DATA SHEET TFT COLOR LCD MODULE NL6448AC20-06 17 cm (6.5 type), 640 × 480 pixels 262144/4096 colors, incorporated edge-light type backlight high brightness, inverter separated from module DESCRIPTION NL6448AC20-06 is a TFT(thin film transistor) active matrix color liquid crystal display(LCD) comprising amorphous silicon TFT attached to each signal electrode, a driving circuit and a backlight. NL6448AC20-06 has a builtin backlight. Backlight includes long-life-lamps and its lamps are replaceable. The 17cm diagonal display area contains 640 × 480 pixels and can display 4096 or 262144 colors simultaneously. NL6448AC20-06 is suitable for industrial application use, because the luminance is high, and the viewing direction is selectable by display scan select. FEATURES ™ High luminance (200 cd/m2 Typ.: saturated value) ™ Low reflection ™ Wide viewing angle with retardation film ™ Display reverse scan function ™ 6-bit/4-bit digital RGB signals ™ Edge type backlight with long-life-lamps (Two lamp holders, inverter) ™ Variable luminance control ™ Backlight lamp holder (65LHS-3L) replaceable ™ Compatible to the mounting hole position of NL6448AC20-02 except for inverter. APPLICATIONS ™ Measuring instruments ™ Display terminals for control system ™ New media ™ Control boards for NC machine ™ Monitor for process controller Document No. EN0323EJ1V0DS00 (1st edition) Date Published July 1997 M Printed in Japan © 1997 NL6448AC20- 06 STRUCTURE AND FUNCTIONS A TFT color LCD module comprises a TFT LCD panel, LSIs for driving liquid crystal, and a backlight. The TFT LCD panel is composed of a TFT array glass substrate superimposed on a color filter glass substrate with liquid crystal filled in the narrow gap between two substrates. The backlight apparatus is located on the backside of the LCD panel. RGB (Red, Green, Blue) data signals are sent to LCD panel drivers after modulation into suitable forms for active matrix addressing through signal processor. Each of the liquid crystal cells acts as an electro-optical switch that controls the light transmission from the backlight by a signal applied to a signal electrode through the TFT switch. BLOCK DIAGRAM H – driver 960 lines R0 – R5 G0 – G5 Digital signal processor Level shift CLK 480 lines V – driver B0 – B5 TFT LCD panel H : 640 × 3 (RGB) V : 480 Hsync Vsync LCD timing controller 960 lines DE DPS H – driver VCC Power supply circuit LSIs Drivers Backlight VDD BRTL BRTH GNDB GND(SG) Frame(FG) 2 Inverter NL6448AC20-06 OUTLINE OF CHARACTERISTICS (at room temperature) Display area Drive system 132.48 (H) × 99.36 (V) mm a-Si TFT active matrix Display colors 262144 or 4096 colors Number of pixels Pixel arrangement 640 × 480 RGB vertical stripe Pixel pitch 0.207 (H) × 0.207 (V) mm Module size 178.8(H) × 126.8(V) × 11.0 Typ. (D) mm Inverter size Weight 26 (H) × 105 (V) × 9.5 Typ. (D) mm 237g (Typ.) + 17g (Typ., inverter) Contrast ratio 150 : 1 (Typ.) Viewing angle (more than the contrast ratio of 10:1) • Horizontal : 50° (Typ. left side, right side) • Vertical : 35° (Typ. up side), 45° (Typ. down side) Designed viewing direction • wider viewing angle with contrast ratio : up side (12 o'clock, reverse scan) : down side (6 o'clock, normal scan) • wider viewing angle without image reversal : up side (12 o'clock, normal scan) : down side (6 o'clock, reverse scan) • optimum grayscale (γ = 2.2) : perpendicular Color gamut 45% (Typ. At center, To NTSC) Response time 40ms (Max.), "white" to "black" Luminance 200cd/m2 (Typ.) Signal system 6-/4-bit digital signals for each of RGB primary colors, Supply