TI SN74AVCH32T245ZKER

SCES589B − AUGUST 2004 − REVISED APRIL 2005
D Member of the Texas Instruments
D
D
D
D
D Ioff Supports Partial-Power-Down Mode
Widebus+ Family
Control Inputs VIH/VIL Levels Are
Referenced to VCCA Voltage
VCC Isolation Feature − If Either VCC Input
Is at GND, Both Ports Are in the
High-Impedance State
Overvoltage-Tolerant Inputs/Outputs Allow
Mixed-Voltage-Mode Data Communications
Fully Configurable Dual-Rail Design Allows
Each Port to Operate Over the Full 1.2-V to
3.6-V Power-Supply Range
D
D
D
D
Operation
I/Os Are 4.6-V Tolerant
Bus Hold on Data Inputs Eliminates the
Need for External Pullup/Pulldown
Resistors
Latch-Up Performance Exceeds 100 mA Per
JESD 78, Class II
ESD Protection Exceeds JESD 22
− 8000-V Human-Body Model (A114-A)
− 200-V Machine Model (A115-A)
− 1000-V Charged-Device Model (C101)
description/ordering information
This 32-bit noninverting bus transceiver uses two separate configurable power-supply rails. The
SN74AVCH32T245 is optimized to operate with VCCA/VCCB set at 1.4 V to 3.6 V. It is operational with VCCA/VCCB
as low as 1.2 V. The A port is designed to track VCCA. VCCA accepts any supply voltage from 1.2 V to 3.6 V. The
B port is designed to track VCCB. VCCB accepts any supply voltage from 1.2 V to 3.6 V. This allows for universal
low-voltage bidirectional translation between any of the 1.2-V, 1.5-V, 1.8-V, 2.5-V, and 3.3-V voltage nodes.
The SN74AVCH32T245 is designed for asynchronous communication between data buses. The device
transmits data from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the
direction-control (DIR) input. The output-enable (OE) input can be used to disable the outputs so the buses are
effectively isolated.
The SN74AVCH32T245 is designed so that the control pins (1DIR, 2DIR, 3DIR, 4DIR, 1OE, 2OE, 3OE, and
4OE) are supplied by VCCA.
This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs,
preventing damaging current backflow through the device when it is powered down.
The VCC isolation feature ensures that if either VCC input is at GND, then both ports are in the high-impedance
state.
Active bus-hold circuitry holds unused or undriven inputs at a valid logic state. Use of pullup or pulldown resistors
with the bus-hold circuitry is not recommended.
To ensure the high-impedance state during power up or power down, OE should be tied to VCC through a pullup
resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
ORDERING INFORMATION
ORDERABLE
PART NUMBER
PACKAGE†
TA
LFBGA − GKE
−40°C to 85°C
LFBGA − ZKE (Pb-free)
TOP-SIDE
MARKING
SN74AVCH32T245KR
Tape and reel
74AVCH32T245ZKER
WJ245
† Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are
available at www.ti.com/sc/package.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Widebus+ is a trademark of Texas Instruments.
