NEC UPC8002GR-E1

DATA SHEET
BIPOLAR ANALOG INTEGRATED CIRCUIT
µPC8002
SECOND MIXER + IF AMPLIFIER
FOR DIGITAL CORDLESS TELEPHONES
The µPC8002 is a monolithic IC developed for use in digital cordless telephones. Its internal equivalent circuits
comprise a double balanced mixer (DBM), IF amplifier circuit, and RSSI (Received Signal Strength Indicator) circuit.
The µPC8002 can operate on a wide range of power supply voltages from 2.7 V to 5.5 V, and incorporates a poweroff function, making it ideal for achieving low set power consumption.
The package is a 20-pin plastic shrink SOP (225 mil) suitable for high-density surface mounting.
FEATURES
• Low-voltage, low-consumption-current operation possible (VCC = 2.7 to 5.5 V, ICC = 3.4 mA at VCC = 3 V)
• Wide mixer input frequency range (fMIX = 250 MHz (TYP.) to 500 MHz (MAX.))
• Wide IF amplifier input frequency range (fIF = 8 MHz (MIN.) to 12 MHz (MAX.), 10.7 MHz (TYP.))
• High limiting sensitivity (SL = –100 dBm (TYP.))
• Wide RSSI dynamic range (DR = 85 dB (TYP.))
• On-chip power-off function
• Use of 20-pin plastic shrink SOP (225 mil) allows high-density surface mounting
BLOCK DIAGRAM
BYPASS1 IF1 IN
20
19
BYPASS2 IF1 OUT BYPASS4 IF2 IN
18
17
16
15
GND
VCC
BYPASS3 (IF OUT) (IF OUT) IF2 OUT
14
IF Amp 1
13
12
11
IF Amp 2
Output Stage
Power ON/OFF
RSSI
RSSI
2nd MIXER
1
PD
2
3
4
5
MIX OUT VCC (IF) VCC (MIX) LO IN
6
7
8
9
10
GND(IF) GND(MIX) MIX IN1 MIX IN2 RSSI OUT
ORDERING INFORMATION
Part Number
Package
µPC8002GR
20-pin plastic shrink SOP (225 mil)
µPC8002GR-E1
20-pin plastic shrink SOP (225 mil)
Embossed carrier taping (pin 1 is tape unwinding direction)
µPC8002GR-E2
20-pin plastic shrink SOP (225 mil)
Embossed carrier taping (pin 1 is tape winding direction)
The information in this document is subject to change without notice.
Document No. S10717EJ2V0DS00 (2nd edition)
Date Published March 1997 N
Printed in Japan
©
1997
µPC8002
VCC
VCC
1
PD
BYPASS1 20
2
MIX OUT
3
VCC (IF)
4
VCC (MIX)
5
LO IN
6
GND (IF)
7
GND (MIX)
8
MIX IN1
GND (IF OUT) 13
9
MIX IN2
VCC (IF OUT) 12
1000 pF
BPF
CFEC10.7MK1
(MURATA)
Application Circuit Example 1 (Using 2 BPFs)
IF1 IN 19
BYPASS2 18
1000 pF
1 µF
IF1 OUT 17
1st Mixer
Lo OSC
1 µF
1000 pF
470 pF
470 pF
470 pF
BYPASS4 16
0.01 µF
BPF
CFEC10.7MK1
(MURATA)
1000 pF
VCC
IF2 IN 15
BYPASS3 14
0.01 µF
VCC
Caution
10 RSSI OUT
Ensure that the pin voltage does not exceed the power supply voltage.
Remark The VCC pass capacitors (1 µF, 1000 pF) should be located close to the respective VCC pins.
Chip laminated ceramic capacitors (MURATA GRM36 or equivalent) should be used.
2
DEM
ADC
1 µF
1000 pF
IF2 OUT 11
µPC8002
330 pF
Application Circuit Example 2 (Using 1 BPF)
VCC
VCC
1
PD
BYPASS1 20
2
MIX OUT
3
VCC (IF)
4
VCC (MIX)
5
LO IN
6
GND (IF)
7
GND (MIX)
8
MIX IN1
GND (IF OUT) 13
9
MIX IN2
VCC (IF OUT) 12
1000 pF
IF1 IN 19
BYPASS2 18
1000 pF
1µ F
IF1 OUT 17
Lo OSC
1µ F
1000 pF
1st Mixer
470 pF
470 pF
470 pF
BYPASS4 16
0.01 µ F
BPF
CFEC10.7MK1
(MURATA)
1000 pF
VCC
IF2 IN 15
BYPASS3 14
0.01 µ F
VCC
10 RSSI OUT
Cautions 1.