voltage 5.0V (Logic, LCD driving), 5.0V (Backlight) Backlight Edge light type: two fluorescent lamps (cold cathode type) Power consumption 6.0W (Typ.) Synchronous signals (Hsync, Vsync), Dot clock (CLK) 3 NL6448AC20-06 SUPPLY VOLTAGE SEQUENCE 4.75 V 4.75 V VCC 0<t<35 ms 0V 0<t<35 ms t<150 ms Signal VALID 0V Power-on Power-off ∗1 The supply voltage for input signals should be the same as VCC. ∗2 Apply VDD within the LCD operation period. When the backlight turns on before LCD operation or the LCD operation turns off before the backlight turns off, the display may momentarily become white. ∗3 When the power is off, please keep whole signals (Hsync, Vsync, CLK, DE, and DATA) low level or high impedance. INTERFACE PIN CONNECTION Module side connector Mating connector CN31 • • • IL-310-T31PB-VF (No. 1 to 31) IL-310-T31S-VF Supplier : Japan Aviation Electronics Industry Limited (JAE) or DF9-31S-1V or DF9M-31S-1R Supplier : HIROSE ELECTRIC CO., LTD (1) 6-bit interface signals, power supply Pin No. Symbol 1 GND 2 3 4 5 Function Pin No. Symbol Function Ground 17 G4 Green data CLK Dot clock 18 G5 Green data (MSB) Hsync Horizontal synchronous 19 GND Ground Vsync Vertical synchronous 20 B0 Blue data (LSB) GND Ground 21 B1 Blue data 6 R0 Red data (LSB) 22 B2 Blue data 7 R1 Red data 23 B3 Blue data 8 R2 Red data 24 B4 Blue data 9 R3 Red data 25 B5 Blue data (MSB) 10 R4 Red data 26 GND Ground 11 R5 Red data (MSB) 27 DE Data enable 12 GND Ground 28 V CC Power supply 13 G0 Green data (LSB) 29 V CC Power supply 14 G1 Green data 30 N.C. Non-connection (Open) 15 G2 Green data 31 DPS Display scan select 16 G3 Green data LSB : Least Significent Bit MSB : Most Significent Bit note 1 : VCC : All VCC terminals should be connected to 5.0 V. note 2 : DPS : Normal scan is “L”or “Open”. And reverse scan is “H”. note 3 : During the operation, do not change the operation mode : e. g. scan direction and 4/6-bit signal. note 4 : Do not operate LCD module without input DE signal. 5 NL6448AC20- 06 (2) 4-bit interface signals, power supply Pin No. Symbol Function Pin No. Symbol Function 1 GND Ground 17 G2 Green data 2 CLK Dot clock 18 G3 Green data (MSB) 3 Hsync Horizontal synchronous 19 GND Ground 4 Vsync Vertical synchronous 20 N.C. Non-connection (Open) 5 GND Ground 21 N.C. Non-connection (Open) 6 N.C. Non-connection (Open) 22 B0 Blue data (LSB) 7 N.C. Non-connection (Open) 23 B1 Blue data 8 R0 Red data (LSB) 24 B2 Blue data 9 R1 Red data 25 B3 Blue data (MSB) 10 R2 Red data 26 GND Ground 11 R3 Red data (MSB) 27 DE Data enable 12 GND Ground 28 V CC Power supply 13 V CC Power supply 29 V CC Power supply 14 N.C. Non-connection (Open) 30 N.C. Non-connection 15 G0 Green data (LSB) 31 DPS Display scan select 16 G1 Green data LSB : Least Significent Bit MSB : Most Significent Bit note 1 : VCC : All VCC terminals should be connected to 5.0 V. note 2 : DPS : Normal scan is “L”or “Open”. And reverse scan is “H”. note 3 : During the operation, do not change the operation mode : e. g. scan direction and 4/6-bit signal. note 4 : Do not use operate LCD module without input DE signal. (3) Backlight • Inverter side connector 1 Mating connector 1 CN1 • • • IL-Z-6PL-SMTY IL-Z-6S-S125C3 Supplier : Japan Aviation Electronics Industry Limited (JAE) Pin No. Symbol 1 GNDB Function Pin No. Function 4 VDD Power supply 2 GNDB Backight ground 5 BRTH Luminance control input 3 VDD Power supply 6 BRTH Luminance control input • Inverter side connector 2 Mating connector 2 (Lamp side) CN2 and CN3 • • • SM02 (8.0) B-BHS-TB BHR-03VS-1 Supplier : J. S. T TRADING COMPANY, LTD. Pin No. 6 Symbol Backight ground Symbol Function 1 VH High voltage terminal 2 N.C. Non-connection 3 GNDB Backight ground NL6448AC20-06 note : q A way of luminance control by a variable resistor Mating variable resistor BRTL : 10 kΩ±5% Minimum luminance (Approx.15) : R = 0 Ω Maximum luminance (100%) : R = 10 kΩ BRTH R w A way of luminance control by a voltage The range of input voltage between BRTH and GNDB is as follows. Minimum luminance (Approx. 