Copyright  2005, Texas Instruments Incorporated
!"# $ %&'# "$ (&)*%"# +"#',
+&%#$ %! # $('%%"#$ (' #-' #'!$ '."$ $#&!'#$
$#"+"+ /""#0, +&%# (%'$$1 +'$ # '%'$$"*0 %*&+'
#'$#1 "** (""!'#'$,
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
SCES589B − AUGUST 2004 − REVISED APRIL 2005
GKE OR ZKE PACKAGE
(TOP VIEW)
1
2
3
4
5
6
terminal assignments
1
2
3
4
5
6
A
A
1B2
1B1
1DIR
1OE
1A1
1A2
B
B
1B4
1B3
GND
GND
1A3
1A4
C
C
1B6
1B5
1A6
D
1B8
1B7
VCCA
GND
1A5
D
VCCB
GND
1A7
1A8
E
2B2
2B1
GND
GND
2A1
2A2
E
F
G
H
J
K
L
M
F
2B4
2B3
2B5
VCCA
GND
2A4
2B6
VCCB
GND
2A3
G
2A5
2A6
H
2B7
2B8
2DIR
2OE
2A8
2A7
J
3B2
3B1
3DIR
3OE
3A1
3A2
K
3B4
3B3
GND
GND
3A3
3A4
L
3B6
3B5
3A6
3B8
3B7
VCCA
GND
3A5
M
VCCB
GND
3A7
3A8
N
4B2
4B1
GND
GND
4A1
4A2
N
P
4B4
4B3
4B6
4B5
VCCA
GND
4A4
R
VCCB
GND
4A3
P
4A5
4A6
R
T
4B7
4B8
4DIR
4OE
4A8
4A7
T
FUNCTION TABLE
(each 8-bit section)
INPUTS
OE
2
DIR
OPERATION
L
L
B data to A bus
L
H
A data to B bus
H
X
Isolation
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SCES589B − AUGUST 2004 − REVISED APRIL 2005
logic diagram (positive logic)
1DIR
A3
2DIR
A4
1A1
H4
1OE
A5
2A1
A2
H3
E5
E2
1B1
To Seven Other Channels
3DIR
2B1
To Seven Other Channels
J3
4DIR
J4
3A1
2OE
T4
3OE
J5
4A1
J2
T3
N5
N2
3B1
To Seven Other Channels
POST OFFICE BOX 655303
4OE
4B1
To Seven Other Channels
• DALLAS, TEXAS 75265
3
SCES589B − AUGUST 2004 − REVISED APRIL 2005
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Supply voltage range, VCCA and VCCB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 4.6 V
Input voltage range, VI (see Note 1): I/O ports (A port) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 4.6 V
I/O ports (B port) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 4.6 V
Control inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 4.6 V
Voltage range applied to any output in the high-impedance or power-off state, VO
(see Note 1): A port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 4.6 V
B port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 4.6 V
Voltage range applied to any output in the high or low state, VO
(see Notes 1 and 2): A port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to VCCA + 0.5 V
B port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to VCCB + 0.5 V
Input clamp current, IIK (VI < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −50 mA
Output clamp current, IOK (VO < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −50 mA
Continuous output current, IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±50 mA
Continuous current through each VCCA, VCCB, and GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±100 mA
Package thermal impedance, θJA (see Note 3): GKE/ZKE package . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40°C/W
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input voltage and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.
2. The output positive-voltage rating may be exceeded up to 4.6 V maximum if the output current rating is observed.
3. The package thermal impedance is calculated in accordance with JESD 51-7.
4
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SCES589B − AUGUST 2004 − REVISED APRIL 2005
recommended operating conditions (see Notes 4 through 8)
VCCI
VCCA
VCCB
VCCO
MIN
MAX
Supply voltage
1.2
3.6
V
Supply voltage
1.2
3.6
V
VCCI × 0.65
1.6
1.2 V to 1.95 V
High-level input
voltage
VIH
Data inputs
(see Note 7)
1.95 V to 2.7 V
2.7 V to 3.6 V
VIL
Data inputs
(see Note 7)
VCCI × 0.35
0.7
1.95 V to 2.7 V
2.7 V to 3.6 V
High-level input
voltage
VIH
Low-level input
voltage
VIL
VI
DIR
(referenced to VCCA)
(see Note 8)
DIR
(referenced to VCCA)
(see Note 8)
Output voltage
IOH
VCCA × 0.65
1.6
1.2 V to 1.95 V
1.95 V to 2.7 V
2.7 V to 3.6 V
VCCA × 0.35
0.7
1.95 V to 2.7 V
2.7 V to 3.6 V
0
3.6
V
0
3-state
0
VCCO
3.6
V
1.2 V
−3
1.4 V to 1.6 V
−6
1.65 V to 1.95 V
−8
2.3 V to 2.7 V
−9
3 V to 3.6 V
−12
1.2 V
3
1.4 V to 1.6 V
6
1.65 V to 1.95 V
8
2.3 V to 2.7 V
9
3 V to 3.6 V
12
Input transition rise or fall rate
TA
NOTES: 4.
5.
6.
V
0.8
Active state
Low-level output current
∆t/∆v
V
2
1.2 V to 1.95 V
High-level output current
IOL
V
0.8
Input voltage
VO
V
2
1.2 V to 1.95 V
Low-level input
voltage
UNIT
Operating free-air temperature
−40
mA
mA
5
ns/V
85
°C
VCCI is the VCC associated with the data input port.
