SHARP PC902

PC902
PC902
AC Input Type OPIC
Photocoupler
■ Features
■ Outline Dimensions
1. Capable of forming an integration circuit
in conjunction with an external capacitor
2. AC input
3. High sensitivity
( IFHL : MAX. 2mA )
4. High isolation voltage between input and
output
( Viso : 5 000V rms )
5. Standard dual-in-line package
6. Recognized by UL, file No. E64380
0.85 ± 0.3
( Unit : mm )
Internal connection
diagram
0.01 µ F
10k Ω
(ExternalC)
5
8
7 6
1.2 ± 0.3
8
7
6
5
6.5 ± 0.5
PC902
Voltage
regulator
Amp
1
1
2
3
4
Primarys side mark ( Sunken place )
■ Applications
2
3
4
7.62 ± 0.3
3.0 ± 0.5
0.5TYP.
1. Programmable controllers
2. Telephone sets
3. AC line monitors
3.5 ± 0.5
9.22 ± 0.5
θ = 0˚ to 13 ˚
0.5 ± 0.1
θ
2.54 ± 0.25
1
2
3
4
NC
V IN1
V IN2
NC
5
6
7
8
0.26 ± 0.1
V AUX
GND
VO
V CC
* “ OPIC ” ( Optical IC ) is a trademark of the SHARP Corporation.
An OPIC consists of a light-detecting element and signalprocessing circuit integrated onto a single chip.
■ Absolute Maximum Ratings
Input
Output
Parameter
Forward current
*1
Peak forward current
Power dissipation
Supply voltage
Output voltage
Output current
Power dissipation
Total power dissipation
*2
Isolation voltage
Operating temperature
Storage temperature
*3
Soldering temperature
( Ta = 25˚C )
Symbol
IF
I FM
P
V CC
VO
IO
PO
P tot
V iso
T opr
T stg
T sol
Rating
± 20
±1
30
15
15
16
150
170
5 000
- 25 to + 85
- 55 to + 125
260
Unit
mA
A
mW
V
V
mA
mW
mW
V rms
˚C
˚C
˚C
*1 Pulse width<=100 µ s,
Duty ratio : 0.001
*2 40 to 60% RH, AC for
1 minute
*3 For 10 seconds
“ In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs,
data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device. ”
θ
PC902
■ Electro-optical Characteristics
Parameter
Forward voltage
Input
Terminal capacitance
Operating supply voltage
Low level output voltage
High level output voltage
Low level supply current
High level supply current
AUX source current
AUX sink current
AUX terminal voltage 1
AUX terminal voltage 2
“ High→Low ” threshold
AUX voltage
“ Low→High ” threshold
AUX voltage
*4
Transfer
characteristics
Symbol
I OL = 8.0mA, V CC = 5V, I F = ± 2mA
V CC = 5V, I F = 0
I F = ± 2mA, V CC = 5V
V CC = 5V, I F = 0
Ta = 25˚C, I F = ± 2mA, V CC = 5V, V AUX = 1.3V
Ta = 25˚C, I F = 0, V CC = 5V, V AUX = 1.3V
Ta = 25˚C, I F = 0, V CC = 5V
Ta = 25˚C, I F = ± 2mA, V CC = 5V
MIN.
0.55
4.5
3.5
- 2
1.0
2.3
TYP.
0.95
30
0.1
1.7
1.5
- 3
1.5
-
MAX.
