbol NRP NRC NRC A-Law, psophometric (idle code + 0) µ-Law, C-message (idle code + 0) µ-Law, C-message (idle code + 0) Hardware Reference Manual 19 Limit Values min. typ. max. Unit –85 –78.0 dBm0p 5 12.0 dBmc 5 12.0 dBrnC0 2001-02-20 PEB 2266 PEF 2266 Operational Description 4.2.10 Harmonic and Intermodulation Distortion Table 14 Harmonic and Intermodulation Distortion Parameter Symbol Harmonic Distortion 2nd, 3rd order Limit Values min. typ. max. –50 HD –44 Unit dB 0 dBm0; f = 1014 Hz dB dB Equal-level, 4-tone method (EIA-464) at composite level of -13 dBm0; f = 300 Hz to 3400 Hz Intermodulation R2 R3 4.2.11 –46 –56 IMD IMD Test Conditions Total Distortion Table 15 Signal-to-Total Distortion Ratio Measured with Sine Wave Input Level Symbol Min. Values A-Law µ-Law Unit Test Conditions sine wave f=1014 Hz, receive and transmit, µ-Law: C-message weighted, A-Law: psophometrically weighted. -45 dB S/D 24.5 27 dB -40 dB S/D 29.5 31 dB -30 dB S/D 35.5 35.5 dB > -28 dB S/D 36.4 36.4 dB 40 dB S/D 30 27 24.5 36.4 35.5 µ-Law 31 29.5 A-Law 20 10 0 -60 Figure 9 -50 -45 -40 -30 -28 -20 Input Level -10 dBm0 0 2266_210 Total Distortion Measured with Sine-Wave, Receive and Transmit Hardware Reference Manual 20 2001-02-20 PEB 2266 PEF 2266 Operational Description Table 16 Signal-to-Total Distortion Ratio Measured with Noise Input Level Symbol Min. Value, PEB 2266 Min. Value, PEF 2266 Receive Transmit Receive Transmit Unit -55 dB S/D 14.7 13.7 14.7 12 dB -40 dB S/D 29.7 28.7 29.7 27 dB -34 dB S/D 34.3 33.3 34.3 33.3 dB -27 dB S/D 36 35.4 36 35.4 dB -24 to -6 dB S/D 36.7 36.3 36.7 36.3 dB -3 dB S/D 28.4 27.4 28.4 27.4 dB S/D 40 dB 36.7 34.3 36 30 29.7 28.4 20 14.7 10 0 -60 Figure 10 -55 -50 -40 -34 -30 -24 -20 dBm0 -10 0 -27 -6 -3 Input Level 2266_211 Total Distortion Receive (Noise) 40 dB 36.3 35.4 33.3 30 28.7 S/D 27.0 27.4 PEB 2266 20 PEF 2266 13.7 12 10 0 -60 -55 -50 -40 -34 -30 -27 -24 -20 dBm0 -10 Input Level Figure 11 -6 -3 0 2266_212 Total Distortion Transmit (Noise) Hardware Reference Manual 21 2001-02-20 PEB 2266 PEF 2266 Operational Description 4.2.12 Single Frequency Distortion Test Input Signal Frequency Range max. Input Level Receive Direction 300 Hz to 3.4kHz 0 dBm0 Transmit Direction 0 Hz to 12 kHz 0 dBm0 Any resulting signal with a frequency different from the test input signal will stay at least 28 dB below the input signal level. 4.2.13 Overload Compression This is measured with a 1014 Hz sine-wave signal. The overload point in µ-Law Mode is at 3.17 dBm0. Fundamental Output Power 10 dBm0 8 7 6 5 4 3 2 1 0.25 0 -0.25 -1 0 1 2 3 4 5 6 7 dBm0 9 Fundamental Input Power Figure 12 4.2.14 2266_213 Overload Compression (µ-Law Coding, Transmit Direction) Crosstalk Table 17 Crosstalk Between Channels Parameter Crosstalk, 0dBm0 Symbol CT Limit Values min. typ. max. – 85 – 80 Unit dB Test Conditions f = 200 Hz to 3400 Hz, any combination of directions and channels Hardware Reference Manual 22 2001-02-20 PEB 2266 PEF 2266 Operational Description 4.2.15 Out-of-Band Discrimination in Transmit Direction With any 0 dBm0 sine-wave signal below 100 Hz and in the range from 3.4 kHz to 100 kHz (out-of-band signal) applied to an analog input (VINx), the level of any resulting frequency component at the digital output will stay at least X dB (see Table 18) below the output level of a 0 dBm0 1kHz sine-wave reference signal at the analog input. Table 18 Out-of-Band Signals Applied to the Analog Inputs (VINx) Min. Output Signal Rejection X Unit Test Conditions 0 Hz to 60 Hz 25 dB 60 Hz to 100 Hz 10 dB 0 dBm0 sine-wave input signal on VIN 3.4 kHz to 4 kHz 4000 – f – 14 sin π --------------------- – 1 1200 Input Frequency 4 kHz dB 15 dB dB 4000 – f – 18 sin π --------------------- – 7 --- 1200 9 4 kHz to 4.6 kHz 4.6 kHz to 100 kHz 40 dB The Hardware Filters behind the A/D Converters reject teletax pulses with their poles at 12 kHz ±150 Hz and 16 kHz ±150 Hz. 40 dB Transmit Out-of-Band Discrimination X 32 30 25 20 15 10 0 0 0.06 0.1 3.4 4 4.6 6 10 18 kHz 100 f Figure 13 2266_214 Out-of-Band Discrimination in Transmit Direction Hardware Reference Manual 23 2001-02-20 PEB 2266 PEF 2266 Operational Description 4.2.16 Out-of-Band Discrimination in Receive Direction With any 0 dBm0 sine-wave frequency in the range from 300 Hz to 3.99 kHz applied to the digital input (PCM time slot), the level of any resulting out-of-band signal at the analog output will stay at least X dB (see Table 19) below the output level of a 0 dBm0 1kHz sine-wave reference signal at the digital input. Table 19 Out-of-Band Signals at the Analog Outputs (VOUTx) Output Frequency Min. Output Signal Rejection X 3.4 kHz to 4.6 kHz 4000 – f – 14 sin π --------------------- – 1 1200 4.6 kHz to 10.55 kHz Unit dB 15 dB 4.6 kHz 28 dB >10.55 kHz 57 dB Receive Out-of-Band Discrimination X 57 40 35 30 28 20 15 10 0 Figure 14 0 dBm0 sine-wave input signal on digital input (PCM time slot) dB f – 4600 35 + 22 --------------------5950 4 kHz 60 dB 50 Test Conditions 0 0.06 0.1 3.4 4 4.6 6 16 18 kHz 100 8 10 2266_215 10.55 f Analog Output: Out-of-Band Signals Hardware Reference Manual 24 2001-02-20 PEB 2266 PEF 2266 Operational Description 4.2.17 Out-of-Band Idle Channel Noise at Analog Output With an idle code (any sequence of constant PCM octets) applied to the digital input, the level of any resulting out-of-band power spectral density at the analog output, measured with 3 kHz bandwidth, will be not greater than the limit curve shown in Figure 15. Out of Band Noise -40 dBm0 -50 -55 -60 -70 -78 -80 -90 -100 1 10 2 3 10 10 kHz f Figure 15 4 10 2266_216 Analog Output: Out-of-Band Idle Channel Noise Hardware Reference Manual 25 2001-02-20 PEB 2266 PEF 2266 Operational Description 4.2.18 Transhybrid Loss The quality of Transhybrid-Balancing is very sensitive to deviations in gain, group delay, and deviations inherent to the A/D- and D/A-converters, as well as to all external components used on a linecard (SLIC, OP’s etc.). Transhybrid loss test setup: The SICOFI®2-µC test loop “DLB-ANA” is selected (see Figure 34), which connects the analog output with the analog input. The programmable filters FRR, AR, FRX, AX are by-passed. The IM-filter is disabled, (H(IM)=0). The balancing filter TH is enabled with optimized coefficients for this configuration (VOUT = VIN). A 0 dBm0 sine wave signal with a frequency in the range of 300 Hz to 3400 Hz is applied to the digital input. The signal levels of the resulting echo at the digital output will stay below the values shown in Table 20. Table 20 Transhybrid Loss Input Frequency Symbol 300 Hz THL300 THL500 THL2500 THL3000 THL3400 500 Hz 2500 Hz 3000 Hz 3400 Hz Hardware Reference Manual Transhybrid Loss Unit Test Condition min. typ. 27 40 dB TA = 25 °C; VDD = 5 V 30 45 dB 29 40 dB 27 35 dB AGX = AGR = 0 dB; typical variation of amplitude: ± 0.15 dB delay: ± 0.5 µs. 27 35 dB 26 2001-02-20 PEB 2266 PEF 2266 Interface Description 5 Interface Description The SICOFI®2-µC provides four interfaces: • • • • Analog Interface, PCM Interface, Signaling Interface, and Serial Microcontroller Interface. A general description of these interface is given in the Product Overview, Chapter 4. Refer to the Programmers Reference Manual for information on the configuration and operation of the four interfaces. The subsequent chapters in this manual explain how to connect the SICOFI®2-µC to subscriber line interface circuits (SLICs), microcontrollers, and PCM highways. 