Unipolar Driver ICs SLA7020M WITH MOSFETs SLA7021M ■ Ratings Absolute maximum ratings Motor supply Voltage Type No. SLA7020M Control voltage (V) FET output breakdown voltage (V) (V) V CC VDS VS 46 SLA7021M 100 TTL input voltage Reference voltage Output current Power dissipation Channel temperature Storage temperature (V) (V) (A) (W) (°C) (°C) V IN VREF IO PD Tch Tstg 4.5 (No Fin) 150 –40 to +150 32 7 1.5 2 3 ■ Characteristics (1) DC Characteristics Electrical characteristics Control current Control voltage (mA) (V) FET turn-on voltage VS = 30V IS Type No. min typ SLA7020M SLA7021M 5.5 10 15 10 19 Type No. SLA7020M SLA7021M 12 FET diode forward voltage (V) (7020M) I SD = 1A (7021M) I SD = 3A V SD min typ max 1.1 2.3 TTL input voltage (V) TTL input voltage (OUT) (V) (µA) (mA) V IH = 2.4V V S = 30V V IL = 0.4V VS = 30V ID = 1A VDSS = 100V V DSS = 100V I D = 1A IIL VIH VIL V IH VIL typ max min typ min typ IDSS max 0.6 0.85 (µs) V S = 24V ID = 1A Tstg 4 Tf min typ max min typ max min typ 0.7 IIH min typ max min typ max min typ Switching time 0.5 TTL input voltage (mA) 30 Tr TTL input voltage (OUT) (V) VDSS = 100V VS = 30V (2) AC Characteristics Electrical characteristics TTL input current (V) VDS typ max TTL input current (7020M) ID =1A, VS =14V (7021M) ID =3A, VS =14V VS max min FET drain leak current 0.1 max 40 max min typ max min –0.8 2.0 0.8 2.0 (V) max min typ max 0.8 SLA7020M and SLA7021M ■ Block diagram Motor main power supply VCC Reference voltage Vb r1 r3/ r2 Auxiliary Excitation power supply signal r4 R·C for setting chopper OFF time Motor C1/C2 VS Td r5/r IN OUT OUT 6 R·C for protection against chopping malfunctions REF C3/C4 Current peak detector circuit Excitation signal transfer circuit Chopper OFF time control circuit Current control and counter EMF canceller circuit GND RS Current detection resistor RS Da/D b ■ Internal circuit diagram (enclosed with chain line) VCC Reg 4 r3 C1 12 REFB TDA 3 GNDA RSA C3 r2 13 11 9 Vb(5V) r4 r1 r5 OUTB + – + – REFA 2 15 Reg + – 7 Da 10 TDB + – RS 14 8 r6 RSB 5 OUTB VS INA 1 GNDB 6 INB + OUTA OUTA Vs=10~30V C4 Db RS C2 13 SLA7020M and SLA7021M ■ Diagram of standard external circuit (Recommended circuit constants) VCC (46V max) Excitation signal time chart 2-phase excitation clock INA INB VS (10~30V) 0 H L 1 H H 2 L H 3 L L 0 H L 1 H H 1-2 phase excitation VREF (5V) 8 1 VS OUTA r3 15 OUTB r1 r4 INA 2 11 C1 6 10 OUTA OUTB TdA TdB SLA7020M SLA7021M INB C2 r2 RSA REFA REFB RSB 7 3 13 9 Open collector C4 C3 Da Rs r5 r6 GA 4 Db Rs GB 12 5 14 INA INB clock INA tdA INB tdB 0 H L L L 1 H L L H 2 H L H L 3 H H H L 4 L L H L 5 L L H H 6 7 0 1 L L H H L H L L L L L L L L L H 2 H L H L • tdA and tdB are signals before the inverter stage. r1 r2 r3 r4 r5 r6 C1 C2 C3 C4 510Ω 100Ω (VR) 47kΩ 47kΩ 2.4kΩ 2.4kΩ 470pF 