TI SN75LVDS83BDGGR

SN75LVDS83B
www.ti.com ........................................................................................................................................................................................................ SLLS846 – MAY 2009
FLATLINK™ TRANSMITTER
•
FEATURES
1
• LVDS Display Serdes Interfaces Directly to
LCD Display Panels with Integrated LVDS
• Package Options: 4.5mm x 7mm BGA, and
8.1mm x 14mm TSSOP
• 1.8V up to 3.3V Tolerant Data Inputs to
Connect Directly to Low-Power, Low-Voltage
Application and Graphic Processors
• Transfer Rate up to 135Mpps (Mega Pixel Per
Second); Pixel Clock Frequency Range 10MHz
to 135MHz
• Suited for Display Resolutions Ranging From
HVGA up to HD With Low EMI
• Operates From a Single 3.3V Supply and
170mW (typ.) at 75MHz
2
•
•
•
•
•
28 Data Channels Plus Clock In Low-Voltage
TTL to 4 Data Channels Plus Clock Out
Low-Voltage Differential
Consumes Less Than 1mW When Disabled
Selectable Rising or Falling Clock Edge
Triggered Inputs
ESD: 5kV HBM
Support Spread Spectrum Clocking (SSC)
Compatible with all OMAP™2x, OMAP™3x,
and DaVinci™ Application Processors
APPLICATIONS
•
•
•
LCD Display Panel Driver
UMPC and Netbook PC
Digital Picture Frame
DESCRIPTION
The SN75LVDS83B FlatLink™ transmitter contains four 7-bit parallel-load serial-out shift registers, a 7X clock
synthesizer, and five Low-Voltage Differential Signaling (LVDS) line drivers in a single integrated circuit. These
functions allow 28 bits of single-ended LVTTL data to be synchronously transmitted over five balanced-pair
conductors for receipt by a compatible receiver, such as the SN75LVDS82 and LCD panels with integrated LVDS
receiver.
When transmitting, data bits D0 through D27 are each loaded into registers upon the edge of the input clock
signal (CLKIN). The rising or falling edge of the clock can be selected via the clock select (CLKSEL) pin. The
frequency of CLKIN is multiplied seven times, and then used to unload the data registers in 7-bit slices and
serially. The four serial streams and a phase-locked clock (CLKOUT) are then output to LVDS output drivers.
The frequency of CLKOUT is the same as the input clock, CLKIN.
swiv
e
Application
processor
TM
(e.g. OMAP )
l
SN75LVDS83B
TM
FlatLink Transmitter
Package Options
TSSOP: 8 x 14mm DGG
BGA: 4.5 x 7mm
1
2
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
OMAP, DaVinci, FlatLink are trademarks of Texas Instruments.
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.
Copyright © 2009, Texas Instruments Incorporated
SN75LVDS83B
SLLS846 – MAY 2009 ........................................................................................................................................................................................................ www.ti.com
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam
during storage or handling to prevent electrostatic damage to the MOS gates.
DESCRIPTION (CONTINUED)
The SN75LVDS83B requires no external components and little or no control. The data bus appears the same at
the input to the transmitter and output of the receiver with the data transmission transparent to the user(s). The
only user intervention is selecting a clock rising edge by inputting a high level to CLKSEL or a falling edge with a
low-level input, and the possible use of the Shutdown/Clear (SHTDN). SHTDN is an active-low input to inhibit the
clock, and shut off the LVDS output drivers for lower power consumption. A low-level on this signal clears all
internal registers to a low-level.
The SN75LVDS83B is characterized for operation over ambient air temperatures of -10°C to 70°C.
Alternative device option: The SN75LVDS83A (SLLS980) is an alternative to the SN75LVDS83B for clock
frequency range of 10MHz-100MHz only. The SN75LVDS83A is available in the TSSOP package option only.
ORDERING INFORMATION (1)
(1)
PART NUMBER
PART MARKING
PACKAGE
SN75LVDS83BZQLR
LVDS83B in BGA package
56-pin ZQL LARGE T&R
SN75LVDS83BDGG
LVDS83B in TSSOP package
56-pin DGG TUBE
SN75LVDS83BDGGR
LVDS83B in TSSOP package
56-pin DGG LARGE T&R
For the most current package and ordering information, see the Package Option Addendum located at the end of this data sheet, or
refer to our web site at www.ti.com.
ABSOLUTE MAXIMUM RATINGS (1)
Supply voltage range, VCC, IOVCC, LVDSVCC, PLLVCC (2)
Voltage range at any output terminal
Voltage range at any input terminal
Continuous power dissipation
Charged Device Model (CDM) (4) all pins
Machine Model (MM)
(1)
(2)
(3)
(4)
(5)
2
UNIT
V
-0.5 to VCC + 0.5
V
-0.5 to IOVCC + 0.5
V
See the dissipation rating table
Human Body Model (HBM) (3) all pins
ESD rating
VALUE
-0.5 to 4
(5)
all pins
5
kV
500
V
150
V
Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may
degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond
those specified is not implied.
All voltages are with respect to the GND terminals.
In accordance with JEDEC Standard 22, Test Method A114-A.
In accordance with JEDEC Standard 22, Test Method C101.
In accordance with JEDEC Standard 22, Test Method A115-A.
