IS471F IS471F OPIC Light Detector with Built-in Signal Processing Circuit for Light Modulation System ■ Features ■ Outline Dimensions 1. Impervious to external disturbing lights due to light modulation system 2. Built-in pulse driver circuit and sync. detector circuit on the emitter side 3. A wide range of operating supply voltage ( VCC: 4.5 to 16V ) ( Unit : mm ) Internal connection diagram Voltage regulator Comparator 1 Sync. detector 2 circuit Demodulator circuit 4 Amp. Oscillator 1.8 ± 0.2 Visible light 4˚ cut-off black epoxy resin 4˚ Lustered face 0.45 2.5 4˚ 4˚ 2.0 0.95 1.27 0.6MAX. 2.5 ± 0.2 17.6 ± 1.0 4- 0.45 0.4 +0.2 - 0.1 P P P P = 1.27mm 15.5 ±1.0 4.4 ± 0.2 1. Optoelectronic switches 2. Copiers, printers 3. Facsimiles φ 0.8 2- C0.5 0.3MAX. 1.0MAX. ■ Applications 2.5 ± 0.2 1.8 1.7 ± 0.3 Detector center 3 P 1 2 3 4 6˚ 6˚ 1 2 3 4 2 3 1 4 6˚ 6˚ V CC VO GND GL out 2.5 *“OPIC ” ( Optical IC ) is a trademark of the SHARP Corporation. An OPIC consists of a light-detecting element and signalprocessing circuit integrated onto a single chip. ■ Absolute Maximum Ratings Parameter Supply voltage Output voltage Output Output current *1 GL output Output voltage Power dissipation Operating temperature Storage temperature *2 Soldering temperature Symbol V CC VO IO VGL P T opr T stg T sol ( Ta= 25˚C) Rating - 0.5 to 16 16 50 16 250 - 25 to + 60 - 40 to +100 260 Unit V V mA V mW ˚C ˚C ˚C Resin portion Soldering portion (Immersed up to bending portion ) *1 Applies to GL out terminal *2 For 5 seconds at the position shown in the right figure “ In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device. ” IS471F ■ Electro-optical Characteristics Parameter Operating supply voltage Supply current Low level output voltage Output High level output voltage Output short circuit current Low level output current GL *4 Pulse cycle output *4 Pulse width *5 “ Low→High ” threshold irradiance *5 “ High→Low ” threshold irradiance Hysteresis “ High→Low” Response propagation delay time “ Low→High” time propagation dealy time *7 External disturbing light illuminance ( VCC= 5V, Ta= 25˚C ) Symbol V CC I CC V OL V OH I OS I GL tp tW E ePLH E ePHL E ePLH /E ePHL t PHL t PLH E VDX Conditions V O, GL out terminals shall be opened. IOL = 16mA, E VP = 500lx, E VD = 0*3 E VD = E VP = 0*3 E VP = E VD = 0*3 V GL = 1.2V E eD = 0*3 Light emitting diode ( λ p= 940nm ) *6 *6 *6 Eep= 7.5 µ W/mm 2, *3 λ p= 940nm MIN. 4.5 4.97 0.25 40 70 4.4 0.45 2000 TYP. 3.5 0.15 0.5 55 130 8 0.4 0.7 0.65 400 400 7500 MAX. 16 7.0 0.35 1.0 70 220 13.7 2.66 2.8 0.95 670 670 - Unit V mA V V mA mA µs µs µ W/mm 2 µ W/mm 2 µs µs lx *3 E eP represents illuminance of signal light in sync with the low level timing of output at GLout terminal. E eD represents illuminance of DC light. For detail, see Fig. 1. Light source: Infrared light emitting diode ( λ p= 940nm ) E VP represents illuminance of signal light in sync with the low level timing of output at GLout terminal. E VD represents illuminance of DC light. Note that the light source is CIE standard light source A. Fig.1 EeP EeD Ee Time 0 ( Note ) Fig. 1 shows the output waveform at GL out terminal with IS471F connected as shown in Fig. 3. Output waveform at GL out terminal *4 Pulse cycle (t P) , pulse width (t W) are defined as shown in Fig. 2. The waveform shown in Fig. 2 is the output voltage waveform at GLout terminal with IS471F connected as shown in Fig. 3 Fig.2 Fig.3 5V 0V tW tP *5 Defined as Eep that causes the output to go“ Low to High” ( or“ High to Low” ) . VCC 1 VO 2 GLout IS471F 4 GND 3 280Ω 0.33 µF 5V IS471F *6 Test circuit for response time, threshold irradiance is shown in Fig. 4. Fig. 4 Vin OFF VCC Light emitting diode 1 2 VO 280Ω Switch ON IS471F 5V 0.33 µF Switch 4 3 t PHL t PLH GND VOH GLout Output 1.5V VOL Light emitting diode : peak emission wavelengh λ P = 940nm *7 E VDX : Defined as the E VD at the limit of normal operation range. Fig. 6 Low Level Output Voltage vs. Low Level Output Current 300 1 250 0.5 Low level output voltage V OL ( V ) Power dissipation P ( mW ) Fig. 5 Power Dissipation vs. Ambient Temperature 200 150 100 50 0 - 25 V CC = 5V T a = 25˚C 0.2 0.1 0.05 0.02 0.01 0 25 50 60 75 100 1 125 2 Ambient temperature Ta ( ˚C ) 5 10 Fig. 7 Low Level Output Voltage vs. Ambient Temperature 50 20 Low level output current I OL 100 ( mA ) Fig. 8 Supply Current vs. Supply Voltage 0.6 8 0.5 7 Supply current I cc ( mA ) Low level output voltage V OL ( V ) V CC = 5V 0.4 0.3 I OL = 30mA 0.2 16mA T a =- 25˚C 6 25˚C 5 60˚C 4 3 0.1 5mA 0 - 25 2 0 25 50 75 Ambient temperature Ta ( ˚C ) 100 0 2 4 6 8 10 12 Supply voltage Vcc ( V ) 14 16 IS471F Fig.10 Sensitivity Diagram ( Ta = 25˚C ) Fig. 9 Low Level Output Current vs. Supply Voltage -20˚ -10˚ 0˚ - 30˚ T a =-25˚C 60 25˚C 50 - 40˚ 60˚C 40 - 50˚ 30 (%) 70 +20˚ +30˚ 80 60 +40˚ 40 +50˚ +60˚ - 60˚ 20 20 - 70˚ 10 0 +10˚ 100 Relative sensitivity Low level output current I OL ( mA ) 80 +70˚ +80˚ - 80˚ 2 4 6 8 10 12 Supply voltage V cc 14 16 +90˚ - 90˚ 18 0 Angular displacement θ (V) Fig.11 Spectral Sensitivity 100 T a = 25˚C 90 Relative sensitivity ( % ) 80 70 60 50 40 30 20 10 0 400 500 600 700 800 900 1000 1100 1200 1300 1400 Wavelength λ ( nm ) ■ Basic Circuit Voltage regulator Infrared light emitting diode Comparator Sync.detector circuit Demodulator circuit Amp. Oscillator ❈ In order to stabilize power supply line, connect a by-pass capacitor of 0.33µ F or more between Vcc and GNP near the device. ● Please refer to the chapter “Precautions for Use.” V cc ( Power supply) Vo ( Signal output) ❈ C = 0.33 µ F