TI 74AVCH16T245ZQLR

SCES587A − AUGUST 2004 − REVISED OCTOBER 2004
D Control Inputs VIH/VIL Levels Are
D
D
D
D
D
D
D
D
DGG OR DGV PACKAGE
(TOP VIEW)
Referenced to VCCA Voltage
VCC Isolation Feature − If Either VCC Input
Is at GND, Both Ports Are in the
High-Impedance State
Overvoltage-Tolerant Inputs/Outputs Allow
Mixed-Voltage-Mode Data Communications
Fully Configurable Dual-Rail Design Allows
Each Port to Operate Over the Full 1.2-V to
3.6-V Power-Supply Range
Ioff Supports Partial-Power-Down Mode
Operation
I/Os Are 4.6-V Tolerant
Bus Hold on Data Inputs Eliminates the
Need for External Pullup/Pulldown
Resistors
Latch-Up Performance Exceeds 100 mA Per
JESD 78, Class II
ESD Protection Exceeds JESD 22
− 8000-V Human-Body Model (A114-A)
− 200-V Machine Model (A115-A)
− 1000-V Charged-Device Model (C101)
1DIR
1B1
1B2
GND
1B3
1B4
VCCB
1B5
1B6
GND
1B7
1B8
2B1
2B2
GND
2B3
2B4
VCCB
2B5
2B6
GND
2B7
2B8
2DIR
description/ordering information
1
48
2
47
3
46
4
45
5
44
6
43
7
42
8
41
9
40
10
39
11
38
12
37
13
36
14
35
15
34
16
33
17
32
18
31
19
30
20
29
21
28
22
27
23
26
24
1OE
1A1
1A2
GND
1A3
1A4
VCCA
1A5
1A6
GND
1A7
1A8
2A1
2A2
GND
2A3
2A4
VCCA
2A5
2A6
GND
2A7
2A8
2OE
25
This 16-bit noninverting bus transceiver uses two
separate configurable power-supply rails. The
SN74AVCH16T245 is optimized to operate with
VCCA/VCCB set at 1.4 V to 3.6 V. It is operational with VCCA/VCCB as low as 1.2 V. The A port is designed to track
VCCA. VCCA accepts any supply voltage from 1.2 V to 3.6 V. The B port is designed to track VCCB. VCCB accepts
any supply voltage from 1.2 V to 3.6 V. This allows for universal low-voltage bidirectional translation between
any of the 1.2-V, 1.5-V, 1.8-V, 2.5-V, and 3.3-V voltage nodes.
The SN74AVCH16T245 is designed for asynchronous communication between data buses. The device
transmits data from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the
direction-control (DIR) input. The output-enable (OE) input can be used to disable the outputs so the buses are
effectively isolated.
The SN74AVCH16T245 is designed so that the control pins (1DIR, 2DIR, 1OE, and 2OE) are supplied by VCCA.
ORDERING INFORMATION
−40°C to 85°C
ORDERABLE
PART NUMBER
PACKAGE†
TA
TOP-SIDE
MARKING
TSSOP − DGG
Tape and reel
SN74AVCH16T245GR
AVCH16T245
TVSOP − DGV
Tape and reel
SN74AVCH16T245VR
WJ245
VFBGA − GQL
VFBGA − ZQL (Pb-free)
Tape and reel
SN74AVCH16T245KR
74AVCH16T245ZQLR
WJ245
† Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are
available at www.ti.com/sc/package.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Copyright  2004, Texas Instruments Incorporated
!"#$%! & '("")% $& ! *(+,'$%! -$%).
"!-('%& '!!"# %! &*)''$%!& *)" %/) %)"#& ! )0$& &%"(#)%&
&%$-$"- 1$""$%2. "!-('%! *"!')&&3 -!)& !% )')&&$",2 ',(-)
%)&%3 ! $,, *$"$#)%)"&.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
SCES587A − AUGUST 2004 − REVISED OCTOBER 2004
description/ordering information (continued)
This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs,
preventing damaging current backflow through the device when it is powered down.
The VCC isolation feature ensures that if either VCC input is at GND, then both ports are in the high-impedance
state.
Active bus-hold circuitry holds unused or undriven inputs at a valid logic state. Use of pullup or pulldown resistors
with the bus-hold circuitry is not recommended.
