OKI MSM51V16805BSL

¡ Semiconductor
MSM51V16805B/BSL
¡ Semiconductor
MSM51V16805B/BSL
E2G0077-17-41
2,097,152-Word ¥ 8-Bit DYNAMIC RAM : FAST PAGE MODE TYPE WITH EDO
DESCRIPTION
The MSM51V16805B/BSL is a 2,097,152-word ¥ 8-bit dynamic RAM fabricated in Oki's silicon-gate
CMOS technology. The MSM51V16805B/BSL achieves high integration, high-speed operation, and
low-power consumption because Oki manufactures the device in a quadruple-layer polysilicon/
double-layer metal CMOS process. The MSM51V16805B/BSL is available in a 28-pin plastic SOJ or
28-pin plastic TSOP. The MSM51V16805BSL (the self-refresh version) is specially designed for
lower-power applications.
FEATURES
• 2,097,152-word ¥ 8-bit configuration
• Single 3.3 V power supply, ±0.3 V tolerance
• Input
: LVTTL compatible, low input capacitance
• Output : LVTTL compatible, 3-state
• Refresh : 4096 cycles/64 ms, 4096 cycles/128 ms (SL version)
• Fast page mode with EDO, read modify write capability
• CAS before RAS refresh, hidden refresh, RAS-only refresh capability
• CAS before RAS self-refresh capability (SL version)
• Multi-bit test mode capability
• Package options:
28-pin 400 mil plastic SOJ
(SOJ28-P-400-1.27)
(Product : MSM51V16805B/BSL-xxJS)
28-pin 400 mil plastic TSOP
(TSOPII28-P-400-1.27-K) (Product : MSM51V16805B/BSL-xxTS-K)
xx indicates speed rank.
PRODUCT FAMILY
Family
Access Time (Max.)
tRAC
tAA
tCAC
tOEA
Cycle Time
Power Dissipation
(Min.)
Operating (Max.) Standby (Max.)
MSM51V16805B/BSL-50 50 ns 25 ns 13 ns 13 ns
84 ns
540 mW
MSM51V16805B/BSL-60 60 ns 30 ns 15 ns 15 ns
104 ns
468 mW
MSM51V16805B/BSL-70 70 ns 35 ns 20 ns 20 ns
124 ns
396 mW
1.8 mW/
0.72 mW (SL version)
369
,
MSM51V16805B/BSL
¡ Semiconductor
PIN CONFIGURATION (TOP VIEW)
VCC 1
28 VSS
VCC 1
28 VSS
DQ1 2
27 DQ8
DQ1 2
27 DQ8
DQ2 3
26 DQ7
DQ2 3
26 DQ7
DQ3 4
25 DQ6
DQ3 4
25 DQ6
DQ4 5
24 DQ5
DQ4 5
24 DQ5
WE 6
23 CAS
WE 6
23 CAS
RAS 7
22 OE
RAS 7
22 OE
A11R 8
21 A9R
A11R 8
21 A9R
A10R 9
20 A8
A10R 9
20 A8
A0 10
19 A7
A0 10
19 A7
A1 11
18 A6
A1 11
18 A6
A2 12
17 A5
A2 12
17 A5
A3 13
16 A4
A3 13
16 A4
VCC 14
15 VSS
VCC 14
15 VSS
28-Pin Plastic SOJ
Pin Name
A0 - A8,
A9R - A11R
370
Function
Address Input
RAS
Row Address Strobe
CAS
Column Address Strobe
DQ1 - DQ8
Data Input/Data Output
OE
Note :
28-Pin Plastic TSOP
(K Type)
Output Enable
WE
Write Enable
VCC
Power Supply (3.3 V)
VSS
Ground (0 V)
The same power supply voltage must be provided to every VCC pin, and the same GND
voltage level must be provided to every VSS pin.
¡ Semiconductor
MSM51V16805B/BSL
BLOCK DIAGRAM
RAS
WE
Timing
Generator
OE
I/O
Controller
CAS
8
Output
Buffers
8
Input
Buffers
8
DQ1 - DQ8
9
Internal
Address
Counter
A0 - A8
9
A9R - A11R
Column
Address
Buffers
3
9
Refresh
Control Clock
Row
Row
Address 12 DecoBuffers
ders
Word
Drivers
Column Decoders
Sense Amplifiers
8
I/O
Selector
8
8
Memory
Cells
VCC
On Chip
VBB Generator
VSS
371
MSM51V16805B/BSL
¡ Semiconductor
ELECTRICAL CHARACTERISTICS
Absolute Maximum Ratings
Symbol
Rating
Voltage on Any Pin Relative to VSS
VT
–0.5 to 4.6
V
Short Circuit Output Current
IOS
50
mA
Power Dissipation
PD *
1
W
Operating Temperature
Topr
0 to 70
°C
Storage Temperature
Tstg
–55 to 150
°C
Parameter
Unit
*: Ta = 25°C
Recommended Operating Conditions
Parameter
Power Supply Voltage
Symbol
(Ta = 0°C to 70°C)
Min.
