NTE NTE858M

NTE858M
NTE858SM
Integrated Circuit
Dual, Low–Noise JFET–Input Operational Amplifier
Description:
The NTE858M and NTE858SM are dual, low–noise JFET input operational amplifiers combining two
state–of–the–art linear technologies on a single monolithic integrated circuit. Each internally compensated operational amplifier has well matched high voltage JFET input devices for low input offset
voltage. The BIFET technology provides wide bandwidths and fast slew rates with low input bias currents, input offset currents, and supply currents. Moreover, these devices exhibit low–noise and low
harmonic distortion making them ideal for use in high–fidelity audio amplifier applications.
Features:
D Available in Two Different Package Types:
8–Lead Mini DIP (NTE858M)
SOIC–8 Surface Mount (NTE858SM)
D Low Input Noise Voltage: 18nV√Hz Typ
D Low Harmonic Distortion: 0.01% Typ
D Low Input Bias and Offset Currents
D High Input Impedance: 1012Ω Typ
D High Slew Rate: 13V/µs Typ
D Wide Gain Bandwidth: 4MHz Typ
D Low Supply Current: 1.4mA per Amp
Absolute Maximum Ratings:
Supply Voltage
VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +18V
VEE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –18V
Differential Input Voltage, VID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±30V
Input Voltage Range (Note 1), VIDR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±15V
Output Short–Circuit Duration (Note 2), tS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Continuous
Power Dissipation, PD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 680mW
Derate Above TA = +47°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10mW/°C
Operating Ambient Temperature Range, TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0° to +70°C
Storage Temperature Range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65° to +150°C
Note 1. The magnitude of the input voltage must not exceed the magnitude of the supply voltage or
15V, whichever is less.
Note 2. The output may be shorted to GND or either supply. Temperature and/or supply voltages
must be limited to ensure that power dissipation ratungs are not exceeded.
Electrical Characteristics: (VCC = +15V, VEE = –15V, TA = +25°C unless otherwise specified)
Parameter
Input Offset Voltage
Average Temperature
Coefficient of Input Offset
Voltage
Input Offset Current
Input Bias Current
Input Resistance
Symbol
VIO
RS ≤ 10k,
VCM = 0
TA = 0 to +70°C
∆VIO/∆T TA = 0 to +70°C
IIO
IIB
VCM = 0,
Note 3
VCM = 0,
Note 3
TA = 0 to +70°C
TA = 0 to +70°C
ri
Common Mode Input Voltage
Range
VICR
Large–Signal Voltage Gain
AVOL
Output Voltage Swing
(Peak–to–Peak)
Test Conditions
VO
VO = ±10V,
RL ≤ 2k
TA = 0 to +70°C
RL = 10k
RL ≥ 10k
TA = 0 to +70°C
RL ≥ 2k
Min
Typ
Max
Unit
–
3
10
mV
–
–
13
mV
–
10
–
µV/°C
–
5
50
pA
–
–
2
nA
–
30
200
pA
–
–
7
nA
–
1012
–
Ω
±10 +15, –12
–
V
25
150
–
V/mV
15
–
–
V/mV
24
28
–
V
24
–
–
V
20
–
–
V
Common Mode Rejection Ratio
CMRR RS ≤ 10k
70
100
–
dB
Supply Voltage Rejection Ratio
PSRR
RS ≤ 10k
70
100
–
dB
Supply Current (Each Amplifier)
ID
–
1.4
2.5
mA
Unity Gain Bandwidth
BW
–
4
–
MHz
Slew Rate
SR
–
13
–
V/µs
Rise Time
tr
–
0.1
–
µs
VIN = 20mV, RL = 2k,
CL = 100pF
–
10
–
%
Overshoot Factor
VIN = 10V, RL = 2k, CL = 100pF
Equivalent Input Noise Voltage
en
RS = 100Ω, f = 1000Hz
–
18
–
nV/√Hz
Equivalent Input Noise Current
in
RS = 100Ω, f = 1000Hz
–
0.01
–
pA/√Hz
THD
VO(RMS) = 10V, RS ≤ 1k,
RL ≥ 2k, f = 1000Hz
–
0.01
–
%
AV = 100
–
120
–
dB
Total Harmonic Distortion
Channel Separation
Note 3. Input Bias currents of JFET input operational amplifiers approximately double for every 10°C
rise in Junction Temperature. To maintain Junction Temperature as close to Ambient Temperature as possible, pulse techniques must be used during test.
Pin Connection Diagram
Output (1)
1
8
VCC
Inverting Input (1)
2
7
Output (2)
Non–Inverting Input (1)
3
6
Inverting Input (2)
VEE 4
5
Non–Inverting Input (2)
NTE858M
8
5
.260 (6.6)
1
4
.390 (9.9)
Max
.300
(7.62)
.155
(3.93)
.100 (2.54)
.145 (3.68)
.300 (7.62)
NTE858SM
.192 (4.9)
8
5
.236
(5.99)
.154
(3.91)
1
.050 (1.27)
4
016
(.406)
061
(1.53)
.006 (.152)
NOTE: Pin1 on Beveled Edge
.198 (5.03)