15%) : 1.52 V Maximum luminance (100%) : 1.9 V e Connector location Upper side To CN2 or CN3 LCD module 3 2 <Rear view> CN31 1 To CN2 or CN3 1 3 2 4 • • • Lower side • • • • • • • 31 30 3 2 CN3 <Pin arrangement of CN31> 1 1 CN2 2 <Pin arrangement of CN2 and CN3> 3 CN1 4 Inverter 5 6 <Pin arrangement of CN1> 7 NL6448AC20- 06 DISPLAY COLORS VS. INPUT DATA SIGNALS (1) 6-bit interface signals Data signals (0 : Low level, 1 : High level) Display colors Red grayscale 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 Black 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 Dark ↑ Red Black Dark ↑ ↑ Bright green Black Dark ↑ ↑ Blue grayscale B5 B4 B3 B2 B1 B0 Black Blue Red Magenta Green Cyan Yellow White Bright Green grayscale G5 G4 G3 G2 G1 G0 ↑ Basic colors R5 R4 R3 R2 R1 R0 Bright Blue Note : Colors are developed in combination with 6 bit signal (64 steps in grayscale) of each primary red, green, and blue color. This process can result in up to 262144 (64 × 64 × 64) colors. 8 NL6448AC20-06 (2) 4-bit interface signals Data signals (0 : Low level, 1 : High level) Display colors Red grayscale R2 R1 R0 G3 G2 G1 G0 B3 B2 B1 B0 Black Blue Red Magenta Green Cyan Yellow White 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 Black 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 1 1 0 1 Dark ↑ ↑ Basic colors R3 Bright Red Black Dark ↑ ↑ Green grayscale Bright green Black Dark ↑ ↑ Blue grayscale Bright Blue Note : Colors are developed in combination with 4 bit signal (16 steps in grayscale) of each primary red, green, and blue color. This process can result in up to 4096 (16 × 16 × 16) colors. 9 NL6448AC20- 06 INPUT SIGNAL TIMING (1) Input signal specifications Parameter Frequency CLK Hsync Duty Min. Typ. Max. Unit Remarks 1 /tc 21.0 25.175 29.0 MHz 39.722 ns (Typ.) t ch / t c 0.4 0.5 0.6 –– –– –– –– 10 ns –– 30.0 31.778 33.6 µs –– 800 –– CLK Rise, fall t crf Period th t hd CLK –– Front-porch t hf 2 16 –– CLK –– Pulse width t hp 10 96 –– CLK –– Back-porch t hb 5 48 –– CLK –– ∗) t hp +t hb 64 144 –– CLK –– t hch 12 –– –– ns –– Hsync-CLK timing t hcx 8 –– –– ns –– Hsync-Vsync timing t vh 15 –– –– ns –– Vsync-Hsync timing t vs 15 –– –– ns –– Rise, fall t hrf –– –– 10 ns –– Period tv 16.1 16.683 17.2 ms –– 525 –– H H –– 12 –– H –– t vd Front-porch t vf 1 Pulse width t vp 2 2 –– H –– Back-porch t vb 4 31 –– H –– 6 33 –– H –– –– –– 10 ns –– ∗) t vp + t vb DE 480 CLK-DATA timing t ds 8 –– –– ns –– DATA-CLK timing t dh 12 –– –– ns –– Rise, fall t drf –– –– 10 ns –– DE-CLK timing t es 8 –– –– ns CLK-DE timing t eh 12 –– –– ns Rise, fall t erf –– –– 10 ns note 1 : All parameters should be kept within the specified range. note 2 : Do not operate LCD module without input DE signal. 10 59.94 Hz (Typ.) Display period Rise, fall DATA R0-R5 G0-G5 B0-B5 640 31.468 kHz (Typ.) Display period CLK-Hsync timing Vsync Symbol –– NL6448AC20-06 (2) Definition of input signal timing <Vertical> tv tvp Vsync tvb Display period tvf note 1 tvd DE <Horizontal> th thp Hsync thb Display period thf note 1 thd DE note 1 : Display period does not exist as signals. note 2 : Set the total of thp + thb and tvp + tvb as the table of input signal timing, otherwise display position is shifted to right or left side, or to up or down side. note 3 : Do not operate LCD module without input DE signal. 