To ensure the high-impedance state during power up or power down, OE should be tied to VCC through a pullup
resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
GQL OR ZQL PACKAGE
(TOP VIEW)
1
2
3
4
5
terminal assignments
6
1
2
3
4
5
6
A
1DIR
NC
NC
NC
NC
1OE
A
B
1B2
1B1
GND
GND
1A1
1A2
B
C
1B4
1B3
1A4
D
1B6
1B5
VCCA
GND
1A3
C
VCCB
GND
1A5
1A6
D
E
1B8
1B7
1A7
1A8
E
F
2B1
2B2
2A2
2A1
F
G
2B3
2B4
GND
GND
2A4
2A3
G
H
2B5
2B6
2A5
H
2B7
2B8
VCCA
GND
2A6
J
VCCB
GND
2A8
2A7
2DIR
NC
NC
NC
NC
2OE
J
K
K
NC − No internal connection
FUNCTION TABLE
(each 8-bit section)
INPUTS
2
OPERATION
OE
DIR
L
L
B data to A bus
L
H
A data to B bus
H
X
Isolation
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SCES587A − AUGUST 2004 − REVISED OCTOBER 2004
logic diagram (positive logic)
1DIR
1
2DIR
48
1A1
25
1OE
47
2A1
2
24
2OE
36
13
1B1
2B1
To Seven Other Channels
To Seven Other Channels
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Supply voltage range, VCCA and VCCB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 4.6 V
Input voltage range, VI (see Note 1): I/O ports (A port) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 4.6 V
I/O ports (B port) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 4.6 V
Control inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 4.6 V
Voltage range applied to any output in the high-impedance or power-off state, VO
(see Note 1): A port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 4.6 V
B port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 4.6 V
Voltage range applied to any output in the high or low state, VO
(see Notes 1 and 2): A port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to VCCA + 0.5 V
B port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to VCCB + 0.5 V
Input clamp current, IIK (VI < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −50 mA
Output clamp current, IOK (VO < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −50 mA
Continuous output current, IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±50 mA
Continuous current through each VCCA, VCCB, and GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±100 mA
Package thermal impedance, θJA (see Note 3): DGG package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70°C/W
DGV package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58°C/W
GQL/ZQL package . . . . . . . . . . . . . . . . . . . . . . . . . . . 42°C/W
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input voltage and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.
2. The output positive-voltage rating may be exceeded up to 4.6 V maximum if the output current rating is observed.
3. The package thermal impedance is calculated in accordance with JESD 51-7.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
3
SCES587A − AUGUST 2004 − REVISED OCTOBER 2004
recommended operating conditions (see Notes 4 through 8)
VCCI
VCCA
VCCB
VCCO
MIN
MAX
Supply voltage
1.2
3.6
V
Supply voltage
1.2
3.6
V
VCCI × 0.65
1.6
1.2 V to 1.95 V
VIH
High-level input
voltage
Data inputs
(see Note 7)
1.95 V to 2.7 V
2.7 V to 3.6 V
VIL
Data inputs
(see Note 7)
VCCI × 0.35
0.7
1.95 V to 2.7 V
2.7 V to 3.6 V
VIH
VIL
VI
VO
IOH
IOL
∆t/∆v
High-level input
voltage
Low-level input
voltage
DIR
(referenced to VCCA)
(see Note 8)
DIR
(referenced to VCCA)
(see Note 8)
V
0.8
VCCA × 0.65
1.6
1.2 V to 1.95 V
1.95 V to 2.7 V
2.7 V to 3.6 V
V
2
VCCA × 0.35
0.7
1.2 V to 1.95 V
1.95 V to 2.7 V
2.7 V to 3.6 V
V
0.8
Input voltage
Output voltage
V
2
1.2 V to 1.95 V
Low-level input
voltage
UNIT
0
3.6
V
Active state
0
3-state
0
VCCO
3.6
V
High-level output current
Low-level output current
1.2 V
−3
1.4 V to 1.6 V
−6
1.65 V to 1.95 V
−8
2.3 V to 2.7 V
−9
3 V to 3.6 V
−12
1.2 V
3
1.4 V to 1.6 V
6
1.65 V to 1.95 V
8
2.3 V to 2.7 V
9
3 V to 3.6 V
12
Input transition rise or fall rate
5
mA
mA
ns/V
TA
Operating free-air temperature
−40
85
°C
NOTES: 4. VCCI is the VCC associated with the data input port.
