NTE16000–ECG thru NTE16022–ECG Polymeric Positive Temperature Coefficient (PTC) Resettable Fuses ELECTRICAL CHARACTERISTICS IHold ITrip Amperes at 235C NTE Type No. 16000–ECG Diag. No. 629 V max. Volts 60 I max. Amps 40 0.10 16001–ECG 629 60 40 0.17 16002–ECG 629 60 40 16003–ECG 629 60 16004–ECG 16005–ECG 629 629 16006–ECG 16007–ECG Hold Trip Initial resistance 1 Hour (R1) Post–Trip Resistance Max. Time To Trip at 5*lh Tripped Power Dissipation Ohms at 235C Ohms at 235C Seconds at 235C Watts at 235C Min. Max Max. 0.20 2.50 4.50 7.50 4.0 0.38 0.34 2.00 3.20 8.00 3.0 0.48 0.20 0.40 1.50 2.84 4.40 2.2 0.40 40 0.25 0.50 1.00 1.95 3.00 2.5 0.45 60 60 40 40 0.30 0.40 0.60 0.80 0.76 0.52 1.36 0.86 2.10 1.29 3.0 3.8 0.50 0.55 629 60 40 0.50 1.00 0.41 0.77 1.17 4.0 0.75 629 60 40 0.65 1.30 0.27 0.48 0.72 5.3 0.90 16008–ECG 16009–ECG 629 629 60 60 40 40 0.75 0.90 1.50 1.80 0.18 0.14 0.40 0.31 0.60 0.47 6.3 7.2 0.90 1.00 16010–ECG 630 30 40 0.90 1.80 0.07 0.12 0.22 5.9 0.60 16011–ECG 629 30 40 1.10 2.20 0.10 0.18 0.27 6.6 0.70 16012–ECG 629 30 40 1.35 2.70 0.065 0.115 0.17 7.3 0.80 16013–ECG 16014–ECG 629 629 30 30 40 40 1.60 1.85 3.20 3.70 0.055 0.04 0.105 0.07 0.15 0.11 8.0 8.7 0.90 1.00 16015–ECG 630 30 40 2.50 5.00 0.025 0.048 0.07 10.3 1.20 16016–ECG 630 30 40 3.00 6.00 0.02 0.05 0.08 10.8 2.00 16017–ECG 630 30 40 4.00 8.00 0.01 0.03 0.05 12.7 2.50 16018–ECG 16019–ECG 630 630 30 30 40 40 5.00 6.00 10.00 12.00 0.01 0.005 0.03 0.02 0.05 0.04 14.5 16.0 3.00 3.50 16020–ECG 630 30 40 7.00 14.00 0.005 0.02 0.03 17.5 3.80 16021–ECG 630 30 40 8.00 16.00 0.005 0.02 0.03 18.8 4.00 16022–ECG 630 30 40 9.00 18.00 0.005 0.01 0.02 *20.0 4.20 * Tested at 40 Amps. TECHNICAL DATA Operating/Storage Temperature –40°C to +85°C Maximum Device Surface Temperature in Tripped State +125°C Passive Aging +85°C, 1000 Hours ±5% Typical Resistance Change Humidity Aging +85°C, 85% R.H. 1000 Hours ±5% Typical Resistance Change Thermal Shock +125°C/–40°C 10 Times ±10% Typical Resistance Change Mechanical Shock MIL–STD–202, Method 213, Condition 1 (100g, 6 Seconds) No Resistance Change Solvent Resistance MIL–STD–202, Method 215 No Change Vibration MIL–STD–883C, Method 2007.1, Condition A No Change TEST PROCEDURES AND REQUIREMENTS Test Test Condition Accept/Reject Criteria Visual/Mechanical Verify Dimensions and Materials Per PF Physical Description Resistance In Still Air @ +23°C Rmin ≤ R ≤ Rmax Time to Trip 5 Times IHold, Vmax, +23°C T ≤ Max. Time to Trip (Seconds) Hold Current 30 Min. at IHold No trip Trip Cycle Life Vmax, Imax, 100 Cycles No Arcing or Burning Trip Endurance Vmax, 48 Hours No Arcing or Burning Solvent Resistance MIL–STD–202, Method 215 No Change Vibration MIL–STD–883C, Method 2007.1, Condition A No Change Time to Trip (Seconds) TYPICAL TIME TO TRIP AT +235 100 10 1 0.1 0.0 1 0.001 0.1 1 10 100 Fault Current (Amps) THERMAL DERATING CHART – IHOLD (Amps) * Ambient Operating Temperature NTE Type No. NTE16000–ECG NTE16001–ECG NTE16002–ECG NTE16003–ECG NTE16004–ECG NTE16005–ECG NTE16006–ECG NTE16007–ECG NTE16008–ECG NTE16009–ECG NTE16010–ECG NTE16011–ECG NTE16012–ECG NTE16013–ECG NTE16014–ECG NTE16015–ECG NTE16016–ECG NTE16017–ECG NTE16018–ECG NTE16019–ECG NTE16020–ECG NTE16021–ECG NTE16022–ECG * ITrip = 2 • IHold –405C 0.16 0.26 0.31 0.39 0.47 0.62 0.78 1.01 1.16 1.40 1.40 1.60 1.96 2.32 2.68 3.63 4.35 5.80 7.25 8.70 10.15 11.60 13.05 –205C 0.14 0.23 0.27 0.34 0.41 0.54 0.68 0.88 1.02 1.22 1.22 1.43 1.76 2.08 2.41 3.25 3.90 5.20 6.50 7.80 9.10 10.40 11.70 05C 0.12 0.20 0.24 0.30 0.36 0.48 0.60 0.77 0.89 1.07 1.07 1.27 1.55 1.84 2.13 2.88 3.45 4.60 5.75 6.90 8.05 9.20 10.35 +235C 0.10 0.17 0.20 0.25 0.30 0.40 0.50 0.65 0.75 0.90 0.90 1.10 1.35 1.60 1.85 2.50 3.00 4.00 5.00 6.00 7.00 8.00 9.00 +405C 0.08 0.14 0.16 0.20 0.24 0.32 0.41 0.53 0.61 0.73 0.73 0.91 1.12 1.33 1.54 2.08 2.49 3.32 4.15 4.98 5.81 6.64 7.47 +505C 0.07 0.12 0.14 0.18 0.22 0.29 0.36 0.47 0.54 0.65 0.65 0.85 1.04 1.23 1.42 1.93 2.31 3.08 3.85 4.62 5.39 6.16 6.39 +605C 0.06 0.11 0.13 0.16 0.19 0.25 0.32 0.41 0.47 0.57 0.57 0.75 0.92 1.09 1.26 1.70 2.04 2.72 3.40 4.08 4.76 5.44 6.12 +705C 0.05 0.09 0.11 0.14 0.16 0.22 0.27 0.35 0.41 0.49 0.49 0.67 0.82 0.98 1.13 1.53 1.83 2.44 3.05 3.66 4.27 4.88 5.49 +855C 0.04 0.07 0.08 0.10 0.12 0.16 0.20 0.26 0.30 0.36 0.36 0.57 0.70 0.83 0.96 1.30 1.56 2.08 2.60 3.12 3.64 4.16 4.68 DIMENSIONAL OUTLINE DRAWINGS Diagram 629 Diagram 630 A E A E B B D D C C NOTE: Shape changes from round to square starting with NTE16016–ECG. PRODUCT DIMENSIONS (Dimensions are in inches(mm)) A B D E NTE Type No. Max. Max. Nom. C Tol. + Min. Max. Diag. No. Physical Characteristice Lead Dia. NTE16000–ECG .290 (7.4) .500 (12.7) .200 (5.1) .027 (0.7) .300 (7.6) .122 (3.1) 629 .020 (0.51) Sn/NiCu NTE16001–ECG .290 (7.4) .500 (12.7) .200 (5.1) .027 (0.7) .300 (7.6) .122 (3.1) 629 .020 (0.51) Sn/CuFe NTE16002–ECG .290 (7.4) .500 (12.7) .200 (5.1) .027 (0.7) .300 (7.6) .122 (3.1) 629 .020 (0.51) Sn/CuFe NTE16003–ECG .290 (7.4) .500 (12.7) .200 (5.1) .027 (0.7) .300 (7.6) .122 (3.1) 629 .020 (0.51) Sn/CuFe NTE16004–ECG .290 (7.4) .530 (13.4) .200 (5.1) .027 (0.7) .300 (7.6) .122 (3.1) 629 .020 (0.51) Sn/CuFe NTE16005–ECG .290 (7.4) .540 (13.7) .200 (5.1) .027 (0.7) .300 (7.6) .122 (3.1) 629 .020 (0.51) Sn/CuFe NTE16006–ECG .310 (7.9) .540 (13.7) .200 (5.1) .027 (0.7) .300 (7.6) .122 (3.1) 629 .020 (0.51) Sn/Cu NTE16007–ECG .380 (9.7) .600 (15.2) .200 (5.1) .027 (0.7) .300 (7.6) .122 (3.1) 629 .020 (0.51) Sn/Cu NTE16008–ECG .410 (10.4) .630 (16.0) .200 (5.1) .027 (0.7) .300 (7.6) .122 (3.1) 629 .020 (0.51) Sn/Cu NTE16009–ECG .460 (11.7) .660 (16.7) .200 (5.1) .027 (0.7) .300 (7.6) .122 (3.1) 629 .020 (0.51) Sn/Cu NTE16010–ECG .290 (7.4) .480 (12.2) .200 (5.1) .027 (0.7) .300 (7.6) .120 (3.0) 630 .020 (0.51) Sn/Cu Material NTE16011–ECG .350 (8.9) .550 (14.0) .200 (5.1) .027 (0.7) .300 (7.6) .120 (3.0) 629 .020 (0.51) Sn/Cu NTE16012–ECG .350 (8.9) .750 (18.9) .200 (5.1) .027 (0.7) .300 (7.6) .120 (3.0) 629 .020 (0.51) Sn/Cu NTE16013–ECG .400 (10.2) .660 (16.8) .200 (5.1) .027 (0.7) .300 (7.6) .120 (3.0) 629 .020 (0.51) Sn/Cu NTE16014–ECG .470 (12.0) .720 (18.4) .200 (5.1) .027 (0.7) .300 (7.6) .120 (3.0) 629 .020 (0.51) Sn/Cu NTE16015–ECG .470 (12.0) .720 (18.3) .200 (5.1) .027 (0.7) .300 (7.6) .120 (3.0) 630 .030 (0.81) Sn/Cu NTE16016–ECG .470 (12.0) .720 (18.3) .200 (5.1) .027 (0.7) .300 (7.6) .120 (3.0) 630 .030 (0.81) Sn/Cu NTE16017–ECG .570 (14.4) .970 (24.8) .200 (5.1) .027 (0.7) .300 (7.6) .120 (3.0) 630 .030 (0.81) Sn/Cu NTE16018–ECG .690 (17.4) .980 (24.9) .400 (10.2) .027 (0.7) .300 (7.6) .120 (3.0) 630 .030 (0.81) Sn/Cu NTE16019–ECG .760 (19.3) 1.260 (31.9) .400 (10.2) .027 (0.7) .300 (7.6) .120 (3.0) 630 .030 (0.81) Sn/Cu NTE16020–ECG .870 (22.1) 1.170 (29.8) .400 (10.2) .027 (0.7) .300 (7.6) .120 (3.0) 630 .030 (0.81) Sn/Cu NTE16021–ECG .960 (24.2) 1.300 (32.9) .400 (10.2) .027 (0.7) .300 (7.6) .120 (3.0) 630 .030 (0.81) Sn/Cu NTE16022–ECG .960 (24.2) 1.300 (32.9) .400 (10.2) .027 (0.7) .300 (7.6) .120 (3.0) 630 .030 (0.81) Sn/Cu RESETTABLE CIRCUIT PROTECTION When it comes to Polymeric Positive Temperature Coefficient (PPTC) circuit protection, you now have a choice. Polymeric fuses are made from a conductive plastic formed into thin sheets, with electrodes attached to either side. The conductive plastic is manufactured from a non– conductive crystalline polymer and a highly conductive carbon balck. The electrodes ensure even distribution of power through the device, and provide a surface for leads to be attached or for custom mounting. The phenomenon that allows conductive plastic materials to be used for resettable overcurrent protection devices is that they exhibit a very large non–linear Positive Temperature Coefficient (PTC) effect when heated. PTC is a characteristic that many materials exhibit whereby resistance increases with temperature. What makes the polymeric conductive plastic material unique is the magnitude of its resistance increase. At a specific transition temperature, the increase is resistance is so great that it is typically expressed on a log scale. 107 LOG R OHMS 106 105 104 103 102 101 100 0 20 40 60 80 TEMPERATURE °C 100 120 140 HOW POLYMERIC RESETTABLE OVERCURRENT PROTECTORS WORK The conductive carbon black filler material in the polymeric device is dispersed in a polymer that has a crystalline structure. The crystalline structure densely packs the carbon particles into its crystalline boundry so they are close enough together to allow current to flow through the polymer insulator via these carbon “chains”. When the conductive plastic material is at normal room temperature, there