Typ.
Max.
Unit
VCC
3.0
3.3
3.6
V
VSS
0
0
0
V
Input High Voltage
VIH
2.0
—
VCC + 0.3
V
Input Low Voltage
VIL
–0.3
—
0.8
V
Capacitance
(VCC = 3.3 V ±0.3 V, Ta = 25°C, f = 1 MHz)
Symbol
Typ.
Max.
Unit
Input Capacitance
(A0 - A8, A9R - A11R)
CIN1
—
5
pF
Input Capacitance (RAS, CAS, WE, OE)
CIN2
—
7
pF
Output Capacitance (DQ1 - DQ8)
CI/O
—
7
pF
Parameter
372
¡ Semiconductor
MSM51V16805B/BSL
DC Characteristics
Parameter
(VCC = 3.3 V ±0.3 V, Ta = 0°C to 70°C)
Symbol
Condition
MSM51V16805 MSM51V16805 MSM51V16805
B/BSL-50
B/BSL-60
B/BSL-70 Unit Note
Min.
Max.
Min.
Max.
Min.
Max.
Output High Voltage
VOH IOH = –2.0 mA
2.4
VCC
2.4
VCC
2.4
VCC
V
Output Low Voltage
VOL IOL = 2.0 mA
0
0.4
0
0.4
0
0.4
V
Input Leakage Current
ILI
–10
10
–10
10
–10
10
mA
–10
10
–10
10
–10
10
mA
—
110
—
90
—
80
mA
1, 2
—
2
—
2
—
2
—
0.5
—
0.5
—
0.5
mA
1
—
200
—
200
—
200
mA
1, 5
—
110
—
90
—
80
mA
1, 2
—
5
—
5
—
5
mA
1
—
110
—
90
—
80
mA
1, 2
—
150
—
130
—
110
mA
1, 3
—
400
—
400
—
400
mA
—
300
—
300
—
300
mA
0 V £ VI £ VCC + 0.3 V;
All other pins not
under test = 0 V
Output Leakage Current
ILO
Average Power
ICC1
Supply Current
(Operating)
DQ disable
0 V £ VO £ VCC
RAS, CAS cycling,
tRC = Min.
RAS, CAS = VIH
Power Supply
Current (Standby)
ICC2 RAS, CAS
≥ VCC –0.2 V
RAS cycling,
Average Power
ICC3 CAS = VIH,
Supply Current
(RAS-only Refresh)
tRC = Min.
RAS = VIH,
Power Supply
Current (Standby)
ICC5 CAS = VIL,
DQ = enable
Average Power
ICC6
Supply Current
(CAS before RAS Refresh)
RAS cycling,
CAS before RAS
RAS = VIL,
Average Power
ICC7 CAS cycling,
Supply Current
(Fast Page Mode)
tHPC = Min.
Average Power
tRC = 31.3 ms,
ICC10 CAS before RAS,
Supply Current
tRAS £ 1 ms
(Battery Backup)
1, 4,
5
Average Power
Supply Current
(CAS before RAS
ICCS
RAS £ 0.2 V,
CAS £ 0.2 V
1, 5
Self-Refresh)
Notes : 1.
2.
3.
4.
5.
ICC Max. is specified as ICC for output open condition.
The address can be changed once or less while RAS = VIL.
The address can be changed once or less while CAS = VIH.
VCC – 0.2 V £ VIH £ VCC + 0.3 V, –0.3 V £ VIL £ 0.2 V.
SL version.
373
MSM51V16805B/BSL
¡ Semiconductor
AC Characteristics (1/2)
(VCC = 3.3 V ±0.3 V, Ta = 0°C to 70°C) Note 1, 2, 3, 12, 13
Parameter
Symbol
tRC
MSM51V16805 MSM51V16805 MSM51V16805
B/BSL-50
B/BSL-60
B/BSL-70 Unit Note
Min.
Max.
Min.
Max.
Min.
Max.
