SANKEN SLA7021M

Unipolar Driver ICs
SLA7020M WITH MOSFETs
SLA7021M
■ Ratings
Absolute
maximum
ratings
Motor supply
Voltage
Type No.
SLA7020M
Control
voltage
(V)
FET output
breakdown
voltage
(V)
(V)
V CC
VDS
VS
46
SLA7021M
100
TTL input
voltage
Reference
voltage
Output
current
Power
dissipation
Channel
temperature
Storage
temperature
(V)
(V)
(A)
(W)
(°C)
(°C)
V IN
VREF
IO
PD
Tch
Tstg
4.5 (No Fin)
150
–40 to +150
32
7
1.5
2
3
■ Characteristics (1) DC Characteristics
Electrical
characteristics
Control
current
Control
voltage
(mA)
(V)
FET turn-on voltage
VS = 30V
IS
Type No.
min typ
SLA7020M
SLA7021M
5.5 10
15
10
19
Type No.
SLA7020M
SLA7021M
12
FET diode
forward voltage
(V)
(7020M) I SD = 1A
(7021M) I SD = 3A
V SD
min
typ
max
1.1
2.3
TTL input
voltage
(V)
TTL input
voltage
(OUT)
(V)
(µA)
(mA)
V IH = 2.4V
V S = 30V
V IL = 0.4V
VS = 30V
ID = 1A
VDSS = 100V
V DSS = 100V
I D = 1A
IIL
VIH
VIL
V IH
VIL
typ max min
typ
min
typ
IDSS
max
0.6
0.85
(µs)
V S = 24V
ID = 1A
Tstg
4
Tf
min typ max min typ max min typ
0.7
IIH
min typ max min typ max min typ
Switching time
0.5
TTL input
voltage
(mA)
30
Tr
TTL input
voltage
(OUT)
(V)
VDSS = 100V
VS = 30V
(2) AC Characteristics
Electrical
characteristics
TTL input
current
(V)
VDS
typ max
TTL input
current
(7020M) ID =1A, VS =14V
(7021M) ID =3A, VS =14V
VS
max min
FET drain
leak current
0.1
max
40
max min typ max min
–0.8 2.0
0.8 2.0
(V)
max min typ max
0.8
SLA7020M and SLA7021M
■ Block diagram
Motor main
power supply
VCC
Reference voltage
Vb
r1
r3/
r2
Auxiliary
Excitation
power supply
signal
r4
R·C for setting
chopper OFF
time
Motor
C1/C2
VS
Td
r5/r
IN
OUT
OUT
6
R·C for protection
against chopping
malfunctions
REF
C3/C4
Current peak
detector
circuit
Excitation signal
transfer circuit
Chopper OFF
time control
circuit
Current control and
counter EMF
canceller circuit
GND
RS
Current detection resistor
RS
Da/D
b
■ Internal circuit diagram (enclosed with chain line)
VCC
Reg
4
r3
C1
12
REFB
TDA
3
GNDA
RSA
C3
r2
13
11
9
Vb(5V)
r4
r1
r5
OUTB
+
–
+
–
REFA
2
15
Reg
+
–
7
Da
10
TDB
+
–
RS
14
8
r6
RSB
5
OUTB
VS
INA
1
GNDB
6
INB
+
OUTA
OUTA
Vs=10~30V
C4
Db
RS
C2
13
SLA7020M and SLA7021M
■ Diagram of standard external circuit (Recommended circuit constants)
VCC (46V max)
Excitation signal time chart
2-phase excitation
clock
INA
INB
VS (10~30V)
0
H
L
1
H
H
2
L
H
3
L
L
0
H
L
1
H
H
1-2 phase excitation
VREF (5V)
8
1
VS OUTA
r3
15
OUTB
r1
r4
INA
2
11
C1
6
10
OUTA OUTB
TdA
TdB
SLA7020M
SLA7021M
INB
C2
r2
RSA REFA REFB RSB
7
3 13
9
Open
collector
C4
C3
Da
Rs
r5
r6
GA
4
Db
Rs
GB
12
5
14
INA
INB
clock
INA
tdA
INB
tdB
0
H
L
L
L
1
H
L
L
H
2
H
L
H
L
3
H
H
H
L
4
L
L
H
L
5
L
L
H
H
6 7 0 1
L L H H
L H L L
L L L L
L L L H
2
H
L
H
L
• tdA and tdB are signals before the inverter stage.