VCCO is the VCC associated with the output port.
All unused data inputs of the device must be held at VCCI or GND to ensure proper device operation. Refer to the TI application report,
Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
7. For VCCI values not specified in the data sheet, VIH min = VCCI × 0.7 V, VIL max = VCCI × 0.3 V.
8. For VCCI values not specified in the data sheet, VIH min = VCCA × 0.7 V, VIL max = VCCA × 0.3 V.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
5
SCES589B − AUGUST 2004 − REVISED APRIL 2005
electrical characteristics over recommended operating free-air temperature range (unless
otherwise noted) (see Notes 9 and 10)
PARAMETER
TEST CONDITIONS
1.2 V to 3.6 V
1.2 V to 3.6 V
1.2 V
1.2 V
1.4 V
1.4 V
1.05
1.65 V
1.65 V
1.2
IOH = −9 mA
IOH = −12 mA
2.3 V
2.3 V
1.75
3V
3V
2.3
IOL = 100 µA
IOL = 3 mA
1.2 V to 3.6 V
1.2 V to 3.6 V
1.2 V
1.2 V
IOH = −6 mA
IOH = −8 mA
IOL = 6 mA
IOL = 8 mA
VOL
VI = VIH
II
IBHL†
IBHH‡
IBHHO¶
MIN
MAX
VCCO − 0.2 V
V
0.2
0.15
1.4 V
0.35
1.65 V
0.45
2.3 V
2.3 V
0.55
3V
3V
0.7
1.2 V to 3.6 V
1.2 V to 3.6 V
VI = 0.42 V
VI = 0.49 V
1.2 V
1.2 V
1.4 V
1.4 V
15
VI = 0.58 V
VI = 0.7 V
1.65 V
1.65 V
25
2.3 V
2.3 V
45
VI = 0.8 V
VI = 0.78 V
3.3 V
3.3 V
100
1.2 V
1.2 V
VI = 0.91 V
VI = 1.07 V
1.4 V
1.4 V
−15
1.65 V
1.65 V
−25
2.3 V
2.3 V
−45
3.3 V
3.3 V
−100
1.2 V
1.2 V
1.6 V
1.6 V
125
1.95 V
1.95 V
200
2.7 V
2.7 V
300
3.6 V
3.6 V
1.2 V
1.2 V
VI = VCCA or GND
VI = 0 to VCC
VI = 0 to VCC
UNIT
0.95
1.4 V
VI = 1.6 V
VI = 2 V
IBHLO§
MIN
1.65 V
VI = VIL
IOL = 9 mA
IOL = 12 mA
Control
inputs
−40°C TO 85°C
VCCB
IOH = −100 µA
IOH = −3 mA
VOH
TA = 25°C
TYP
MAX
VCCA
±0.025
±0.25
±1
V
µA
25
µA
−25
µA
50
µA
500
−50
1.6 V
1.6 V
−125
1.95 V
1.95 V
−200
2.7 V
2.7 V
−300
3.6 V
3.6 V
−500
µA
† The bus-hold circuit can sink at least the minimum low sustaining current at VIL max. IBHL should be measured after lowering VIN to GND and
then raising it to VIL max.
‡ The bus-hold circuit can source at least the minimum high sustaining current at VIH min. IBHH should be measured after raising VIN to VCC and
then lowering it to VIH min.
§ An external driver must source at least IBHLO to switch this node from low to high.
¶ An external driver must sink at least IBHHO to switch this node from high to low.
NOTES: 9. VCCO is the VCC associated with the output port.