—
—
—
—
ns
—
124
160
30
—
ns
Random Read or Write Cycle Time
Read Modify Write Cycle Time
tRWC
84
110
—
—
Fast Page Mode Cycle Time
tHPC
20
—
104
135
25
tHPRWC
58
—
68
—
78
—
ns
Access Time from RAS
tRAC
—
50
—
60
—
70
ns
4, 5, 6
Access Time from CAS
tCAC
—
13
—
15
—
20
ns
4, 5
Access Time from Column Address
Access Time from CAS Precharge
tAA
tCPA
—
—
25
30
—
—
30
35
—
—
35
40
ns
ns
4, 6
4
Access Time from OE
Output Low Impedance Time from CAS
tOEA
tCLZ
—
0
13
—
—
0
15
—
—
0
20
—
ns
ns
4
4
Data Output Hold After CAS Low
tDOH
5
—
5
—
5
—
ns
CAS to Data Output Buffer Turn-off Delay Time
tCEZ
RAS to Data Output Buffer Turn-off Delay Time
tREZ
0
0
13
13
0
0
15
15
0
0
20
20
ns
ns
7, 8
7, 8
OE to Data Output Buffer Turn-off Delay Time
WE to Data Output Buffer Turn-off Delay Time
tOEZ
tWEZ
0
0
13
13
0
0
15
15
0
0
20
20
ns
ns
7
7
Transition Time
Refresh Period
tT
tREF
1
—
50
64
1
—
50
64
1
—
50
64
ns
ms
3
Refresh Period (SL version)
tREF
—
128
—
128
—
128
ms
14
RAS Precharge Time
tRP
30
—
40
—
50
—
ns
RAS Pulse Width
tRAS
50
10,000
60
10,000
70
10,000
ns
RAS Pulse Width (Fast Page Mode with EDO) tRASP
50
100,000
60
100,000
70
100,000
ns
RAS Hold Time
tRSH
RAS Hold Time referenced to OE
tROH
7
7
—
—
10
10
—
—
13
13
—
—
ns
ns
CAS Precharge Time (Fast Page Mode with EDO)
tCP
7
—
10
—
10
—
ns
Fast Page Mode Read Modify Write
Cycle Time
ns
CAS Pulse Width
tCAS
7
10,000
10
10,000
13
10,000
ns
CAS Hold Time
CAS to RAS Precharge Time
tCSH
tCRP
35
5
—
—
40
5
—
—
45
5
—
—
ns
ns
RAS Hold Time from CAS Precharge
tRHCP
30
—
35
—
40
—
ns
OE Hold Time from CAS (DQ Disable)
tCHO
RAS to CAS Delay Time
tRCD
RAS to Column Address Delay Time
tRAD
5
11
9
—
37
25
5
14
12
—
45
30
5
14
12
—
50
35
ns
ns
ns
Row Address Set-up Time
tASR
0
—
0
—
0
—
ns
Row Address Hold Time
tRAH
7
—
10
—
10
—
ns
Column Address Set-up Time
tASC
0
—
0
—
0
—
ns
Column Address Hold Time
tCAH
Column Address to RAS Lead Time
tRAL
7
25
—
—
10
30
—
—
13
35
—
—
ns
ns
374
5
6
¡ Semiconductor
MSM51V16805B/BSL
AC Characteristics (2/2)
(VCC = 3.3 V ±0.3 V, Ta = 0°C to 70°C) Note 1, 2, 3, 12, 13
Parameter
Symbol
MSM51V16805MSM51V16805 MSM51V16805
B/BSL-50
B/BSL-60
B/BSL-70 Unit Note
Min.
Max.
Min.
Max.
Min.
Max.