2.
DEM
ADC
1µ F
1000 pF
IF2 OUT 11
Ensure that the pin voltage does not exceed the power supply voltage.
With this application circuit, confirm that there is not problem with interfering wave
characteristics.
Remark The VCC pass capacitors (1 µF, 1000 pF) should be located close to the respective VCC pins.
Chip laminated ceramic capacitors (MURATA GRM36 or equivalent) should be used.
3
µPC8002
VCC
VCC
1
PD
BYPASS1 20
2
MIX OUT
3
VCC (IF)
4
VCC (MIX)
5
LO IN
6
GND (IF)
7
GND (MIX)
8
MIX IN1
GND (IF OUT) 13
9
MIX IN2
VCC (IF OUT) 12
1000 pF
BPF
CFEC10.7MK1
(MURATA)
Application Circuit Example 3 (Using 1 BPF)
IF1 IN 19
BYPASS2 18
1000 pF
1µ F
1000 pF
VCC
IF1 OUT 17
390 Ω
Lo OSC
1µ F
1000 pF
1st Mixer
470 pF
470 pF
470 pF
BYPASS4 16
IF2 IN 15
BYPASS3 14
0.01 µF
1000 pF
0.01 µF
VCC
10 RSSI OUT
Cautions 1.
1000 pF
IF2 OUT 11
With this application circuit, good interfering wave characteristics are obtained with a single
BPF. However, there is a drop in sensitivity.
2.
Ensure that the pin voltage does not exceed the power supply voltage.
Remark The VCC pass capacitors (1 µF, 1000 pF) should be located close to the respective VCC pins.
Chip laminated ceramic capacitors (MURATA GRM36 or equivalent) should be used.
4
DEM
ADC
1 µF
µPC8002
VCC
VCC
1
PD
2
MIX OUT
3
VCC (IF)
4
VCC (MIX)
5
LO IN
6
GND (IF)
BYPASS1 20
1000 pF
BPF
CFEC10.7MK1
(MURATA)
Application Circuit Example 4 (Using 1 BPF)
IF1 IN 19
BYPASS2 18
1000 pF
1µF
IF1 OUT 17
390 Ω
1000 pF
1000 pF
VCC
Lo OSC
1µF
1000 pF
470 pF
BYPASS4 16
0.01 µ F
IF2 IN 15
1000 pF
1st Mixer
1.5 µ H
470 pF
470 pF
7
GND (MIX)
8
MIX IN1
GND (IF OUT) 13
9
MIX IN2
VCC (IF OUT) 12
BYPASS3 14
0.01 µ F
150 pF
VCC
10 RSSI OUT
1000 pF
IF2 OUT 11
DEM
ADC
1 µF
Cautions 1. With this application circuit, good interfering wave characteristics are obtained with a single
BPF (and sensitivity is better than in Application Circuit Example 3).
2. Ensure that the pin voltage does not exceed the power supply voltage.
Remark The VCC pass capacitors (1 µF, 1000 pF) should be located close to the respective VCC pins.
Chip laminated ceramic capacitors (MURATA GRM36 or equivalent) and a chip coil (MURATA LQHIN
or equivalent) should be used.
5
µPC8002
CONTENTS
1. PIN CONFIGURATION AND PIN FUNCTIONS .................................................................................... 7
2. INPUT/OUTPUT EQUIVALENT CIRCUIT DIAGRAMS ........................................................................ 9
3. ELECTRICAL SPECIFICATIONS .......................................................................................................10
4. CHARACTERISTIC DIAGRAMS ........................................................................................................ 13
5. LEVEL DIAGRAMS .............................................................................................................................17
6. TEST METHODS ................................................................................................................................ 18
7. TEST CIRCUIT EXAMPLES ............................................................................................................... 19
8. EVALUATION BOARD MOUNTING EXAMPLE ................................................................................. 25
9. WIRING PATTERN CAPACITANCE DIAGRAM (REFERENCE) ........................................................ 28
10. PACKAGE DRAWINGS .......................................................................................................................29
11. RECOMMENDED SOLDERING CONDITIONS .................................................................................. 30
6
µPC8002
1. PIN CONFIGURATION AND PIN FUNCTIONS
(1) Pin Configuration (Top View)
• 20-pin plastic shrink SOP (225 mil)
PD
1
20
BYPASS1
MIX OUT
2
19
IF1 IN
VCC (IF)
3
18
BYPASS2
VCC (MIX)
4
17
IF1 OUT
LO IN
5
16
BYPASS4
GND (IF)
6
15
IF2 IN
GND (MIX)
7
14
BYPASS3
MIX IN1
8
13
GND (IF OUT)
MIX IN2
9
12
VCC (IF OUT)
10
11
IF2 OUT
RSSI OUT
Pin Names
BYPASS1-BYPASS4 : Bypass
GND (IF)
: Ground (Intermediate Frequency Amp.)