5.1 Analog Interface The Analog Interface in combination with a Subscriber Line Interface Circuit (SLIC) forms a configurable tip & ring (t/r) telephone line. The AC transmission characteristic of the SICOFI®2-µC—SLIC combination can be controlled by programming the digital filter structures inside the SICOFI®2-µC. The correct filter coefficients are determined by the targeted AC transmission behavior (e.g. Telco specification) and by the transfer functions of the SLIC. The SICOFI®2-µC can be interfaced directly to electronic SLICs or transformer solutions. The high driving capability of up to 300 Ohms eliminates the need for an external amplifier that is normally used with transformer SLICs. The peak amplitude of the analog inputs and outputs is at 2.223 V (overload point). Out-of-band signals applied to the analog inputs are suppressed by the on-chip digital hardware filters. The poles of these filters are fixed at 12 kHz and 16 kHz which suppresses the echo signal from teletax pulses very efficiently: As long as the amplitude of the teletax echo stays below the overload threshold of 2.223 Vp (1.57 Vrms), the voice signal in the transmit path will not be disturbed. Thus, the on-chip hardware filters can eliminate the need for external teletax filters. 5.1.1 Coupling Capacitors at the Analog Interface A coupling capacitor >39 nF must be used on the VIN-pins in the transmit direction. The required value for the coupling capacitor on the VOUT-pins depends on the input resistance of the SLIC-circuitry (RLoad). It has to be chosen to fulfil the frequency response requirement in the receive direction. Figure 16 can be used to determine an appropriate value for the coupling capacitor (CExt1). Hardware Reference Manual 27 2001-02-20 PEB 2266 PEF 2266 Interface Description 52 VDDA12 SLIC 1 100nF 50 RLoad t/r 100nF Channel 1 Channel 2 > 39nF 49 51 CExt1 SLIC 2 GNDA2 54 GNDA1 55 VIN1 VIN2 VOUT1 VOUT2 53 > 39nF RLoad t/r CExt1 SICOFI2-µC VREF 56 VDDREF 220nF 100nF 10 2 µF 0 fmin = 250 Hz 10 -1 10 1 fmin·RLoad CExt1= CExt1 1 10 10 57 -2 10 -3 2 10 10 3 10 4 10 5 Ω RLoad Figure 16 10 6 2266_217 Analog Interface to Two Subscriber Line Interface Circuits (SLICs) Hardware Reference Manual 28 2001-02-20 PEB 2266 PEF 2266 Interface Description 5.1.2 Table 21 Analog Interface Pins Analog Interface Pins Channel Symbol Pin Function 49 Analog Input. Requires a coupling capacitor >39 nF to the SLIC (see Figure 16). VOUT1 51 Analog Output. Requires a coupling capacitor to the SLIC. The capacitor’s value depends on the input impedance of the SLIC, (see Figure 16). GNDA1 50 Analog Ground. Internally isolated from GNDD, GNDA, or GNDA2. 55 Analog Input. Requires a coupling capacitor >39 nF to the SLIC (see Figure 16). VOUT2 53 Analog Output. Requires a coupling capacitor to the SLIC. The capacitor’s value depends on the input impedance of the SLIC, (see Figure 16). GNDA2 54 Analog Ground. Internally isolated from GNDD, GNDA, or GNDA2. VDDA12 52 Analog Supply Voltage. +5 V (100 nF blocking capacitor required, see Figure 16). VDDREF 57 Analog Supply Reference Voltage. +5 V (100 nF blocking capacitor required, see Figure 16). VREF 56 Reference Voltage Must connect to a 220 nF cap. to ground, see Figure 16. VIN1 VIN2 Hardware Reference Manual 29 2001-02-20 PEB 2266 PEF 2266 Interface Description 5.2 PCM Interface The SICOFI®2-µC provides an industry–standard PCM Interface with access to one PCM highways. The PCM Interface has the following features: • • • • • • • • Data rate from 128 kbit/s to 8 Mbit/s per highway, 2 to 128 time slots per frame per highway, PCM data format serialized 8 bits with MSB first, Configurable A-Law or µ-Law coding, Independently configurable time slot and highway for each channel and direction, PCM clock speed of once or twice the bit rates, Programmable sampling slopes, and Programmable frame delay. 5.2.1 PCM Interface Pins Table 22 PCM Interface Pins Symbol Pin Function PCLK 32 PCM-Clock, 128 kHz to 8192 kHz; shared for both highways. FSC 31 Frame Synchronization Clock, 8 kHz; shared for both highways. DRA 27 Receive Data input for PCM-highway A. DRB 30 Receive Data input for PCM-highway B. DXA 26 Transmit Data output for PCM-highway A, open drain. DXB 29 Transmit Data output for PCM-highway B, open drain. TCA# 25 Transmit Control output for highway A, low when DXA is active. TCB# 28 Transmit Control output for highway B, low when DXB is active. 5.2.2 PCM Receive and Transmit Example Figure 17 and Figure 19 illustrate the time slot and bit positions resulting from the programming example below: Table 23 PCM Register Configuration Example Channel CR4 Receive Setting CR5 1 0000 0000 DRA, time slot 0 0000 0000 DXA, time slot 0 2 0000 1111 DRA, time slot 15 0001 0010 DXA, time slot 18 all Transmit Setting XR6=0000 0000; single clock mode, no PCM offset; PCLK=2048 kHz. Hardware Reference Manual 30 2001-02-20 PEB 2266 PEF 2266 Interface Description 125 µs FSC PCLK Time Slot 0 1 2 3 31 15 DRA 0 18 High 'Z' DXA High 'Z' TCA# Detail A 2266_218 Figure 17 PCM Interface Example: Location of Time Slots FSC Clock 0 1 2 3 4 5 6 7 1 0 PCLK DRA Voice Data Bit 7 DXA High 'Z' 6 5 4 3 2 Voice Data High 'Z' TCA# 2266_219 Figure 18 PCM Interface Example: Detail A The pins DRA/B and DXA/B may be strapped together to form a multiplexed bi-directional PCM port. Hardware Reference Manual 31 2001-02-20 PEB 2266 PEF 2266 Interface Description 5.3 Signaling Interface The SICOFI®2-µC Signaling Interface is used to monitor and control supervision and signaling functions on up to four subscriber lines. The device generates interrupt signals to indicate signaling status changes on any of the input pins. The Signaling Interface consists of the following I/O pins and functions: • 14 signaling pins (2 input pins, 2 output pins, and 3 user-configurable bi-directional pins per channel), • Debouncing functions, • 1 interrupts (one for each channel-pair), and • 2 clock output signals (user configurable). 5.3.1 Signaling Interface Pins SICOFI2-µC 33 Operating Mode 39 38 37 Off-Hook Det. Ground Key Det. 36 35 Ring Relay 41 Status LED CHCLK2 16 Channel 1 Channel 2 SLIC 1 t/r CHCLK1 40 SB1_0 SB1_1 SB1_2 SB2_0 SB2_1 SB2_2 SI1_0 SI1_1 SI2_0 SI2_1 SO1_0 SO1_1 SO2_0 SO2_1 SLIC 2 44 45 46 47 48 Operating Mode t/r Off-Hook Det. Ground Key Det. 42 Ring Relay 43 Status LED INT 12 34 Microcontroller 2266_220 Figure 19 Signaling Example: Two Subscriber Lines Subscriber Lines Hardware Reference Manual 32 2001-02-20 PEB 2266 PEF 2266 Interface Description Table 24 Signaling Interface: Pins and Functions for SLIC Interfaces Channel 1 Channel 2 Pin Symbol Function Pin Symbol Function 36 SI1_0 Signaling Input 0 47 SI2_0 Signaling Input 0 35 SI1_1 Signaling Input 1 48 SI2_1 Signaling Input 1 41 SO1_0 Signaling Output 0 42 SO2_0 Signaling Output 0 40 SO1_1 Signaling Output 1 43 SO2_1 Signaling Output 1 39 SB1_0 Bi-directional Signaling 0 44 SB2_0 Bi-directional Signaling 0 38 SB1_1 Bi-directional Signaling 1 45 SB2_1 Bi-directional Signaling 1 37 SB1_2 Bi-directional Signaling 2 46 SB2_2 Bi-directional Signaling 2 34 INT12 5.3.2 Interrupt Output, Channels 1+2, active high Debouncing Functions and Interrupt Generation All signaling inputs are sampled at programmable intervals (Field N in register XR4). If all the inputs assigned to one channel-pair (1&2) have been stable for two subsequent samples their values are stored in the signaling registers and the associated interrupt output (INT12) is set high. Refer to the Programmer’s Reference Manual for further details on this function. 