10. VCCI is the VCC associated with the input port.
6
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SCES589B − AUGUST 2004 − REVISED APRIL 2005
electrical characteristics over recommended operating free-air temperature range (unless
otherwise noted) (see Notes 9 and 10) (continued)
PARAMETER
TEST CONDITIONS
VCCA
MIN
B port
A or B
ports
IOZ#
B port
A port
VI = VCCI or
GND,
ICCA
ICCB
ICCA ) ICCB
±5
0 to 3.6 V
0V
±0.1
±2.5
±5
OE = VIH
3.6 V
3.6 V
±0.5
±2.5
±5
OE =
don’t care
0V
3.6 V
±5
3.6 V
0V
±5
1.2 V to 3.6 V
1.2 V to 3.6 V
50
IO = 0
UNIT
MAX
±2.5
0V
3.6 V
−10
3.6 V
0V
50
1.2 V to 3.6 V
1.2 V to 3.6 V
50
0V
3.6 V
50
3.6 V
0V
−10
1.2 V to 3.6 V
1.2 V to 3.6 V
90
IO = 0
VI = VCCI or
GND,
MIN
±0.1
IO = 0
VI = VCCI or
GND,
MAX
0 to 3.6 V
VI or VO = 0 to 3.6 V
VO = VCCO or
GND,
VI = VCCI or GND
TYP
0V
A port
Ioff
−40°C TO
85°C
TA = 25°C
VCCB
A
µA
µA
A
µA
µA
µA
Ci
Control
inputs
VI = 3.3 V or GND
3.3 V
3.3 V
3.5
pF
Cio
A or B
ports
VO = 3.3 V or GND
3.3 V
3.3 V
7
pF
# For I/O ports, the parameter IOZ includes the input leakage current.
NOTES: 9. VCCO is the VCC associated with the output port.
10. VCCI is the VCC associated with the input port.
switching characteristics over recommended operating free-air temperature range,
VCCA = 1.2 V (see Figure 1)
FROM
(INPUT)
TO
(OUTPUT)
tPLH
tPHL
A
B
tPLH
tPHL
B
A
tPZH
tPZL
OE
A
tPZH
tPZL
OE
B
tPHZ
tPLZ
OE
A
tPHZ
tPLZ
OE
B
PARAMETER
VCCB = 1.2 V
TYP
VCCB = 1.5 V
TYP
VCCB = 1.8 V
TYP
VCCB = 2.5 V
TYP
VCCB = 3.3 V
TYP
4.1
3.3
3
2.8
3.2
4.1
3.3
3
2.8
3.2
4.4
4
3.8
3.6
3.5
4.4
4
3.8
3.6
3.5
6.4
6.4
6.4
6.4
6.4
6.4
6.4
6.4
6.4
6.4
6
4.6
4
3.4
3.2
6
4.6
4
3.4
3.2
6.6
6.6
6.6
6.6
6.8
6.6
6.6
6.6
6.6
6.8
6
4.9
4.9
4.2
5.3
6
4.9
4.9
4.2
5.3
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
UNIT
ns
ns
ns
ns
ns
ns
7
SCES589B − AUGUST 2004 − REVISED APRIL 2005
switching characteristics over recommended operating free-air temperature range,
VCCA = 1.5 V ± 0.1 V (see Figure 1)
FROM
(INPUT)
TO
(OUTPUT)
tPLH
tPHL
A
B
tPLH
tPHL
B
A
tPZH
tPZL
OE
A
tPZH
tPZL
OE
B
tPHZ
tPLZ
OE
A
tPHZ
tPLZ
OE
B
PARAMETER
VCCB = 1.2 V
VCCB = 1.5 V
± 0.1 V
VCCB = 1.8 V
± 0.15 V
VCCB = 2.5 V
± 0.2 V
VCCB = 3.3 V
± 0.3 V
TYP
MIN
MAX
MIN
MAX
MIN
MAX
MIN
MAX
3.6
0.5
6.2
0.5
5.2
0.5
4.1
0.5
3.7
3.6
0.5
6.2
0.5
5.2
0.5
4.1
0.5
3.7
3.3
0.5
6.2
0.5
5.9
0.5
5.6
0.5
5.5
3.3
0.5
6.2
0.5
5.9
0.5
5.6
0.5
5.5
4.3
1
10.1
1
