SHARP PC901

PC901V
PC901V
Digital Output Type OPIC
Photocoupler
■ Features
■ Outline Dimensions
1. Normal-ON operation, open collector output
2. Operating supply voltage ( VCC : 3 to 15V )
3. TTL and LSTTL compatible output
4. High isolation voltage between input and
output ( Viso : 5 000V rms )
5. High sensitivity ( IFLH : MAX. 2.0mA at
Ta = 25˚C )
6. Recognized by UL, file No. 64380
( Unit : mm )
Internal connection
diagram
6
5
PC901V
1
2
Amp
1
3
0.9 ± 0.2
1.2 ± 0.3
3.35 ± 0.5
0.5TYP.
3
7.62 ± 0.3
3.7 ± 0.5
1. Isolation between logic circuits
2. Logic level shifters
3. Line receivers
4. Replacements for relays and pulse transformers
5. Noise reduction
2
3.5 ± 0.5
7.12 ± 0.5
■ Applications
Voltage regulator
5
4
6
4
6.5 ± 0.5
Anode
mark
θ = 0 to 13 ˚
0.26 ± 0.1
2.54 ± 0.25
0.5 ± 0.1
θ
1 Anode
2 Cathode
3 NC
θ
4 VO
5 GND
6 V CC
* “ OPIC ” ( Optical IC ) is a trademark of the SHARP Corporation.
An OPIC consists of a light-detecting element and signalprocessing circuit integrated onto a single chip.
■ Absolute Maximum Ratings
Input
Output
Parameter
Forward current
*1
Peak forward current
Reverse voltage
Power dissipation
Supply voltage
High level output voltage
Low level output current
Power dissipation
Total power dissipation
*2
Isolation voltage
Operating temperature
Storage temperature
*3
Soldering temperature
( Ta = 25˚C )
Symbol
IF
I FM
VR
P
V CC
V OH
I OL
PO
P tot
V iso
T opr
T stg
T sol
Rating
50
1
6
70
16
16
50
150
170
5 000
- 25 to + 85
- 40 to + 125
260
Unit
mA
A
V
mW
V
V
mA
mW
mW
V rms
˚C
˚C
˚C
*1 Pulse width <= 100µs, Duty ratio : 0.001
*2 40 to 60% RH, AC for 1 minute
*3 For 10 seconds
“ In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs,
data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device. ”
PC901V
■ Electro-optical Characteristics
Forward voltage
VF
*7
Transfer
characteristics
Symbol
time
Output
Parameter
Reverse current
Terminal capacitance
Operating supply voltage
Low level output voltage
High level output current
Low level supply current
High level supply current
*4 “ L→H ” threshold input
current
*5 “ H→L ” threshold input
current
*6
Hysteresis
Isolation resistance
“ L→H ” propagation delay time
“ H→L ” propagation delay time
Rise time
Fall time
*8Instantaneous common mode rejection voltage ( High level output )
*8Instantaneous common mode rejection voltage ( Low level output )
Response
Input
( Ta = 0 to + 70˚C unless otherwise specified )
Conditions
I F = 4mA
I F = 0.3mA
Ta = 25˚C, V R = 4V
Ta = 25˚C, V = 0, f = 1kHz
IR
Ct
V CC
V OL
I OH
I CCL
I CCH
I OL = 16mA, V CC = 5V, I F = 4mA
V O = V CC = 15V, I F = 0
V CC = 5V, I F = 0
V CC = 5V, I F = 4mA
Ta = 25˚C, V CC = 5V, R L = 280 Ω
V CC = 5V, R L = 280 Ω
Ta = 25˚C, V CC = 5V, R L = 280 Ω
V CC = 5V, R L = 280 Ω
V CC = 5V, R L = 280 Ω
Ta = 25˚C, DC500V, 40 to 60% RH
I FLH
I FHL
I FHL /I FLH
R ISO
t PLH
t PHL
tr
tf
Ta = 25˚C
V CC = 5V, I F = 4mA
R L = 280 Ω
MIN.
0.7
3
0.4
0.3
0.5
5 x 1010
-
TYP.
1.1
1.0
30
0.2
2.5
2.7
1.1
0.8
0.7
1011
1
2
0.1
0.05
MAX.
1.4
10
250
15
0.4
100
5.0
5.5
2.0
4.0
0.9
3
6
0.5
0.5
Unit
-
- 2000
-
V/ µ s
-
2000
-
V/ µ s
V CM = 600V ( peak ) , VO( MIN. ) = 2V
I F = 4mA, R L = 280 Ω, Ta = 25˚C
V CM = 600V ( peak ) , VO( MAX. ) = 0.8V
IF = 0, R L = 280 Ω, Ta = 25˚C
CM H
CM L
V
µA
pF
V
V
µA
mA
mA
mA
mA
Ω
µs
*4 I FLH represents forward current when output goes from low to high.