5.3.3 Clock Output Signals Two programmable Chopper Clock Output signals are provided by the PEB 2266: • CHCLK1 (Pin 33) is configured in register XR4.Field T (bits XR4.3 to XR4.0) • CHCLK2 (Pin 16) is configured in register XR5.CHCLK2 (bits XR5.3 and XR5.2) • Both Chopper Clock Output signals are only available if a valid Master Clock signal is applied to pin MCLK. • CHCLK2 = 16,384 kHz: Requires at least one channel in POWER-UP state. Table 25 Clock Programming CHCLK1 CHCLK2 XR4.Field T Output (Pin 33) XR5.CHCLK2 Output (Pin 16) 0000 High level (+5V) 00 High level (+5V) 0001 to 1110 Clock period = T *2ms (min. 2 ms, max. 28 ms) 01 512 kHz signal 10 256 kHz signal 1111 Low level (0V) 11 16,384 kHz signal Hardware Reference Manual 33 2001-02-20 PEB 2266 PEF 2266 Interface Description 5.4 Serial Microcontroller Interface The Serial Microcontroller Interface is used to access the SICOFI®2-µC’s internal registers and the Coefficient RAM (CRAM). The Serial Microcontroller Interface consists of four pins: two data pins (DIN, DOUT), one clock pin (DCLK) and one pin for chip select (CS#). If DIN and DOUT are strapped together, only three microcontroller I/O pins are required to build this interface. Figure 20 5.4.1 Table 26 Serial Microcontroller Interface SICOFI2-µC SICOFI2-µC CS# DCLK DIN DOUT CS# DCLK DIN DOUT Out Out Out Out In Out I/O Microcontroller Microcontroller Configuration A: Separate DIN, DOUT Configuration B: Bi-Directional Data 2266_221 Serial Microcontroller Interface Pins Serial Microcontroller Interface: Pins and Functions Symbol Pin Function CS# 17 Chip Select, enable to read or write data, active low. DCLK 18 Data Clock, shifts data from or to device; max. clock rate is 8192 kHz. DIN 19 Control Data Input; sampled with rising edge of DCLK. DOUT 20 Control Data Output; bits are shifted with the falling edge of DCLK; DOUT is in high impedance state when no data is transmitted from the SICOFI®2-µC. Hardware Reference Manual 34 2001-02-20 PEB 2266 PEF 2266 Interface Description 5.4.2 Write Access Following a falling edge of CS#, the first eight bits received on DIN specify the type of command. The data bytes following a write command are stored in the selected configuration registers or the selected part of the Coefficient RAM. The number of data bytes depends on the type of command. After every command CS# must be set to ’1’. . CS# DCLK DIN 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 Write Command Data Byte 1 Data Byte 2 High 'Z' DOUT 2266_222 Figure 21 5.4.3 Example for a Two-Byte Write Access Read Access If the first eight bits received via DIN represent a read command, the SICOFI®2-µC will initiate its response via DOUT. An identification byte (81H) is followed by the requested number of data bytes (contents of configuration registers or contents of the CRAM). During execution of a read command, the device will ignore data on DIN. After every command CS# must be set to ’1’. . CS# DCLK DIN 7 6 5 4 3 2 1 0 Read Command DOUT High 'Z' 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 Identification 81H High 'Z' Data Byte 1 2266_223 Figure 22 Example for a One-Byte Read Access Hardware Reference Manual 35 2001-02-20 PEB 2266 PEF 2266 Interface Description For byte-by-byte transfer, the high time of DCLK can be prolonged, resulting in a user-defined ‘waiting time’ between bytes. This mechanism can be used for writing to and reading from the device. CS# DCLK DIN 7 6 5 4 3 2 1 0 Read Command DOUT High 'Z' 7 6 5 4 3 2 1 Identification 81H 0 7 6 5 4 3 2 1 0 High 'Z' Data Byte 1 2266_224 Figure 23 Example for a Read Access with Byte-by-Byte Transfer Read and write commands can be chained by leaving CS# low after the completion of each command sequence. For read or write access to individual registers, the command sequence may be terminated by rising CS# after the transmission of any number of bytes. 5.4.4 Three-Wire Access DIN and DOUT may be strapped together and connected to a single I/O pin of the microcontroller. The interface remains fully functional with only three wire connections. After every command CS# must be set to ’1’. CS# DCLK DATA 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 Read Command Identification 81H High 'Z' Data Byte 1 2266_225 Figure 24 Bi-Directional Data Signal: DIN and DOUT Strapped Together Hardware Reference Manual 36 2001-02-20 PEB 2266 PEF 2266 Programming Overview 6 Programming Overview The transmission characteristics and interfaces of the PEB 2266 can be adapted to various environments. Configuring the functional blocks and programming the digital filter behavior is accomplished by loading values to the Configuration Registers and the Coefficient RAM (CRAM). Software utilities are available to determine the appropriate register and CRAM values (see Programmer’s Reference Manual). 6.1 Programming Overview The SICOFI®2-µC has eight Common Configuration Registers (XR0 to XR7). Settings in these registers affect all two channels. Each of the two channels has six Channel-Specific Configuration Registers (CR0 to CR5). Settings in these registers affect only the designated channel. The filters of each channel are individually programmable through channel-specific coefficients in CRAM. There are two global sets of TH Filter coefficients that can be assigned to any channel. 6.1.1 Register Model Channel-specific and Common Configuration Registers and coefficients are shown in Table 27. Table 27 Register Model Configuration Registers and CRAM Channel Usage XR0 to XR7 (8 bytes) common CR0 to CR5 (6 bytes) IM/R1 Coefficients (16 bytes) FRR, FRX Coefficients (16 bytes) channel-specific AR1, AR2, AX1, and AX2 Coefficients (8 bytes) TG1 and TG2 Coefficients (8 bytes) TH Coefficient Set 1 (24 bytes) TH Coefficient Set 2 (24 bytes) Hardware Reference Manual 37 one coefficient set per channel 2001-02-20 PEB 2266 PEF 2266 Programming Overview 6.1.2 Register Maps Table 28 Read Access to Common Configuration Register (XR) Map Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 XR0 0 0 0 0 SI2_1 SI2_0 SI1_1 SI1_0 XR1 0 0 0 0 SB2_1 SB2_0 SB1_1 SB1_0 XR2 0 0 0 0 PSB2_1 PSB2_0 PSB1_1 PSB1_0 XR3 0 0 SB2_2 SB1_2 0 0 PSB2_2 PSB1_2 XR4 Signal Debounce XR5 MCLK-SEL CHCLK1 CRSH-A CRSH-B CHCLK2 XR6 C-Mode X-S R-S DRV_0 Shift XR7 OF7 OF6 OF5 OF4 OF3 Table 29 Version PCM-OFFSET OF2 OF1 OF0 Write Access to Common Configuration Register (XR) Map Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 XR0 0 0 0 0 SO2_1 SO2_0 SO1_1 SO1_0 XR1 0 0 0 0 SB2_1 SB2_0 SB1_1 SB1_0 XR2 0 0 0 0 PSB2_1 PSB2_0 PSB1_1 PSB1_0 XR3 0 0 SB2_2 SB1_2 0 0 PSB2_2 PSB1_2 XR4 Signal Debounce XR5 MCLK-SEL CHCLK1 CRSH-A CRSH-B CHCLK2 XR6 C-Mode X-S R-S DRV_0 Shift XR7 OF7 OF6 OF5 OF4 OF3 Table 30 Version PCM-OFFSET OF2 OF1 OF0 Channel-Specific Configuration Register (CR) Map (Read & Write) Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 CR0 TH IM/R1 FRX FRR AX AR CR1 ETG2 ETG1 PTG2 PTG1 LAW 0 0 PU 0 IDR LM LMR V+T AGX AGR D-HPX D-HPR CR2 COT/R CR3 TEST-Loops Bit 1 Bit 0 TH-SEL CR4 R-way RS6 RS5 RS4 RS3 RS2 RS1 RS0 CR5 X-way XS6 XS5 XS4 XS3 XS2 XS1 XS0 Hardware Reference Manual 38 2001-02-20 PEB 2266 PEF 2266 Programming Overview 6.1.3 CRAM Structure Coefficient RAM (CRAM) is used to store the individual coefficients calculated for each channel. The coefficients can be written and read through the Microcontroller Interface. The IM, FRX, FRR, AX, AR, TG1, TG2, and TH coefficients are accessed through the Coefficient Operation (COP) Command Sequences which include the channel address (see Programmer’s Reference Manual Chapter 6.5). Channel-specific coefficients always belong to their designated channel. Common coefficients (TH) can be assigned to any of the two channels through field TH-SEL in CR0 (see Figure 25). Common Coefficients Channel 1 Channel 2 Set 1 IM Part 1 & 2, FRX, FRR, AX, AR, TG1, TG2 Set 2 TH Part TH Part 1, 2, 3 1, 2, 3 IM Part 1 & 2, FRX, FRR, AX, AR, TG1, TG2 Channel Specific Coefficients Channel Specific Coefficients 2266_226 Figure 25 Channel-Specific and Common Coefficients Table 31 Coefficient RAM (CRAM) Structure per Channel IM Part 1 8 Coefficient Bytes IM Part 2 8 Coefficient Bytes FRX 8 Coefficient Bytes FRR 8 Coefficient Bytes AX 4 Coefficient Bytes AR 4 Coefficient Bytes TG1 4 Coefficient Bytes TG2 4 Coefficient Bytes Hardware Reference Manual 39 2001-02-20 PEB 2266 PEF 2266 Programming Overview Table 32 Coefficient RAM (CRAM) Structure per Set TH Part 1 8 Coefficient Bytes TH Part 2 8 Coefficient Bytes TH Part 3 8 Coefficient Bytes 6.2 Types of Commands and Data Bytes Coefficients and register contents are programmed and accessed through command sequences via the Microcontroller Interface. There are three types of command sequences: • Extended Operation (XOP) for access to the Common Configuration Registers (XR0 to XR7) including the Control Registers for the signaling interface. • Status Operation (SOP) for access to the Channel-Specific Registers (CR0 to CR5), e.g. enabling and disabling of filters, time slot assignment, and test loops. • Coefficient Operation (COP) for access to the CRAM structures. Coefficients can be written to the SICOFI®2-µC, and also read back. Table 33 XOP Types of Commands and Data Bytes. 