GND (IF OUT)
: Ground (Intermediate Frequency Amp. Output)
GND (MIX)
: Ground (Mixer)
IF1 IN, IF2 IN
: Intermediate Frequency Amp. Input
IF1 OUT, IF2 OUT
: Intermediate Frequency Amp. Output
LO IN
: Local Input
MIX IN1, MIX IN2
: Mixer Input
MIX OUT
: Mixer Output
PD
: Power Down
RSSI OUT
: Received Signal Strength Indicator Output
V CC (IF)
: Power Supply (Intermediate Frequency Amp.)
V CC (IF OUT)
: Power Supply (Intermediate Frequency Amp. Output)
V CC (MIX)
: Power Supply (Mixer)
7
µPC8002
(2) Pin Functions
No.
8
Pin Name
I/O
Function
1
PD
I
Power on/off control signal input
2
MIX OUT
O
Mixer output
3
VCC (IF)
–
IF amplifier and RSSI power supply pin
4
VCC (MIX)
–
Mixer power supply pin
5
LO IN
I
Local input
6
GND (IF)
–
IF amplifier and RSSI ground pin
7
GND (MIX)
–
Mixer ground pin
8
MIX IN1
I
Mixer input
9
MIX IN2
I
Filter capacitor connection
10
RSSI OUT
O
RSSI output
11
IF2 OUT
O
IF amplifier 2 output
12
VCC (IF OUT)
–
IF amplifier output stage power supply pin
13
GND (IF OUT)
–
IF amplifier output stage ground pin
14
BYPASS3
–
Filter capacitor connection (IF2 side)
15
IF2 IN
I
IF amplifier 2 input
16
BYPASS4
–
Filter capacitor connection (IF2 side)
17
IF1 OUT
O
IF amplifier 1 output
18
BYPASS2
–
Filter capacitor connection (IF1 side)
19
IF1 IN
I
IF amplifier 1 input
20
BYPASS1
–
Filter capacitor connection (IF1 side)
µPC8002
2. INPUT/OUTPUT EQUIVALENT CIRCUIT DIAGRAMS
Mixer Output
Mixer Input
1 kΩ
276 Ω
2
1 kΩ
700 µ A
8
9
IF Amplifier 1 Output
Local Input
1 kΩ
207 Ω
17
1 kΩ
250 µ A
5
IF Amplifier 2 Output
IF Amplifier 1 Input
19
20
330 Ω
330 Ω
14.9 kΩ
14.9 kΩ
11
18
290 µ A
RSSI Output
IF Amplifier 2 Input
VCC
32 kΩ
15
16
330 Ω
330 Ω
11.8 kΩ
11.8 kΩ
10
14
2 kΩ
Power On/Off Input
50 kΩ
1
150 kΩ
9
µPC8002
3. ELECTRICAL SPECIFICATIONS
Absolute Maximum Ratings (TA = 25 °C)
Parameter
Symbol
Test Condition
Rating
Unit
7
V
120
mW
Power supply voltage
VCC
Total power dissipation
PT
Storage temperature
Tstg
–40 to +125
°C
VPIN
VCC+0.2
V
Pin voltage
Caution
TA = 85 °C
Product quality may suffer if the absolute rating is exceeded for any parameter, even momentarily.
In other words, an absolute maximum rating is a value at which the possibility of physical damage
to the product cannot be ruled out. Care must therefore be taken to ensure that the these ratings
are not exceeded during use of the product.
Recommended Operating Ratings (TA = 25 °C)
Parameter
Symbol
0 dBm = 223.6 mVrms (at 50 Ω)
Test Condition
MIN.