10.1
1
10.1
1
10.1
4.3
1
10.1
1
10.1
1
10.1
1
10.1
5.6
1
10.1
0.5
8.1
0.5
5.9
0.5
5.2
5.6
1
10.1
0.5
8.1
0.5
5.9
0.5
5.2
4.5
1.5
9.1
1.5
9.1
1.5
9.1
1.5
9.1
4.5
1.5
9.1
1.5
9.1
1.5
9.1
1.5
9.1
5.5
1.5
8.7
1.5
7.5
1
6.5
1
6.3
5.5
1.5
8.7
1.5
7.5
1
6.5
1
6.3
UNIT
ns
ns
ns
ns
ns
ns
switching characteristics over recommended operating free-air temperature range,
VCCA = 1.8 V ± 0.15 V (see Figure 1)
FROM
(INPUT)
TO
(OUTPUT)
tPLH
tPHL
A
B
tPLH
tPHL
B
A
tPZH
tPZL
OE
A
tPZH
tPZL
OE
B
tPHZ
tPLZ
OE
A
tPHZ
tPLZ
OE
B
PARAMETER
8
VCCB = 1.2 V
VCCB = 1.5 V
± 0.1 V
VCCB = 1.8 V
± 0.15 V
VCCB = 2.5 V
± 0.2 V
VCCB = 3.3 V
± 0.3 V
TYP
MIN
MAX
MIN
MAX
MIN
MAX
MIN
MAX
3.4
0.5
5.9
0.5
4.8
0.5
3.7
0.5
3.3
3.4
0.5
5.9
0.5
4.8
0.5
3.7
0.5
3.3
3
0.5
5.2
0.5
4.8
0.5
4.5
0.5
4.4
3
0.5
5.2
0.5
4.8
0.5
4.5
0.5
4.4
3.4
1
7.8
1
7.8
1
7.8
1
7.8
3.4
1
7.8
1
7.8
1
7.8
1
7.8
5.4
1
9.2
0.5
7.4
0.5
5.3
0.5
4.5
5.4
1
9.2
0.5
7.4
0.5
5.3
0.5
4.5
4.2
1.5
7.7
1.5
7.7
1.5
7.7
1.5
7.7
4.2
1.5
7.7
1.5
7.7
1.5
7.7
1.5
7.7
5.2
1.5
8.4
1.5
7.1
1
5.9
1
5.7
5.2
1.5
8.4
1.5
7.1
1
5.9
1
5.7
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
UNIT
ns
ns
ns
ns
ns
ns
SCES589B − AUGUST 2004 − REVISED APRIL 2005
switching characteristics over recommended operating free-air temperature range,
VCCA = 2.5 V ± 0.2 V (see Figure 1)
FROM
(INPUT)
TO
(OUTPUT)
tPLH
tPHL
A
B
tPLH
tPHL
B
A
tPZH
tPZL
OE
A
tPZH
tPZL
OE
B
tPHZ
tPLZ
OE
A
tPHZ
tPLZ
OE
B
PARAMETER
VCCB = 1.2 V
VCCB = 1.5 V
± 0.1 V
VCCB = 1.8 V
± 0.15 V
VCCB = 2.5 V
± 0.2 V
VCCB = 3.3 V
± 0.3 V
TYP
MIN
MAX
MIN
MAX
MIN
MAX
MIN
MAX
3.2
0.5
5.6
0.5
4.5
0.5
3.3
0.5
2.8
3.2
0.5
5.6
0.5
4.5
0.5
3.3
0.5
2.8
2.6
0.5
4.1
0.5
3.7
0.5
3.3
0.5
3.2
2.6
0.5
4.1
0.5
3.7
0.5
3.3
0.5
3.2
2.5
0.5
5.3
0.5
5.3
0.5
5.3
0.5
5.3
2.5
0.5
5.3
0.5
5.3
0.5
5.3
0.5
5.3
5.2
0.5
9.4
0.5
7.3
0.5
5.1
0.5
4.5
5.2
0.5
9.4
0.5
7.3
0.5
5.1
0.5
4.5
3
1
6.1
1
6.1
1
6.1
1
6.1
3
1
6.1
1
6.1
1
6.1
1
6.1
5
1
7.9
1
6.6
1
6.1
1
5.2
5
1
7.9
1
6.6
1
6.1
1
5.2
UNIT
ns
ns
ns
ns
ns
ns
switching characteristics over recommended operating free-air temperature range,
VCCA = 3.3 V ± 0.3 V (see Figure 1)
FROM
(INPUT)
TO
(OUTPUT)
tPLH
tPHL
A
B
tPLH
tPHL
B
A
tPZH
tPZL
OE
A
tPZH
tPZL
OE
B
tPHZ
tPLZ
OE
A
tPHZ
tPLZ
OE
B
PARAMETER
VCCB = 1.2 V
VCCB = 1.5 V
± 0.1 V
VCCB = 1.8 V
± 0.15 V
VCCB = 2.5 V
± 0.2 V
VCCB = 3.3 V
± 0.3 V
TYP
MIN
MAX
MIN
MAX
MIN
MAX
MIN
MAX
3.2
0.5
5.5
0.5
