SANKEN SLA7022

SLA7022MU/SLA7029M/SMA7022MU/SMA7029M
2-Phase Excitation
2-Phase Stepper Motor Unipolar Driver ICs
■Absolute Maximum Ratings
Parameter
Symbol
Motor supply voltage
FET Drain-Source voltage
Control supply voltage
TTL input voltage
Reference voltage
Output current
VCC
VDSS
VS
V IN
V REF
IO
P D1
P D2
Tch
Tstg
Power dissipation
Channel temperature
Storage temperature
(Ta =25°C)
Ratings
SLA7022MU
SLA7029M
SMA7022MU
SMA7029M
46
100
46
7
2
1
1.5
4.5 (Without Heatsink)
35 (TC=25°C)
1
1.5
4.0 (Without Heatsink)
28(TC=25°C)
+150
−40 to +150
Units
V
V
V
V
V
A
W
W
°C
°C
■Electrical Characteristics
(Ta =25°C)
Ratings
Parameter
Symbol
SLA7022MU
typ
max
10
15
V S=44V
10
24
44
100
VS =44V, IDSS=250 µA
0.85
ID=1A, VS =14V
4
VDSS=100V, VS=44V
1.2
ID=1A
40
VIH=2.4V, VS =44V
−0.8
VIL=0.4V, V S=44V
2
ID=1A
0.8
VDSS=100V
2
VDSS=100V
0.8
ID=1A
0.5
VS =24V, ID=0.8A
0.7
VS =24V, ID=0.8A
0.1
VS =24V, ID=0.8A
min
Control supply current
Control supply voltage
FET Drain-Source
voltage
FET ON voltage
DC characteristics
FET drain leakage current
FET diode forward
voltage
TTL input current
TTL input voltage
(Active High)
AC characteristics
TTL input voltage
(Active Low)
Switching time
IS
Condition
VS
VDSS
Condition
V DS
Condition
IDSS
Condition
V SD
Condition
IIH
Condition
IIL
Condition
VIH
Condition
VIL
Condition
VIH
Condition
VIL
Condition
Tr
Condition
T stg
Condition
Tf
Condition
min
SLA7029M
typ
max
10
15
V S=44V
24
44
10
100
VS =44V, IDSS=250 µ A
0.6
ID=1A, VS =14V
4
VDSS=100V, VS=44V
1.1
ID=1A
40
VIH=2.4V, VS =44V
−0.8
VIL=0.4V, VS=44V
2
ID=1A
0.8
VDSS=100V
2
VDSS=100V
0.8
ID=1A
0.5
VS=24V, ID=1A
0.7
VS=24V, ID=1A
0.1
VS=24V, ID=1A
SMA7022MU
typ
max
10
15
VS =44V
10
24
44
100
VS=44V, IDSS=250 µA
0.85
ID=1A, VS=14V
4
VDSS=100V, VS =44V
1.2
ID=1A
40
VIH=2.4V, VS=44V
−0.8
V IL=0.4V, VS =44V
2
ID=1A
0.8
VDSS=100V
2
VDSS=100V
0.8
ID=1A
0.5
VS=24V, ID=0.8A
0.7
VS=24V, ID=0.8A
0.1
VS=24V, ID=0.8A
min
SMA7029M
typ
max
10
15
V S=44V
10
24
44
100
VS=44V, IDSS=250 µA
0.6
ID=1A, VS =14V
4
VDSS=100V, V S=44V
1.1
ID=1A
40
VIH=2.4V, VS =44V
−0.8
V IL=0.4V, VS =44V
2
ID=1A
0.8
VDSS=100V
2
VDSS=100V
0.8
ID=1A
0.5
V S=24V, ID=1A
0.7
V S=24V, ID=1A
0.1
V S=24V, ID=1A
Units
min
mA
V
V
V
mA
V
µA
mA
V
V
µs
SLA7022MU/SLA7029M/SMA7022MU/SMA7029M
5
2-Phase Stepper Motor Unipolar Driver ICs (2-Phase Excitation)
SLA7022MU/SLA7029M/SMA7022MU/SMA7029M
■Internal Block Diagram
8
INB
5
VS
1
INA
6
10
14
15
1, 6, 10, 15pin
Description of pins
4
12
TDB
REFB
3
GNDB
2
1pin
6pin
10pin
15pin
+
–
+
–
GNDA
7
REFA
+
–
TDA
RSA
+
–
Excitation input
Active H
Active L
OUT A
OUT A
OUT A
OUT A
OUT B
OUT B
OUT B
OUT B
Reg
RSB
Reg
13
11
9
■Diagram of Standard External Circuit (Recommended Circuit Constants)
Excitation signal time chart
2-phase excitation
VCC (46V max)
+
clock
0
1
2
3
0
1
IN A
IN B
H
L
H
H
L
H
L
L
H
L
H
H
1-2 phase excitation
Vb (5V)
8
VS
r3
6
10
15
r1
r4
INA
2
11
C1
1
TdA
TdB
INB
C2
r2
Rs
r5
GA
4
C4
r6
Rs
Open
collector
6
14
INA
INB
0
H
L
L
L
1
H
L
L
H
2
H
L
H
L
3
H
H
H
L
4
L
L
H
L
5
L
L
H
H
6
L
L
L
L
7
L
H
L
L
0
H
L
L
L
1
H
L
L
H
2 3
H H
L H
H H
L L
● tdA and tdB are signals before the inverter stage.