470pF 2200pF 2200pF Da. Db Rs 7020M EK03 1Ω typ 7021M RK34 0.68Ω typ tdB tdA ■ External dimensions (Unit: mm) Epoxy resin package +0.2 +0.2 0.65 –0.1 1.15 –0.1 4±0.7 14×P2.03±0.4=28.42±0.8 2.2±0.4 6.3±0.6 7.5±0.6 14×P2.03±0.7=28.42±1.0 31.3±0.2 1 2 3 · · · · · · · 15 Forming number No. 853 12 3 · · · · · · · 15 Forming number No. 855 4.6±0.6 +0.2 +0.2 1.15 –0.1 +0.2 0.55 –0.1 1.6±0.6 +1 +0.2 0.65 –0.1 (3) R-End 3±0.6 2.45 ±0.2 0.55 –0.1 Type No. Lot No. 4.8 ±0.2 1.7 ±0.1 9.7 –0.5 9.9 ±0.2 16 ±0.2 13 ±0.2 φ 3.2 ±0.15×3.8 6.7±0.5 31±0.2 24.4±0.2 16.4±0.2 φ 3.2±0.15 14 3 H H H L SLA7024M, SLA7026M, SLA7027MU, SLA7022MU, SLA7029M, SMA7022MU, SMA7029M, SLA7020M, SLA7021M and SDK03M Application Note ■ Determining the output current Fig. 1 shows the waveform of the output current (motor coil current). The method of determining the peak value (lo) of the output current based on this waveform is shown below. <Parameters for determining the output current lo> Vb r 1, r 2 Rs : Reference supply voltage : Voltage-divider resistors for the reference supply voltage : Current detection resistor (1) Normal rotation mode lo is determined as follows when current flows at the maximum level during motor rotation. See Fig. 2, 3 and 4. Vb r2 . lo =. • ................................................... q r1+r2 R s To determine rx, equation w can be modified to obtain equation e. 1 . .............................. e rx =. 1 1 Vb –1 – r2 r1 Rs•l OPD Fig. 3 Circuit for fixing the coil current Vb(5V) r5 (2) Power down mode The circuits in Fig. 5, 6 and 7 (rx and Tr) are added in order to decrease the coil current. lo is then determined as follows. 1 Vb . IOPD =. • ....................................... w r1(r2+rx) Rs 1+ r 2•rx Fig. 1 Waveform of coil current (Phase A excitation ON) SLA7024M SLA7026M SLA7027MU r6 r1 r2 3,(14) C3 9,(10) RS Fig. 4 Circuit for fixing the coil current Vb(5V) IO r6 r1 SDK03M r5 3 Phase A r2 C3 0 10 13 15 Phase A RS Fig. 5 Circuit for fixing the coil current Fig. 2 Circuit for fixing the coil current SLA7022MU SLA7029M SMA7022MU SMA7029M SLA7020M SLA7021M Vb(5V) Vb(5V) SLA7022MU SLA7029M SMA7022MU SMA7029M SLA7020M SLA7021M r6 r1 r5 r2 3,(13) C3 7,(9) RS r6 r1 r5 rX Power down signal 3,(13) r2 C3 7,(9) Tr RS 17 SLA7024M, SLA7026M, SLA7027MU, SLA7022MU, SLA7029M, SMA7022MU, SMA7029M, SLA7020M, SLA7021M and SDK03M Application Note Fig. 6 Circuit for fixing the coil current Fig. 9 Output current lOPD vs. Variable current resistor r x Vb(5V) r6 r5 r1 Power down signal 9,(10) r2 SLA7024M, SLA7026M, SLA7029M, SLA7027MU, SLA7022MU, SLA7020M, SLA7021M, SMA7029M, SMA7022MU, SDK03M 2 Output current IOPD (A) rX 3,(14) SLA7024M SLA7026M SLA7027MU C3 Tr 1.5 RS =0.5Ω 1 RS =0.8Ω RS =1Ω Fig. 7 Circuit for fixing the coil current 00 Vb(5V) r6 r5 rX 3 r2 C3 