TYP.
MAX.
Unit
Power supply voltage
VCC
2.7
3.0
5.5
V
Operating ambient temperature
TA
–30
+25
+85
°C
dBm
Mixer input level
Local input level
VMIX
VLOC
50 Ω resistance termination
–98
–18
LC matching (reference value)
–107
–27
50 Ω resistance termination
–5
+5
LC matching (reference value)
–20
–10
–99
–14
dBm
250
500
MHz
dBm
IF amplifier input level
VIF
Mixer input frequency
fMIX
Mixer output frequency
fOM
8
10.7
12
MHz
IF amplifier input frequency
fIF
8
10.7
12
MHz
RSSI output load capacitance
IF2 output load capacitance
Note
10
COI
COR
Includes all capacitances (board, pattern, etc.) applied to the pin.
10Note
pF
10Note
pF
µPC8002
Electrical Specifications (TA = 25 °C, VCC = 3 V)
(1) Mixer Section (fMIX = 250 MHz, fLOC = 239.3 MHz, VLOC = –5 dBm)
0 dBm = 223.6 mVrms (at 50 Ω)
(Where not specified in the Test Condition, input has 50 Ω termination)
Parameter
Symbol
Test Condition
Power supply current
ICCM
No signal
Conversion gain
GC
50 Ω resistance termination
–1 dB compression output level
VOM
Third order intercept point
IP3
Noise factor
NF
MIN.
4
LC matching (reference value)
Note 1
LC matching (reference value)
Local separation
ISL
Mixer non-input
MAX.
Unit
1.7
2.2
mA
8
11.0
dB
–7
dBm
17.0
–14
Stipulated by output
TYP.
Note 2
40
–10
–3
dBm
16
dB
7
dB
54
dB
Mixer input impedance
ZINM
31-j156
Ω
Local input impedance
ZINL
31-j169
Ω
Output resistance
ROM
330
430
Ω
VNote 3
230
Power-on rise time
tONM
VPO = 3
8
15
µs
Power-off fall time
tOFM
VPO = 0 VNote 4
1
3
µs
Power-off power supply current
ILM
VPO = 0 V
0
5
µA
Notes 1. f1 = 250.3 MHz, f2 = 250.6 MHz
2. Leakage from local input to mixer output
3. Time until the difference between the local input pin power-on and power-off voltages reaches 90 %
Power-on input voltage (VPO) rise time: 10 ns
4. Time until the power supply current reaches 10 % of the power-on value
Power-on input voltage (VPO) fall time: 10 ns
11
µPC8002
(2) IF Amplifier Section (fIF = 10.7 MHz)
Parameter
0 dBm = 223.6 mVrms (at 50 Ω)
Symbol
Test Condition
Power supply current
ICCI
No signal
Limiting sensitivity
SL
–3 dB point
IF amplifier phase fluctuation
SP
VIF = –70 to –14 dBm
IF amplifier output amplitude
VO
IF2 OUT, VIF = –14 dBm
IF amplifier output amplitude rise time
tR
IF amplifier output amplitude fall time
MIN.
Note 1
TYP.
MAX.