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): SN75LVDS83B
SN75LVDS83B
www.ti.com ........................................................................................................................................................................................................ SLLS846 – MAY 2009
RECOMMENDED OPERATING CONDITIONS
over operating free-air temperature range (unless otherwise noted)
MIN
NOM
MAX
Supply voltage, VCC
PARAMETER
3
3.3
3.6
LVDS output Supply voltage, LVDSVCC
3
3.3
3.6
3
3.3
3.6
1.62
1.8 / 2.5 / 3.3
3.6
PLL analog supply voltage, PLLVCC
IO input reference Supply voltage, IOVCC
Power supply noise on any VCC terminal
UNIT
V
0.1
High-level input voltage, VIH
Low-level input voltage, VIL
IOVCC = 1.8V
IOVCC/2 + 0.3V
IOVCC = 2.5V
IOVCC/2 + 0.4V
IOVCC = 3.3V
IOVCC/2 + 0.5V
V
IOVCC = 1.8V
IOVCC/2 - 0.3V
IOVCC = 2.5V
IOVCC/2 - 0.4V
IOVCC = 3.3V
IOVCC/2 - 0.5V
Differential load impedance, ZL
Operating free-air temperature, TA
V
90
132
Ω
-10
70
C
DISSIPATION RATINGS
PACKAGE
CIRCUIT BOARD MODEL (1)
DGG
ZQL
DGG
ZQL
(1)
(2)
Low-K
High-K
TJA ≤ 25°C
DERATING FACTOR (2)
ABOVE TJA = 25°C
TJA = 70°C
POWER RATING
1111mW
12.3mW/°C
555mW
1034mW
11.5mW/°C
517mW
1730mW
19mW/°C
865mW
2000mW
22mW/°C
1000mW
In accordance with the High-K and Low-K thermal metric definitions of EIA/JESD51-2.
This is the inverse of the junction-to-ambient thermal resistance when board-mounted and with no air flow.
TIMING REQUIREMENTS
PARAMETER
Input clock period, tc
MIN
MAX
UNIT
7.4
100
ns
Input clock modulation
w/ modulation frequency 30kHz
8%
w/ modulation frequency 50kHz
High-level input clock pulse width duration, tw
6%
0.4 tc
Input signal transition time, tt
Data set up time, D0 through D27 before CLKIN (See Figure 3)
Data hold time, D0 through D27 after CLKIN
0.6 tc
ns
3
ns
2
ns
0.8
ns
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): SN75LVDS83B
3
SN75LVDS83B
SLLS846 – MAY 2009 ........................................................................................................................................................................................................ www.ti.com
DGG PACKAGE
(TOP VIEW)
IOVCC
1
56
D5
2
3
55
54
D7
GND
D8
4
53
5
52
GND
D1
6
51
D0
D9
7
50
D10
8
49
D27
GND
VCC
D11
9
10
48
47
D12
11
46
D13
12
45
Y1P
GND
D14
13
44
14
15
43
42
LVDSVCC
GND
Y2M
16
41
17
18
40
39
19
38
D19
GND
20
37
CLKOUTP
Y3M
Y3P
21
36
GND
D20
35
34
GND
D21
22
23
D22
24
33
D23
25
32
IOVCC
D24
D25
26
31
D6
D15
D16
CLKSEL
D17
D18
27
30
28
29
D4
D3
D2
Y0M
Y0P
Y1M
Y2P
CLKOUTM
PLLVCC
GND
SHTDN
CLKIN
D26
GND
DGG PIN LIST
4
Pin #
Signal
Pin #
Signal
Pin #
Signal
Pin #
1
IOVCC
15
D15
29
GND
43
GND
2
D5
16
D16
30
D26
44
LVDSVCC
3
D6
17
CLKSEL
31
CLKIN
45
Y1P
4
D7
18
D17
32
SHTDN
46
Y1M
5
GND
19
D18
33
GND
47
Y0P
6
D8
20
D19
34
PLLVCC
48
Y0M
7
D9
21
GND
35
GND
49
GND
8
D10
22
D20
36
GND
50
D27
9
VCC
23
D21
37
Y3P
51
D0
10
D11
24
D22
38
Y3M
52
D1
11
D12
25
D23
39
CLKOUTP
53
GND
12
D13
26
IOVCC
40
CLKOUTM
54
D2
13
GND
27
D24
41
Y2P
55
D3
14
D14
28
D25
42
Y2M
56
D4
Submit Documentation Feedback
Signal
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): SN75LVDS83B
SN75LVDS83B
www.ti.com ........................................................................................................................................................................................................ SLLS846 – MAY 2009
ZQL PACKAGE
(TOP VIEW)
6
5
4
3
2
1
D8
D7
D5
D4
D2
D1
D9
GND
D6
D3
D0
D27
D11
VCC
D10
GND
Y0P
Y0M
D13
D12
IOVCC
GND
Y1P
Y1M
D14
GND
GND
D16
D15
Y2P
Y2M
D17
D18
CLKSEL
GND
CLKP
CLKM
D19
GND
IOVCC
GND
Y3P
Y3M
D20
D21
D25
SHTDN
PLLVCC
GND
D22
D23
D24
D26
CLKIN
GND
K
J
H
G
F
LVDSVCC
E
D
C
B
A
ZQL PIN LIST
Ball #
Signal
Ball #
Signal
Ball #
Signal
A1
GND
A2
CLKIN
A3
D26
A4
D24
A5
D23
A6
D22
B1
GND
B2
PLLVCC
B3
SHTDN
B4
D25
B5
D21
B6
D20
C1
Y3M
C2
Y3P
C3
GND
C4
IOVCC
C5
GND
C6
D19
D1
CLKM
D2
CLKP
D3
GND
D4
CLKSEL
D5
D18
D6
D17
E1
Y2M
E2
Y2P
E3
ball not populated
E4
ball not populated
E5
D15
E6
D16
F1
LVDSVCC
F2
GND
F3
ball not populated
F4
ball not populated
F5
GND
F6
D14
G1
Y1M
G2
Y1P
G3
GND
G4
IOVCC
G5
D12
G6
D13
H1
Y0M
H2
Y0P
H3
GND
H4
D10
H5
VCC
H6
D11
J1
D27
J2
D0
J3
D3
J4
D6
J5
GND
J6
D9
K1
D1
K2
D2
K3
D4
K4
D5
K5
D7
K6
D8
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): SN75LVDS83B
5
SN75LVDS83B
SLLS846 – MAY 2009 ........................................................................................................................................................................................................ www.ti.com
PIN FUNCTIONS
TERMINAL
I/O
Y0P, Y0M, Y1P,
Y1M, Y2P, Y2M
Y3P, Y3M
DESCRIPTION
Differential LVDS data outputs.