*5 I FHL represents forward current when output goes from high to low.
*6 Hysterisis stands for I FHL /I FLH
*7 Test circuit for response time is shown below.
*8 Test circuit for CMH,CML shown below.
Test Circuit for Response Time
t r = tf = 0.01µ s
ZO = 50 Ω
Voltage regulator
5V
tPLH
VO
VIN
47 Ω
tPHL
90%
1.5V
VO
0.1µF
Amp.
50%
VIN
280 Ω
VOH
10%
tr
tf
VOL
Test Circuit for CM H , CM L
600V
IF
Switch for
Infrared LED
B
Voltage regulator
5V
280 Ω
VO
A
Amp.
+
VCM
Switch for Infrared LED at A ( IF = 0)
VO(MAX.) = 0.8V
0.1µ F
-
Switch for Infrared LED at B ( IF = 4mA)
VO(MIN.) = 2.0V
VCM
VOL
GND
GND
PC901V
Fig. 2 Power Dissipation vs. Ambient
Temperature
200
50
170
( mW )
60
30
20
10
0
- 25
0
25
50
75 85
Ambient temperature T a ( ˚C)
100
50
0
25
50
Ambient temperature T
75 85
a
100
( ˚C )
Fig. 4 Relative Threshold Input Current vs.
Supply Voltage
500
1.4
T a = 25˚C
I FLH = 1 at V CC = 5V
T a = 75˚C
50˚C
200
1.2
25˚C
0˚C
100
Relative threshold input current
Forward current I F ( mA )
PO
150
0
- 25
100
Fig. 3 Forward Current vs. Forward Voltage
- 25˚C
50
20
10
5
I FLH
1.0
I FHL
0.8
0.6
0.4
2
1
0.2
0
0.5
1.0
1.5
2.0
2.5
Forward voltage V F ( V )
3.0
0
Fig. 5 Relative Threshold Input Current vs.
Ambient Temperature
20
1.0
V CC = 5V
V CC = 5V
Low level output voltage VOL ( V )
1.4
1.2
I FLH
1.0
0.8
I FHL
0.6
0.4
0.5
IF = 0
T a = 25˚C
0.2
0.1
0.05
0.02
0.2
0
- 25
5
10
15
Supply voltage V CC ( V )
Fig. 6 Low Level Output Voltage vs.
Low Level Output Current
1.6
Relative threshold input current
P tot
tot
40
Power dissipation P O, P
Forward current I F ( mA )
Fig. 1 Forward Current vs. Ambient
Temperature
I FLH = 1 at T a = 25˚C
0
25
50
Ambient temperature T
a
75
( ˚C )
100
0.01
1
2
5
10
20
Low level output current I
50
OL
( mA )
100
PC901V
Fig. 7 Low Level Output Voltage vs.
Ambient Temperature
Fig. 8 High Level Output Current vs.
Forward Current
10
0.5
V CC = 5V
I OL = 30mA
High level output current I OH ( µ A )
Low level output voltage V OL ( V )
V CC = 5V
0.4
0.3
16mA
0.2
5mA
0.1
5
T a = 25˚C
2
1
0.5
0.2
0
- 25
0
25
75
50
0.1
0
100
10
20
30
40
50
60
Forward current I F ( mA )
Ambient temperature T a ( ˚C )
Fig. 9 High Level Output Current vs.
Ambient Temperature
Fig.10 Supply Current vs. Supply Voltage
9
V CC = V O = 15V
High level output current I OH ( µ A )
2
8
I CCH
I CCL
Supply current I CC ( mA )
I F = 4mA
1
0.5
0.2
0.1
7
I CCH
I CCL
6
5
4
I CCH
I CCL
3
T a=
2 - 25˚C {
25˚C
1 85˚C{
{
0.05
0
- 25
0
25
50
75
0
100
Fig.11 Propagation Delay Time vs.
Forward Current
6
8
10
12
14
16
18
0.6
V CC = 5V
R L = 280 Ω
T a = 25˚C
5
4
Fig.12 Rise Time, Fall Time vs.
Load Resistance
t PHL
0.5
Rise time, fall time t r , t f ( µ s )
Propagation delay time t PHL , t PLH ( µ s )
6
2
Supply voltage V CC ( V )
Ambient temperature T a ( ˚C )
4
3
2
VCC = 5V
I F = 4mA
T a = 25˚C
0.4
0.3
0.2
tr
0.1
1
tf
t PLH
0
0
10
20
30
40
Forward current I F ( mA )
50
60
0
0.2
0.5
1
2
5
Load resistance R L ( k Ω )
10
20
PC901V
■ Precautions for Use
( 1 ) It is recommended that a by-pass capacitor of more than 0.01 µ F is added between V CC and
GND near the device in order to stabilize power supply line.
( 2 ) Handle this product the same as with other integrated circuits against static electricity.
( 3 ) As for other general cautions, please refer to the chapter “ Precautions for Use ”