11 NL6448AC20- 06 tc tch CLK VIH 1.5 V VIL tcrf tcrf tds DATA (R0 to R5) VIH (G0 to G5) 1.5 V (B0 to B5) VIL INVALID tdrf teh DE tdh INVALID tdrf tes teh VIH 1.5 V VIL terf CLK 1.5 V thch Hsync thcs VIH 1.5 V VIL thrf Hsync 1.5 V tvh Vsync tvs VIH 1.5 V VIL tvrf 12 terf tes NL6448AC20-06 (3) Input signal timing chart Vsync 1H tvp 480H (fixed) tvb tvf Hsync 1 2 3 1 DE R0 to R5 G0 to G5 B0 to B5 INVALID D(X,0) D(X,479) D(X,Y) INVALID (note: X = 0 to 639) DE R0 to R5 G0 to G5 B0 to B5 INVALID D(0,Y) D(1,Y) D(X,Y) D(638,Y) D(639,Y) INVALID Hcync 1CLK thp thb 640CLK (fixed) thf CLK 1 2 1 DE R0 to R5 G0 to G5 B0 to B5 INVALID D(0,Y) D(1,Y) D(639,Y) INVALID (note: Y = 0 to 479) 13 NL6448AC20- 06 DISPLAY POSITION Normal scan: DPS = “L” or “OPEN” D (0, 0) D (1, 0) D (X, 0) D (638, 0) D (639, 0) D (0, 1) D (1, 1) D (X, 1) D (638, 1) D (639, 1) D (0, Y) D (1, Y) D (X, Y) D (638, Y) D (639, Y) D (0, 478) D (1, 478) D (X, 478) D (638, 478) D (639, 478) D (0, 479) D (1, 479) D (X, 479) D (638, 479) D (639, 479) Reverse scan: DPS = “H” D (639, 479) D (638, 479) D (X, 479) D (1, 479) D (0, 479) D (639, 478) D (638, 478) D (X, 478) D (1, 478) D (0, 478) D (639, Y) D (638, Y) D (X, Y) D (1, Y) D (0, Y) D (639, 1) D (638, 1) D (X, 1) D (1, 1) D (0, 1) D (639, 0) D (638, 0) D (X, 0) D (1, 0) D (0, 0) note 1 : Below drawings show relations between the scan direction and the viewing direction. Normal scan Reverse scan D (0, 0) D (0, 0) D (639, 0) D (639, 0) CN 31 CN 31 D (0, 479) D (0, 479) 14 D (639, 479) D (639, 479) NL6448AC20-06 OPTICAL CHARACTERISTICS Parameter Viewing angle range Ta = 25°C note 1 Symbol Horizontal Vertical Contrast ratio Condition Min. Typ. Max. Unit Remark θ x+ CR>10, θ y = ±0° 45 50 — deg. θ x– CR>10, θ y = ±0° 45 50 — deg. θ y+ CR>10, θ x = ±0° 30 35 — deg. θ y– CR>10, θ x = ±0° 40 45 — deg. γ = 2.2 viewing 80 150 — — Best contrast — 250 — — note 3 and note 4 note 5 CR note 2 Response time t pd White to black — — 40 ms Color gamut C at center, to NTSC 40 45 — % Luminance Lu note 3 150 200 — cd/m2 note 6 — — 1.25 — note 7 Luminance uniformity — max./min — note 1 : VCC = 5.0 V, VDDB = 5.0 V note 2 : Definitions of viewing angle are as follows. Normal 12 0'clock θ x– Left θ y+ Upper θ x+ θ y– Lower Right note 3 : γ = 2.2 viewing angle : θ x = ±0°, θ y = ±0°. At center. Best cotrast angle : θ x = ±0°, θ y = –10°. At center. note 4 : The contrast ratio is calculated by using the following formula. Contrast ratio (CR) = Luminance with all pixels in “white” Luminance with all pixels in “black” The Luminance is measured in darkroom. note 5 : Definition of response time is as follows. Photodetector output signal is measured when the Luminance changes "white" to “black”. Response time is the time between 10% and 100% of the photodetector output amplitude. 100% WHITE Luminance BLACK 10% tpd (Response) 15 NL6448AC20- 06 note 6 : The luminance is measured after 20 minutes from the module works, with all pixels in "white". Typical value is measured after luminance saturation. 