7 6 5 4 3 RST 0 RW 1 1 LSEL 0 LSEL SOP AD RW 1 COP AD RW 0 2 1 0 CODE With the first byte received via DIN, a command type is selected through bits 3 and 4. A two-bit address field (AD) in the COP and SOP commands allows access to the channel-specific structures (CRAM and CR registers). Since the XR Registers are common for all channels, no address field is required within the XOP command byte. All three commands allow read and write access, which is indicated by bit 5 (RW). The bit fields LSEL and CODE specify the type and the length of data that follows the command. Hardware Reference Manual 40 2001-02-20 PEB 2266 PEF 2266 Application Hints 7 Application Hints 7.1 Support Tools 7.1.1 Development Board The Evaluation Package EASY 2466 includes the following hardware: • One SICOFI®2-µC Evaluation Board STUT 2466 with connectors for four optional SLIC daughter cards and BNC connectors to a PCM backplane. • One microcontroller board EVC50x with RS-232 interface that translates data from a PC to SICOFI®2-µC format. • Two SLIC Babyboards STUT 5502 with HARRIS SLIC HC 5502 mounted. The QSICOS software enables the calculation of the coefficients and the download of the setup file to the evaluation board. This setup allows measurements and optimization of the actual behavior of a complete transmission system. The EASY 2466 evaluation system connects directly to industry-standard test equipment. Power Supply tip ring COM 1 SLIC (STUT5502) PC SLC1 ST2 ST3 reset EVC sw1 SICOFI2/4 -µC/-TE SICOFIx -µC/-TE Eval. Board V1.4 Evaluation Board EVC50x ST1 SLC3 SLC2 P4 STUT 2466 PCM out SLC4 S1 in PCLK FSC in/ out in/ out FSC in PC M in PC M ou t C lo ck ou t 4 wire in 2 w ire 4 w ire ou t PCM-4 DC Loop-Holding circuit Figure 26 Development System with STUT 2466 Evaluation Board Hardware Reference Manual 41 2001-02-20 PEB 2266 PEF 2266 Application Hints 7.2 Guidelines for Board Design 7.2.1 Filter Capacitors • For high frequency noise rejection, use 100 nF SMD ceramic capacitors on pins VDDA12, VDDA and VDDREF and connect to GNDA. Additional 2.2 µF tantalum capacitors are recommended. • Use one 100 nF SMD ceramic capacitor on pin VDDD and connect to GNDD. • Use a 1 µF – 10 µF tantalum capacitor from +5 V supply to GND (central blocking). Note: All blocking capacitors MUST be placed as close as possible to the SICOFI®2-µC pins. . Signaling Interface, Channels 1&2 5 x 680K 5 x 680K 33 SI2_1 SI2_0 SB2_2 SB2_1 SB2_0 SO2_1 SO2_0 SO1_0 SO1_1 SB1_0 SB1_1 SB1_2 SI1_0 SI1_1 INT12 CHCLK1 48 Analog Interface 49 2.2µF 100nF 1µF 5V 10µF 1µF 2.2µF 100nF 220nF 5V 2.2µF 100nF VIN1 GNDA1 VOUT1 VDDA12 VOUT2 GNDA2 VIN2 VREF VDDREF NC SICOFI2-µC PEB 2266-H GNDA NC VDDA NC 100nF 5V 100nF 64 GNDA NC PCLK 4.7K FSC DRB 5V DXB 4.7K TCB# DRA DXA 5V TCA# 100nF 1-10µF VDDD RESET# 10K MCLK GNDD DOUT DIN DCLK CS# 17 Microcontroller Interface 16 NUI NUI NUIO NUIO NUIO NC NC NC NC NUIO NUIO NUIO NUI NUI NC CHCLK2 10µF PCM Interface 32 5V 1 6 x 680K 2266_228 Figure 27 ® SICOFI 2-µC Test Circuit Configuration Hardware Reference Manual 42 2001-02-20 PEB 2266 PEF 2266 Application Hints Proposal for SICOFI®2-µC Board Design 7.3 For a new layout design it is recommended to use a separate ground-layer which gives the possibilty to connect all ground-pins of the SICOFI®2-µC (GNDA and GNDD) lowohmic together. Furthermore, an optimum board layout should follow these recommendations • • • • Separate all digital supply lines from analog supply lines as far as possible Applying the standard practice regarding blocking capacitors is recommended Place all SLIC circuits as close as possible to the Vinx/Voutx pins of the SICOFI Separate all analog circuitry (especially SLIC and Vinx/Voutx) as far as possible from any digital signal source (esp. clock signals) The ground-plane should be used for shielding 100 nF Ceramic 100 nF Ceramic Figure 28 GNDD VDD Connector 1-10 µF Tantal next to the connector pins GND Connector GNDA V DDA GNDA V REF VDDREF GNDA2 VDDA12 GNDA1 VDDD 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 33 15 34 14 35 13 36 SICOFI2-µC V2.2 12 37 11 38 10 39 Ground9 40 plane 8 41 7 42 6 43 PEB 2266 H 5 44 4 45 3 46 2 47 1 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 100 nF Ceramic 220 nF 100 nF Ceramic Proposal for a Ground Concept VDD is the grey colored layer and the Ground-plane is the black colored layer. The Ground-plane should be on both sides of the board on the top and on the ground layer. Hardware Reference Manual 43 2001-02-20 PEB 2266 PEF 2266 Electrical Characteristics and Timing Diagrams 8 Electrical Characteristics and Timing Diagrams 8.1 Absolute Maximum Ratings Parameter Symbol Limit Values min. max. Unit VDD referred to GNDD –0.3 7.0 V GNDA to GNDD –0.6 0.6 V Analog input and output voltage Referred to VDD = 5 V; Referred to GNDA = 0 V –5.3 –0.3 0.3 5.3 V V All digital input voltages Referred to GNDD = 0 V; (VDD = 5V) Referred to VDD = 5 V; (GNDD = 0 V) –0.3 –5.3 5.3 0.3 V V 10 mA –60 125 °C –10 80 °C 1 W DC input and output current at any input or output pin (free from latch-up) Storage temperature Ambient temperature under bias Power dissipation (package) TSTG TA PD Test Condition Note: Stresses above those listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Hardware Reference Manual 44 2001-02-20 PEB 2266 PEF 2266 Electrical Characteristics and Timing Diagrams 8.2 Operating Range VDD = 5 V ±5%; GNDD = 0 V; GNDA = 0 V; TA = 0 °C to +70 °C (PEF 2266: -40 °C to +85 °C) Parameter Symbol VDD supply current: Limit Values min. typ. max. Unit IDD Test Condition FSC = 8 kHz, Standby (PEB 2266) 0.5 1.0 mA PCLK = MCLK = Standby (PEF 2266) 0.5 1.5 mA 2.048 MHz, 1 channel operating 14 25 mA no loads, 2 channels operating 18 30 mA PCM idle codes, Power supply rejection ratio (either direction) 8.3 PSRR 30 dB Ripple: sine wave 1014 Hz, 70 mVrms, on every supply pin, AGX=AGR=AX=AR=0dB (see Chapter 4.2.4) Digital Interface VDD = 5 V ± 5%; GNDD = 0 V; GNDA = 0 V TA = 0 °C to +70 °C (PEF 2266: -40 °C to +85 °C); Parameter Symbol Limit Values min. max. –0.3 0.8 Unit Test Condition Input voltages: Low level High level VIL VIH 2.0 V V Output voltages: Low level Low level High level High level High level Input leakage current Hardware Reference Manual VOL VOL VOH VOH VOH VIL 0.45 V 0.8 V 4.4 V 4.0 V 2.4 V ±1 45 µA IOL = – 2 mA IOL = – 5 mA IOH = 0.4 mA IOH = 2 mA IOH = 5 mA –0.3 ≤ VIN ≤ VDD 2001-02-20 PEB 2266 PEF 2266 Electrical Characteristics and Timing Diagrams 8.4 Analog Interface VDD = 5 V ±5%; GNDD = 0 V; GNDA = 0 V; TA = 0 °C to +70 °C (PEF 2266: -40 °C to +85 °C) Parameter Symbol Input resistance PEF 2266 PEB 2266 Ri Output resistance Output load Input leakage current Input offset voltage Output offset voltage Input voltage range (AC) 8.4.1 RO RL CL IIL VIO VOO VIN Limit Values Unit min. typ. max. 160 160 270 270 500 380 kΩ kΩ 0.25 Ω 50 Ω pF ±1.0 µA ±50 mV ±50 mV ±2.223 V 300 ±0.1 Test Condition 0 ≤ VIN ≤ VDD 0 ≤ VIN ≤ VDD Coupling Capacitors at the Analog Interface Coupling capacitors are required on pins VIN and VOUT. The recommended value for VIN is >39 nF. The required value for the VOUT capacitor depends on the input impedance of the SLIC (see Figure 16 in Chapter 5.1). 