5. VCCO is the VCC associated with the output port.
6. All unused data inputs of the device must be held at VCCI or GND to ensure proper device operation. Refer to the TI application report,
Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
7. For VCCI values not specified in the data sheet, VIH min = VCCI × 0.7 V, VIL max = VCCI × 0.3 V.
8. For VCCI values not specified in the data sheet, VIH min = VCCA × 0.7 V, VIL max = VCCA × 0.3 V.
4
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SCES587A − AUGUST 2004 − REVISED OCTOBER 2004
electrical characteristics over recommended operating free-air temperature range (unless
otherwise noted) (see Notes 9 and 10)
PARAMETER
TEST CONDITIONS
1.2 V to 3.6 V
1.2 V to 3.6 V
1.2 V
1.2 V
1.4 V
1.4 V
1.05
1.65 V
1.65 V
1.2
IOH = −9 mA
IOH = −12 mA
2.3 V
2.3 V
1.75
3V
3V
2.3
IOL = 100 µA
IOL = 3 mA
1.2 V to 3.6 V
1.2 V to 3.6 V
1.2 V
1.2 V
IOH = −6 mA
IOH = −8 mA
IOL = 6 mA
IOL = 8 mA
VOL
VI = VIH
II
IBHL†
IBHH‡
IBHHO¶
MIN
MAX
VCCO − 0.2 V
V
0.2
0.15
1.4 V
0.35
1.65 V
0.45
2.3 V
2.3 V
0.55
3V
3V
0.7
1.2 V to 3.6 V
1.2 V to 3.6 V
VI = 0.42 V
VI = 0.49 V
1.2 V
1.2 V
1.4 V
1.4 V
15
VI = 0.58 V
VI = 0.7 V
1.65 V
1.65 V
25
2.3 V
2.3 V
45
VI = 0.8 V
VI = 0.78 V
3.3 V
3.3 V
100
1.2 V
1.2 V
VI = 0.91 V
VI = 1.07 V
1.4 V
1.4 V
−15
1.65 V
1.65 V
−25
2.3 V
2.3 V
−45
3.3 V
3.3 V
−100
1.2 V
1.2 V
1.6 V
1.6 V
125
1.95 V
1.95 V
200
2.7 V
2.7 V
300
3.6 V
3.6 V
1.2 V
1.2 V
VI = VCCA or GND
VI = 0 to VCC
VI = 0 to VCC
UNIT
0.95
1.4 V
VI = 1.6 V
VI = 2 V
IBHLO§
MIN
1.65 V
VI = VIL
IOL = 9 mA
IOL = 12 mA
Control
inputs
−40°C TO 85°C
VCCB
IOH = −100 µA
IOH = −3 mA
VOH
TA = 25°C
TYP
MAX
VCCA
±0.025
±0.25
±1
V
µA
25
µA
−25
µA
50
µA
500
−50
1.6 V
1.6 V
−125
1.95 V
1.95 V
−200
2.7 V
2.7 V
−300
3.6 V
3.6 V
−500
µA
† The bus-hold circuit can sink at least the minimum low sustaining current at VIL max. IBHL should be measured after lowering VIN to GND and
then raising it to VIL max.
‡ The bus-hold circuit can source at least the minimum high sustaining current at VIH min. IBHH should be measured after raising VIN to VCC and
then lowering it to VIH min.
§ An external driver must source at least IBHLO to switch this node from low to high.
¶ An external driver must sink at least IBHHO to switch this node from high to low.
NOTES: 9. VCCO is the VCC associated with the output port.