Power down signal 10 13 15 Tr RS Fig. 8 and 9 show the graphs of equations q and w , respectively. Fig. 8 Output current Io vs. Current detection resistor Rs SLA7024M, SLA7026M, SLA7029M, SLA7027MU, SLA7022MU, SLA7020M, SLA7021M, SMA7029M, SMA7022MU, SDK03M Output current IO (A) 4 3 IO= r2 · Vb r1+r2 RS r1=510Ω r2=100Ω rx=∞ Vb=5V 2 1 0 0 1 2 3 Current detection resistor RS (Ω) 18 2.0 4.0 Variable current resistor rX (Ω) SDK03M r1 1 · Vb r1(r2+rX) RS 1+ r 2 · rX r1=510Ω r2=100Ω Vb=5V 1000 1200 6.0 8.00 IOPD= 0.5 4 NOTE: Ringing noise is produced in the current detection resistor Rs when the MOSFET is switched ON and OFF through chopping. This noise is also generated in feedback signals from Rs which may therefore causes the comparator to malfunction. To prevent chopping malfunctions, r 5(r 6 ) and C 3(C 4) are added in order to act as noise filter. However, when the values of these constants are increased, the response from Rs to the comparator becomes slow. Hence, the value of the output current lo is higher to some extent than the computed value. SLA7024M, SLA7026M, SLA7027MU, SLA7022MU, SLA7029M, SMA7022MU, SMA7029M, SLA7020M, SLA7021M and SDK03M Application Note ■ Determining the chopper frequency Fig. 10 Chopper frequency vs. Motor coil resistance r3 47kΩ r4 500PF C1 = C2 = TOFF =12µs RS =1Ω Lm =1~3ms Rm 4V =2 C VC V =36 VCC 60 2 2 . TOFF =. –r 3•C1Rn(1– ) = –r 4•C 2Rn(1– ) Vb Vb The circuit constants and the TOFF value shown below are recommended. TOFF r3 C1 Vb 12 µs 47 KΩ 500 pF 5V = = = = ON time TON (µs) 50 40 30 20 15 20 25 30 35 40 10 Chopping frequency (KHz) Determining TOFF: SLA7000M series, SMA7000M series and SDK03M are self-excited choppers. The chopping OFF time T OFF is fixed by r 3/C 1 and r 4/C 2 connected to terminal Td. TOFF can be computed through the following formula: 0 0 2 4 6 8 10 12 14 Motor coil resistance Rm (Ω) 16 ■ Thermal design An outline on the method of computing heat dissipation is shown below. • SDK03M 2-phase excitation . : Pdiss =. P H + 0.015 x Vs (W) . 3 1-2 phase excitation : Pdiss =. PH + 0.015 x Vs (W) 4 SLA7026M and SLA7021M 2.0 =4 4V Typ. Motor : 23PM-C503 Rm=1.16 Ω/φ Lm=2.9mA/ φ Holding mode 3.0 V 15 C • SLA7000M and SMA7000M series . 2-phase excitation : Pdiss =. 2P H + 0.015 x Vs (W) . 3 1-2 phase excitation : Pdiss =. PH + 0.015 x Vs (W) 2 4.0 VC (2) The power dissipation Pdiss is obtained through the following formula. Heat dissipation per phase PH (W) (1) Obtain the PH that corresponds to the motor coil current IO from Fig. 11 “Heat dissipation per phase P H vs. Output current lo”. V 24 V 36 1.0 0 0 1.0 2.0 Output current IO (A) (3) Obtain the temperature rise that corresponds to the computed Pdiss from Fig. 12 “Temperature rise curve.” 