8.5 Reset Timing To reset the SICOFI®2-µC to Reset State, logic low pulses applied to pin RESET# must be below 1.2 V (TTL-Schmitt-Trigger Input) and must persist longer than 3 µs. Note: Spikes shorter than 1 µs will be ignored. Hardware Reference Manual 46 2001-02-20 PEB 2266 PEF 2266 Electrical Characteristics and Timing Diagrams 8.6 PCM-Interface Timing 8.6.1 Single Clocking Mode t PCLKh t PCLK PCLK 50% t FSC t FSC_S t FSC_H FSC t DR_S t DR_H DRA/B t dDXhz t dDX High Imp. DXA/B tdTCon t dTCoff TCA#/TCB# 2266_229 Figure 29 PCM Interface Timing in Single Clocking Mode Parameter Symbol Limit Values min. Period of PCLK PCLK high time Period FSC FSC setup time FSC hold time DRA/B setup time DRA/B hold time DXA/B delay time 1) DXA/B delay time to high Z TCA#/TCB# delay time on TCA#/TCB# delay time off 1) tPCLK tPCLKh tFSC tFSC_s tFSC_h tDR_s tDR_h tdDX tdDXhz tdTCon tdTCoff typ. 1/8192 0.4*tPCLK tPCLK/2 Unit max. 1/128 ms 0.6*tPCLK µs 125 µs 10 50 ns 40 50 ns 10 50 ns 10 50 ns 25 tdDX_min + tC_Load ns 25 50 ns 25 tdTCon_min + tC_Load tdTCoff_min + tC*R ns 25 ns Min. delay times: intrinsic time, caused by internal processing. Max. delay times: min. time + delay caused by external components CLoad and RPullup.: tC_Load = 0.4ns*CLoad/pF, tC*R = RPullup*CLoad; RPullup>1.5kΩ Hardware Reference Manual 47 2001-02-20 PEB 2266 PEF 2266 Electrical Characteristics and Timing Diagrams 8.6.2 Double Clocking Mode t PCLKh t PCLK PCLK 50% t FSC t FSC_S t FSC_H FSC t DR_S t DR_H DRA/B t dDXhz t dDX High Imp. DXA/B t dTCon t dDTCoff TCA#/TCB# 2266_230 Figure 30 PCM Interface Timing in Double Clocking Mode Parameter Symbol Limit Values min. Period of PCLK PCLK high time Period FSC FSC setup time FSC hold time DRA/B setup time DRA/B hold time DXA/B delay time 1) DXA/B delay time to high Z TCA#/TCB# delay time on TCA#/TCB# delay time off 1) tPCLK tPCLKh tFSC tFSC_s tFSC_h tDR_s tDR_h tdDX tdDXhz tdTCon tdTCoff typ. 1/8192 0.4*tPCLK tPCLK/2 Unit max. 1/256 ms 0.6*tPCLK µs 125 µs 10 50 ns 40 50 ns 10 50 ns 10 50 ns 25 tdDX_min + tC_Load ns 25 50 ns 25 tdTCon_min + tC_Load tdTCoff_min + tC*R ns 25 ns Min. delay times: intrinsic time, caused by internal processing. Max. delay times: min. time + delay caused by external components CLoad and RPullup.: tC_Load = 0.4ns*CLoad/pF, tC*R = RPullup*CLoad; RPullup>1.5kΩ Hardware Reference Manual 48 2001-02-20 PEB 2266 PEF 2266 Electrical Characteristics and Timing Diagrams 8.7 Microcontroller Interface Timing t DCLKh t DCLK DCLK 50% t CS_S t CS_h CS# t DIN_S t DIN_H DIN t dDOUThz t dDOUT High Imp. DOUT 2266_231 Figure 31 Timing of the Microcontroller Interface Parameter Symbol Limit Values min. Period of DCLK DCLK high time CS# setup time CS# hold time DIN setup time DIN hold time DOUT delay time 1) DOUT delay time to high Z 1) tDCLK tDCLKh tCS_s tCS_h tDIN_s tDIN_h tdDOUT tdDOUThz typ. Unit max. 1/8192 ms 0.4*tDCLK tDCLK/2 0.6*tDCLK µs 10 50 ns 30 50 ns 10 50 ns 10 50 ns 30 tdDOUT_min + tC_Load ns 30 50 ns All delay times are made up by two components: an intrinsic time (min-time), caused by internal processing, and a second component tC_Load = 0.4ns*CLoad/pF, caused by external circuitry (C-load). Hardware Reference Manual 49 2001-02-20 PEB 2266 PEF 2266 Electrical Characteristics and Timing Diagrams 8.8 Signaling Interface Timing 8.8.1 Timing from the µC Interface to the SO/SB-pins DCLK DIN Bit 2 Bit 1 Bit 0 t dSout SO/SB Output Old Value New Value t dSBZ SB (Output High Imp. Input) t dSBD High Imp. SB (Input Output) 2266_232 Figure 32 Signaling Output Timing (data downstream) Parameter Symbol Limit Values min. SO/SB delay time 1) SB to ‘Z’ - time SB to ‘drive’-time 1) tdSout tdSBZ tdSBD typ. Unit max. 30 tdSout_min+ tC_Load ns 40 100 ns 40 tdSBD_min+ tC_Load ns All delay times are made up by two components: an intrinsic time (min-time), caused by internal processing, and a second component tC_Load = 0.4ns*CLoad/pF, caused by external circuitry (C-load). 8.8.2 Timing from the SI/SB-pins to the µC Interface The register update and interrupt behavior resulting from signaling input changes (data upstream – pins SI and SB, if programmed as signaling inputs) depend on internal sampling clocks, counters and register settings. See Chapter 5.3.2 for a functional description. Hardware Reference Manual 50 2001-02-20 PEB 2266 PEF 2266 Test Modes 9 Test Modes Each SICOFI®2-µC channel has four test loops that feed the analog input signal back to the analog output (analog test loops), and five test loops that feed the PCM input signal back to the PCM output. Note: The signal path can also be cut off at two different points per receive and transmit direction. 9.1 Analog Loops The four analog loops feed signals from the transmit path back into the receive path. Figure 33 shows the locations of the analog loops. Transmit Path Analog AGX ADC Digital Gain 2 Input AGR DAC Frequency Response Digital Gain 1 HPR TH Analog Digital Gain 2 Output CMP PCM Output ALB-PCM IM1 HPX ALB-8K ALB-4M ALB-PFI IM2 Frequency Response Digital Gain 1 PCM Input EXP Receive Path 2266_233 Figure 33 Analog Loops Table 34 Analog Loop Programming in Register CR3, Bits 7 to 4 Test-Loops Analog Loops (CR3.7 = 0) 0000 All loops are disabled (normal operation). 0001 ALB-PFI Analog Loop Back via PREFI-POFI is selected. 0011 ALB-4M Analog Loop Back via 4 MHz is selected. 0100 ALB-PCM Analog Loop Back via 8 kHz (PCM) is selected and in all channels active. (required slope setting in XR6.6, XR6.5 = 00 or 11). 0101 ALB-8K Analog Loop Back via 8 kHz (linear) is selected. Hardware Reference Manual 51 2001-02-20 PEB 2266 PEF 2266 Test Modes 9.2 Digital Loops The digital loops feed signals from the receive path back to the transmit path. There are five digital loops, which are shown in Figure 34. Transmit Path AGX ADC Digital Gain 2 IM1 DLB-64K IM2 DLB-128K DLB-4M DLB-ANA Input DAC HPX CMP PCM Output Frequency Response Digital Gain 1 HPR EXP PCM Input TH Analog AGR Frequency Response Digital Gain 1 DLB-PCM Analog Digital Gain 2 Output Receive Path 2266_234 Figure 34 Digital Loops Table 35 Digital Loop Programming in Register CR3, Bits 7 to 4 Test-Loops Digital Loops (CR3.7 = 1) 1000 DLB-ANA Digital Loop Back via analog port is selected. 1001 DLB-4M Digital Loop Back via 4 MHz is selected. 1100 DLB-128K Digital Loop Back via 128 kHz is selected. 1101 DLB-64K Digital Loop Back via 64 kHz is selected. 1111 DLB-PCM Digital Loop Back via PCM Registers is selected. Hardware Reference Manual 52 2001-02-20 PEB 2266 PEF 2266 Test Modes 9.3 Cut-Off’s The transmit path and the receive path can be cut off at two locations each. Figure 35 shows the locations in the signal paths. Transmit Path COT16 Analog AGX ADC Digital Gain 2 Input IM2 COR4M DAC HPX CMP Frequency Response Digital Gain 1 HPR EXP PCM Output TH COR64 Analog AGR IM1 COT8 Frequency Response Digital Gain 1 Digital Gain 2 Output PCM Input Receive Path 2266_235 Figure 35 Cut-Off’s Table 36 Cut-Off Programming in Register CR2, Bits 7 to 5. COT/R Cut-Off’s in the Transmit and the Receive Paths 000 All Cut-offs disabled (Normal Operation). 001 COT16 Cut Off Transmit path at 16 kHz (input of TH-Filter). 010 COT8 Cut Off Transmit path at 8 kHz (shortens the input of the compressor unit to ground, resulting in PCM idle codes in the transmit time slot). 101 COR4M Cut Off Receive path at 4 MHz (POFI-output). 