Unit
1.7
2.3
mA
–100
–97
dBm
10
0.2
deg
0.3
0.4
Vp-p
IF2 OUT, VIF = –14 dBm
8
20
ns
tF
IF2 OUT, VIF = –14 dBm
15
25
ns
IF amplifier input resistance
Rin
IF1 IN, IF2 IN
330
430
Ω
IF amplifier input capacitance
Cin
IF1 IN, IF2 IN
3.5
6.0
pF
IF amplifier output resistance
RO
IF1 OUT
330
430
Ω
RSSI linearity
LR
VIF = –94 to –14 dBm
±2
dB
RSSI slope
SR
18
20
22
mV/dB
RSSI intercept
IR
–164.7
–148
–134.4
dBm
230
230
RSSI output voltage 1
VR1
VIF = –14 dBm
2.58
2.68
2.78
V
RSSI output voltage 2
VR2
VIF = –54 dBm
1.76
1.88
2.0
V
RSSI output voltage 3
VR3
VIF = –94 dBm
0.88
1.08
1.28
V
RSSI output voltage 4
VR4
No signal
0.96
1.23
V
RSSI output temperature stability
ST
VIF = –94 to –14 dBm
RSSI output dynamic range
DR
Note 3
RSSI rise time
trf1
VIF = –14 dBm
Note 4
1.0
4
µs
RSSI fall time
trf2
VIF = –14 dBm
Note 4
1.6
4
µs
RSSI output ripple
RR
VIF = –14 dBm
20
mVp-p
RSSI output resistance
ROR
32
38.4
kΩ
5
10
µs
1
3
µs
6
10
µA
Power-on rise time
tONI
Note 2
80
25.6
VPO = 3 V, no
signalNote 5
VNote 6
Power-off fall time
tOFI
VPO = 0
Power-off power supply current
ILI
VPO = 0 V
±2
dB
90
dB
Notes 1. Network analyzer RBW = 3 Hz
2. TA = –30 °C to +85 °C
3. Input level range for which drift from the regression expression with VIF = –94 to –14 dBm is ≤ 2 dB
4. Time until the RSSI output reaches the final value ±10 %
5. Time until the RSSI output is within ±10 % of the power-on value
Power-on input voltage (VPO) rise time: 10 ns
6. Time until the power supply current reaches 10 % of the power-on value
Power-on input voltage (VPO) fall time: 10 ns
(3) Power-On/Off Section
Parameter
Symbol
Test Condition
Power-on input voltage
VON
Power-on at VON or above, VCC or below
Power-off input voltage
VOF
Power-off at VOF or below, GND or above
Power-on input current
ION
VPO = 3 V
12
MIN.
0.6
TYP.
MAX.
Unit
1.5
2.4
V
1.2
40
V
60
µA
µPC8002
4. CHARACTERISTIC DIAGRAMS
(1) Power supply current vs power supply voltage (IF amplifier section)
Power supply current
[mA]
4
3
2
1
0
0
1
2
3
4
5
6
7
5
6
7
[V]
Power supply voltage
(2) Power supply current vs power supply voltage (Mixer section)
5
Power supply current
[mA]
4
3
2
1
0
0
1
2
3
4
[V]
Power supply voltage
13
µPC8002
(3) IF amplifier output level vs IF amplifier input level
IF amplifier output level
[dBm]
0
_ 3dB
_ 10
_ 20
Limiting sensitivity
_ 30
_ 120
_ 100
_ 80
_ 60
_ 40
_ 20
0
[dBm]
IF amplifier input level
(4) IF amplifier output phase vs IF amplifier input level
Input/output phase difference
[deg]
140
130
120
Phase fluctuation
110
Test input level range
100
_ 70
_ 60
_ 50
_ 40
_ 30
[dBm]
IF amplifier input level
14
_ 20
_ 10
_ 14
µPC8002
(5) RSSI characteristics (a)
Regression line
3
RSSI output voltage
[V]
2.5
2
1.5
1
0.5
0
_ 120
_ 100
_ 80
Regression line
_ 40
_ 20
0
_ 40
_ 20
0
_ 60
[dBm]
IF amplifier input level
(6) RSSI characteristics (b)
5
4
3
RSSI error
[dB]
2
1
0
_1
_2
_3
_4
_5
_ 120
_ 100
_ 80
_ 60
[dBm]
IF amplifier input level
15
µPC8002
(7) Mixer output level vs mixer input level
50 Ω resistance termination
0
_ 10
Mixer output level
[dBm]
_ 20
_ 30
_ 40
_ 50
_ 60
_ 70
_ 80
_ 70
_ 60
_ 50
_ 40
_ 30
[dBm]
Mixer input level
16
_ 20
_ 10
0
µPC8002
5. LEVEL DIAGRAMS
(1) For Application Circuit 1
µ PC8002GR
MIXER
BPF
IF Amp1
BPF
IF Amp2
+ 8 dBNote 1
+ 17 dBNote 2
_ 4 dB
+ 42 dB
_ 4 dB
+ 66 dB
_ 10 dBm
_ 18
_ 27 dBmNote 2
_ 6.5 dBm
_ 12 dBm
_ 14 dBm
dBmNote 1
IF OUT
0.3 Vp-p
_ 16 dBm
_ 52 dBm
80 dB
_ 98 dBmNote 1
_ 107 dBmNote 2
_ 56 dBm
80 dB
_ 90 dBm
_ 94 dBm
(2) For Application Circuit 2
µ PC8002GR
MIXER
IF Amp1
BPF
IF Amp2
+ 42 dB
_ 4 dB
+ 66 dB
IF OUT
0.3 Vp-p
330 pF
+ 8 dBNote 1
+ 17 dBNote 2
_ 10 dBm
_ 6.5 dBm
_ 12 dBm
_ 18 dBmNote 1
_ 27 dBmNote 2
_ 16 dBm
_ 48 dBm
80 dB
80 dB
_ 98 dBmNote 1
_ 107 dBmNote 2
_ 52 dBm
_ 90 dBm
Notes 1. 50 Ω resistance termination
2. LC matching (reference value)
17
µPC8002
6. TEST METHODS
(1) Mixer input section
(a) With 50 Ω resistance termination
(b) With 50 Ω LC matching
470 pF
470 pF
8
8
MIX IN1
MIX IN1
VMIX
VMIX
50 Ω
Note
CNote
LNote
Since the values of L and C are affected by the board’s parasitic capacitance and inductance, L and
C should be adjusted so that the impedance looking at the MIX IN pin side from the signal source is
50 Ω.