Outputs are high-impedance when SHTDN is pulled low (de-asserted)
LVDS Out
Differential LVDS Data outputs.
Output is high-impedance when SHTDN is pulled low (de-asserted).
Note: if the application only requires 18-bit color, this output can be left open.
CLKP, CLKM
Differential LVDS pixel clock output.
Output is high-impedance when SHTDN is pulled low (de-asserted).
D0 – D27
Data inputs; supports 1.8V to 3.3V input voltage selectable by VDD supply. To connect a graphic
source successfully to a display, the bit assignment of D[27:0] is critical (and not necessarily
intuitive).
For input bit assignment see Figure 14 to Figure 17 for details.
Note: if application only requires 18-bit color, connect unused inputs D5, D10, D11, D16, D17, D23,
and D27 to GND.
CMOS IN with
pulldn
CLKIN
Input pixel clock; rising or falling clock polarity is selectable by Control input CLKSEL.
SHTDN
Device shut down; pull low (de-assert) to shut down the device (low power, resets all registers) and
high (assert) for normal operation.
CLKSEL
Selects between rising edge input clock trigger (CLKSEL = VIH and falling edge input clock trigger
(CLKSEL = VIL).
VCC
3.3V digital Supply Voltage
IOVCC
I/O supply reference voltage (1.8V up to 3.3V matching the GPU data output signal swing)
Power Supply (1)
PLLVCC
3.3V PLL analog supply
LVDSVCC
3.3V LVDS output analog supply
GND
Supply Ground for VCC, IOVCC, LVDSVCC, and PLLVCC.
(1)
6
For a multilayer pcb, it is recommended to keep one common GND layer underneath the device and connect all ground terminals
directly to this plane.
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): SN75LVDS83B
SN75LVDS83B
www.ti.com ........................................................................................................................................................................................................ SLLS846 – MAY 2009
FUNCTIONAL BLOCK DIAGRAM
Parallel-Load 7-bit
Shift Register
D0, D1, D2, D3,
D4, D6, D7
7
A,B,...G
SHIFT/LOAD
>CLK
Y0P
Y0M
Parallel-Load 7-bit
Shift Register
D8, D9, D12, D13,
D14, D15, D18
7
A,B,...G
SHIFT/LOAD
>CLK
Y1P
Y1M
Parallel-Load 7-bit
Shift Register
D19, D20, D21, D22,
D24, D25, D26
7
A,B,...G
SHIFT/LOAD
>CLK
Y2P
Y2M
Parallel-Load 7-bit
Shift Register
D27, D5, D10, D11,
D16, D17, D23
7
A,B,...G
SHIFT/LOAD
>CLK
Y3P
Y3M
Control Logic
SHTDN
7X Clock/PLL
7XCLK
CLKIN
>CLK
CLKINH
CLKSEL
CLKOUTP
CLKOUTM
RISING/FALLING EDGE
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): SN75LVDS83B
7
SN75LVDS83B
SLLS846 – MAY 2009 ........................................................................................................................................................................................................ www.ti.com
Dn
CLKIN
or
CLKIN
CLKOUT
Previous cycle
Next
Current cycle
Y0
D0-1
D7
D6
D4
D3
D2
D1
D0
D7+1
Y1
D8-1
D18
D15
D14
D13
D12
D9
D8
D18+1
Y2
D19-1
D26
D25
D24
D22
D21
D20
D19
D26+1
Y3
D27-1
D23
D17
D16
D11
D10
D5
D27
D23+1
Figure 1. Typical SN75LVDS83B Load and Shift Sequences
LVDSVCC
IOVCC
5W
D or
SHTDN
50W
7V
YnP or
YnM
10kW
300kW
7V
Figure 2. Equivalent Input and Output Schematic Diagrams
8
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): SN75LVDS83B
SN75LVDS83B
www.ti.com ........................................................................................................................................................................................................ SLLS846 – MAY 2009
ELECTRICAL CHARACTERISTICS
over operating free-air temperature range (unless otherwise noted)
PARAMETER
VT
Input voltage threshold
|VOD|
Differential steady-state output voltage
magnitude
TEST CONDITIONS
MIN
TYP (1)
MAX
IOVCC/2
250
UNIT
V
450
mV
RL = 100Ω, See Figure 4
Δ|VOD|
Change in the steady-state differential
output voltage magnitude between
opposite binary states
VOC(SS)
Steady-state common-mode output
voltage
VOC(PP)
Peak-to-peak common-mode output
voltage
See Figure 4
tR/F (Dx, CLKin) = 1ns
IIH
High-level input current
VIH = IOVCC
IIL
Low-level input current
VIL = 0 V
±10
µA
VOY = 0 V
±24
mA
1
1.125
35
1.375
mV
V
35
mV
25
µA
IOS
Short-circuit output current
VOD = 0 V
±12
mA
IOZ
High-impedance state output current
VO = 0 V to VCC
±20
µA
Input pull-down integrated resistor on all
inputs (Dx, CLKSEL, SHTDN, CLKIN)
IOVCC = 1.8V
200
IOVCC = 3.3V
100
Rpdn
disabled, all inputs at GND;
SHTDN = VIL
2
kΩ
100
µA
SHTDN = VIH, RL = 100Ω (5 places),
grayscale pattern (Figure 5)
VCC = 3.3V, fCLK = 75MHz
I(VCC) + I(PLLVCC) + I(LVDSVCC)
51.9
61
I(IOVCC) with IOVCC = 3.3V
0.4
1.2
I(IOVCC) with IOVCC = 1.8V
0.1
mA
SHTDN = VIH, RL = 100Ω (5 places), 50%
transition density pattern (Figure 5),
VCC = 3.3V, fCLK = 75MHz
IQ
Quiescent current (average)
I(VCC) + I(PLLVCC) + I(LVDSVCC)
53.3
64.6
I(IOVCC) with IOVCC = 3.3V
0.6
2.5
I(IOVCC) with IOVCC = 1.8V
0.2
mA
SHTDN = VIH, RL = 100Ω (5 places),
worst-case pattern (Figure 6),
VCC = 3.6V, fCLK = 75MHz
I(VCC) + I(PLLVCC) + I(LVDSVCC)
63.7
76
I(IOVCC) with IOVCC = 3.3V
1.3
3.3
I(IOVCC) with IOVCC = 1.8V
0.5
mA
SHTDN = VIH, RL = 100Ω (5 places),
worst-case pattern (Figure 6),
fCLK = 100MHz
I(VCC) + I(PLLVCC) + I(LVDSVCC)
81.6
93
I(IOVCC) with IOVCC = 3.6V
1.6
3.8
I(IOVCC) with IOVCC = 1.8V
0.6
mA
SHTDN = VIH, RL = 100Ω (5 places),
worst-case pattern (Figure 6),
fCLK = 135MHz
CI
(1)
I(VCC) + I(PLLVCC) + I(LVDSVCC)
102.2
115
I(IOVCC) with IOVCC = 3.6V
2.1
4.5
I(IOVCC) with IOVCC = 1.8V
0.8
Input capacitance
2
mA
pF
All typical values are at VCC = 3.3 V, TA = 25°C.