1.5
250
15
0.4
4.0
3.5
- 5
2.5
0.2
2.8
Unit
V
V
pF
V
V
V
mA
mA
µA
µA
V
V
V AUXHL
Ta = 25˚C, I F = 0, V CC = 5V
2.05
-
2.55
V
V AUXLH
Ta = 25˚C, I F = 0, V CC = 5V
0.75
-
1.10
V
Ta = 25˚C, V CC = 5V, R L = 680 Ω
V CC = 5V, R L = 680Ω
Ta = 25˚C, V CC = 5V, R L = 680 Ω
V CC = 5V, R L = 680 Ω
Ta = 25˚C, DC500V, 40 to 60% RH
Ta = 25˚C, V = 0, f = 1MHz
0.1
- 0.1
5 x 1010
-
0.7
- 0.7
1011
0.6
1.5
2.0
- 1.5
- 2.0
5
mA
mA
mA
mA
Ω
pF
4.5
7.0
10
ms
6.5
10.5
15
ms
-
0.05
0.1
0.5
0.5
µs
µs
VF
Ct
V CC
V OL
V OH
I CCL
I CCH
I AUX1
I AUX2
V AUX1
V AUX2
“ High→Low ” threshold
input current 1
I FHL1
“ High→Low ” threshold
input current 2
I FHL2
Isolation resistance
Floating capacitance
R ISO
Cf
Response
time
Output
( Ta = 0 to + 70˚C unless otherwise specified )
“ High→Low ” propagation delay time
“ Low→High ” propagation delay time
Fall time
Rise time
t PHL
t PLH
tf
tr
*5Instantaneous
common
mode rejection voltage
“ Output : High level ”
*5PInstantaneous common
mode rejection voltage
“ Output : Low level ”
Conditions
I F = ± 20mA
I F = ± 0.1mA
V F = 0, f = 1kHz
Ta = 25˚C
I F = ± 2mA, V CC = 5V
CAUX = 0.01 µ F
R L = 680 Ω
CM H
Ta = 25˚C, I F = 0, V CM = 600V ( peak )
V O(MIN.) = 2V, R L = 680 Ω, C AUX = 0.01 µ F
-
2 000
-
V/ µ s
CM L
Ta = 25˚C, I F = ± 2mA, V CM = 600V ( peak )
V O(MAX.) = 0.8V, R L = 680 Ω, C AUX = 0.01 µ F
-
- 2 000
-
V/ µ s
PC902
❈ 4 Test Circuit for Response Time
Voltage regulator
8
10k Ω
7
2
VIN
5V
680 Ω
VO
Amp.
47 Ω
t r = tf = 0.01 µ s
ZO = 50 Ω
0.1 µ F
5
3
0.01µ F
6
T
VIN
T
50%
T
50%
T
tPHL
tPLH
tPLH
tPHL
VOH
90%
1.5V
10%
VOL
VO
(Note) T >= 50ms
tr
tf
❈ 5 Test Circuit for Instantaneous Common Mode Rejection Voltage
Voltage regulator
Switch for infrared light
emitting diode
IF
8
10k Ω
7
2
B
A
5V
680 Ω
VO
Amp.
5
3
0.01 µ F
6
+
- VCM
600V
CMH
When the switch for infrared light
emitting diode sets to A,
5V
VO(MIN.) = 2.0V
CML
When the switch for infrared light
emitting diode sets to B,
GND
VO(MAX.) = 0.8V
VOL
GND
PC902
Fig. 2 Power Dissipation vs. Ambient
Temperature
60
200
50
170
Power dissipation P O, P tot ( mW )
Forward current I F ( mA )
Fig. 1 Forward Current vs. Ambient
Temperature
40
30
20
10
0
- 25
0
25
50
75 85
P tot
PO
150
100
50
0
- 25
100
0
Ambient temperature T a ( ˚C)
Fig. 3 Forward Current vs. Forward Voltage
T a = 75˚C
200
0˚C
50
- 25˚C
Relative threshold input current
Forward Current I F ( mA )
1.4
25˚C
50˚C
100
50
75 85
100
Fig. 4 Relative Threshold Input Current vs.
Ambient Temperature
1.6
500
25
Ambient temperature T a ( ˚C )
20
10
5
2
V CC = 5V
I FHL1 = I FHL2 = 1
T a = 25˚C
1.2
1.0
0.8
0.6
1
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
0.4
- 25
0
25
Test Circuit For Threshold Input Current vs.
Ambient Temperature
Voltage regulator
Forward
current I F
8
10k Ω
7
2
3
50
75
Ambient temperature T a ( ˚C )
Forward voltage V F ( V )
Amp.
5
5V
V
6
I FHL1 , I FHL2 represents forward current when output goes from
high to low. I FHL1 is a forward current flowing into pin 2 while
I FHL2 is one flowing out of pin 2 .