(2) Third order intercept
MIX IN1
MIX OUT
LO IN
8
2
5
470 p
470 p
50 Ω
82 pF
50 Ω
16.7 Ω
VMIX
fOSC = 239.3 MHz
16.7 Ω
f1 = 250.3 MHz
18
16.7 Ω
f2 = 250.6 MHz
µPC8002
7. TEST CIRCUIT EXAMPLES
In test circuit example 2 onward, only the portion that differs from test circuit example 1 is shown.
Test Circuit Example 1.
VCC
1
PD
2
MIX OUT
BYPASS1
20
IF1 IN
19
1000 pF
330 pF
50 Ω
82 pF
VCC
BYPASS2
18
IF1 OUT
17
BYPASS4
16
IF2 IN
15
BYPASS3
14
MIX IN1
GND (IF OUT)
13
MIX IN2
VCC (IF OUT)
12
3
VCC (IF)
4
VCC (MIX)
5
LO IN
6
GND (IF)
7
GND (MIX)
8
9
1000 pF
1 µF
1 µF
1000 pF
0.01 µ F
470 pF
50 Ω
BPF
CFEC10.7MK1
(MURATA)
1000 pF
VCC
0.01 µ F
470 pF
50 Ω
470 pF
VCC
1 µF
1000 pF
10
RSSI OUT
IF2 OUT
11
1000 pF
10 pF
10 pF
10 kΩ
Caution
The 10 pF capacitor value for IF2 OUT and RSSI OUT includes all the capacitances (board,
pattern, etc.) applied to the pin. Ensure that the recommended load condition (10 pF) is not
exceeded for IF2 OUT and RSSI OUT.
Remark Chip laminated ceramic capacitors (MURATA GRM36 or equivalent) should be used.
19
µPC8002
Test Circuit Example 2. (Power supply current, power-off power supply current)
VCC (IF)
VCC (IF OUT)
VCC (MIX)
3
12
4
A
A
1 µF
1000 pF
1µ F
1000 pF
VCC
1000 pF
VCC
Test Circuit Example 3. (Limiting sensitivity, IF amplifier output amplitude, IF amplifier output amplitude rise
time, IF amplifier output amplitude fall time, RSSI linearity, RSSI slope, RSSI
intercept, RSSI output voltage, RSSI temperature stability, RSSI output ripple)
IF1 IN
RSSI OUT
IF2 OUT
19
10
11
330 pF
50 Ω
1000 pF
10 pF
10 kΩ
Digital voltmeter
Oscilloscope
SG (Signal generator)
10.7 MHz
Caution
10 pF
Spectrum
analyzer
Oscilloscope
The 10 pF capacitor value for IF2 OUT and RSSI OUT includes all the capacitances (board,
pattern, etc.) applied to the pin. Ensure that the recommended load condition (10 pF) is not
exceeded for IF2 OUT and RSSI OUT.
20
µPC8002
Test Circuit Example 4. (IF amplifier phase fluctuation)
IF1 IN
IF2 OUT
19
11
1000 pF
330 pF
Attenuator
50 Ω
10 kΩ
10 pF
Network
analyzer
Caution
The 10 pF capacitor value for IF2 OUT includes all the capacitance (board, pattern, etc.) applied
to the pin. Ensure that the recommended load condition (10 pF) is not exceeded.