10. VCCI is the VCC associated with the input port.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
5
SCES587A − AUGUST 2004 − REVISED OCTOBER 2004
electrical characteristics over recommended operating free-air temperature range (unless
otherwise noted) (see Notes 9 and 10) (continued)
PARAMETER
TEST CONDITIONS
VCCA
MIN
B port
A or B
ports
IOZ#
B port
A port
ICCA
A or B
ports
Cio
UNIT
MAX
±2.5
±5
0 to 3.6 V
0V
±0.1
±2.5
±5
OE = VIH
3.6 V
3.6 V
±0.5
±2.5
±5
OE = don’t
care
0V
3.6 V
±5
3.6 V
0V
±5
1.2 V to 3.6 V
1.2 V to 3.6 V
25
0V
3.6 V
−5
3.6 V
0V
25
1.2 V to 3.6 V
1.2 V to 3.6 V
25
A
µA
µA
A
µA
µA
0V
3.6 V
25
3.6 V
0V
−5
1.2 V to 3.6 V
1.2 V to 3.6 V
45
VI = 3.3 V or GND
3.3 V
3.3 V
3.5
pF
VO = 3.3 V or GND
3.3 V
3.3 V
7
pF
VI = VCCI or GND, IO = 0
ICCA ) ICCB
Control
Ci
inputs
MIN
±0.1
VI = VCCI or GND, IO = 0
ICCB
MAX
0 to 3.6 V
VI or VO = 0 to 3.6 V
VO = VCCO or
GND,
VI = VCCI or GND
TYP
0V
A port
Ioff
−40°C TO
85°C
TA = 25°C
VCCB
VI = VCCI or GND, IO = 0
µA
# For I/O ports, the parameter IOZ includes the input leakage current.
NOTES: 9. VCCO is the VCC associated with the output port.
10. VCCI is the VCC associated with the input port.
switching characteristics over recommended operating free-air temperature range,
VCCA = 1.2 V (see Figure 1)
6
PARAMETER
FROM
(INPUT)
TO
(OUTPUT)
tPLH
tPHL
A
B
tPLH
tPHL
B
A
tPZH
tPZL
OE
A
tPZH
tPZL
OE
B
tPHZ
tPLZ
OE
A
tPHZ
tPLZ
OE
B
VCCB = 1.2 V
TYP
VCCB = 1.5 V
TYP
VCCB = 1.8 V
TYP
VCCB = 2.5 V
TYP
VCCB = 3.3 V
TYP
4.1
3.3
3
2.8
3.2
4.1
3.3
3
2.8
3.2
4.4
4
3.8
3.6
3.5
4.4
4
3.8
3.6
3.5
6.4
6.4
6.4
6.4
6.4
6.4
6.4
6.4
6.4
6.4
6
4.6
4
3.4
3.2
6
4.6
4
3.4
3.2
6.6
6.6
6.6
6.6
6.8
6.6
6.6
6.6
6.6
6.8
6
4.9
4.9
4.2
5.3
6
4.9
4.9
4.2
5.3
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
UNIT
ns
ns
ns
ns
ns
ns
SCES587A − AUGUST 2004 − REVISED OCTOBER 2004
switching characteristics over recommended operating free-air temperature range,
VCCA = 1.5 V ± 0.1 V (see Figure 1)
FROM
(INPUT)
TO
(OUTPUT)
tPLH
tPHL
A
B
tPLH
tPHL
B
A
tPZH
tPZL
OE
A
tPZH
tPZL
OE
B
tPHZ
tPLZ
OE
A
tPHZ
tPLZ
OE
B
PARAMETER
VCCB = 1.2 V
VCCB = 1.5 V
± 0.1 V
VCCB = 1.8 V
± 0.15 V
VCCB = 2.5 V
± 0.2 V
VCCB = 3.3 V
± 0.3 V
TYP
MIN
MAX
MIN
MAX
MIN
MAX
MIN
MAX
3.6
0.5
6.2
0.5
5.2
0.5
4.1
0.5
3.7
3.6
0.5
6.2
0.5
5.2
0.5
4.1
0.5
3.7
3.3
0.5
6.2
0.5
5.9
0.5
5.6
0.5
5.5
3.3
0.5
6.2
0.5
5.9
0.5
5.6
0.5
5.5
4.3
1
10.1
1
10.1
1
10.1
1
10.1
4.3
1
10.1
1
10.1
1
10.1
1
10.1
5.6
1
10.1
0.5
8.1
0.5