100
PC902
Fig. 6 Low Level Output Voltage vs.
Ambient Temperature
Fig. 5 Low Level Output Voltage vs.
Low Level Output Current
0.2
V CC = 5V
T a = 25˚C
0.5
Low level output voltage V OL ( V )
Low level output voltage V OL ( V )
1.0
0.2
0.1
0.05
VCC
= 5V
ICC = 16mA
0.15
0.1
8mA
5mA
0.05
0.02
0.01
1
2
5
10
20
Low level output current I
50
OL
0
- 25
100
0
( mA )
25
50
Ambient temperature T
Fig. 7 Supply Current vs. Supply Voltage
4
Ta=
- 25˚C
2
25˚C
2
ICCH
ICCL
I CCH
85˚C
1
AUX current I AUX ( µ A )
Supply current I CC ( mA )
ICCL
I CCH
75
( ˚C )
100
Fig. 8 AUX Current vs. Forward Current
V CC = 5V
V AUX = 1.3V
T a = 25˚C
3
I CCL
a
AUX sink current
I AUX2
0
-2
AUX source current
AUX source current
I AUX1
I AUX1
-4
-6
-8
0
5
10
- 20 - 15 - 10 - 5
Forward current I F ( mA )
0
0
5
10
Supply voltage V CC ( V )
15
15
20
Fig. 9 AUX Current vs. Ambient
Temperature
Test Circuit for AUX
2
AUX sink current I AUX2
I F = 0mA
Voltage regulator
Forward
current IF
AUX current I
8
10k Ω
7
2
0
Amp.
AUX
( µ A)
1
V CC = 5V
V AUX
= 1.3V
-1
3
6
-2
flowed from 2 terminal
{ +- :: Current
Current flowed out to 2 terminal
-3
-4
- 25
IAUX
5 I
AUX source current I AUX1
I F = ± 2mA
0
25
50
Ambient Temperature T
75
a
( ˚C )
100
5V
PC902
Fig.10 AUX Terminal Voltage vs.
Ambient Temperature
Fig.10 Threshold AUX Voltage vs.
Ambient Temperature
4
3
V CC = 5V
Threshold AUX voltage
AUX HL , V AUX LH ( V )
3
V AUX2
IF = ± 2mA
2
1
V
AUX
HL
2
1
V
AUX LH
V
AUX terminal voltage VAUX ( V )
V CC = 5V
I F = 0mA
V AUX1
0
- 25
0
25
50
Ambient temperature T
a
75
( ˚C )
0
- 25
100
14
( ms )
t PLH
10
t PHL
6
4
T a = 25˚C
V CC = 5V
CAUX = 0.01 µ F
R L = 680 Ω
2
0
- 20 - 15 - 10 - 5 - 2 0 2 5
10
Forward current I F ( mA )
75
12
t PLH
15
10
8
t PHL
6
4
2
- 25
20
0
25
50
Ambient temperature T
a
Test Circuit for Propagation Time
Voltage regulator
Pulse
Generator
8
10k Ω
7
2
100 Ω
CRT
Frequency
f<=10Hz
Duty50%
100
V CC = 5V, C AUX = 0.01 µ F
R L = 680 Ω, I F = ± 2mA
PLH
,t
t PHL
PHL
8
Propagation delay time t
,t
PLH
( ms )
t PLH
50
Fig.13 Propagation Delay Time vs.
Ambient Temperature
12
PHL
25
Ambient temperature T a ( ˚C )
Fig.12 Propagation Delay Time vs.
Forward Current
Propagation delay time t
0
RL 680 Ω
5V
Amp.
3
5
6
CAUX
0.01 CRT
µF
■ Precautions for Use
( 1 ) It is recommended that a by-pass capacitor of more than 0.01 µ F is added between V CC and
GND near the device in order to stabilize power supply line.
( 2 ) Handle this product the same as with other integrated circuits against static electricity.
( 3 ) As for other general cautions, please refer to the chapter “ Precautions for Use ”
75
( ˚C )
100