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): SN75LVDS83B
9
SN75LVDS83B
SLLS846 – MAY 2009 ........................................................................................................................................................................................................ www.ti.com
SWITCHING CHARACTERISTICS
over operating free-air temperature range (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP (1)
MAX
-0.1
0
0.1
ns
/7 tc + 0.1
UNIT
t0
Delay time, CLKOUT↑ after Yn valid
(serial bit position 0, equal D1, D9,
D20, D5)
t1
Delay time, CLKOUT↑ after Yn valid
(serial bit position 1, equal D0, D8,
D19, D27)
1
1
ns
t2
Delay time, CLKOUT↑ after Yn valid
(serial bit position 2, equal D7, D18,
D26. D23)
2
2
ns
t3
Delay time, CLKOUT↑ after Yn valid
(serial bit position 3; equal D6, D15,
D25, D17)
3
3
ns
t4
Delay time, CLKOUT↑ after Yn valid
(serial bit position 4, equal D4, D14,
D24, D16)
4
4
ns
t5
Delay time, CLKOUT↑ after Yn valid
(serial bit position 5, equal D3, D13,
D22, D11)
5
5
ns
t6
Delay time, CLKOUT↑ after Yn valid
(serial bit position 6, equal D2, D12,
D21, D10)
6
6
ns
tc(o)
Output clock period
Δtc(o)
/7 tc - 0.1
/7 tc - 0.1
See Figure 7, tC = 10ns,
|Input clock jitter| < 25ps
/7 tc + 0.1
/7 tc - 0.1
(2)
/7 tc + 0.1
/7 tc - 0.1
/7 tc + 0.1
/7 tc - 0.1
/7 tc + 0.1
/7 tc - 0.1
/7 tc + 0.1
tc
Output clock cycle-to-cycle jitter
(3)
tC = 10ns; clean reference clock, see
Figure 8
±26
tC = 10ns with 0.05UI added noise
modulated at 3MHz, see Figure 8
±44
tC = 7.4ns; clean reference clock,
see Figure 8
±35
tC = 7.4ns with 0.05UI added noise
modulated at 3MHz, see Figure 8
±42
ns
ps
tw
High-level output clock pulse
duration
tr/f
Differential output voltage transition
time (tr or tf)
See Figure 4
ten
Enable time, SHTDN↑ to phase lock
(Yn valid)
f(clk) = 135MHz, See Figure 9
6
ns
tdis
Disable time, SHTDN↓ to off-state
(CLKOUT high-impedance)
f(clk) = 135MHz, See Figure 10
7
ns
(1)
(2)
(3)
4
/7 tc
225
ns
500
ps
All typical values are at VCC = 3.3 V, TA = 25°C.
|Input clock jitter| is the magnitude of the change in the input clock period.
The output clock cycle-to-cycle jitter is the largest recorded change in the output clock period from one cycle to the next cycle observed
over 15,000 cycles.Tektronix TDSJIT3 Jitter Analysis software was used to derive the maximum and minimum jitter value.
PARAMETER MEASUREMENT INFORMATION
tsu
thold
Dn
CLKIN
All input timing is defined at IOVDD / 2 on an input signal with a 10% to 90% rise or fall time of less than 3 ns.
CLKSEL = 0V.
Figure 3. Set Up and Hold Time Definition
10
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): SN75LVDS83B
SN75LVDS83B
www.ti.com ........................................................................................................................................................................................................ SLLS846 – MAY 2009
PARAMETER MEASUREMENT INFORMATION (continued)
49.9W ± 1% (2 PLCS)
YP
VOD
VOC
YM
100%
80%
VOD(H)
0V
VOD(L)
20%
0%
tf
tr
VOC(PP)
VOC(SS)
VOC(SS)
0V
Figure 4. Test Load and Voltage Definitions for LVDS Outputs.
CLKIN
D0,8,16
D1,9,17
D2,10,18
D3,11,19
D4-7,12-15,20-23
D24-27
The 16 grayscale test pattern test device power consumption for a typical display pattern.