Read Command Set-up Time
tRCS
0
—
0
—
0
—
ns
Read Command Hold Time
tRCH
0
—
0
—
0
—
ns
9
Read Command Hold Time referenced to RAS
Write Command Set-up Time
tRRH
tWCS
0
0
—
—
0
0
—
—
0
0
—
—
ns
ns
9
10
Write Command Hold Time
tWCH
7
—
10
—
13
—
ns
Write Command Pulse Width
tWP
7
—
10
—
10
—
ns
WE Pulse Width (DQ Disable)
tWPE
7
—
10
—
10
—
ns
OE Command Hold Time
OE Precharge Time
tOEH
tOEP
7
—
10
—
13
—
ns
7
—
10
—
10
—
ns
OE Command Hold Time
tOCH
7
—
10
—
10
—
ns
Write Command to RAS Lead Time
Write Command to CAS Lead Time
tRWL
tCWL
7
7
—
—
10
—
—
13
13
—
—
ns
ns
Data-in Set-up Time
Data-in Hold Time
OE to Data-in Delay Time
CAS to WE Delay Time
Column Address to WE Delay Time
RAS to WE Delay Time
tDS
tDH
tOED
tCWD
tAWD
tRWD
0
7
13
67
—
—
—
—
—
—
CAS Precharge WE Delay Time
tCPWD
47
CAS Active Delay Time from RAS Precharge
tRPC
RAS to CAS Set-up Time (CAS before RAS)
RAS to CAS Hold Time (CAS before RAS)
tCSR
tCHR
WE to RAS Precharge Time (CAS before RAS) tWRP
(CAS before RAS Self-Refresh)
RAS Precharge Time
(CAS before RAS Self-Refresh)
CAS Hold Time
(CAS before RAS Self-Refresh)
0
—
ns
—
—
44
59
94
—
—
—
ns
ns
ns
ns
ns
34
49
79
—
54
—
64
—
ns
5
—
5
—
5
—
ns
5
10
—
—
5
10
—
—
5
10
—
—
ns
ns
10
10
10
10
—
10
10
10
10
—
10
—
—
—
—
—
—
10
10
10
—
—
—
—
ns
ns
ns
ns
tRASS
100
—
100
—
100
—
ms
14
tRPS
90
—
110
—
130
—
ns
14
tCHS
–50
—
–50
—
–50
—
ns
14
30
42
0
13
20
—
—
—
—
—
—
WE Hold Time from RAS (CAS before RAS) tWRH
RAS to WE Set-up Time (Test Mode)
tWTS
RAS to WE Hold Time (Test Mode)
tWTH
RAS Pulse Width
10
10
15
11
11
10
10
10
10
375
MSM51V16805B/BSL
Notes:
¡ Semiconductor
1. A start-up delay of 200 µs is required after power-up, followed by a minimum of eight
initialization cycles (RAS-only refresh or CAS before RAS refresh) before proper device
operation is achieved.
2. The AC characteristics assume tT = 2 ns.
3. VIH (Min.) and VIL (Max.) are reference levels for measuring input timing signals.
Transition times (tT) are measured between VIH and VIL.
4. This parameter is measured with a load circuit equivalent to 1 TTL load and 100 pF.
The output timing reference levels are VOH = 2.0 V and VOL = 0.8 V.
5. Operation within the tRCD (Max.) limit ensures that tRAC (Max.) can be met.
tRCD (Max.) is specified as a reference point only. If tRCD is greater than the specified
tRCD (Max.) limit, then the access time is controlled by tCAC.
6. Operation within the tRAD (Max.) limit ensures that tRAC (Max.) can be met.
tRAD (Max.) is specified as a reference point only. If tRAD is greater than the specified
tRAD (Max.) limit, then the access time is controlled by tAA.
7. tCEZ (Max.), tREZ (Max.), tWEZ (Max.) and tOEZ (Max.) define the time at which the
output achieves the open circuit condition and are not referenced to output voltage
levels.
8. tCEZ and tREZ must be satisfied for open circuit condition.
9. tRCH or tRRH must be satisfied for a read cycle.
10. tWCS, tCWD, tRWD, tAWD and tCPWD are not restrictive operating parameters. They are
included in the data sheet as electrical characteristics only. If tWCS ≥ tWCS (Min.), then
the cycle is an early write cycle and the data out will remain open circuit (high
impedance) throughout the entire cycle. If tCWD ≥ tCWD (Min.) , tRWD ≥ tRWD (Min.),
tAWD ≥ tAWD (Min.) and tCPWD ≥ tCPWD (Min.), then the cycle is a read modify write
cycle and data out will contain data read from the selected cell; if neither of the above
sets of conditions is satisfied, then the condition of the data out (at access time) is
indeterminate.
11. These parameters are referenced to the CAS leading edge in an early write cycle, and
to the WE leading edge in an OE control write cycle, or a read modify write cycle.
12. The test mode is initiated by performing a WE and CAS before RAS refresh cycle.
This mode is latched and remains in effect until the exit cycle is generated.
The test mode specified in this data sheet is a 2-bit parallel test function. CA8 is not
used. In a read cycle, if all internal bits are equal, the DQ pin will indicate a high
level. If any internal bits are not equal, the DQ pin will indicate a low level.
The test mode is cleared and the memory device returned to its normal operating
state by performing a RAS-only refresh cycle or a CAS before RAS refresh cycle.
13. In a test mode read cycle, the value of access time parameters is delayed for 5 ns for the
specified value. These parameters should be specified in test mode cycle by adding the
above value to the specified value in this data sheet.
14. Only SL version.
See ADDENDUM O for AC Timing Waveforms
376