r1
r2
r3
r4
r5
r6
C1
C2
C3
C4
510Ω
100Ω (VR)
47kΩ
47kΩ
2.4kΩ
2.4kΩ
470pF
470pF
2200pF
2200pF
Da. Db
Rs
7020M
EK03
1Ω typ
7021M
RK34
0.68Ω typ
tdB
tdA
■ External dimensions
(Unit: mm)
Epoxy resin package
+0.2
+0.2
0.65 –0.1
1.15 –0.1
4±0.7
14×P2.03±0.4=28.42±0.8
2.2±0.4
6.3±0.6
7.5±0.6
14×P2.03±0.7=28.42±1.0
31.3±0.2
1 2 3 · · · · · · · 15
Forming number No. 853
12 3 · · · · · · · 15
Forming number No. 855
4.6±0.6
+0.2
+0.2
1.15 –0.1
+0.2
0.55 –0.1
1.6±0.6
+1
+0.2
0.65 –0.1
(3)
R-End
3±0.6
2.45 ±0.2
0.55 –0.1
Type No.
Lot No.
4.8 ±0.2
1.7 ±0.1
9.7 –0.5
9.9 ±0.2
16 ±0.2
13 ±0.2
φ 3.2 ±0.15×3.8
6.7±0.5
31±0.2
24.4±0.2
16.4±0.2
φ 3.2±0.15
14
3
H
H
H
L
SLA7024M, SLA7026M, SLA7027MU, SLA7022MU, SLA7029M,
SMA7022MU, SMA7029M, SLA7020M, SLA7021M and SDK03M
Application Note
■ Determining the output current
Fig. 1 shows the waveform of the output current (motor coil
current). The method of determining the peak value (lo) of
the output current based on this waveform is shown below.
<Parameters for determining the output current lo>
Vb
r 1, r 2
Rs
: Reference supply voltage
: Voltage-divider resistors for the reference supply
voltage
: Current detection resistor
(1) Normal rotation mode
lo is determined as follows when current flows at the
maximum level during motor rotation. See Fig. 2, 3 and
4.
Vb
r2
.
lo =.
•
................................................... q
r1+r2 R s
To determine rx, equation w can be modified to obtain
equation e.
1
.
.............................. e
rx =.
1
1
Vb
–1 –
r2
r1 Rs•l OPD
Fig. 3 Circuit for fixing the coil current
Vb(5V)
r5
(2) Power down mode
The circuits in Fig. 5, 6 and 7 (rx and Tr) are added in
order to decrease the coil current. lo is then determined
as follows.
1
Vb
.
IOPD =.
•
....................................... w
r1(r2+rx) Rs
1+
r 2•rx
Fig. 1 Waveform of coil current (Phase A excitation ON)
SLA7024M
SLA7026M
SLA7027MU
r6
r1
r2
3,(14)
C3
9,(10)
RS
Fig. 4 Circuit for fixing the coil current
Vb(5V)
IO
r6
r1
SDK03M
r5
3
Phase A
r2
C3
0
10 13 15
Phase A
RS
Fig. 5 Circuit for fixing the coil current
Fig. 2 Circuit for fixing the coil current
SLA7022MU
SLA7029M
SMA7022MU
SMA7029M
SLA7020M
SLA7021M
Vb(5V)
Vb(5V)
SLA7022MU
SLA7029M
SMA7022MU
SMA7029M
SLA7020M
SLA7021M
r6
r1
r5
r2
3,(13)
C3
7,(9)
RS
r6
r1
r5
rX
Power down
signal
3,(13)
r2
C3
7,(9)
Tr
RS
17
SLA7024M, SLA7026M, SLA7027MU, SLA7022MU, SLA7029M,
SMA7022MU, SMA7029M, SLA7020M, SLA7021M and SDK03M
Application Note
Fig. 6 Circuit for fixing the coil current
Fig. 9 Output current lOPD vs. Variable current resistor r x
Vb(5V)
r6
r5
r1
Power down
signal
9,(10)
r2
SLA7024M, SLA7026M, SLA7029M, SLA7027MU, SLA7022MU,
SLA7020M, SLA7021M, SMA7029M, SMA7022MU, SDK03M
2
Output current IOPD (A)
rX
3,(14)
SLA7024M
SLA7026M
SLA7027MU
C3
Tr
1.5
RS =0.5Ω
1
RS =0.8Ω
RS =1Ω
Fig. 7 Circuit for fixing the coil current
00
Vb(5V)
r6
r5
rX
3
r2
C3
Power down
signal
10 13 15
Tr
RS
Fig. 8 and 9 show the graphs of equations q and w ,
respectively.
