NTE NTE1639

NTE1639
Integrated Circuit
CMOS Clock Generator/Driver for BBDs
Description:
The NTE1639 is a CMOS LSI Clock Generator ina 8–Lead DIP type package capable of generating
two phase clock signals of low output impedance for use as a BBD driver. The built–in VGG power
supply circuit provides the proper voltages needed for driving BBDs such as the NTE1641.
Features:
D BBD Direct Driving Capability of up to two BBD’s
D Self and Separate Oscillations.
D Two Phase Clock Output (Duty: 1/2)
D Built–in VGG Voltage Generator for Driving the NTE1641 BBD.
D Single Power Supply: –8V to –16V.
Applications:
D BBD Clock Generator/Driver.
Absolute Maximum Ratings: (TA = +25°C unless otherwise specified)
Drain Supply Voltage, VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –18V to +0.3V
Input/Output Pin Voltage, VI, VO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDD –0.3V to +0.3V
Power Dissipation, PD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200mW
Operating Ambient Temperature Range, Topr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –10° to +70°C
Storage Temperature Range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –30° to +125°C
Recommended Operating Conditions: (TA = +25°C unless otherwise specified)
Item
Drain Supply Voltage
Symbol
VDD
Condition
GND = 0V
Min
Typ
Max
Unit
–8
–15
–16
V
Electrical Characteristics: (TA = +25°C, VDD = –15V, GND = 0V unless otherwise specified)
Parameter
Symbol
Input Drain Current
IDD
Total Power Dissipation
Ptot
Test Condition
No load
Clock Output 40kHZ
Min
Typ
Max
Unit
–
3
–
mA
–
45
–
mW
OX1 Input Pin
Voltage “H” Level
VIH
0
–
–1
V
Voltage “L” Level
VIL
VDD+1
–
VDD
V
–
–
30
µA
Input Leakage Current
ILeak
VI = 0V to –15V
Output Current “H” Level
IOH(1)
VO = –1V
0.6
–
–
mA
Output Current “L” Level
IOL(1)
VO = –14V
0.5
–
–
mA
Output Leakage Current
ILOL(1)
VO = VDD
VO = GND
–
–
–
–
30
30
µA
µA
Output Current “H” Level
IOH(2)
VO = –1V
1.5
–
–
mA
Output Current “L” Level
IOL(2)
VO = –14V
2
–
–
mA
Output Leakage Current
ILOL(2)
VO = VDD
VO = GND
–
–
–
–
30
30
µA
µA
Output Current “H” Level
IOH(3)
VO = –1V
10
–
–
mA
Output Current “L” Level
IOL(3)
VO = –14V
10
–
–
mA
Output Leakage Current
ILOL(3)
VO = VDD
VO = GND
–
–
–
–
30
30
µA
µA
OX2 Output Pin
OX3 Output pin
CP1, CP2 output pin
VGG OUT output pin (Note 1)
Output Voltage
VGG(Out)
–14
Note 1. This pin generates the VGG voltage for a BBD manufactured by NTE. So therefore, it might not be applicable for
other devices. In any case, the VGG(OUT) changes by the
following formula depending on the value of VDD.
VGG(OUT) ≅
V
14
VDD
15
Pin Descriptions:
Pin No. Symbol
Pin Name
Description
1
GND
Ground
Connected to GND of the circuit.
2
CP1
Clock Output 1
3
VDD
VDD apply
4
CP2
Clock Output 2
5
OX3
6
OX2
OSC connections to
C1, R2, and R1
separately
7
OX1
R, C are connected for the In case of separate excitainternal clock.
tion, OX3 and OX2 are
opened and OX1 is set to
OSC input.
8
VGG OUT
VGG Voltage Output
–14V is output. (VDD = –15V) VGG OUT = 14/15VDD.
This pin outputs a clock signal that is the reverse
phase of CP2 with a Duty Cycle of 1/2 the frequency
of oscillation.
–15V is applied
This pin outputs a clock signal that is a the reverse
phase of CP1
The Maximum Clock Frequency:
The upper limit value of the clock frequency is determined by the load capacitance and power consumption. The maximum power dissipation for the NTE1639 is PD = 200mW. If the clock frequency
of the load capacitance is increased, the power consumption will be increased. Accordingly, in order
to utilize this device with a dissipation less than the permissible value, it is necessary to select adequate values for the clock frequency and load capacitance. By connecting a resistance to the clock
output pin, it is possible to increase the value of the maximum clock frequency without increasing dissipation. Because the dissipation on the LSI side is lessened, part of the power consumption required
for driving the load capacitance is consumed by the series resistance.
Pin Connection Diagram
GND
1
8
VGG (Out)
CP 1
2
7
OX 1
VDD 3
6
OX 2
4
5
OX 3
CP 2
8
5
.256 (6.52) Max
1
4
.393 (10.0)
Max
.300
(7.62)
.150
(3.81)
.100 (2.54)
.070 (1.77) Min
.300 (7.62)