110 COR64 Cut Off Receive path at 64 kHz (IM-filter input). Hardware Reference Manual 53 2001-02-20 PEB 2266 PEF 2266 Package Outlines 10 Package Outlines GPM05250 P-MQFP-64 (Plastic Metric Quad Flat Package) Sorts of Packing Package outlines for tubes, trays etc. are contained in our Data Book “Package Information”. SMD = Surface Mounted Device Hardware Reference Manual 54 Dimensions in mm 2001-02-20 PEB 2266 PEF 2266 Glossary 11 Glossary AC Alternating Current ADC Analog-to-Digital Converter CMOS Complementary Metal Oxide Semiconductor CRAM Coefficient RAM DAC Digital-to-Analog Converter DC Direct Current DLC Digital Loop Carrier DSP Digital Signal Processor DTMF Dual Tone Multi Frequency FIR Finite Impulse Response FTTC Fiber-To-The-Curb IIR Infinite Impulse Response IOM-2 ISDN-Oriented Modular 2nd Generation ITU International Telecommunication Union ITU-T International Telecommunication Union-Telecommunication Standardization Sector (formerly CCITT) PBX Private Branch Exchange PCM Pulse Code Modulation PSTN Public Switched Telephone Network PTT Post Telephone Telegraph QSICOS Quad SICOFI Coefficient Software RITL Radio-In-The-Loop RT Remote Terminal SICOFI Signal Processor Codec Filter SLIC Subscriber Line Interface Circuit t/r tip/ring Hardware Reference Manual 55 2001-02-20 PEB 2266 PEF 2266 Index AR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Architecture . . . . . . . . . . . . . . . . . . . . . . 2 Attenuation . . . . . . . . . . . . . . . . . . . . . 18 AX . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Symbols µ-Law . . . . . . . . . . . . . . . 2, 11, 14, 19, 30 µ-Law mode . . . . . . . . . . . . . . . . . . 15, 22 B Balancing filter . . . . . . . . . . . . . . . . . . . 26 Bi-directional signaling pins . . . . . . . 8, 33 Blocking capacitors . . . . . . . . . . . . . . . 42 Board design . . . . . . . . . . . . . . . . . . . . 42 Board layout . . . . . . . . . . . . . . . . . . . . 43 Byte-by-byte transfer . . . . . . . . . . . . . . 36 Numerics 0 dBm0-Levels . . . . . . . . . . . . . . . . . . . 14 2-wire to 4-wire conversion. . . . . . . . . . 10 8-bit time slots. . . . . . . . . . . . . . . . . . . . . 2 A C A/µ-Law. . . . . . . . . . . . . . . . . . . . . . . . . . 3 A/D and D/A converters . . . . . . 11, 18, 26 A/D converters . . . . . . . . . . . . . . . . 14, 23 Absolute gain . . . . . . . . . . . . . . . . . . . . 17 Absolute group delay . . . . . . . . . . . . . . 18 Absolute maximum ratings . . . . . . . . . . 44 AC transmission characteristics . . . . . . 27 Accuracy of digital filters . . . . . . . . . 10, 11 ADC . . . . . . . . . . . . . . . . . . . . . . . 2, 3, 11 A-Law . . . . . . . . . . . . . . . 2, 11, 14, 19, 30 A-Law mode . . . . . . . . . . . . . . . . . . . . . 15 Ambient temperature . . . . . . . . . . . . . . 44 Analog ground pins. . . . . . . . . . . . 8, 9, 29 Analog I/O. . . . . . . . . . . . . . . . . . . . . . . . 2 Analog input . . . . . . . . . . . . . . . . . . . . . 13 Analog input/output pins . . . . . . . . . . . . 29 Analog Interface . . . . . . . . . . . . . 3, 27, 28 Analog interface . . . . . . . . . . . . . . . 14, 46 Analog Interface pins . . . . . . . . . . . . . . 29 Analog loop programming. . . . . . . . . . . 51 Analog loops . . . . . . . . . . . . . . . . . . . 3, 51 Analog output . . . . . . . . . . . . . . . . . . . . 13 Analog supply reference voltage . . . . . . 9 Analog supply voltage. . . . . . . . . . . . . . . 8 Analog voice input/output . . . . . . . . . . . . 8 Analog voltage levels . . . . . . . . . . . . . . 14 Application hints . . . . . . . . . . . . . . . . . . 41 Application Notes . . . . . . . . . . . . . . . . . . 1 Hardware Reference Manual Ceramic capacitors . . . . . . . . . . . . . . . 42 Channel operating ranges . . . . . . . . . . 45 Channel-pair . . . . . . . . . . . . . . . . . . . . 33 Channels . . . . . . . . . . . . . . . . . . 2, 22, 37 Channel-specific coefficients . . . . . . . . 39 Channel-specific registers. . . .11, 12, 37, 38 Chip Select . . . . . . . . . . . . . . . . . . . 6, 34 Clock . . . . . . . . . . . . . . . . . 11, 32, 33, 34 Clock output signals . . . . . . . . . . . . . . . 2 Clock programming . . . . . . . . . . . . . . . 33 C-message . . . . . . . . . . . . . . . . . . . . . 19 Codec filter . . . . . . . . . . . . . . . . . . . . . . 2 Coefficient calculation & configuration software . . . . . . . . . . . . . . 3 Coefficient Operation (COP) command . .40 Coefficient operation commands . . . . . 39 Coefficient RAM. . . . . . 11, 34, 35, 37, 39 Command sequences . . . . . . . . . . 36, 40 Command type . . . . . . . . . . . . . . . . . . 40 Commands . . . . . . . . . . . . . . . . . . . . . 35 Common configuration registers . . . 11, 37, 38 Compression . . . . . . . . . . . . . . . . . . . . . 3 Compressor . . . . . . . . . . . . . . . . . . . . . 11 Configuration of interfaces. . . . . . . . . . 27 Configuration registers . . . . . . . . . 35, 37 Control Data input/output pins . . . . . . . 34 56 2001-02-20 PEB 2266 PEF 2266 Control data input/output pins. . . . . . . . 34 Conversion utilities . . . . . . . . . . . . . . . . 41 COP . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 COP command sequences. . . . . . . . . . 39 Country-specific adaptations . . . . . . . . 10 Coupling capacitors . . . . . . . . . 27, 29, 46 CR0 to CR5 . . . . . . . . . . . . . . . . . . . . . 37 CR0 to CR7 . . . . . . . . . . . . . . . . . . . . . 38 CRAM . . . . . . . . . . . 11, 34, 35, 37, 39, 40 CRAM structure . . . . . . . . . . . . . . . . . . 39 Crosstalk. . . . . . . . . . . . . . . . . . . . . . . . 22 CR-Registers . . . . . . . . . . . . . . . . . . . . 11 CS#. . . . . . . . . . . . . . . . . . . . . . . . . 34, 49 Cut-Off programming . . . . . . . . . . . . . . 53 Cut-Off’s . . . . . . . . . . . . . . . . . . . . . . . . 53 Digital, programmable filters . . . . . . . . 10 DIN . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 DLC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Double clocking mode timing. . . . . . . . 48 DOUT . . . . . . . . . . . . . . . . . . . . . . . . . 49 Driving capability . . . . . . . . . . . . . . . 3, 27 DSP core . . . . . . . . . . . . . . . . 2, 3, 10, 11 DTMF. . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Dynamic gain. . . . . . . . . . . . . . . . . . . . . 3 Dynamic range . . . . . . . . . . . . . . . . . . 11 E EASY 2466 . . . . . . . . . . . . . . . . . . . 3, 41 EASY 2466 evaluation system . . . . . . 41 Echo . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Electrical characteristics . . . . . . . . . . . 44 Evaluation boards . . . . . . . . . . . . . . . . 41 EVC50x . . . . . . . . . . . . . . . . . . . . . . . . 41 Expander . . . . . . . . . . . . . . . . . . . . . . . 11 Expansion . . . . . . . . . . . . . . . . . . . . . . . 3 Extended Operation (XOP) command . . .40 Extended temperature range. . . . . . . . . 2 External amplifier. . . . . . . . . . . . . . . . . 27 External components. . . . . . . . . . . . . . 26 D DAC . . . . . . . . . . . . . . . . . . . . . . . 2, 3, 11 Data bytes. . . . . . . . . . . . . . . . . . . . . . . 35 Data Clock . . . . . . . . . . . . . . . . . . . . . . . 6 Data clock . . . . . . . . . . . . . . . . . . . . . . . 34 Data input pins . . . . . . . . . . . . . . . . . . . . 6 Data output pins . . . . . . . . . . . . . . . . . . . 6 Data pins. . . . . . . . . . . . . . . . . . . . . . . . 34 Data rates . . . . . . . . . . . . . . . . . . 3, 11, 30 Data receive pins . . . . . . . . . . . . . . . . . . 7 Data transmit pins. . . . . . . . . . . . . . . . . . 7 DCLK . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Debouncing functions . . . . . . . . . . . 32, 33 Decimation . . . . . . . . . . . . . . . . . . . . . . 11 Detect specific tones. . . . . . . . . . . . . . . 10 Development boards. . . . . . . . . . . . . 3, 41 Digital filters . . . . . . . . . . . . . . . . . . . . . . 3 Digital ground pins . . . . . . . . . . . . . . . . . 6 Digital input . . . . . . . . . . . . . . . . . . . . . . 13 Digital interface . . . . . . . . . . . . . . . . . . . 45 Digital loop programming . . . . . . . . . . . 