Test Circuit Example 5. (RSSI rise time, RSSI fall time)
... Time until RSSI output is within ±10 % of the final value)
IF1 IN
IF1 OUT
IF2 IN
RSSI OUT
19
17
15
10
330 pF
330 pF
For IF1 input
10 pF
50 Ω
50 Ω
For IF2 input
SG
10.7 MHz, _14 dBm
SG
10.7 MHz, _14 dBm
Storage
oscilloscope 2
Storage
oscilloscope 1
Input signal from SG
1 SEC
Caution
50 µ SEC
The 10 pF capacitor value for RSSI OUT includes all the capacitances (board, pattern, etc) applied
to the pin.
21
µPC8002
Test Circuit Example 6. (Power-on rise time)
Mixer section : Time until the difference between the local input pin power-on and
power-off voltage reaches 90 %
: Time until RSSI output is within ±10 % of the power-on value.
IF section
PD
LO IN
RSSI OUT
1
5
10
10 pF
SG
Storage
oscilloscope 1
Storage
oscilloscope 2
Input signal from SG
3V
0V
50 µ SEC
1 SEC
Remark Power-on input voltage (VPO) rise time: 10 ns
Caution
The 10 pF capacitor value for RSSI OUT includes all the capacitances (board, pattern, etc.)
applied to the pin. Ensure that the recommended load condition (10 pF) is not exceeded.
Test Circuit Example 7. (Power-off fall time)
PD
VCC (IF OUT)
VCC (IF)
VCC (MIX)
1
12
3
4
VCC
VCC
SG
Storage
oscilloscope
Current probe
Input signal from SG
3V
0V
1 SEC
22
50 µ SEC
µPC8002
Test Circuit Example 8. (Conversion gain, –1 dB compression level)
MIX OUT
LO IN
MIX IN1
2
5
8
470 pF
470 pF
82 pF
50 Ω
See 6. TEST METHODS (1)
Spectrum
analyzer
SG
239.3 MHz
SG
250 MHz
Test Circuit Example 9. (Third order intercept output level)
MIX OUT
LO IN
MIX IN1
2
5
8
470 pF
470 pF
82 pF
50 Ω
See 6. TEST METHODS (2)
Spectrum
analyzer
SG
239.3 MHz
Test Circuit Example 10. (Local separation)
MIX OUT
LO IN
2
5
470 pF
82 pF
50 Ω
Spectrum
analyzer
SG
239.3 MHz
23
µPC8002
Test Circuit Example 11. (Power-on input voltage, power-off input voltage, power-on input current)
PD
1
A
V
VCC
Test Circuit Example 12. (Noise factor)
MIX OUT
LO IN
MIX IN1
2
5
8
470 pF
470 pF
82 pF
See 6. TEST METHODS (1)
50 Ω
NF meter
24
Noise Source
Remark
indicates a through-hole.
C5
C3
50 mm
µPC8002
1
C1
VCC
C6
C4
C7 R1
Plated wire
8. EVALUATION BOARD MOUNTING EXAMPLE
70 mm
C2
IF2 OUT
KC-8002GR
µPC8002
25
26
Remark
indicates a through-hole.
IF1 IN
R2
MIX OUT
C9
C
8
BPF
C11
VCC
C
10
1
C
10
BPF
C
9
R3
C11
C10
LOCAL IN
C12
C
13
R4
L2
RSSI OUT
L1
IF2 OUT
MIX IN
µPC8002
µPC8002
C1
: 1 µF
R1
: 10 kΩ
C2
: 1000 pF
R2
: 50 Ω
C3
: 1000 pF
R3
: 50 Ω
C4
: 1 µF
R4
: 50 Ω
C5
: 1 µF
L1
: 58 nH (reference value)
C6
: 1000 pF
L2
: 10 nH (reference value)
C7
: 10 pF Note
C8
: 330 pF
C9
: 0.01 µ F
C10 : 0.01 µ F
C11 : 470 pF
C12 : 470 pF
C13 : 10 pF Note
Note
For the IF2 OUT and RSSI OUT capacitance values, see 9. WIRING PATTERN CAPACITANCE DIAGRAM
(REFERENCE).
Remarks 1. Both L in the case of LC matching and R in the case of 50 Ω termination are connected to MIX IN.
Remove R4 in the case of LC matching, and L1 and L2 in the case of 50 Ω termination.