5.9
0.5
5.2
5.6
1
10.1
0.5
8.1
0.5
5.9
0.5
5.2
4.5
1.5
9.1
1.5
9.1
1.5
9.1
1.5
9.1
4.5
1.5
9.1
1.5
9.1
1.5
9.1
1.5
9.1
5.5
1.5
8.7
1.5
7.5
1
6.5
1
6.3
5.5
1.5
8.7
1.5
7.5
1
6.5
1
6.3
UNIT
ns
ns
ns
ns
ns
ns
switching characteristics over recommended operating free-air temperature range,
VCCA = 1.8 V ± 0.15 V (see Figure 1)
FROM
(INPUT)
TO
(OUTPUT)
tPLH
tPHL
A
B
tPLH
tPHL
B
A
tPZH
tPZL
OE
A
tPZH
tPZL
OE
B
tPHZ
tPLZ
OE
A
tPHZ
tPLZ
OE
B
PARAMETER
VCCB = 1.2 V
VCCB = 1.5 V
± 0.1 V
VCCB = 1.8 V
± 0.15 V
VCCB = 2.5 V
± 0.2 V
VCCB = 3.3 V
± 0.3 V
TYP
MIN
MAX
MIN
MAX
MIN
MAX
MIN
MAX
3.4
0.5
5.9
0.5
4.8
0.5
3.7
0.5
3.3
3.4
0.5
5.9
0.5
4.8
0.5
3.7
0.5
3.3
3
0.5
5.2
0.5
4.8
0.5
4.5
0.5
4.4
3
0.5
5.2
0.5
4.8
0.5
4.5
0.5
4.4
3.4
1
7.8
1
7.8
1
7.8
1
7.8
3.4
1
7.8
1
7.8
1
7.8
1
7.8
5.4
1
9.2
0.5
7.4
0.5
5.3
0.5
4.5
5.4
1
9.2
0.5
7.4
0.5
5.3
0.5
4.5
4.2
1.5
7.7
1.5
7.7
1.5
7.7
1.5
7.7
4.2
1.5
7.7
1.5
7.7
1.5
7.7
1.5
7.7
5.2
1.5
8.4
1.5
7.1
1
5.9
1
5.7
5.2
1.5
8.4
1.5
7.1
1
5.9
1
5.7
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
UNIT
ns
ns
ns
ns
ns
ns
7
SCES587A − AUGUST 2004 − REVISED OCTOBER 2004
switching characteristics over recommended operating free-air temperature range,
VCCA = 2.5 V ± 0.2 V (see Figure 1)
FROM
(INPUT)
TO
(OUTPUT)
tPLH
tPHL
A
B
tPLH
tPHL
B
A
tPZH
tPZL
OE
A
tPZH
tPZL
OE
B
tPHZ
tPLZ
OE
A
tPHZ
tPLZ
OE
B
PARAMETER
VCCB = 1.2 V
VCCB = 1.5 V
± 0.1 V
VCCB = 1.8 V
± 0.15 V
VCCB = 2.5 V
± 0.2 V
VCCB = 3.3 V
± 0.3 V
TYP
MIN
MAX
MIN
MAX
MIN
MAX
MIN
MAX
3.2
0.5
5.6
0.5
4.5
0.5
3.3
0.5
2.8
3.2
0.5
5.6
0.5
4.5
0.5
3.3
0.5
2.8
2.6
0.5
4.1
0.5
3.7
0.5
3.3
0.5
3.2
2.6
0.5
4.1
0.5
3.7
0.5
3.3
0.5
3.2
2.5
0.5
5.3
0.5
5.3
0.5
5.3
0.5
5.3
2.5
0.5
5.3
0.5
5.3
0.5
5.3
0.5
5.3
5.2
0.5
9.4
0.5
7.3
0.5
5.1
0.5
4.5
5.2
0.5
9.4
0.5
7.3
0.5
5.1
0.5
4.5
3
1
6.1
1
6.1
1
6.1
1
6.1
3
1
6.1
1
6.1
1
6.1
1
6.1
5
1
7.9
1
6.6
1
6.1
1
5.2
5
1
7.9
1
6.6
1
6.1
1
5.2
UNIT
ns
ns
ns
ns
ns
ns
switching characteristics over recommended operating free-air temperature range,
VCCA = 3.3 V ± 0.3 V (see Figure 1)
FROM
(INPUT)
TO
(OUTPUT)
tPLH
tPHL
A
B
tPLH
tPHL
B
A
tPZH
tPZL
OE
A
tPZH
tPZL
OE
B
tPHZ
tPLZ
OE
A
tPHZ
tPLZ
OE
B
PARAMETER
8
VCCB = 1.2 V
VCCB = 1.5 V
± 0.1 V
VCCB = 1.8 V
± 0.15 V
VCCB = 2.5 V
± 0.2 V
VCCB = 3.3 V
± 0.3 V
TYP
MIN
MAX
MIN
MAX
MIN
MAX
MIN
MAX
3.2
0.5
5.5
0.5
4.4
0.5
3.2
0.5
2.7
3.2
0.5
5.5
0.5
4.4
0.5
3.2
0.5
2.7
2.8
0.5
3.7
0.5
3.3
0.5
2.8
0.5
2.7
2.8
0.5
3.7
0.5
3.3
0.5
2.8
0.5
2.7
2.2
0.5
4.3
0.5
4.2