4.4
0.5
3.2
0.5
2.7
3.2
0.5
5.5
0.5
4.4
0.5
3.2
0.5
2.7
2.8
0.5
3.7
0.5
3.3
0.5
2.8
0.5
2.7
2.8
0.5
3.7
0.5
3.3
0.5
2.8
0.5
2.7
2.2
0.5
4.3
0.5
4.2
0.5
4.1
0.5
4
2.2
0.5
4.3
0.5
4.2
0.5
4.1
0.5
4
5.1
0.5
9.3
0.5
7.2
0.5
4.9
0.5
4
5.1
0.5
9.3
0.5
7.2
0.5
4.9
0.5
4
3.4
0.5
5
0.5
5
0.5
5
0.5
5
3.4
0.5
5
0.5
5
0.5
5
0.5
5
4.9
1
7.7
1
6.5
1
5.2
0.5
5
4.9
1
7.7
1
6.5
1
5.2
0.5
5
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
UNIT
ns
ns
ns
ns
ns
ns
9
SCES589B − AUGUST 2004 − REVISED APRIL 2005
operating characteristics, TA = 25°C
VCCA =
VCCB = 1.2 V
VCCA =
VCCB = 1.5 V
VCCA =
VCCB = 1.8 V
VCCA =
VCCB = 2.5 V
VCCA =
VCCB = 3.3 V
TYP
TYP
TYP
TYP
TYP
1
1
1
1
2
1
1
1
1
1
13
13
14
15
16
Outputs
disabled
1
1
1
1
1
Outputs
enabled
13
13
14
15
16
1
1
1
1
1
1
1
1
1
2
1
1
1
1
1
PARAMETER
TEST
CONDITIONS
Outputs
enabled
A to B
CpdA†
Outputs
disabled
Outputs
enabled
B to A
A to B
CpdB†
Outputs
disabled
Outputs
enabled
B to A
CL = 0,
f = 10 MHz,
tr = tf = 1 ns
CL = 0,
f = 10 MHz,
tr = tf = 1 ns
Outputs
disabled
pF
pF
† Power-dissipation capacitance per transceiver
10
UNIT
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SCES589B − AUGUST 2004 − REVISED APRIL 2005
typical total static power consumption (ICCA + ICCB)
Table 1
VCCA
VCCB
0V
1.2 V
1.5 V
1.8 V
2.5 V
3.3 V
0V
0
<1
<1
<1
<1
<1
1.2 V
<1
<2
<2
<2
<2
2
1.5 V
<1
<2
<2
<2
<2
2
1.8 V
<1
<2
<2
<2
<2
<2
2.5 V
<1
2
<2
<2
<2
<2
3.3 V
<1
2
<2
<2
<2
<2
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
UNIT
µA
11
SCES589B − AUGUST 2004 − REVISED APRIL 2005
TYPICAL CHARACTERISTICS
6
6
TA = 25°C
VCCA = 1.2 V
TA = 25°C
VCCA = 1.2 V
5
tPHL − Propagation Delay − ns
tPLH − Propagation Delay − ns
5
4
3
2
×
+
1
H
0
0
VCCB = 1.2 V
VCCB = 1.5 V
VCCB = 1.8 V
VCCB = 2.5 V
VCCB = 3.3 V
10
20
30
40
CL − Load Capacitance − pF
50
4
3
2
×
+
1
H
0
60
0
10
20
30
40
50
CL − Load Capacitance − pF
Figure 1
6
TA = 25°C
VCCA = 1.5 V
5
tPHL − Propagation Delay − ns
tPLH − Propagation Delay − ns
TA = 25°C
VCCA = 1.5 V
4
3
2
×
+
1
H
0
10
20
30
VCCB = 1.2 V
VCCB = 1.5 V
VCCB = 1.8 V
VCCB = 2.5 V
VCCB = 3.3 V
40
50
5
4
3
2
×
+
1
H
0
60
CL − Load Capacitance − pF
0
10
20
30
Figure 4
POST OFFICE BOX 655303
VCCB = 1.2 V
VCCB = 1.5 V
VCCB = 1.8 V
VCCB = 2.5 V
VCCB = 3.3 V
40
CL − Load Capacitance − pF
Figure 3
12
60
Figure 2
6
0
VCCB = 1.2 V
VCCB = 1.5 V
VCCB = 1.8 V
VCCB = 2.5 V
VCCB = 3.3 V
• DALLAS, TEXAS 75265
