PC901V PC901V Digital Output Type OPIC Photocoupler ■ Features ■ Outline Dimensions 1. Normal-ON operation, open collector output 2. Operating supply voltage ( VCC : 3 to 15V ) 3. TTL and LSTTL compatible output 4. High isolation voltage between input and output ( Viso : 5 000V rms ) 5. High sensitivity ( IFLH : MAX. 2.0mA at Ta = 25˚C ) 6. Recognized by UL, file No. 64380 ( Unit : mm ) Internal connection diagram 6 5 PC901V 1 2 Amp 1 3 0.9 ± 0.2 1.2 ± 0.3 3.35 ± 0.5 0.5TYP. 3 7.62 ± 0.3 3.7 ± 0.5 1. Isolation between logic circuits 2. Logic level shifters 3. Line receivers 4. Replacements for relays and pulse transformers 5. Noise reduction 2 3.5 ± 0.5 7.12 ± 0.5 ■ Applications Voltage regulator 5 4 6 4 6.5 ± 0.5 Anode mark θ = 0 to 13 ˚ 0.26 ± 0.1 2.54 ± 0.25 0.5 ± 0.1 θ 1 Anode 2 Cathode 3 NC θ 4 VO 5 GND 6 V CC * “ OPIC ” ( Optical IC ) is a trademark of the SHARP Corporation. An OPIC consists of a light-detecting element and signalprocessing circuit integrated onto a single chip. ■ Absolute Maximum Ratings Input Output Parameter Forward current *1 Peak forward current Reverse voltage Power dissipation Supply voltage High level output voltage Low level output current Power dissipation Total power dissipation *2 Isolation voltage Operating temperature Storage temperature *3 Soldering temperature ( Ta = 25˚C ) Symbol IF I FM VR P V CC V OH I OL PO P tot V iso T opr T stg T sol Rating 50 1 6 70 16 16 50 150 170 5 000 - 25 to + 85 - 40 to + 125 260 Unit mA A V mW V V mA mW mW V rms ˚C ˚C ˚C *1 Pulse width <= 100µs, Duty ratio : 0.001 *2 40 to 60% RH, AC for 1 minute *3 For 10 seconds “ In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device. ” PC901V ■ Electro-optical Characteristics Forward voltage VF *7 Transfer characteristics Symbol time Output Parameter Reverse current Terminal capacitance Operating supply voltage Low level output voltage High level output current Low level supply current High level supply current *4 “ L→H ” threshold input current *5 “ H→L ” threshold input current *6 Hysteresis Isolation resistance “ L→H ” propagation delay time “ H→L ” propagation delay time Rise time Fall time *8Instantaneous common mode rejection voltage ( High level output ) *8Instantaneous common mode rejection voltage ( Low level output ) Response Input ( Ta = 0 to + 70˚C unless otherwise specified ) Conditions I F = 4mA I F = 0.3mA Ta = 25˚C, V R = 4V Ta = 25˚C, V = 0, f = 1kHz IR Ct V CC V OL I OH I CCL I CCH I OL = 16mA, V CC = 5V, I F = 4mA V O = V CC = 15V, I F = 0 V CC = 5V, I F = 0 V CC = 5V, I F = 4mA Ta = 25˚C, V CC = 5V, R L = 280 Ω V CC = 5V, R L = 280 Ω Ta = 25˚C, V CC = 5V, R L = 280 Ω V CC = 5V, R L = 280 Ω V CC = 5V, R L = 280 Ω Ta = 25˚C, DC500V, 40 to 60% RH I FLH I FHL I FHL /I FLH R ISO t PLH t PHL tr tf Ta = 25˚C V CC = 5V, I F = 4mA R L = 280 Ω MIN. 0.7 3 0.4 0.3 0.5 5 x 1010 - TYP. 1.1 1.0 30 0.2 2.5 2.7 1.1 0.8 0.7 1011 1 2 0.1 0.05 MAX. 1.4 10 250 15 0.4 100 5.0 5.5 2.0 4.0 0.9 3 6 0.5 0.5 Unit - - 2000 - V/ µ s - 2000 - V/ µ s V CM = 600V ( peak ) , VO( MIN. ) = 2V I F = 4mA, R L = 280 Ω, Ta = 25˚C V CM = 600V ( peak ) , VO( MAX. ) = 0.8V IF = 0, R L = 280 Ω, Ta = 25˚C CM H CM L V µA pF V V µA mA mA mA mA Ω µs *4 I FLH represents forward current when output goes from low to high. *5 I FHL represents