0.5
4.1
0.5
4
2.2
0.5
4.3
0.5
4.2
0.5
4.1
0.5
4
5.1
0.5
9.3
0.5
7.2
0.5
4.9
0.5
4
5.1
0.5
9.3
0.5
7.2
0.5
4.9
0.5
4
3.4
0.5
5
0.5
5
0.5
5
0.5
5
3.4
0.5
5
0.5
5
0.5
5
0.5
5
4.9
1
7.7
1
6.5
1
5.2
0.5
5
4.9
1
7.7
1
6.5
1
5.2
0.5
5
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
UNIT
ns
ns
ns
ns
ns
ns
SCES587A − AUGUST 2004 − REVISED OCTOBER 2004
operating characteristics, TA = 25°C
VCCA =
VCCB = 1.2 V
VCCA =
VCCB = 1.5 V
VCCA =
VCCB = 1.8 V
VCCA =
VCCB = 2.5 V
VCCA =
VCCB = 3.3 V
TYP
TYP
TYP
TYP
TYP
1
1
1
1
2
1
1
1
1
1
13
13
14
15
16
Outputs
disabled
1
1
1
1
1
Outputs
enabled
13
13
14
15
16
1
1
1
1
1
1
1
1
1
2
1
1
1
1
1
PARAMETER
TEST
CONDITIONS
Outputs
enabled
A to B
CpdA†
Outputs
disabled
Outputs
enabled
B to A
A to B
CpdB†
Outputs
disabled
Outputs
enabled
B to A
CL = 0,
f = 10 MHz,
tr = tf = 1 ns
UNIT
pF
CL = 0,
f = 10 MHz,
tr = tf = 1 ns
pF
Outputs
disabled
† Power-dissipation capacitance per transceiver
power-up considerations
A proper power-up sequence always should be followed to avoid excessive supply current, bus contention,
oscillations, or other anomalies. To guard against such power-up problems, take the following precautions:
1. Connect ground before any supply voltage is applied.
2. Power up VCCA.
3. VCCB can be ramped up along with or after VCCA.
typical total static power consumption (ICCA + ICCB)
Table 1
VCCB
VCCA
0V
1.2 V
1.5 V
1.8 V
2.5 V
3.3 V
0V
0
<0.5
<0.5
<0.5
<0.5
<0.5
1.2 V
<0.5
<1
<1
<1
<1
1
1.5 V
<0.5
<1
<1
<1
<1
1
1.8 V
<0.5
<1
<1
<1
<1
<1
2.5 V
<0.5
1
<1
<1
<1
<1
3.3 V
<0.5
1
<1
<1
<1
<1
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
UNIT
µA
A
9
SCES587A − AUGUST 2004 − REVISED OCTOBER 2004
TYPICAL CHARACTERISTICS
6
6
TA = 25°C
VCCA = 1.2 V
TA = 25°C
VCCA = 1.2 V
5
tPHL − Propagation Delay − ns
tPLH − Propagation Delay − ns
5
4
3
2
×
+
1
H
0
0
VCCB= 1.2 V
VCCB = 1.5 V
VCCB = 1.8 V
VCCB = 2.5 V
VCCB = 3.3 V
10
20
30
40
CL − Load Capacitance − pF
50
4
3
2
×
+
1
H
0
60
0
10
20
30
40
50
CL − Load Capacitance − pF
Figure 1
6
TA = 25°C
VCCA = 1.5 V
5
tPHL − Propagation Delay − ns
tPLH − Propagation Delay − ns
TA = 25°C
VCCA = 1.5 V
4
3
2
×
+
1
H
0
10
20
30
VCCB = 1.2 V
VCCB = 1.5 V
VCCB = 1.8 V
VCCB = 2.5 V
VCCB = 3.3 V
40
50
5
4
3
2
×
+
1
H
0
60
CL − Load Capacitance − pF
0
10
20
30
Figure 4
POST OFFICE BOX 655303
VCCB = 1.2 V
VCCB = 1.5 V
VCCB = 1.8 V
VCCB = 2.5 V
VCCB = 3.3 V
40
CL − Load Capacitance − pF
Figure 3
10
60
Figure 2
6
0
VCCB = 1.2 V
VCCB = 1.5 V