52 Digital loops . . . . . . . . . . . . . . . . . . . 3, 52 Digital output. . . . . . . . . . . . . . . . . . . . . 13 Digital supply voltage . . . . . . . . . . . . . . . 7 Digital switching & transmission system . . . . 2 Hardware Reference Manual F Fiber-to-the-Curb Systems . . . . . . . . . . 4 Filter capacitors . . . . . . . . . . . . . . . . . . 42 Filter characteristics. . . . . . . . . . . . . . . 10 Filter coefficients . . . . . . . . . . . . . . . . . 27 Filter coefficients storage. . . . . . . . . . . 11 Filter structures . . . . . . . . . . . . . . . . . . 11 Flow diagram . . . . . . . . . . . . . . . . . . . . 16 Fluctuation . . . . . . . . . . . . . . . . . . . . . . 10 Four-wire interface. . . . . . . . . . . . . . . . 10 Frame . . . . . . . . . . . . . . . . . . . . . . . . . 30 Frame delay. . . . . . . . . . . . . . . . . . . . . 30 Frame synchronization clock . . . . . . 7, 30 Frequency correction. . . . . . . . . . . . . . 11 Frequency response . . . . . . . . . 3, 18, 27 57 2001-02-20 PEB 2266 PEF 2266 Frequency response corrections . . 10, 16 FRR . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 FRX. . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 FSC. . . . . . . . . . . . . . . . . . . . . . . . . 47, 48 Functional blocks . . . . . . . . . . . . . . . . . 37 Input voltage range (AC) . . . . . . . . . . . 46 Input voltages . . . . . . . . . . . . . . . . . . . 45 INT12. . . . . . . . . . . . . . . . . . . . . . . . . . 33 Interface description . . . . . . . . . . . . . . 27 Interfaces. . . . . . . . . . . . . . . . . . . . . . . 37 Intermodulation . . . . . . . . . . . . . . . . . . 20 Intermodulation distortion . . . . . . . . . . 20 Internal registers . . . . . . . . . . . . . . . . . 34 Interpolation. . . . . . . . . . . . . . . . . . . . . 11 Interrupt generation . . . . . . . . . . . . . . . 33 Interrupt output pins. . . . . . . . . . . . . . . 33 Interrupt pins . . . . . . . . . . . . . . . . . . . . 32 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . 8 Inventory costs . . . . . . . . . . . . . . . . . . . 4 ITU-T . . . . . . . . . . . . . . . . . . . . . 3, 14, 16 G Gain . . . . . . . . . . . . . . . . . . . . . . . . 15, 26 Gain accuracy. . . . . . . . . . . . . . . . . . . . 17 Gain deviations with input level . . . . . . 17 Gain tracking. . . . . . . . . . . . . . . . . . . . . 17 Ground layer . . . . . . . . . . . . . . . . . . . . . 43 Ground pins . . . . . . . . . . . . . . . . . . . . . 43 Ground plane . . . . . . . . . . . . . . . . . . . . 43 Ground-key detection . . . . . . . . . . . . . . 10 Group delay . . . . . . . . . . . . . . . . . . 18, 26 Group delay absolute values . . . . . . . . 18 Group delay distortion. . . . . . . . . . . . . . 19 K Key Systems . . . . . . . . . . . . . . . . . . . . . 4 H L Hardware filters. . . . . . . . . . . . . . . . 11, 23 Hardware reset . . . . . . . . . . . . . . . . . . . 12 Harmonic distortion. . . . . . . . . . . . . . . . 20 High impedance state . . . . . . . . . . . . . . 34 Highway . . . . . . . . . . . . . . . . . . . . . . . . 11 HW-Reset . . . . . . . . . . . . . . . . . . . . . . . 12 Level adjustments . . . . . . . . . . . . . 10, 11 Level metering . . . . . . . . . . . . . . . . . 3, 10 Line characterization . . . . . . . . . . . . . . 10 Linearity . . . . . . . . . . . . . . . . . . . . . . 3, 11 Linecard functions . . . . . . . . . . . . . . . . 10 Load capacities . . . . . . . . . . . . . . . . . . 14 Local requirements . . . . . . . . . . . . . . . 10 Loop filters . . . . . . . . . . . . . . . . . . . . . . 10 I I/O pins . . . . . . . . . . . . . . . . . . . . . . . . . 32 Identification byte . . . . . . . . . . . . . . . . . 35 Idle channel noise. . . . . . . . . . . . . . . . . 19 IM-filter . . . . . . . . . . . . . . . . . . . . . . 26, 39 Impedance matching . . . . . . 3, 10, 11, 16 Independent filter structures . . . . . . . . . . 2 Industry–standard PCM Interface . . . . . 30 Input impedance . . . . . . . . . . . . 10, 29, 46 Input leakage current . . . . . . . . . . . 45, 46 Input offset voltage . . . . . . . . . . . . . . . . 46 Input pins . . . . . . . . . . . . . . . . . . . . 12, 32 Input resistance . . . . . . . . . . . . . . . 27, 46 Hardware Reference Manual M Manufacturing test . . . . . . . . . . . . . . . . . 3 Master clock . . . . . . . . . . . . . . . . . . 7, 33 Maximum signal levels . . . . . . . . . . . . 14 Measurements. . . . . . . . . . . . . . . . . . . 41 Microcontroller . . . . . . . . . . . . . . . . . . . 10 Microcontroller Interface . . 10, 34, 39, 40 Microcontroller interface timing . . . . . . 49 Microcontrollers . . . . . . . . . . . . . . . . . . 27 58 2001-02-20 PEB 2266 PEF 2266 N PCM interface timing . . . . . . . . . . . 47, 48 PCM ports . . . . . . . . . . . . . . . . . . . . . . 11 Peak amplitude . . . . . . . . . . . . . . . 14, 27 PEB 2466 . . . . . . . . . . . . . . . . . . . . . . . 1 Pin configuration . . . . . . . . . . . . . . . . . . 5 Pin definitions and functions . . . . . . . . . 6 Pin descriptions . . . . . . . . . . . . . . . . . . . 5 Pin diagram . . . . . . . . . . . . . . . . . . . . . . 5 PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Power dissipation . . . . . . . . . . . . . 12, 13 Power dissipation (package) . . . . . . . . 44 Power On. . . . . . . . . . . . . . . . . . . . . . . 12 Power spectral density . . . . . . . . . . . . 25 Power supply rejection ratio . . . . . . . . 45 Power-saving state . . . . . . . . . . . . . . . 12 POWER-UP state . . . . . . . . . . . . . . . . 33 Product Brief . . . . . . . . . . . . . . . . . . . . . 1 Product Overview . . . . . . . . . . . . . . . . . 1 Programmable debouncing . . . . . . . . . . 3 Programmable digital filters . . . . . . . . . . 3 Programmable filters . . . . . . . . . . . . . . 26 Programmable frequency . . . . . . . . . . 13 Programmable tone generators. . . . . . . 3 Programmer’s Reference Manual . . . . . 1 Programming overview . . . . . . . . . . . . 37 PSB 2132 . . . . . . . . . . . . . . . . . . . . . . . 1 PSB 2134 . . . . . . . . . . . . . . . . . . . . . . . 1 Psophometric. . . . . . . . . . . . . . . . . . . . 19 Noise. . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Noise rejection . . . . . . . . . . . . . . . . . . . 42 Non usable input. . . . . . . . . . . . . . . . . . . 6 Non usable input/output . . . . . . . . . . . . . 6 Not connected pins . . . . . . . . . . . . . . . 6, 9 O On-/off-hook detection . . . . . . . . . . . . . 10 Operating conditions. . . . . . . . . . . . . . . 16 Operating range . . . . . . . . . . . . . . . . . . 45 Operating state . . . . . . . . . . . . . . . . 12, 13 Operating states . . . . . . . . . . . . . . . . . . 12 Operation of interfaces . . . . . . . . . . . . . 27 Operational description. . . . . . . . . . . . . 12 Optimization . . . . . . . . . . . . . . . . . . . . . 41 Out-of-band discrimination . . . . . . . 23, 24 Out-of-band idle channel noise. . . . . . . 25 Out-of-band signals . . . . . . . . . 23, 24, 27 Output load . . . . . . . . . . . . . . . . . . . . . . 46 Output offset voltage. . . . . . . . . . . . . . . 46 Output resistance . . . . . . . . . . . . . . . . . 46 Output voltages. . . . . . . . . . . . . . . . . . . 45 Overload compression . . . . . . . . . . . . . 22 Overload point . . . . . . . . . . . . . 14, 22, 27 Oversampling . . . . . . . . . . . . . . . . . . . . 11 P Q Package . . . . . . . . . . . . . . . . . . . . . . . . . 3 Package Outlines . . . . . . . . . . . . . . . . . 54 Pair-Gain Systems . . . . . . . . . . . . . . . . . 4 PCLK . . . . . . . . . . . . . . . . . . . . . . . 47, 48 PCM clock. . . . . . . . . . . . . . . . . . . . . . . 30 PCM data clock. . . . . . . . . . . . . . . . . . . . 7 PCM data format. . . . . . . . . . . . . . . . . . 