forward current when output goes from high to low. *6 Hysterisis stands for I FHL /I FLH *7 Test circuit for response time is shown below. *8 Test circuit for CMH,CML shown below. Test Circuit for Response Time t r = tf = 0.01µ s ZO = 50 Ω Voltage regulator 5V tPLH VO VIN 47 Ω tPHL 90% 1.5V VO 0.1µF Amp. 50% VIN 280 Ω VOH 10% tr tf VOL Test Circuit for CM H , CM L 600V IF Switch for Infrared LED B Voltage regulator 5V 280 Ω VO A Amp. + VCM Switch for Infrared LED at A ( IF = 0) VO(MAX.) = 0.8V 0.1µ F - Switch for Infrared LED at B ( IF = 4mA) VO(MIN.) = 2.0V VCM VOL GND GND PC901V Fig. 2 Power Dissipation vs. Ambient Temperature 200 50 170 ( mW ) 60 30 20 10 0 - 25 0 25 50 75 85 Ambient temperature T a ( ˚C) 100 50 0 25 50 Ambient temperature T 75 85 a 100 ( ˚C ) Fig. 4 Relative Threshold Input Current vs. Supply Voltage 500 1.4 T a = 25˚C I FLH = 1 at V CC = 5V T a = 75˚C 50˚C 200 1.2 25˚C 0˚C 100 Relative threshold input current Forward current I F ( mA ) PO 150 0 - 25 100 Fig. 3 Forward Current vs. Forward Voltage - 25˚C 50 20 10 5 I FLH 1.0 I FHL 0.8 0.6 0.4 2 1 0.2 0 0.5 1.0 1.5 2.0 2.5 Forward voltage V F ( V ) 3.0 0 Fig. 5 Relative Threshold Input Current vs. Ambient Temperature 20 1.0 V CC = 5V V CC = 5V Low level output voltage VOL ( V ) 1.4 1.2 I FLH 1.0 0.8 I FHL 0.6 0.4 0.5 IF = 0 T a = 25˚C 0.2 0.1 0.05 0.02 0.2 0 - 25 5 10 15 Supply voltage V CC ( V ) Fig. 6 Low Level Output Voltage vs. Low Level Output Current 1.6 Relative threshold input current P tot tot 40 Power dissipation P O, P Forward current I F ( mA ) Fig. 1 Forward Current vs. Ambient Temperature I FLH = 1 at T a = 25˚C 0 25 50 Ambient temperature T a 75 ( ˚C ) 100 0.01 1 2 5 10 20 Low level output current I 50 OL ( mA ) 100 PC901V Fig. 7 Low Level Output Voltage vs. Ambient Temperature Fig. 8 High Level Output Current vs. Forward Current 10 0.5 V CC = 5V I OL = 30mA High level output current I OH ( µ A ) Low level output voltage V OL ( V ) V CC = 5V 0.4 0.3 16mA 0.2 5mA 0.1 5 T a = 25˚C 2 1 0.5 0.2 0 - 25 0 25 75 50 0.1 0 100 10 20 30 40 50 60 Forward current I F ( mA ) Ambient temperature T a ( ˚C ) Fig. 9 High Level Output Current vs. Ambient Temperature Fig.10 Supply Current vs. Supply Voltage 9 V CC = V O = 15V High level output current I OH ( µ A ) 2 8 I CCH I CCL Supply current I CC ( mA ) I F = 4mA 1 0.5 0.2 0.1 7 I CCH I CCL 6 5 4 I CCH I CCL 3 T a= 2 - 25˚C { 25˚C 1 85˚C{ { 0.05 0 - 25 0 25 50 75 0 100 Fig.11 Propagation Delay Time vs. Forward Current 6 8 10 12 14 16 18 0.6 V CC = 5V R L = 280 Ω T a = 25˚C 5 4 Fig.12 Rise Time, Fall Time vs. Load Resistance t PHL 0.5 Rise time, fall time t r , t f ( µ s ) Propagation delay time t PHL , t PLH ( µ s ) 6 2 Supply voltage V CC ( V ) Ambient temperature T a ( ˚C ) 4 3 2 VCC = 5V I F = 4mA T a = 25˚C 0.4 0.3 0.2 tr 0.1 1 tf t PLH 0 0 10 20 30 40 Forward current I F ( mA ) 50 60 0 0.2 0.5 1 2 5 Load resistance R L ( k Ω ) 10 20 PC901V ■ Precautions for Use ( 1 ) It is recommended that a by-pass capacitor of more than 0.01 µ F is added between V CC and GND near the device in order to stabilize power supply line. ( 2 ) Handle this product the same as with other integrated circuits against static electricity. ( 3 ) As for other general cautions, please refer to the chapter “ Precautions for Use ”