Fig. 8 Output current Io vs. Current detection resistor Rs
SLA7024M, SLA7026M, SLA7029M, SLA7027MU,
SLA7022MU, SLA7020M, SLA7021M, SMA7029M,
SMA7022MU, SDK03M
Output current IO (A)
4
3
IO= r2 · Vb
r1+r2 RS
r1=510Ω
r2=100Ω
rx=∞
Vb=5V
2
1
0
0
1
2
3
Current detection resistor RS (Ω)
18
2.0
4.0
Variable current resistor rX (Ω)
SDK03M
r1
1
· Vb
r1(r2+rX) RS
1+
r 2 · rX
r1=510Ω
r2=100Ω
Vb=5V
1000
1200
6.0
8.00
IOPD=
0.5
4
NOTE:
Ringing noise is produced in the current detection resistor
Rs when the MOSFET is switched ON and OFF through
chopping. This noise is also generated in feedback signals
from Rs which may therefore causes the comparator to
malfunction.
To prevent chopping malfunctions, r 5(r 6 ) and C 3(C 4) are
added in order to act as noise filter.
However, when the values of these constants are increased,
the response from Rs to the comparator becomes slow.
Hence, the value of the output current lo is higher to some
extent than the computed value.
SLA7024M, SLA7026M, SLA7027MU, SLA7022MU, SLA7029M,
SMA7022MU, SMA7029M, SLA7020M, SLA7021M and SDK03M
Application Note
■ Determining the chopper frequency
Fig. 10 Chopper frequency vs. Motor coil resistance
r3
47kΩ
r4
500PF
C1 = C2 =
TOFF =12µs
RS =1Ω
Lm
=1~3ms
Rm
4V
=2
C
VC
V
=36
VCC
60
2
2
.
TOFF =. –r 3•C1Rn(1–
) = –r 4•C 2Rn(1–
)
Vb
Vb
The circuit constants and the TOFF value shown below are
recommended.
TOFF
r3
C1
Vb
12 µs
47 KΩ
500 pF
5V
=
=
=
=
ON time TON (µs)
50
40
30
20
15
20
25
30
35
40
10
Chopping frequency (KHz)
Determining TOFF: SLA7000M series, SMA7000M series and
SDK03M are self-excited choppers. The chopping OFF
time T OFF is fixed by r 3/C 1 and r 4/C 2 connected to terminal
Td.
TOFF can be computed through the following formula:
0
0
2
4
6
8
10 12 14
Motor coil resistance Rm (Ω)
16
■ Thermal design
An outline on the method of computing heat dissipation is
shown below.
• SDK03M
2-phase excitation
.
: Pdiss =. P H + 0.015 x Vs (W)
. 3
1-2 phase excitation : Pdiss =. PH + 0.015 x Vs (W)
4
SLA7026M and SLA7021M
2.0
=4
4V
Typ.
Motor : 23PM-C503
Rm=1.16 Ω/φ
Lm=2.9mA/ φ
Holding mode
3.0
V
15
C
• SLA7000M and SMA7000M series
.
2-phase excitation : Pdiss =. 2P H + 0.015 x Vs (W)
. 3
1-2 phase excitation : Pdiss =. PH + 0.015 x Vs (W)
2
4.0
VC
(2) The power dissipation Pdiss is obtained through the
following formula.
Heat dissipation per phase PH (W)
(1) Obtain the PH that corresponds to the motor coil current
IO from Fig. 11 “Heat dissipation per phase P H vs. Output current lo”.
V
24
V
36
1.0
0
0
1.0
2.0
Output current IO (A)
(3) Obtain the temperature rise that corresponds to the
computed Pdiss from Fig. 12 “Temperature rise curve.”
3.0
Heat dissipation per phase PH (W)
1.2
SLA7024M, SLA7029M, SMA7029M and SLA7020M
Typ.
Motor : 23LM-C004
Holding mode
1.0
0.8
V
VCC
0.6
36V
=44
24V
0.4
15V
0.2
0
0
0.2
0.4
0.6
Output current IO (A)
0.8
1.0
Heat dissipation per phase PH (W)
SLA7022MU, SLA7027MU, SMA7022MU and SDK03M
Fig. 11 Heat dissipation per phase PH vs. Output current lo
1.4
Typ.