Figure 5. 16 Grayscale Test Pattern
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): SN75LVDS83B
11
SN75LVDS83B
SLLS846 – MAY 2009 ........................................................................................................................................................................................................ www.ti.com
PARAMETER MEASUREMENT INFORMATION (continued)
T
CLKIN
EVEN Dn
ODD Dn
The worst-case test pattern produces nearly the maximum switching frequency for all of the LVDS outputs.
Figure 6. Worst-Case Power Test Pattern
t7
CLKIN
CLKOUT
t6
t5
t4
t3
t2
t0
Yn
t1
VOD(H)
~2.5V
CLKOUT
or Yn
1.40V
CLKIN
0.00V
~0.5V
VOD(L)
t7
t0-6
CLKOUT is shown with CLKSEL at high-level.
CLKIN polarity depends on CLKSEL input level.
Figure 7. SN75LVDS83B Timing Definitions
12
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): SN75LVDS83B
SN75LVDS83B
www.ti.com ........................................................................................................................................................................................................ SLLS846 – MAY 2009
PARAMETER MEASUREMENT INFORMATION (continued)
Reference
+
Device
Under
Test
VCO
+
Modulation
v(t) = A sin(2 pfmodt)
HP8656B Signal
Generator,
0.1 MHz-990 MHz
HP8665A Synthesized
Signal Generator,
0.1 MHz-4200 MHz
Device Under
Test
RF Output
Modulation Input
RF Output
CLKIN
CLKOUT
DTS2070C
Digital
TimeScope
Input
Figure 8. Output Clock Jitter Test Set Up
CLKIN
Dn
ten
SHTDN
Invalid
Yn
Valid
Figure 9. Enable Time Waveforms
CLKIN
tdis
SHTDN
CLKOUT
Figure 10. Disable Time Waveforms
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): SN75LVDS83B
13
SN75LVDS83B
SLLS846 – MAY 2009 ........................................................................................................................................................................................................ www.ti.com
TYPICAL CHARACTERISTICS
AVERAGE GRAYSCALE ICC
vs
CLOCK FREQUENCY
800
Total Device Current (Using Grayscale
pattern) Over Pixel Clock Frequency
Output Jitter
90
700
80
600
Period Clock Jitter - ps-pp
ICC - Average Supply Current - mA
100
OUTPUT CLOCK JITTER
vs
INPUT CLOCK JITTER
VCC = 3.6V
70
60
50
VCC = 3.3V
40
Input Jitter
500
400
300
200
VCC = 3V
CLK Frequency During Test = 100MHz
30
100
20
10
30
50
70
90
110
0
0.01
130
fclk - Clock Frequency - MHz
1
0.10
10
f(mod) - Input Modular Frequency - MHz
Figure 11.
Figure 12.
TYPICAL PRBS OUTPUT SIGNAL OVER ONE CLOCK
PERIOD
PRBS Data Signal
V - Voltage - 80mV/div
CLKL Signal
Clock Signal: 135MHz
tk - Time - 1ns/div
Figure 13.
14
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): SN75LVDS83B
SN75LVDS83B
www.ti.com ........................................................................................................................................................................................................ SLLS846 – MAY 2009
APPLICATION INFORMATION
This section describes the power up sequence, provides information on device connectivity to various GPU and
LCD display panels, and offers a pcb routing example.
Power Up Sequence
The SN75LVDS83B does not require a specific power up sequence.
It is permitted to power up IOVCC while VCC, VCCPLL, and VCCLVDS remain powered down and connected to
GND. The input level of the SHTDN during this time does not matter as only the input stage is powered up while
all other device blocks are still powered down.
It is also permitted to power up all 3.3V power domains while IOVCC is still powered down to GND. The device
will not suffer damage. However, in this case, all the I/Os are detected as logic HIGH, regardless of their true
input voltage level. Hence, connecting SHTDN to GND will still be interpreted as a logic HIGH; the LVDS output
stage will turn on. The power consumption in this condition is significantly higher than standby mode, but still
lower than normal mode.
The user experience can be impacted by the way a system powers up and powers down an LCD screen. The
following sequence is recommended:
Power up sequence (SN75LVDS83B SHTDN input initially low):
1. Ramp up LCD power (maybe 0.5ms to 10ms) but keep backlight turned off.
2. Wait for additional 0-200ms to ensure display noise won’t occur.
3. Enable video source output; start sending black video data.
4. Toggle LVDS83B shutdown to SHTDN = VIH.
5. Send >1ms of black video data; this allows the LVDS83B to be phase locked, and the display to show black
data first.
6. Start sending true image data.
7. Enable backlight.
Power Down sequence (SN75LVDS83B SHTDN input initially high):
1. Disable LCD backlight; wait for the minimum time specified in the LCD data sheet for the backlight to go low.
2. Video source output data switch from active video data to black image data (all visible pixel turn black); drive
this for >2 frame times.
3. Set SN75LVDS83B input SHTDN = GND; wait for 250ns.
4. Disable the video output of the video source.
5. Remove power from the LCD panel for lowest system power.
Signal Connectivity
While there is no formal industry standardized specification for the input interface of LVDS LCD panels, the
industry has aligned over the years on a certain data format (bit order). Figure 14 through Figure 17 show how
each signal should be connected from the graphic source through the SN75LVDS83B input, output and LVDS
LCD panel input. Detailed notes are provided with each figure.