RSA REFA REFB RSB
7
3 13
9
C3
tdA
5
clock
IN A
td A
IN B
td B
tdB
SLA7022MU/SLA7029M/SMA7022MU/SMA7029M
GB
12
r1 :
r2 :
r3 :
r4 :
r5 :
r6 :
C1 :
C2 :
C3 :
C4 :
Rs :
510Ω
100Ω (VR)
47kΩ
47kΩ
2.4kΩ
2.4kΩ
330 to 500pF
330 to 500pF
2200pF
2200pF
1.8Ω typ(7022MU)
(1 to 2W)
1Ω typ(7029M)
2-Phase Stepper Motor Unipolar Driver ICs (2-Phase Excitation)
SLA7022MU/SLA7029M/SMA7022MU/SMA7029M
■External Dimensions SLA7022MU/SLA7029M
+1
9.7 –0.5
+0.2
+0.2
0.65 –0.1
+0.2
1.15 –0.1
+0.2
1.15 –0.1
0.55 –0.1
4±0.7
14×P2.03±0.7=28.42±1.0
14×P2.03±0.4=28.42±0.8
1.6±0.6
+0.2
0.65 –0.1
(3)
R-End
3±0.6
2.45±0.2
2.2±0.4
6.3±0.6
7.5±0.6
+0.2
Part No.
Lot No.
4.6±0.6
Epoxy resin package
4.8±0.2
1.7±0.1
6.7±0.5
9.9 ±0.2
16 ±0.2
13 ±0.2
φ 3.2±0.15×3.8
0.55 –0.1
31±0.2
24.4±0.2
16.4±0.2
φ 3.2±0.15
(Unit: mm)
31.3±0.2
1 2 3 · · · · · · · 15
12 3 · · · · · · · 15
Forming No. No.853
Forming No. No.855
■External Dimensions SMA7022MU/SMA7029MA
(Unit: mm)
Epoxy resin package
4±0.2
4±0.7
P2.03±0.1×14=28.42
1.2±0.1
(5.9)
(7.5)
(4.6)
+0.2
0.55 –0.1
3 ±0.6
+0.2
0.65 –0.1
1.16 +0.2
–0.1
+0.2
0.55 –0.1
0.62±0.1
1.16±0.15
(3)
6.7 ±0.5
1.45±0.15
(9.7)
Lot No.
Part No.
1.6 ±0.6
2.5±0.2
30°
8.5max
10.2±0.2
31±0.2
P2.03±0.1×14=28.42
31.3 +0.2
12 3 · · · · · · · 15
1 2 3 · · · · · · · 15
Forming No. No.1054
Forming No. No.1055
SLA7022MU/SLA7029M/SMA7022MU/SMA7029M
7
2-Phase Stepper Motor Unipolar Driver ICs (2-Phase Excitation)
SLA7022MU/SLA7029M/SMA7022MU/SMA7029M
Application Notes
■Determining the Output Current
Fig. 1 Waveform of coil current (Phase A excitation ON)
Fig. 1 shows the waveform of the output current (motor coil curIO
rent). The method of determining the peak value of the output
current (IO) based on this waveform is shown below.
(Parameters for determining the output current IO)
Phase A
0
Vb: Reference supply voltage
r1,r 2: Voltage-divider resistors for the reference supply voltage
Phase A
RS: Current sense resistor
(1) Normal rotation mode
IO is determined as follows when current flows at the maximum
level during motor rotation. (See Fig.2.)