Motor : 23LM-C202
Holding mode
1.2
1
0.8
VCC
0.6
V
=44
V
36
V
24
V
15
0.4
0.2
0
0
0.2
0.4
0.6
0.8
1
Output current IO (A)
19
SLA7024M, SLA7026M, SLA7027MU, SLA7022MU, SLA7029M,
SMA7022MU, SMA7029M, SLA7020M, SLA7021M and SDK03M
Application Note
Fig. 12 Temperature rise curve
Comparison of losses
8
SLA7000M series
150
∆T
∆Tj–a
∆TC–a (°C)
100
Power dissipation PH (W)
7
Natural cooling
Without heatsink
j
∆T
C
50
0
0
1
2
3
Total power (W)
4
5
6
5
Sanken product : SI-7300A
3
2 SLA7024M, SLA7029M,
SMA7029M and SLA7020M
j
∆T
∆Tj–a
(°C)
∆TC–a
100
C
∆T
50
0
1
2
Total power (W)
3
4
SDK03M
150
j
∆T
∆Tj–a (°C)
∆TC–a
100
C
∆T
50
0
20
Glass epoxy board
(mounted on level surface)
(95×69×1.2mm)
Natural cooling
0
IO=1A
1
0
10
20
30
40
50
Supply voltage VCC (V)
Natural cooling
Without heatsink
0
IO=1A
4
0
150 SMA7000M series
Motor : 23LM-C202
IO : Output current
2-phase excitation,
holding mode
1
2
Total power (W)
3
SLA7024M, SLA7026M, SLA7027MU, SLA7022MU, SLA7029M,
SMA7022MU, SMA7029M, SLA7020M, SLA7021M and SDK03M
Application Note
Heat dissipation characteristics
SLA7026M and SLA7021M
Case temperature rise ∆TC–a (°C)
Case temperature rise ∆TC–a (°C)
30 SLA7024M, SLA7029M and SLA7020M
25
20
15
10
5
Without heatsink
Natural cooling
Motor : PH265-01B
(Rm=7 Ω/φ , Lm=9mH/ φ )
Motor current IO=0.8A
Ta=25°C
VCC=24V, VS=24V
2-phase excitation
0
200
500
50
40
30
20
10
TC ( 4 pin)
1K
Without heatsink
Natural cooling
Motor : 23PM-C705
(Rm=1.27 Ω/ φ , Lm=1.8mH/ φ )
VCC=24V, VS=24V, IO=1.5A
TC ( 4 pin) 2-phase excitation
0
100
2K
30
25
20
Without heatsink
Natural cooling
15
5
0
200
Motor : PH265-01B
(Rm=7 Ω/φ , Lm=9mH/ φ )
Motor current IO=0.8A
Ta=25°C
VCC=24V, VS=24V
2-phase excitation
500
25
20
15
10
5
TC ( 4 pin)
1K
0
200
2K
Motor : PH265-01B
(Rm=7 Ω/φ , Lm=9mH/ φ )
Motor current IO=0.8A
Ta=25°C
VCC=24V, VS=24V
2-phase excitation
500
25
20
15
0
200
Without heatsink
Natural cooling
500
TC ( 4 pin)
1K
Response frequency (pps)
2K
Case temperature rise ∆TC–a (°C)
Case temperature rise ∆TC–a (°C)
50
Motor : PH265-01B
(Rm=7 Ω/φ , Lm=9mH/φ )
Motor current IO=0.8A
Ta=25°C
VCC=24V, VS=24V
2-phase excitation
Without heatsink
Natural cooling
TC ( 4 pin)
1K
2K
Response frequency (pps)
30 SMA7029M
5
5K
30
Response frequency (pps)
10
1K
35 SMA7022MU
Case temperature rise ∆TC–a (°C)
Case temperature rise ∆TC–a (°C)
35 SLA7022MU and SLA7027MU
10
500
Response frequency (pps)
Response frequency (pps)
SDK03M
40
30
20
10
Natural cooling
Glass epoxy board
(mounted on level surface)
(95×69×1.2mm)
Motor : PH265-01B
(Rm=7 Ω/ φ , Lm=9mH/φ )
Motor current IO=0.8A
Ta=25°C
VCC=24V, VS=24V
2-phase excitation
0
200
500
TC
( 9 pin)
1K
2K