3.0 Heat dissipation per phase PH (W) 1.2 SLA7024M, SLA7029M, SMA7029M and SLA7020M Typ. Motor : 23LM-C004 Holding mode 1.0 0.8 V VCC 0.6 36V =44 24V 0.4 15V 0.2 0 0 0.2 0.4 0.6 Output current IO (A) 0.8 1.0 Heat dissipation per phase PH (W) SLA7022MU, SLA7027MU, SMA7022MU and SDK03M Fig. 11 Heat dissipation per phase PH vs. Output current lo 1.4 Typ. Motor : 23LM-C202 Holding mode 1.2 1 0.8 VCC 0.6 V =44 V 36 V 24 V 15 0.4 0.2 0 0 0.2 0.4 0.6 0.8 1 Output current IO (A) 19 SLA7024M, SLA7026M, SLA7027MU, SLA7022MU, SLA7029M, SMA7022MU, SMA7029M, SLA7020M, SLA7021M and SDK03M Application Note Fig. 12 Temperature rise curve Comparison of losses 8 SLA7000M series 150 ∆T ∆Tj–a ∆TC–a (°C) 100 Power dissipation PH (W) 7 Natural cooling Without heatsink j ∆T C 50 0 0 1 2 3 Total power (W) 4 5 6 5 Sanken product : SI-7300A 3 2 SLA7024M, SLA7029M, SMA7029M and SLA7020M j ∆T ∆Tj–a (°C) ∆TC–a 100 C ∆T 50 0 1 2 Total power (W) 3 4 SDK03M 150 j ∆T ∆Tj–a (°C) ∆TC–a 100 C ∆T 50 0 20 Glass epoxy board (mounted on level surface) (95×69×1.2mm) Natural cooling 0 IO=1A 1 0 10 20 30 40 50 Supply voltage VCC (V) Natural cooling Without heatsink 0 IO=1A 4 0 150 SMA7000M series Motor : 23LM-C202 IO : Output current 2-phase excitation, holding mode 1 2 Total power (W) 3 SLA7024M, SLA7026M, SLA7027MU, SLA7022MU, SLA7029M, SMA7022MU, SMA7029M, SLA7020M, SLA7021M and SDK03M Application Note Heat dissipation characteristics SLA7026M and SLA7021M Case temperature rise ∆TC–a (°C) Case temperature rise ∆TC–a (°C) 30 SLA7024M, SLA7029M and SLA7020M 25 20 15 10 5 Without heatsink Natural cooling Motor : PH265-01B (Rm=7 Ω/φ , Lm=9mH/ φ ) Motor current IO=0.8A Ta=25°C VCC=24V, VS=24V 2-phase excitation 0 200 500 50 40 30 20 10 TC ( 4 pin) 1K Without heatsink Natural cooling Motor : 23PM-C705 (Rm=1.27 Ω/ φ , Lm=1.8mH/ φ ) VCC=24V, VS=24V, IO=1.5A TC ( 4 pin) 2-phase excitation 0 100 2K 30 25 20 Without heatsink Natural cooling 15 5 0 200 Motor : PH265-01B (Rm=7 Ω/φ , Lm=9mH/ φ ) Motor current IO=0.8A Ta=25°C VCC=24V, VS=24V 2-phase excitation 500 25 20 15 10 5 TC ( 4 pin) 1K 0 200 2K Motor : PH265-01B (Rm=7 Ω/φ , Lm=9mH/ φ ) Motor current IO=0.8A Ta=25°C VCC=24V, VS=24V 2-phase excitation 500 25 20 15 0 200 Without heatsink Natural cooling 500 TC ( 4 pin) 1K Response frequency (pps) 2K Case temperature rise ∆TC–a (°C) Case temperature rise ∆TC–a (°C) 50 Motor : PH265-01B (Rm=7 Ω/φ , Lm=9mH/φ ) Motor current IO=0.8A Ta=25°C VCC=24V, VS=24V 2-phase excitation Without heatsink Natural cooling TC ( 4 pin) 1K 2K Response frequency (pps) 30 SMA7029M 5 5K 30 Response frequency (pps) 10 1K 35 SMA7022MU Case temperature rise ∆TC–a (°C) Case temperature rise ∆TC–a (°C) 35 SLA7022MU and SLA7027MU 10 500 Response frequency (pps) Response frequency (pps) SDK03M 40 30 20 10 Natural cooling Glass epoxy board (mounted on level surface) (95×69×1.2mm) Motor : PH265-01B (Rm=7 Ω/ φ , Lm=9mH/φ ) Motor current IO=0.8A Ta=25°C VCC=24V, VS=24V 2-phase excitation 0 200 500 TC ( 9 pin) 1K 2K Response frequency (pps) 21 SLA7024M, SLA7026M, SLA7027MU, SLA7022MU, SLA7029M, SMA7022MU, SMA7029M, SLA7020M, SLA7021M and SDK03M Application Note Torque characteristics Supply voltage Vcc vs. Supply current Icc SLA7024M, SLA7029M, SMA7029M and SLA7020M SLA7024M, SLA7029M, SMA7029M and SLA7020M Motor : 23LM-C004 (6V/1.2A) 1-phase excitation Holding mode Chopper period T = 47µ s IO : Output current 400 Pull-out torque (kg-cm) Supply current ICC (mA) Motor : 23LM-C202 (1V/1.1A) Output current IO =0.8A Motor supply voltage VCC =24V 2-phase excitation 2.0 500 300 200 IO=1A 100 1.5 1.0 0.5 IO=0.5A IO=0.2A 0 0 10 20 30 40 0 100 50 500 2k 3k 4k 5k 1k Response frequency (pps) Supply voltage VCC (V) SLA7026M and SLA7021M SLA7026M and SLA7021M 6.0 Motor : 23PM-C503 Rm=1.16Ω/φ Lm=2.9mH/ φ 1-phase excitation, holding mode IO : Output current 5.0 Pull-out torque (kg-cm) Supply current ICC (A) 1.5 1.0 0.5 IO=3A IO=2A IO=1A 0 0 10 20 30 40 4.0 3.0 Motor : 23PM-C705 Rm=1.27Ω/ φ Lm=1.8mH/ φ VCC =24V IO =2.5A 2-phase excitation 2.0 1.0 0 100 50 500 1k 3k 5k Supply voltage VCC (V) Response frequency (pps) SLA7022MU, SLA7027MU, SMA7022MU and SDK03M SLA7027MU, SLA7022MU, SMA7022MU and SDK03M 400 300 200 IO=1A 100 0.4A 0.2A 0 10 20 30 Supply voltage VCC (V) 22 40 Motor : PX244-02 Output current IO =0.6A Motor supply voltage VCC =24V 2-phase excitation 2.0 Motor : 23LM-C202 (4V/1A) 1-phase excitation, holding mode IO : Output current 50 Pull-out torque (kg-cm) Supply current ICC (mA) 500 0 10k 1.5 1.0 0.5 0 100 500 1k 2k 3k 5k Response frequency (pps) 10k SLA7024M, SLA7026M, SLA7027MU, SLA7022MU, SLA7029M, SMA7022MU, SMA7029M, SLA7020M, SLA7021M and SDK03M Application Note Chopper frequency vs. Output current 50 50 40 40 30 30 f (kHz) f (kHz) Chopper frequency vs. Supply voltage 20 Motor : 23LM-C202 (1V/1.1A) IO = 0.8A at VCC=24V RS=1Ω 10 0 0 10 20 30 40 50 20 Motor : 23LM-C202 (1V/1.1A) VCC=24V RS=1Ω 10 0 0 0.2 VCC (V) 0.4 0.6 0.8 1.0 IO (A) ■ NOTE Either active high or active low excitation input signals can be used for SLA7024M, SLA7026M, SLA7027MU and SDK03M. However, take note of the output that corresponds to a specified input as shown in the table below. • SLA7024M, SLA7026M and SLA7027MU Active Low Active High Input INA (6 pin) Output OUTA (1 pin) Input INA (6 pin) Output OUTA (8 pin) INA (5 pin) INB (17 pin) OUTA (8 pin) OUTB (11 pin) INA (5 pin) INB (17 pin) OUTA (1 pin) OUT B (18 pin) INB (16 pin) OUTB (18 pin) INB (16 pin) OUT B (11 pin) • SDK03M Active High Active Low Input IN1 (6 pin) Output OUT1 (1, 16 pin) IN2 (5 pin) OUT2 (8, 9 pin) Input Output IN1 (6 pin) IN2 (5 pin) OUT 1 (8, 9 pin) OUT 2 (1, 16 pin) 23