V b ................................................................
r2
(1)
IO ≅
•
r1+r2 RS
Fig. 2 Normal mode
Vb(5V)
r6
(2) Power down mode
r1
The circuit in Fig.3 (rx and Tr) is added in order to decrease the
r5
3,(13)
coil current. IO is then determined as follows.
1
IOPD ≅
r1(r2+rX)
1+
•
r2
V
b
.........................................................
(2)
RS
C3
7,(9)
r2 • rX
RS
Equation (2) can be modified to obtain equation to determine rx.
1
rX=
1
1
Vb
−1 −
r1 Rs • IOPD
r2
Fig. 3 Power down mode
Vb(5V)
Fig. 4 and 5 show the graphs of equations (1) and (2) respec-
r6
tively.
r1
r5
rx
Power down
signal
3,(13)
r2
7,(9)
C3
Tr
RS
Fig. 4 Output current IO vs. Current sense resistor RS
Fig. 5 Output current IOPD vs. Variable current sense resistor rx
2.0
3
r2 · V b
r1+r2 RS
r1=510Ω
r2=100Ω
rx=∞
Vb=5V
IO=
2
1
0
0
1
2
3
4
Current sense resistor RS (Ω)
(NOTE)
Ringing noise is produced in the current sense resistor RS when
the MOSFET is switched ON and OFF by chopping. This noise
is also generated in feedback signals from RS which may therefore cause the comparator to malfunction. To prevent chopping
malfunctions, r 5(r6) and C3(C4) are added to act as a noise filter.
8
SLA7022MU/SLA7029M/SMA7022MU/SMA7029M
Output current IOPD (A)
Output current IO (A)
4
RS =0.5Ω
1.5
1
· Vb
r1(r2+rX) RS
1+
r2 · rX
r1=510Ω
r2=100Ω
Vb=5V
IOPD=
RS =0.8Ω
1.0
RS =1Ω
0.5
00
200
400
600
800
1000 1200
Variable current sense resistor rX (Ω)
However, when the values of these constants are increased,
the response from RS to the comparator becomes slow. Hence
the value of the output current IO is somewhat higher than the
calculated value.
2-Phase Stepper Motor Unipolar Driver ICs (2-Phase Excitation)
■Determining the chopper frequency
SLA7022MU/SLA7029M/SMA7022MU/SMA7029M
Fig. 6 Chopper frequency vs. Motor coil resistance
Determining T OFF
The SLA7000M and SMA7000M series are self-excited choppers. The chopping OFF time T OFF is fixed by r 3/C1 and r4/C 2
60
connected to terminal Td.
50
ommended.
20
30
VC
20
■Chopper frequency vs. Supply voltage
=2
VCC
0
0
2
25
V
=36
30
35
40
40
40
Motor : 23LM-C202
IO = 0.8A at VCC=24V
RS=1Ω
20
f (kHz)
50
30
r3 = r4 = 47kΩ
500pF
C1
C2
TOFF =12µs
RS =1Ω
Lm
=1~3ms
Rm
4 6
8 10 12 14 16
Motor coil resistance Rm (Ω)
■Chopper frequency vs. Output current
50
30
Motor : 23LM-C202
VCC=24V
RS=1Ω
20
10
10
0
C
4V
10
T OFF = 12µs at r3=47kΩ, C1=500pF, Vb=5V
f (kHz)
40
Chopping frequency f (kHz)
The circuit constants and the T OFF value shown below are rec-
ON time TON (µ s)
T OFF can be calculated using the following formula:
2
2
TOFF≅−r3 • C1rn (1−
=−r4 • C2rn (1−
)
Vb
Vb
15
0
10
20
30
VCC (V)
40
50
0
0
0.2
0.4
0.6
0.8
1.0
IO (A)
SLA7022MU/SLA7029M/SMA7022MU/SMA7029M
9
2-Phase Stepper Motor Unipolar Driver ICs (2-Phase Excitation)
SLA7022MU/SLA7029M/SMA7022MU/SMA7029M
■Thermal Design
(2) The power dissipation Pdiss is obtained using the following formula.
An outline of the method for calculating heat dissipation is shown below.