2. Change the location of the plated wires according to the evaluation items.
3. Cut the wiring pattern to connect L2 .
27
µPC8002
9. WIRING PATTERN CAPACITANCE DIAGRAM (REFERENCE)
The wiring pattern capacitances to ground are shown here.
For pin 11, the capacitance is 8.1 pF when the entire pattern (from pin 11 to point B) is used. In this case,
the usable probe input capacitance is 1.9 pF (MAX.).
From pin 11 up to point A, the capacitance is 1.4 pF, and therefore an 8.6 pF (MAX.) probe can be used.
For pin 10, the capacitance is 4 pF when the entire pattern is used.
A
Pin 11
IF2 OUT
3.0 pF
0.9 pF
0.5 pF
2.9 pF
0.8 pF
Pin 10
RSSI OUT
28
B
µPC8002
10. PACKAGE DRAWINGS
20 PIN PLASTIC SHRINK SOP (225mil)
20
11
P
detail of lead end
1
H
10
A
I
E
K
F
G
J
N
B
C
D
M
L
M
NOTE
Each lead centerline is located within 0.10 mm (0.004 inch) of
its true position (T.P.) at maximum material condition.
ITEM
MILLIMETERS
INCHES
A
7.00 MAX.
0.276 MAX.
B
0.575 MAX.
0.023 MAX.
C
0.65 (T.P.)
0.026 (T.P.)
D
0.22 +0.10
–0.05
0.009 +0.004
–0.003
E
0.1±0.1
0.004±0.004
F
1.45 MAX.
0.057 MAX.
G
1.15±0.1
0.045 +0.005
–0.004
H
6.4±0.2
0.252±0.008
I
4.4±0.1
0.173 +0.005
–0.004
J
1.0±0.2
0.039 +0.009
–0.008
K
0.15 +0.10
–0.05
0.006 +0.004
–0.002
L
0.5±0.2
0.020 +0.008
–0.009
M
0.10
0.004
N
0.10
0.004
P
3˚ +7˚
–3˚
3˚ +7˚
–3˚
P20GR-65-225C-1
29
µPC8002
11. RECOMMENDED SOLDERING CONDITIONS
The following conditions ( see table below) must be met when soldering this product.
For more details, refer to our document "SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY
MANUAL" (C10535E).
Please consult with our sales offices in case other soldering process or condition is used.
TYPE OF SURFACE MOUNT DEVICE
µ PC8002GR
Soldering process
Infrared Ray Reflow
Soldering conditions
Peak package's surface temperature: 235 ˚C or below.
Symbol
IR35-107-2
Reflow time : 30 seconds or below (210 ˚C or higher),
Number of reflow processes : MAX.2
Exposure limit
Note
: 7 days
(10 hours pre-baking is required at 125 ˚C afterwards)
Peak package's temperature: 215 ˚C or below.
VPS
VP15-107-2
Reflow time : 40 seconds or below (200 ˚C or higher),
Number of reflow processes : MAX. 2
Exposure limit
Note
: 7 days
(10 hours pre-baking is required at 125 ˚C afterwards)
Partial heating
Terminal temperature : 300 ˚C or below,
method
Time : 3 seconds or below (Per side of pin position)
Note Exposure limit before soldering after dry-pack package is opened.
Storage conditions : 25 ˚C and relative humidity at 65 % or less.
Caution Do not apply more than one soldering method at any one time, except for " Partial heating
method".
30
µPC8002
[MEMO]
31
µPC8002
The application circuits and their parameters are for references only and are not intended for use in actual design-in's.
No part of this document may be copied or reproduced in any form or by any means without the prior written
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in
this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property
rights of third parties by or arising from use of a device described herein or any other liability arising from use
of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other
intellectual property rights of NEC Corporation or others.
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices,
the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or
property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety
measures in its design, such as redundancy, fire-containment, and anti-failure features.
NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a
customer designated "quality assurance program" for a specific application. The recommended applications of
a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device
before using it in a particular application.
Standard: Computers, office equipment, communications equipment, test and measurement equipment,
audio and visual equipment, home electronic appliances, machine tools, personal electronic
equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support)
Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems or medical equipment for life support, etc.
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books.
If customers intend to use NEC devices for applications other than those specified for Standard quality grade,
they should contact an NEC sales representative in advance.
Anti-radioactive design is not implemented in this product.
M4 96.5
32