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): SN75LVDS83B
15
SN75LVDS83B
SLLS846 – MAY 2009 ........................................................................................................................................................................................................ www.ti.com
SN75LVDS83B
4.8k
1.8V or 2.5V
or 3.3V
C1
Rpullup
Rpulldown
Y0M
Y0P
Y2M
Y2P
Y3M
Y3P
100
to column
driver
100
FPC
Cable
Panel connector
Y1M
Y1P
CLKOUTM
CLKOUTP
LVDS
timing
Controller
(8bpc, 24bpp)
100
100
to row driver
100
VCC
PLLVCC
LVDSVCC
24-bpp LCD Display
GND
SHTDN
D27
D5
D0
D1
D2
D3
D4
D6
D10
D11
D7
D8
D9
D12
D13
D14
D16
D17
D15
D18
D19
D20
D21
D22
D24
D25
D26
D23
CLKIN
CLKSEL
FORMAT2 (See Note A)
D0
D1
D2
D3
D4
D6
D27
D5
D7
D8
D9
D12
D13
D14
D10
D11
D15
D18
D19
D20
D21
D22
D16
D17
D24
D25
D26
D23
CLKIN
IOVCC
VDDGPUIO
GND
R0(LSB)
R1
R2
R3
R4
R5
R6
R7(MSB)
G0(LSB)
G1
G2
G3
G4
G5
G6
G7(LSB)
B0(LSB)
B1
B2
B3
B4
B5
B6
B7(MSB)
HSYNC
VSYNC
ENABLE
RSVD
CLK
FORMAT1
Main board connector
24-bpc GPU
3.3V
C2
3.3V
C3
(See Note B)
Main Board
Note A. FORMAT: Some 24-bit LCD display panels require the two most significant bits (2 MSB ) of each color to be
transferred on the 4th serial data output Y3. Other 24-bit LCD display panels require the two LSB of each color to be
transmitted over the Y3 output. The system designer needs to verify which format is expected by checking the LCD
display data sheet.
•
Format 1: use with displays expecting the 2 MSB to be transmitted over the 4th data channel Y3.
•
Format 2: use with displays expecting the 2 LSB to be transmitted over the 4th data channel.
Note B. Rpullup: install only to use rising edge triggered clocking.
Rpulldown: install only to use falling edge triggered clocking.
•
C1: decoupling cap for the VDDIO supply; install at least TBD.
•
C2: decoupling cap for the VDD supply; install at least TBD.
•
C3: decoupling cap for the VDDPLL and VDDLVDS supply; install at least TBD.
Figure 14. 24-Bit Color Host to 24-bit LCD Panel Application
16
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): SN75LVDS83B
SN75LVDS83B
www.ti.com ........................................................................................................................................................................................................ SLLS846 – MAY 2009
SN75LVDS83B
D0
D1
D2
D3
D4
D6
D27
D5
D7
D8
D9
D12
D13
D14
D10
D11
D15
D18
D19
D20
D21
D22
D16
D17
D24
D25
D26
D23
CLKIN
B0(LSB)
B1
B2
B3
B4
B5(MSB)
C1
CLKOUTM
CLKOUTP
FPC
Cable
Panel connector
Main board connector
100
Y2M
Y2P
LVDS
timing
Controller
(6-bpc, 18-bpp)
100
100
to row driver
18-bpp LCD Display
Y3M
Y3P
4.8k
1.8V or 2.5V
or 3.3V
to column
driver
Y1M
Y1P
IOVCC
VDDGPUIO
GND
HSYNC
VSYNC
ENABLE
RSVD
CLK
100
Rpullup
(See Note A)
VCC
PLLVCC
LVDSVCC
G0(LSB)
G1
G2
G3
G4
G5(MSB)
Y0M
Y0P
GND
R0(LSB)
R1
R2
R3
R4
R5(MSB)
SHTDN
CLKSEL
18-bpp GPU
3.3V
C2
3.3V
C3
Rpulldown
(See Note B)
Main Board
Note A. Leave output Y3 NC.
Note B.Rpullup: install only to use rising edge triggered clocking.
Rpulldown: install only to use falling edge triggered clocking.
•
C1: decoupling cap for the VDDIO supply; install at least TBD.
•
C2: decoupling cap for the VDD supply; install at least TBD.
•
C3: decoupling cap for the VDDPLL and VDDLVDS supply; install at least TBD.
Figure 15. 18-Bit Color Host to 18-Bit Color LCD Panel Display Application
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): SN75LVDS83B
17
SN75LVDS83B
SLLS846 – MAY 2009 ........................................................................................................................................................................................................ www.ti.com
12-bpp GPU
SN75LVDS83B
(See Note B)
D0
D1
D2
D3
D4
D6
D27
D5
D7
D8
D9
D12
D13
D14
D10
D11
D15
D18
D19
D20
D21
D22
D16
D17
D24
D25
D26
D23
CLKIN
(See Note B)
B2 or VCC
B3 or GND
B0
B1
B2
B3(MSB)
C1
FPC
Cable
t
Panell connector
Main board connector
CLKOUTM
CLKOUTP
LVDS
timing
Controller
(6-bpc, 18-bpp)
100
100
to row driver
18-bpp LCD Display
Y3M
Y3P
4.8k
1.8V or 2.5V
or 3.3V
100
Y2M
Y2P
IOVCC
VDDGPUIO
GND
HSYNC
VSYNC
ENABLE
RSVD
CLK
to column
driver
Rpullup
(See Note A)
VCC
PLLVCC
LVDSVCC
G2 or VCC
G3 or GND
G0
G1
G2
G3(MSB)
100
Y1M
Y1P
SHTDN
CLKSEL
(See Note B)
Y0M
Y0P
GND
R2 or VCC
R3 or GND
R0
R1
R2
R3(MSB)
3.3V
C2
3.3V
C3
Rpulldown
(See Note C)
Main Board
Note A. Leave output Y3 N.C.
Note B. R3, G3, B3: this MSB of each color also connects to the 5th bit of each color for increased dynamic range of
the entire color space at the expense of none-linear step sizes between each step. For linear steps with less dynamic
range, connect D1, D8, and D18 to GND.
R2, G2, B2: these outputs also connects to the LSB of each color for increased, dynamic range of the entire color
space at the expense of none-linear step sizes between each step. For linear steps with less dynamic range, connect
D0, D7, and D15 to VCC.
Note C.Rpullup: install only to use rising edge triggered clocking.