VCCB = 1.8 V
VCCB = 2.5 V
VCCB = 3.3 V
• DALLAS, TEXAS 75265
50
60
SCES587A − AUGUST 2004 − REVISED OCTOBER 2004
TYPICAL CHARACTERISTICS
6
6
TA = 25°C
VCCA = 1.8 V
tPHL − Propagation Delay − ns
5
4
3
2
×
VCCB = 1.2 V
VCCB = 1.5 V
VCCB = 1.8 V
VCCB = 2.5 V
VCCB = 3.3 V
+
1
H
0
0
10
20
30
40
50
4
3
2
×
+
1
H
0
60
0
10
CL − Load Capacitance − pF
20
6
TA = 25°C
VCCA = 2.5 V
×
TA = 25°C
VCCA = 2.5 V
5
+
tPHL − Propagation Delay − ns
5
4
3
2
×
+
1
H
10
20
30
40
50
60
Figure 6
6
0
0
30
VCCB= 1.2 V
VCCB = 1.5 V
VCCB = 1.8 V
VCCB = 2.5 V
VCCB = 3.3 V
CL − Load Capacitance − pF
Figure 5
tPLH − Propagation Delay − ns
tPLH − Propagation Delay − ns
5
TA = 25°C
VCCA = 1.8 V
VCCB = 1.2 V
VCCB = 1.5 V
VCCB = 1.8 V
VCCB = 2.5 V
VCCB = 3.3 V
40
50
60
H
VCCB = 1.2 V
VCCB = 1.5 V
VCCB = 1.8 V
VCCB = 2.5 V
VCCB = 3.3 V
4
3
2
1
0
0
10
20
30
40
CL − Load Capacitance − pF
CL − Load Capacitance − pF
Figure 7
Figure 8
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
50
60
11
SCES587A − AUGUST 2004 − REVISED OCTOBER 2004
TYPICAL CHARACTERISTICS
6
TA = 25°C
VCCA = 3.3 V
TA = 25°C
VCCA = 3.3 V
4
3
2
×
+
1
H
0
0
10
+
20
30
VCCB = 1.2 V
VCCB = 1.5 V
VCCB = 1.8 V
VCCB = 2.5 V
VCCB = 3.3 V
40
50
H
VCCB = 1.2 V
VCCB = 1.5 V
VCCB = 1.8 V
VCCB = 2.5 V
VCCB = 3.3 V
4
3
2
1
0
60
0
10
20
30
Figure 10
Figure 9
POST OFFICE BOX 655303
40
CL − Load Capacitance − pF
CL − Load Capacitance − pF
12
×
5
5
tPHL − Propagation Delay − ns
tPLH − Propagation Delay − ns
6
• DALLAS, TEXAS 75265
50
60
SCES587A − AUGUST 2004 − REVISED OCTOBER 2004
PARAMETER MEASUREMENT INFORMATION
2 × VCCO
S1
RL
From Output
Under Test
Open
GND
CL
(see Note A)
TEST
S1
tpd
tPLZ/tPZL
tPHZ/tPZH
Open
2 × VCCO
GND
RL
tw
LOAD CIRCUIT
VCCI
VCCI/2
Input
VCCO
1.2 V
1.5 V ± 0.1 V
1.8 V ± 0.15 V
2.5 V ± 0.2 V
3.3 V ± 0.3 V
CL
RL
15 pF
15 pF
15 pF
15 pF
15 pF
2 kΩ
2 kΩ
2 kΩ
2 kΩ
2 kΩ
VTP
0.1 V
0.1 V
0.15 V
0.15 V
0.3 V
VCCI/2
0V
VOLTAGE WAVEFORMS
PULSE DURATION
VCCA
Output
Control
(low-level
enabling)
VCCA/2
0V
tPLZ
tPZL
VCCI
Input
VCCI/2
VCCI/2
0V
tPLH
Output
VOH
VCCO/2
VOL
VCCO/2
VCCO
Output
Waveform 1
S1 at 2 × VCCO
(see Note B)
tPHL
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
VCCA/2
VCCO/2
VOL
tPHZ
tPZH
Output
Waveform 2
S1 at GND
(see Note B)
VOL + VTP
VCCO/2
VOH − VTP
VOH
0V
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
NOTES: A. CL includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRRv10 MHz, ZO = 50 Ω, dv/dt ≥ 1 V/ns,
dv/dt ≥1 V/ns.