50
60
SCES589B − AUGUST 2004 − REVISED APRIL 2005
TYPICAL CHARACTERISTICS
6
6
TA = 25°C
VCCA = 1.8 V
tPHL − Propagation Delay − ns
5
4
3
2
×
VCCB = 1.2 V
VCCB = 1.5 V
VCCB = 1.8 V
VCCB = 2.5 V
VCCB = 3.3 V
+
1
H
0
0
10
20
30
40
50
4
3
2
×
+
1
H
0
60
0
10
CL − Load Capacitance − pF
20
6
TA = 25°C
VCCA = 2.5 V
×
TA = 25°C
VCCA = 2.5 V
5
+
tPHL − Propagation Delay − ns
5
4
3
2
×
+
1
H
0
10
20
30
40
50
60
Figure 6
6
0
30
VCCB = 1.2 V
VCCB = 1.5 V
VCCB = 1.8 V
VCCB = 2.5 V
VCCB = 3.3 V
CL − Load Capacitance − pF
Figure 5
tPLH − Propagation Delay − ns
tPLH − Propagation Delay − ns
5
TA = 25°C
VCCA = 1.8 V
VCCB = 1.2 V
VCCB = 1.5 V
VCCB = 1.8 V
VCCB = 2.5 V
VCCB = 3.3 V
40
50
60
H
VCCB = 1.2 V
VCCB = 1.5 V
VCCB = 1.8 V
VCCB = 2.5 V
VCCB = 3.3 V
4
3
2
1
0
0
10
20
30
40
CL − Load Capacitance − pF
CL − Load Capacitance − pF
Figure 7
Figure 8
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
50
60
13
SCES589B − AUGUST 2004 − REVISED APRIL 2005
TYPICAL CHARACTERISTICS
6
TA = 25°C
VCCA = 3.3 V
TA = 25°C
VCCA = 3.3 V
4
3
2
×
+
1
H
0
0
10
+
20
30
VCCB = 1.2 V
VCCB = 1.5 V
VCCB = 1.8 V
VCCB = 2.5 V
VCCB = 3.3 V
40
50
H
VCCB = 1.2 V
VCCB = 1.5 V
VCCB = 1.8 V
VCCB = 2.5 V
VCCB = 3.3 V
4
3
2
1
0
60
0
10
20
30
Figure 10
Figure 9
POST OFFICE BOX 655303
40
CL − Load Capacitance − pF
CL − Load Capacitance − pF
14
×
5
5
tPHL − Propagation Delay − ns
tPLH − Propagation Delay − ns
6
• DALLAS, TEXAS 75265
50
60
SCES589B − AUGUST 2004 − REVISED APRIL 2005
PARAMETER MEASUREMENT INFORMATION
2 × VCCO
S1
RL
From Output
Under Test
Open
GND
CL
(see Note A)
TEST
S1
tpd
tPLZ/tPZL
tPHZ/tPZH
Open
2 × VCCO
GND
RL
tw
LOAD CIRCUIT
VCCI
VCCI/2
Input
VCCO
1.2 V
1.5 V ± 0.1 V
1.8 V ± 0.15 V
2.5 V ± 0.2 V
3.3 V ± 0.3 V
CL
RL
15 pF
15 pF
15 pF
15 pF
15 pF
2 kΩ
2 kΩ
2 kΩ
2 kΩ
2 kΩ
VTP
0.1 V
0.1 V
0.15 V
0.15 V
0.3 V
VCCI/2
0V
VOLTAGE WAVEFORMS
PULSE DURATION
VCCA
Output
Control
(low-level
enabling)
VCCA/2
0V
tPLZ
tPZL
VCCI
Input
VCCI/2
VCCI/2
0V
tPLH
Output
VOH
VCCO/2
VOL
VCCO/2
VCCO
Output
Waveform 1
S1 at 2 × VCCO
(see Note B)
tPHL
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
VCCA/2
VCCO/2
VOL
tPHZ
tPZH
Output
Waveform 2
S1 at GND
(see Note B)
VOL + VTP
VCCO/2
VOH − VTP
VOH
0V
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
NOTES: A. CL includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRRv10 MHz, ZO = 50 Ω, dv/dt ≥ 1 V/ns.