Rpulldown: install only to use falling edge triggered clocking.
•
C1: decoupling cap for the VDDIO supply; install at least TBD.
•
C2: decoupling cap for the VDD supply; install at least TBD.
•
C3: decoupling cap for the VDDPLL and VDDLVDS supply; install at least TBD.
Figure 16. 12-Bit Color Host to 18-Bit Color LCD Panel Display Application
18
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): SN75LVDS83B
SN75LVDS83B
www.ti.com ........................................................................................................................................................................................................ SLLS846 – MAY 2009
D0
D1
D2
D3
D4
D6
D27
D5
D7
D8
D9
D12
D13
D14
D10
D11
D15
D18
D19
D20
D21
D22
D16
D17
D24
D25
D26
D23
CLKIN
G2
G3
G4
G5
G6
G7(MSB)
B0 and B1: NC
(See Note B)
B2
B3
B4
B5
B6
B7(MSB)
B0 and B1: NC
(See Note B)
C1
100
Y2M
Y2P
CLKOUTM
CLKOUTP
FPC
Cable
LVDS
timing
Controller
(6-bpc, 18-bpp)
100
100
to row driver
18-bpp LCD Display
Y3M
Y3P
4.8k
1.8V or 2.5V
or 3.3V
to column
driver
Y1M
Y1P
IOVCC
VDDGPUIO
GND
HSYNC
VSYNC
ENABLE
RSVD
CLK
100
t
Panell connector
G0 and G1: NC
(See Note B)
Y0M
Y0P
Main board connector
R7(MSB)
Rpullup
(See Note A)
VCC
PLLVCC
LVDSVCC
R2
R3
R4
R5
R6
SHTDN
CLKSEL
R0 and R1: NC
(See Note B)
SN75LVDS83B
GND
24-bpp GPU
3.3V
C2
3.3V
C3
Rpulldown
(See Note C)
Main Board
Note A. Leave output Y3 NC.
Note B. R0, R1, G0, G1, B0, B1: For improved image quality, the GPU should dither the 24-bit output pixel down
to18-bit per pixel.
NoteC.Rpullup: install only to use rising edge triggered clocking.
Rpulldown: install only to use falling edge triggered clocking.
•
C1: decoupling cap for the VDDIO supply; install at least TBD.
•
C2: decoupling cap for the VDD supply; install at least TBD.
•
C3: decoupling cap for the VDDPLL and VDDLVDS supply; install at least TBD.
Figure 17. 24-Bit Color Host to 18-Bit Color LCD Panel Display Application
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): SN75LVDS83B
19
SN75LVDS83B
SLLS846 – MAY 2009 ........................................................................................................................................................................................................ www.ti.com
Typical Application Schematic
Figure 18 represents the schematic drawing of the SN75LVDS83B evaluation module.
J1
U1H
GND1
GND2
GND3
GND4
GND5
GND6
GND7
PLLGND
LVDSGND1
LVDSGND2
J3
CLKM
CLKP
Y0P
Y0M
Y1P
Y1M
Y2P
Y2M
IOVCC
R4
4.7k
R5
4.7k
R6
4.7k
R7
4.7k
R8
4.7k
R9
4.7k
Y3P
Y3M
R10
4.7k
JMP1
U1B
D0
D1
D2
D3
D4
D6
D7
J2
K1
K2
J3
K3
J4
K5
D1
D2
G2
G1
J5
E1
E2
sma_surface
J6
sma_surface
C2
C1
J7
sma_surface
SN65LVDS83BZQL
J8
sma_surface
J9
sma_surface
14
Header 7x2
J10
sma_surface
IOVCC
R11
4.7k
R12
4.7k
R13
4.7k
R14
4.7k
R15
4.7k
R16
4.7k
R17
4.7k
sma_surface
JMP2
U1C
D8
D9
D12
D13
D14
D15
D18
J4
sma_surface
H2
H1
1 2
SN65LVDS83BZQL
K6
J6
G5
G6
F6
E5
D5
sma_surface
U1A
SN65LVDS83BZQL
D0
D1
D2
D3
D4
D6
D7
J2
sma_surface
C3
C5
D3
F5
G3
H3
J5
A1
B1
F2
D8
D9
D12
D13
D14
D15
D18
1 2
IOVCC
IOVCC
14
R2
R1
4.7k
Header 7x2
SN65LVDS83BZQL
IOVCC
R18
4.7k
R19
4.7k
R20
4.7k
R21
4.7k
R22
4.7k
R23
4.7k
R24
4.7k
JMP6
U1G
JMP3
U1D
D19
D20
D21
D22
D24
D25
D 26
C6
B6
B5
A6
A4
B4
A3
D19
D20
D21
D22
D24
D25
D26
SHTDN
CLKSEL
1 2
B3
D4
SHTDN
CLKSEL
1 2
3 4
Header 2x2
SN65LVDS83BZQL
14
U1J
NC1
NC2
NC3
NC4
Header 7x2
SN65LVDS83BZQL
IOVCC
R25
4.7k
R26
4.7k
R27
4.7k
R28
4.7k
R29
4.7k
R30
4.7k
E3
E4
F3
F4
SN65LVDS83BZQL
R31
4.7k
JMP4
U1E
D5
D10
D11
D16
D17
D23
D27
K4
H4
H6
E6
D6
A5
J1
D5
D10
D11
D16
D17
D23
D27
VCC
1 2
IOVCC
U1I
VCC
PLLVCC
LVDSVCC
14
IOVCC1
IOVCC2
Header 7x2
SN65LVDS83BZQL
G4
B2
F1
H5
C4
SN65LVDS83BZQL
VCC
VCC
C31
1uF
C32
0.1uF
C33
0.01uF
VCC
C34
1uF
C35
0.1uF
C36
0.01uF
IOVCC
C40
1uF
C41
0.1uF
C42
0.01uF
C37
1uF
C38
0.1uF
C39
0.01uF
PLACE UNDER LVDS83B
(bottom pcb side)
Figure 18. Schematic Example (SN75LVDS83B Evaluation Board)
20
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): SN75LVDS83B
SN75LVDS83B
www.ti.com ........................................................................................................................................................................................................ SLLS846 – MAY 2009
PCB Routing
Figure 19 and Figure 20 show a possible breakout of the data input and output signals from the BGA package.