D. The outputs are measured one at a time, with one transition per measurement.
E. tPLZ and tPHZ are the same as tdis.
F. tPZL and tPZH are the same as ten.
G. tPLH and tPHL are the same as tpd.
H. VCCI is the VCC associated with the input port.
I. VCCO is the VCC associated with the output port.
Figure 11. Load Circuit and Voltage Waveforms
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
13
PACKAGE OPTION ADDENDUM
www.ti.com
25-Feb-2005
PACKAGING INFORMATION
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
74AVCH16T245ZQLR
ACTIVE
VFBGA
ZQL
56
1000
SN74AVCH16T245GQLR
ACTIVE
VFBGA
GQL
56
1000
SN74AVCH16T245GR
ACTIVE
TSSOP
DGG
48
2000
SN74AVCH16T245VR
ACTIVE
TVSOP
DGV
48
2000
Pb-Free
(RoHS)
Pb-Free
(RoHS)
Lead/Ball Finish
MSL Peak Temp (3)
SNAGCU
Level-1-260C-UNLIM
None
SNPB
Level-1-240C-UNLIM
Pb-Free
(RoHS)
CU NIPDAU
Level-1-250C-UNLIM
CU NIPDAU
Level-1-250C-UNLIM
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in
a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - May not be currently available - please check http://www.ti.com/productcontent for the latest availability information and additional
product content details.
None: Not yet available Lead (Pb-Free).
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Green (RoHS & no Sb/Br): TI defines "Green" to mean "Pb-Free" and in addition, uses package materials that do not contain halogens,
including bromine (Br) or antimony (Sb) above 0.1% of total product weight.
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDECindustry standard classifications, and peak solder
temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited
information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI
to Customer on an annual basis.
Addendum-Page 1
MECHANICAL DATA
MPDS006C – FEBRUARY 1996 – REVISED AUGUST 2000
DGV (R-PDSO-G**)
PLASTIC SMALL-OUTLINE
24 PINS SHOWN
0,40
0,23
0,13
24
13
0,07 M
0,16 NOM
4,50
4,30
6,60
6,20
Gage Plane
0,25
0°–8°
1
0,75
0,50
12
A
Seating Plane
0,15
0,05
1,20 MAX
PINS **
0,08
14
16
20
24
38
48
56
A MAX
3,70
3,70
5,10
5,10
7,90
9,80
11,40
A MIN
3,50
3,50
4,90
4,90
7,70
9,60
11,20
DIM
4073251/E 08/00
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.
Falls within JEDEC: 24/48 Pins – MO-153
14/16/20/56 Pins – MO-194
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MECHANICAL DATA
MTSS003D – JANUARY 1995 – REVISED JANUARY 1998
DGG (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
48 PINS SHOWN
0,27
0,17
0,50
48
0,08 M
25
6,20
6,00
8,30
7,90
0,15 NOM
Gage Plane
1
0,25
24
0°– 8°
A
0,75
0,50
Seating Plane
0,15
0,05
1,20 MAX
PINS **
0,10
48
56
64
A MAX
12,60
14,10
17,10
A MIN
12,40
13,90
16,90
DIM
4040078 / F 12/97
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold protrusion not to exceed 0,15.
Falls within JEDEC MO-153
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:
Products
Applications
Amplifiers
amplifier.ti.com
Audio
www.ti.com/audio
Data Converters
dataconverter.ti.com
Automotive
www.ti.com/automotive
DSP
dsp.ti.com
Broadband
www.ti.com/broadband
Interface
interface.ti.com
Digital Control
www.ti.com/digitalcontrol
Logic
logic.ti.com
Military
www.ti.com/military
Power Mgmt
power.ti.com
Optical Networking
www.ti.com/opticalnetwork
Microcontrollers
microcontroller.ti.com
Security
www.ti.com/security
Telephony
www.ti.com/telephony
Video & Imaging
www.ti.com/video
Wireless
www.ti.com/wireless
Mailing Address:
Texas Instruments
Post Office Box 655303 Dallas, Texas 75265
Copyright  2005, Texas Instruments Incorporated