1° Photodetector (TOPCON BM-5A) 50 cm LCD MODULE note 7 : The luminance uniformity is calculated by using following formula. Luminance uniformity = Maximum luminance Minimum luminance The luminance is measured at near the five points shown below. Column (160) (320) (480) Line 1 4 (240) 3 2 16 (120) 5 (360) NL6448AC20-06 GENERAL CAUTION Next figures and sentence are very important, please understand these contents as foIIows. This figure is a mark that you will get hurt and/or the module will have damages CAUTION when you make a mistake to operate. This figure is a mark that you will get an electric shock when you make a mistake to operate. This figure Is a mark that you will get hurt when you make a mlstake to operate CAUTION Do not touch an inverter --on which is stuck a caution label-- while the LCD module is under the operatlon, because of dangerous high voltage. (1) Caution when taking out the module q Pick the pouch only, in taking out module from a carrier box. (2) Caution for handling the module q As the electrostatic discharges may break the LCD module, handle the LCD module with care against electrostatic discharges. w As the LCD panel and backlight element are made from fragjle glass material, impulse and pressure to the LCD module should be avoided. e As the surface of polarizer is very soft and easily scratched, use a soft dry cloth without chemicals for cleaning. r Do not pull the interface connectors in or out while the LCD module is operating. t Put the module display side down on a flat horizontal plane. y Handle connectors and cables with care. u When the module is operating, do not lose CLK, Hsync, or Vsync signal. If any one of these signals is lost, the LCD panel would be damaged. i The torque to nrounting screw should never exceed 0.20 N•m (2 Kgf•cm). (3) Caution for the atmosphere q Dew drop atmosphere should be avoided. w Do not store and/or operate the LCD module in a high temperature and/or high humidity atmosphere. Storage in an electro-conductive polymer packlng pouch and under relatively low temperature atmosphere is recommended. e This module uses cold cathod fluorescent lamp. Therefore, The life time of lamp becomes short conspicuously at low temperature. r Do not operate the LCD module in a high magnetic field. (4) Caution for the module characteristics q Do not apply fixed pattern data signal to the LCD module at product agjng. Applying fixed pattern for a long time may cause image sticking. 17 NL6448AC20- 06 (5)Other cautions q Do not disassemble and/or reassemble LCD module. w Do not readjust variable resistor or switch etc. e When returning the module for repair or etc, please pack the module not to be broken. We recommend to the original shipping packages. Liquid Crystal Dlsplay has the following specific characteristics. There are not defects or malfunctions. The display condition of LCD module may be affected by the ambient temperature. The LCD module uses cold cathode tube for backlightlng. Optical characteristics, like luminance or uniformity, will change during time. Uneven brightness and/or small spots may be noticed depending on different display patterns. 18 NL6448AC20-06 2.5±0.3 2.5±0.3 3.4±0.3 3.4±0.3 OUTLINE DRAWING / FRONT SIDE (Unit in mm) (3.5) 96.0±0.3 (3.5) (3.5) (0.68) 178.8±0.5 (140.5) (BEZEL OPENING) (16.66) 172.0±0.3 (3.4) MADE IN JAPAN (2.8) (2.8) ES2228421 K100570710033 (132.48) (ACTIVE AREA) (6.3) NL6448AC20-06 (20.76) ACTIVE AREA CENTER (6.3) MODULE CENTER (1) 4-φ 2.9±0.2 MOUNTING HOLE (6.3) (6.3) (112) (14.5) (112) (14.5) (4.3) (17.3) (14.4) (17.3) 98.0±0.3 (99.36) (ACTIVE AREA) (106.6) (BEZEL OPENING) 11.5(MAX.) 2.5±0.3 ∗ note 1: The value in parentheses are for reference. note 2: The torque to mounting screw should never exceed 0.2 Nm (2 kgf cm) 3.4±0.3 (6) 3.4±0.3 2.5±0.3 126.8±0.5 19 NL6448AC20-06 21 NL6448AC20- 06 22 NL6448AC20-06 23 NL6448AC20- 06 No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or of others.