R1
R2
R3
R4
R5
R6
R7
R8
G0
G1
D8
D7
D5
D4
D2
D1
D9
GND
D6
D3
D0
D27
D11
VCC
D10
GND
Y0P
Y0M
D13
D12
IOVCC
GND
Y1P
Y1M
D14
GND
GND
GND
D16
D15
GND
D17
D18
CLKSEL
D19
GND
IOVCC
D20
D21
D25
D22
D23
D24
G2
G3
G4
G5
G6
G7
B0
B1
LVDS GND LVDS VCC
Y2P
Y2M
GND
CLKP
CLKM
GND
Y3P
Y3M
B2
B3
B4
B5
B6
SHTDN PLLVCC LVDS GND
+PLL GND
D26
CLKIN
PLL GND
B7
HS
VS
EN
CLK
Figure 19. 24-Bit Color Routing (See Figure 14 for the Schematic)
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): SN75LVDS83B
21
SN75LVDS83B
SLLS846 – MAY 2009 ........................................................................................................................................................................................................ www.ti.com
G1
G0
D8
D7
R5 R4 R3 R2
D5
D4
D2
R1
R0
D1
To GND
G2
G3
D9
GND
D6
D3
D0
D27
D11
VCC
D10
GND
Y0P
Y0M
D13
D12
IOVCC
GND
Y1P
Y1M
D14
GND
GND
GND
D16
D15
GND
D17
D18
CLKSEL
D19
GND
IOVCC
G4
G5
B0
LVDS GND LVDS VCC
To GND
B1
Y2P
Y2M
GND
CLKP
CLKM
GND
Y3P
Y3M
B2
remains
unconnected
B3
B4
D20
D21
D22
D23
D25
SHTDN
PLLVCC LVDS GND
+PLL GND
CLKIN
B5
D24
D26
HS VS EN
PLL GND
CLK
Figure 20. 18-Bit Color Routing. (See Figure 15, Figure 16, and Figure 17 for the Schematic)
22
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): SN75LVDS83B
PACKAGE OPTION ADDENDUM
www.ti.com
1-Jun-2009
PACKAGING INFORMATION
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
SN75LVDS83BDGG
ACTIVE
TSSOP
DGG
56
SN75LVDS83BDGGR
ACTIVE
TSSOP
DGG
SN75LVDS83BZQLR
ACTIVE
BGA MI
CROSTA
R JUNI
OR
ZQL
35
Lead/Ball Finish
MSL Peak Temp (3)
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
56
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
56
1000 Green (RoHS &
no Sb/Br)
SNAGCU
Level-2-260C-1 YEAR
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in
a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check
http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS
compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder
temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited
information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI
to Customer on an annual basis.
Addendum-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com
2-Jun-2009
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device
Package Package Pins
Type Drawing
SPQ
Reel
Reel
Diameter Width
(mm) W1 (mm)
A0 (mm)
B0 (mm)
K0 (mm)
P1
(mm)
W
Pin1
(mm) Quadrant
SN75LVDS83BDGGR
TSSOP
DGG
56
2000
330.0
24.4
8.6
15.6
1.8
12.0
24.0
Q1
SN75LVDS83BZQLR
BGA MI
CROSTA
R JUNI
OR
ZQL
56
1000
330.0
16.4
4.8
7.3
1.5
8.0
16.0
Q1
Pack Materials-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com
2-Jun-2009
*All dimensions are nominal
Device
Package Type
Package Drawing
Pins
SPQ
Length (mm)
Width (mm)
Height (mm)
SN75LVDS83BDGGR
TSSOP
DGG
56
2000
346.0
346.0
41.0
SN75LVDS83BZQLR
BGA MICROSTAR
JUNIOR
ZQL
56
1000
333.2
345.9
28.6
Pack Materials-Page 2
MECHANICAL DATA
MTSS003D – JANUARY 1995 – REVISED JANUARY 1998
DGG (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
48 PINS SHOWN
0,27
0,17
0,50
48
0,08 M
25
6,20
6,00
8,30
7,90
0,15 NOM
Gage Plane
1
0,25
24
0°– 8°
A
0,75
0,50
Seating Plane
0,15
0,05
1,20 MAX
PINS **
0,10
48
56
64
A MAX
12,60
14,10
17,10
A MIN
12,40
13,90
16,90
DIM
4040078 / F 12/97
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold protrusion not to exceed 0,15.
Falls within JEDEC MO-153
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products
Amplifiers
Data Converters
DLP® Products
DSP
Clocks and Timers
Interface
Logic
Power Mgmt
Microcontrollers
RFID
RF/IF and ZigBee® Solutions
amplifier.ti.com
dataconverter.ti.com
www.dlp.com
dsp.ti.com
www.ti.com/clocks
interface.ti.com
logic.ti.com
power.ti.com
microcontroller.ti.com
www.ti-rfid.com
www.ti.com/lprf
Applications
Audio
Automotive
Broadband
Digital Control
Medical
Military
Optical Networking
Security
Telephony
Video & Imaging
Wireless
www.ti.com/audio
www.ti.com/automotive
www.ti.com/broadband
www.ti.com/digitalcontrol
www.ti.com/medical
www.ti.com/military
www.ti.com/opticalnetwork
www.ti.com/security
www.ti.com/telephony
www.ti.com/video
www.ti.com/wireless
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2009, Texas Instruments Incorporated