D. The outputs are measured one at a time, with one transition per measurement.
E. tPLZ and tPHZ are the same as tdis.
F. tPZL and tPZH are the same as ten.
G. tPLH and tPHL are the same as tpd.
H. VCCI is the VCC associated with the input port.
I. VCCO is the VCC associated with the output port.
Figure 11. Load Circuit and Voltage Waveforms
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
15
PACKAGE OPTION ADDENDUM
www.ti.com
11-Sep-2007
PACKAGING INFORMATION
Status (1)
Package
Type
Package
Drawing
SN74AVCH32T245KR
NRND
LFBGA
GKE
96
1000
SN74AVCH32T245ZKER
ACTIVE
LFBGA
ZKE
96
1000 Green (RoHS &
no Sb/Br)
Orderable Device
Pins Package Eco Plan (2)
Qty
TBD
Lead/Ball Finish
MSL Peak Temp (3)
SNPB
Level-3-220C-168 HR
SNAGCU
Level-3-260C-168 HR
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in
a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check
http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS
compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder
temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited
information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI
to Customer on an annual basis.
Addendum-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com
4-Oct-2007
TAPE AND REEL BOX INFORMATION
Device
Package Pins
Site
Reel
Diameter
(mm)
Reel
Width
(mm)
A0 (mm)
B0 (mm)
K0 (mm)
P1
(mm)
W
Pin1
(mm) Quadrant
SN74AVCH32T245KR
GKE
96
SITE 32
330
24
5.7
13.7
2.0
8
24
Q1
SN74AVCH32T245ZKER
ZKE
96
SITE 32
330
24
5.7
13.7
2.0
8
24
Q1
Pack Materials-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com
4-Oct-2007
Device
Package
Pins
Site
Length (mm)
Width (mm)
Height (mm)
SN74AVCH32T245KR
GKE
96
SITE 32
346.0
346.0
41.0
SN74AVCH32T245ZKER
ZKE
96
SITE 32
346.0
346.0
41.0
Pack Materials-Page 2
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements,
improvements, and other changes to its products and services at any time and to discontinue any product or service without notice.
Customers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s
standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this
warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily
performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should
provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask
work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services
are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such
products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under
the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is
accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an
unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties
may be subject to additional restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service
voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business
practice. TI is not responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would
reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement
specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications
of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related
requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any
applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its
representatives against any damages arising out of the use of TI products in such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is
solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in
connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products
are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any
non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products
Applications
Amplifiers
amplifier.ti.com
Audio
www.ti.com/audio
Data Converters
dataconverter.ti.com
Automotive
www.ti.com/automotive
DSP
dsp.ti.com
Broadband
www.ti.com/broadband
Interface
interface.ti.com
Digital Control
www.ti.com/digitalcontrol
Logic
logic.ti.com
Military
www.ti.com/military
Power Mgmt
power.ti.com
Optical Networking
www.ti.com/opticalnetwork
Microcontrollers
microcontroller.ti.com
Security
www.ti.com/security
RFID
www.ti-rfid.com
Telephony
www.ti.com/telephony
Low Power
Wireless
www.ti.com/lpw
Video & Imaging
www.ti.com/video
Wireless
www.ti.com/wireless
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2007, Texas Instruments Incorporated