30 PCM Highway A . . . . . . . . . . . . . . . . . . . 7 PCM Highway B . . . . . . . . . . . . . . . . . . . 7 PCM highways . . . . . . . . . . . . 2, 3, 27, 30 PCM interface . . . . . . . . . . . . . . . 3, 14, 27 PCM interface pins . . . . . . . . . . . . . . . . 30 Hardware Reference Manual QSICOS. . . . . . . . . . . . . . . . . . . . . . 3, 41 R Radio-in-the-Loop Systems . . . . . . . . . . 4 Read access . . . . . . . . . . . . . . . . . 35, 38 Read commands . . . . . . . . . . . . . . 35, 36 Receive data input pins . . . . . . . . . . . . 30 Receive delay . . . . . . . . . . . . . . . . . . . 18 Receive path . . . . . . . . . . . 10, 51, 52, 53 Reference voltage pin . . . . . . . . . . . 9, 29 59 2001-02-20 PEB 2266 PEF 2266 Register maps. . . . . . . . . . . . . . . . . . . . 38 Register model . . . . . . . . . . . . . . . . . . . 37 Register values . . . . . . . . . . . . . . . . . . . 13 Registers. . . . . . . . . . . . . . . . . . . . . . . . 11 Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Reset state . . . . . . . . . . . . . . . . 12, 13, 46 Reset timing . . . . . . . . . . . . . . . . . . . . . 46 RESET# . . . . . . . . . . . . . . . . . . . . . . . . 12 RESET# pin . . . . . . . . . . . . . . . . . . . . . 46 Resolution. . . . . . . . . . . . . . . . . . . . . . . 11 Return loss . . . . . . . . . . . . . . . . . . . . . . 10 Ring signals . . . . . . . . . . . . . . . . . . . . . 10 RITL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 RST. . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Signaling status changes. . . . . . . . . . . 32 Signal-to-noise performance . . . . . . . . 11 Signal-to-total distortion ratio. . . . . 20, 21 Sine wave signal . . . . . . . . . . . . . . . . . 14 Single clocking mode timing . . . . . . . . 47 Single frequency distortion . . . . . . . . . 22 SLIC. . . . . . . . . . . . . . 2, 3, 10, 16, 26, 27 SLIC daughter cards . . . . . . . . . . . . . . 41 SLIC interfaces . . . . . . . . . . . . . . . . . . 33 SOP . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Specifications . . . . . . . . . . . . . . . . . . . 16 Spikes . . . . . . . . . . . . . . . . . . . . . . . . . 46 Standard temperature range . . . . . . . . . 2 Standby operating range . . . . . . . . . . . 45 Standby state. . . . . . . . . . . . . . . . . 12, 13 State diagram . . . . . . . . . . . . . . . . . . . 12 States . . . . . . . . . . . . . . . . . . . . . . 12, 13 Status Operation (SOP) command . . . 40 Storage temperature . . . . . . . . . . . . . . 44 Subscriber line interface circuits . . . 2, 10, 27 Subscriber lines . . . . . . . . . . . . . . . . . . 32 Supervision and signaling functions . . 32 Supply current . . . . . . . . . . . . . . . . . . . 45 Supply voltage . . . . . . . . . . . . . . . . . . . . 3 Supply voltage pins . . . . . . . . . . . . . . . 29 Support tools . . . . . . . . . . . . . . . . . . 3, 41 SW-Reset . . . . . . . . . . . . . . . . . . . . . . 12 System diagnostics . . . . . . . . . . . . . . . . 3 System tests . . . . . . . . . . . . . . . . . . . . . 3 S Sampling. . . . . . . . . . . . . . . . . . . . . . . . 34 Sampling intervals . . . . . . . . . . . . . . . . 33 Sampling slopes . . . . . . . . . . . . . . . . . . 30 Schmitt-Trigger input . . . . . . . . . . . . . . 46 Serial input . . . . . . . . . . . . . . . . . . . . . . 13 Serial Interface . . . . . . . . . . . . . . . . . . . . 2 Serial Microcontroller Interface . . 10, 27, 34 Serial output . . . . . . . . . . . . . . . . . . . . . 13 Sigma-delta. . . . . . . . . . . . . . . . . . . . . . 11 Signal levels . . . . . . . . . . . . . . . . . . . 3, 15 Signal paths . . . . . . . . . . . . . . . . . . . . . 53 Signal power transfer . . . . . . . . . . . . . . 10 Signal processor . . . . . . . . . . . . . . . . . . 10 Signal reflections . . . . . . . . . . . . . . . . . 10 Signal rejection . . . . . . . . . . . . . . . . . . . 23 Signaling example . . . . . . . . . . . . . . . . 32 Signaling input pins. . . . . . . . . . . . . . 8, 33 Signaling input/output pins . . . . . . . . . . 11 Signaling Interface . . . . . . . . . . 10, 27, 32 Signaling Interface pins . . . . . . . . . . . . 33 Signaling interface timing . . . . . . . . . . . 50 Signaling output pins . . . . . . . . . . . . 8, 33 Signaling output timing . . . . . . . . . . . . . 50 Signaling pins . . . . . . . . . . . . . . . . . . 2, 32 Signaling registers . . . . . . . . . . . . . . . . 33 Hardware Reference Manual T Tantalum capacitors . . . . . . . . . . . . . . 42 Telco specification . . . . . . . . . . . . . . . . 27 Telephone line . . . . . . . . . . . . . . . . . . . 27 Telephone linecard . . . . . . . . . . . . . . . 10 Telephone subscriber loop . . . . . . . . . 10 Teletax filters . . . . . . . . . . . . . . . . . . . . 27 Teletax pulses . . . . . . . . . . . . . . . . 23, 27 Test circuit . . . . . . . . . . . . . . . . . . . . . . 42 Test conditions . . . . . . . . . . . . . . . . . . 16 Test loops . . . . . . . . . . . . . . . . . . . 26, 51 60 2001-02-20 PEB 2266 PEF 2266 Write commands . . . . . . . . . . . . . . 35, 36 Test modes . . . . . . . . . . . . . . . . . . . . . . 51 Test relays . . . . . . . . . . . . . . . . . . . . . . 10 TG1 and TG2 . . . . . . . . . . . . . . . . . . . . 39 TH-filter . . . . . . . . . . . . . . . . . . . . . . 37, 39 Three-Wire access . . . . . . . . . . . . . . . . 36 Time slot assignment . . . . . . . . . . . . 3, 11 Time slots . . . . . . . . . . . . . . . . . . . . . 2, 30 Time to market . . . . . . . . . . . . . . . . . . . . 4 Timing . . . . . . . . . . . . . . . . . . . . 47, 49, 50 Timing diagrams . . . . . . . . . . . . . . . . . . 44 Tip & ring . . . . . . . . . . . . . . . . . . . . . . . 27 Tone generators . . . . . . . . . . . . . . . . 3, 10 Tool package . . . . . . . . . . . . . . . . . . . . 41 Total distortion receive/transmit . . . 20, 21 Total gain calculation . . . . . . . . . . . . . . 15 Transfer functions . . . . . . . . . . . . . . . . . 27 Transformer . . . . . . . . . . . . . . . . 3, 10, 27 Transformer SLIC . . . . . . . . . . . . . . . . . 27 Transhybrid balancing . . 3, 10, 11, 16, 26 Transhybrid loss . . . . . . . . . . . . . . . 10, 26 Transmission characteristics. . . 10, 14, 16, 37 Transmission system . . . . . . . . . . . . . . 41 Transmit control output pins . . . . . . . . . 30 Transmit control pins . . . . . . . . . . . . . . . 7 Transmit data output pins . . . . . . . . . . . 30 Transmit delay . . . . . . . . . . . . . . . . . . . 18 Transmit path . . . . . . . . . . . 10, 51, 52, 53 Two-wire interface . . . . . . . . . . . . . . . . 10 Types of commands . . . . . . . . . . . . . . . 40 X XOP . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 XR0 to XR7 . . . . . . . . . . . . . . . . . . . . . 38 XR-Registers . . . . . . . . . . . . . . . . . . . . 11 V VIN-pins . . . . . . . . . . . . . . . . . . . . . . . . 27 Voice channels . . . . . . . . . . . . . . . . . . . 11 Voltage levels . . . . . . . . . . . . . . . . . . . . 12 VOUT-pins . . . . . . . . . . . . . . . . . . . . . . 27 W Waiting time . . . . . . . . . . . . . . . . . . . . . 36 Website. . . . . . . . . . . . . . . . . . . . . . . . . . 1 Write access . . . . . . . . . . . . . . . . . . 35, 38 Hardware Reference Manual 61 2001-02-20 Infineon goes for Business Excellence “Business excellence means intelligent approaches and clearly defined processes, which are both constantly under review and ultimately lead to good operating results. Better operating results and business excellence mean less idleness and wastefulness for all of us, more professional success, more accurate information, a better overview and, thereby, less frustration and more satisfaction.” Dr. Ulrich Schumacher http://www.infineon.com Published by Infineon Technologies AG