2-phase excitation: Pdiss ≅ 2PH+0.015×VS (W)
1-2 phase excitation: Pdiss ≅ 3 P H+0.015×VS (W)
2
(3) Obtain the temperature rise that corresponds to the calcu-
(1)Obtain the value of P H that corresponds to the motor coil
current IO from Fig. 7 "Heat dissipation per phase PH vs. Output current IO."
lated value of Pdiss from Fig. 8 "Temperature rise."
Fig. 7 Heat dissipation per phase PH vs. Output current IO
SLA7022MU, ASMA7022MU
SLA7029M, SMA7029M
1.2
Heat dissipation per phase PH (W)
Heat dissipation per phase PH (W)
1.2
1
4V
0.8
VC
C
=4
V
36
0.6
Motor : 23LM-C202
Holding mode
V
24
5V
1
0.4
0.2
0
0
0.2
0.4
0.6
0.8
1.0
0.8
36
0.6
VCC
V
V
=44
Motor : 23LM-C004
V Holding mode
15
24V
0.4
0.2
0
1.0
0
0.2
Output current IO (A)
0.4
0.6
0.8
Output current IO (A)
1.0
Fig. 8 Temperature rise
SMA7000M series
SLA7000M series
150
150
j
∆T
∆Tj–a
∆TC–a (°C)
Natural cooling
Without heatsink
50
0
j
100
C
∆T
∆Tj–a
(°C)
∆TC–a
∆T
100
C
∆T Natural cooling
Without heatsink
50
0
1
2
3
Total Power (W)
4
0
5
0
1
2
3
Total Power (W)
4
Thermal characteristics
SLA7022MU
30
Without heatsink
Natural cooling
30
25
20
TC ( 4 pin)
15
Motor : PH265-01B
Motor current IO=0.8A
Ta=25°C
VCC=24V, VS=24V
2-phase excitation
10
5
0
200
500
Case temperature rise ∆TC–a (°C)
Case temperature rise ∆TC–a (°C)
35
SLA7029M
Without heatsink
Natural cooling
25
20
TC ( 4 pin)
15
Motor : PH265-01B
Motor current IO=0.8A
Ta=25°C
VCC=24V, VS=24V
2-phase excitation
10
5
0
200
1K
SMA7022MU
Without heatsink
Natural cooling
30
25
TC ( 4 pin)
20
15
Motor : PH265-01B
Motor current IO=0.8A
Ta=25°C
VCC=24V, VS=24V
2-phase excitation
10
5
500
1K
SLA7022MU/SLA7029M/SMA7022MU/SMA7029M
Case temperature rise ∆TC–a (°C)
Case temperature rise ∆TC–a (°C)
30
Response frequency (pps)
10
1K
SMA7029MU
35
0
200
500
Response frequency (pps)
Response frequency (pps)
Without heatsink
Natural cooling
25
20
TC ( 4 pin)
15
Motor : PH265-01B
Motor current IO=0.8A
Ta=25°C
VCC=24V, VS=24V
2-phase excitation
10
5
0
200
500
Response frequency (pps)
1K
2-Phase Stepper Motor Unipolar Driver ICs (2-Phase Excitation)
SLA7022MU/SLA7029M/SMA7022MU/SMA7029M
■Supply Voltage VCC vs. Supply Current ICC
SLA7029M, SMA7029M
500
400
400
Motor : 23LM-C202
1-phase excitation
Holding mode
IO : Output current
300
200
IO=1A
100
0
Supply current ICC (mA)
Supply current ICC (mA)
SLA7022MU, SMA7022MU
500
0.4A
0.2A
0
10
20
30
40
200
IO=1A
100
0
50
Motor : 23LM-C004
1-phase excitation
Holding mode
IO : Output current
300
0.5A
0.2A
0
Supply voltage VCC (V)
10
20
30
40
50
Supply voltage VCC (V)
■Torque Characteristics
SLA7022MU, SMA7022MU
2.0
1.5
Motor : PX244-02
Output current IO =0.6A
Motor supply voltage VCC =24V
2-phase excitation
1.0
0.5
0
100
500
1K
Response frequency (pps)
5K
Pull-out torque (kg-cm)
Pull-out torque (kg-cm)
2.0
SLA7029M, SMA7029M
1.5
Motor : 23LM-C202
Output current IO =0.8A
Motor supply voltage VCC =24V
2-phase excitation
1.0
0.5
0
100
500
1K
5K
Response frequency (pps)
SLA7022MU/SLA7029M/SMA7022MU/SMA7029M
11