are numerous carbon chains forming conductive paths through the material. Under fault conditions, excessive current flows through the polymeric device. I2R heating causes the conductive plastic material’s temperature to rise. As this self heating continues, the material’s temperature continues to rise until it exceeds its phase transformation temperature. As the material passes through this phase transformation temperature, the densely packed crystalline polymer matrix changes to an amorphous structure. This phase change is accompanied by a small expansion. As the conductive particles move apart from each other, most of them no longer conduct current and the resistance of the device increases sharply. The material will stay “hot”, remaining in this high resistance state as long as the power is applied. The device will remain latched, providing continuous protection, until the fault is cleared and the power is removed. Reversing the phase transformation allows the carbon chains to re–form as the polymer re–crystallizes. The resistance quickly returns to its original value. PRODUCT SELECTION To select the correct polymeric circuit protection device, complete the imformation listed below for application, and then refer to thwe resettable overcurrent protector data sheets. 1. Determine the nromal operating current: __________ amps 2. Determine the maximum circuit voltage (Vmax): __________ volts 3. Determine the fault current (Imax): __________ amps 4. Determine the operating temperature range: Minimum Temperature: __________ °C Maximum Temperature: __________ °C 5. Select a product family so that the maximum rating for Vmax and Imax is higher than the maximum circuit voltage and fault current in the application. 6. Using the IHold vs. Temperature Table on the product family data sheet, select the polymeric device at the maximum operating temperature with an IHold greater than or equal to the normal operating current. 7. Verify that the selected device will trip under fault conditions by checking in the ITrip table that the fault current is greater than ITrip for the selected device, at the lowest operating temperature. 8. Order samples and test in application. APPLICATIONS The benefits of polymeric Resettable Overcurrent Protectors are being recognized by more and more design engineers, and new applications are being discovered every day. The use of polymeric types of devices have been widely accepted in the following applications and industries: D D D D D D D D D D D D D D Personal computers Laptop computers Personal digital assistants Transformers Small and medium electric motors Audio equipment and speakers Test and measurement equipment Security and fire alarm systems Personal care products Point–of–sale equipment Industrial controls Automotive electronics and harness protection Marine electronics Battery–operated toys