Response frequency (pps)
21
SLA7024M, SLA7026M, SLA7027MU, SLA7022MU, SLA7029M,
SMA7022MU, SMA7029M, SLA7020M, SLA7021M and SDK03M
Application Note
Torque characteristics
Supply voltage Vcc vs. Supply current Icc
SLA7024M, SLA7029M, SMA7029M and SLA7020M
SLA7024M, SLA7029M, SMA7029M and SLA7020M
Motor : 23LM-C004 (6V/1.2A)
1-phase excitation
Holding mode
Chopper period T = 47µ s
IO : Output current
400
Pull-out torque (kg-cm)
Supply current ICC (mA)
Motor : 23LM-C202 (1V/1.1A)
Output current IO =0.8A
Motor supply voltage VCC =24V
2-phase excitation
2.0
500
300
200
IO=1A
100
1.5
1.0
0.5
IO=0.5A
IO=0.2A
0
0
10
20
30
40
0
100
50
500
2k 3k 4k 5k
1k
Response frequency (pps)
Supply voltage VCC (V)
SLA7026M and SLA7021M
SLA7026M and SLA7021M
6.0
Motor : 23PM-C503
Rm=1.16Ω/φ
Lm=2.9mH/ φ
1-phase excitation, holding mode
IO : Output current
5.0
Pull-out torque (kg-cm)
Supply current ICC (A)
1.5
1.0
0.5
IO=3A
IO=2A
IO=1A
0
0
10
20
30
40
4.0
3.0
Motor : 23PM-C705
Rm=1.27Ω/ φ
Lm=1.8mH/ φ
VCC =24V
IO =2.5A
2-phase excitation
2.0
1.0
0
100
50
500
1k
3k
5k
Supply voltage VCC (V)
Response frequency (pps)
SLA7022MU, SLA7027MU, SMA7022MU and SDK03M
SLA7027MU, SLA7022MU, SMA7022MU and SDK03M
400
300
200
IO=1A
100
0.4A
0.2A
0
10
20
30
Supply voltage VCC (V)
22
40
Motor : PX244-02
Output current IO =0.6A
Motor supply voltage VCC =24V
2-phase excitation
2.0
Motor : 23LM-C202 (4V/1A)
1-phase excitation, holding mode
IO : Output current
50
Pull-out torque (kg-cm)
Supply current ICC (mA)
500
0
10k
1.5
1.0
0.5
0
100
500
1k
2k 3k
5k
Response frequency (pps)
10k
SLA7024M, SLA7026M, SLA7027MU, SLA7022MU, SLA7029M,
SMA7022MU, SMA7029M, SLA7020M, SLA7021M and SDK03M
Application Note
Chopper frequency vs. Output current
50
50
40
40
30
30
f (kHz)
f (kHz)
Chopper frequency vs. Supply voltage
20
Motor : 23LM-C202 (1V/1.1A)
IO = 0.8A at VCC=24V
RS=1Ω
10
0
0
10
20
30
40
50
20
Motor : 23LM-C202 (1V/1.1A)
VCC=24V
RS=1Ω
10
0
0
0.2
VCC (V)
0.4
0.6
0.8
1.0
IO (A)
■ NOTE
Either active high or active low excitation input signals can
be used for SLA7024M, SLA7026M, SLA7027MU and SDK03M.
However, take note of the output that corresponds to a
specified input as shown in the table below.
• SLA7024M, SLA7026M and SLA7027MU
Active Low
Active High
Input
INA (6 pin)
Output
OUTA (1 pin)
Input
INA (6 pin)
Output
OUTA (8 pin)
INA (5 pin)
INB (17 pin)
OUTA (8 pin)
OUTB (11 pin)
INA (5 pin)
INB (17 pin)
OUTA (1 pin)
OUT B (18 pin)
INB (16 pin)
OUTB (18 pin)
INB (16 pin)
OUT B (11 pin)
• SDK03M
Active High
Active Low
Input
IN1 (6 pin)
Output
OUT1 (1, 16 pin)
IN2 (5 pin)
OUT2 (8, 9 pin)
Input
Output
IN1 (6 pin)
IN2 (5 pin)
OUT 1 (8, 9 pin)
OUT 2 (1, 16 pin)
23