PC902 PC902 AC Input Type OPIC Photocoupler ■ Features ■ Outline Dimensions 1. Capable of forming an integration circuit in conjunction with an external capacitor 2. AC input 3. High sensitivity ( IFHL : MAX. 2mA ) 4. High isolation voltage between input and output ( Viso : 5 000V rms ) 5. Standard dual-in-line package 6. Recognized by UL, file No. E64380 0.85 ± 0.3 ( Unit : mm ) Internal connection diagram 0.01 µ F 10k Ω (ExternalC) 5 8 7 6 1.2 ± 0.3 8 7 6 5 6.5 ± 0.5 PC902 Voltage regulator Amp 1 1 2 3 4 Primarys side mark ( Sunken place ) ■ Applications 2 3 4 7.62 ± 0.3 3.0 ± 0.5 0.5TYP. 1. Programmable controllers 2. Telephone sets 3. AC line monitors 3.5 ± 0.5 9.22 ± 0.5 θ = 0˚ to 13 ˚ 0.5 ± 0.1 θ 2.54 ± 0.25 1 2 3 4 NC V IN1 V IN2 NC 5 6 7 8 0.26 ± 0.1 V AUX GND VO V CC * “ OPIC ” ( Optical IC ) is a trademark of the SHARP Corporation. An OPIC consists of a light-detecting element and signalprocessing circuit integrated onto a single chip. ■ Absolute Maximum Ratings Input Output Parameter Forward current *1 Peak forward current Power dissipation Supply voltage Output voltage Output current Power dissipation Total power dissipation *2 Isolation voltage Operating temperature Storage temperature *3 Soldering temperature ( Ta = 25˚C ) Symbol IF I FM P V CC VO IO PO P tot V iso T opr T stg T sol Rating ± 20 ±1 30 15 15 16 150 170 5 000 - 25 to + 85 - 55 to + 125 260 Unit mA A mW V V mA mW mW V rms ˚C ˚C ˚C *1 Pulse width<=100 µ s, Duty ratio : 0.001 *2 40 to 60% RH, AC for 1 minute *3 For 10 seconds “ In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device. ” θ PC902 ■ Electro-optical Characteristics Parameter Forward voltage Input Terminal capacitance Operating supply voltage Low level output voltage High level output voltage Low level supply current High level supply current AUX source current AUX sink current AUX terminal voltage 1 AUX terminal voltage 2 “ High→Low ” threshold AUX voltage “ Low→High ” threshold AUX voltage *4 Transfer characteristics Symbol I OL = 8.0mA, V CC = 5V, I F = ± 2mA V CC = 5V, I F = 0 I F = ± 2mA, V CC = 5V V CC = 5V, I F = 0 Ta = 25˚C, I F = ± 2mA, V CC = 5V, V AUX = 1.3V Ta = 25˚C, I F = 0, V CC = 5V, V AUX = 1.3V Ta = 25˚C, I F = 0, V CC = 5V Ta = 25˚C, I F = ± 2mA, V CC = 5V MIN. 0.55 4.5 3.5 - 2 1.0 2.3 TYP. 0.95 30 0.1 1.7 1.5 - 3 1.5 - MAX. 1.5 250 15 0.4 4.0 3.5 - 5 2.5 0.2 2.8 Unit V V pF V V V mA mA µA µA V V V AUXHL Ta = 25˚C, I F = 0, V CC = 5V 2.05 - 2.55 V V AUXLH Ta = 25˚C, I F = 0, V CC = 5V 0.75 - 1.10 V Ta = 25˚C, V CC = 5V, R L = 680 Ω V CC = 5V, R L = 680Ω Ta = 25˚C, V CC = 5V, R L = 680 Ω V CC = 5V, R L = 680 Ω Ta = 25˚C, DC500V, 40 to 60% RH Ta = 25˚C, V = 0, f = 1MHz 0.1 - 0.1 5 x 1010 - 0.7 - 0.7 1011 0.6 1.5 2.0 - 1.5 - 2.0 5 mA mA mA mA Ω pF 4.5 7.0 10 ms 6.5 10.5 15 ms - 0.05 0.1 0.5 0.5 µs µs VF Ct V CC V OL V OH I CCL I CCH I AUX1 I AUX2 V AUX1 V AUX2 “ High→Low ” threshold input current 1 I FHL1 “ High→Low ” threshold input current 2 I FHL2 Isolation resistance Floating capacitance R ISO Cf Response time Output ( Ta = 0 to + 70˚C unless otherwise specified ) “ High→Low ” propagation delay time “ Low→High ” propagation delay time Fall time Rise time t PHL t PLH tf tr *5Instantaneous common mode rejection voltage “ Output : High level ” *5PInstantaneous common mode rejection voltage “ Output : Low level ” Conditions I F = ± 20mA I F = ± 0.1mA V F = 0, f = 1kHz Ta = 25˚C I F = ± 2mA, V CC = 5V CAUX = 0.01 µ F R L = 680 Ω CM H Ta = 25˚C, I F = 0, V CM = 600V ( peak ) V O(MIN.) = 2V, R L = 680 Ω, C AUX = 0.01 µ F - 2 000 - V/ µ s CM L Ta = 25˚C, I F = ± 2mA, V CM = 600V ( peak ) V O(MAX.) = 0.8V, R L = 680 Ω, C AUX = 0.01 µ F - - 2 000 - V/ µ s PC902 ❈ 4 Test Circuit for Response Time Voltage regulator 8 10k Ω 7 2 VIN 5V 680 Ω VO Amp. 47 Ω t r = tf = 0.01 µ s ZO = 50 Ω 0.1 µ F 5 3 0.01µ F 6 T VIN T 50% T 50% T tPHL tPLH tPLH tPHL VOH 90% 1.5V 10% VOL VO (Note) T >= 50ms tr tf ❈ 5 Test Circuit for Instantaneous Common Mode Rejection Voltage Voltage regulator Switch for infrared light emitting diode IF 8 10k Ω 7 2 B A 5V 680 Ω VO Amp. 5 3 0.01 µ F 6 + - VCM 600V CMH When the switch for infrared light emitting diode sets to A, 5V VO(MIN.) = 2.0V CML When the switch for infrared light emitting diode sets to B, GND VO(MAX.) = 0.8V VOL GND PC902 Fig. 2 Power Dissipation vs. Ambient Temperature 60 200 50 170 Power dissipation P O, P tot ( mW ) Forward current I F ( mA ) Fig. 1 Forward Current vs. Ambient Temperature 40 30 20 10 0 - 25 0 25 50 75 85 P tot PO 150 100 50 0 - 25 100 0 Ambient temperature T a ( ˚C) Fig. 3 Forward Current vs. Forward Voltage T a = 75˚C 200 0˚C 50 - 25˚C Relative threshold input current Forward Current I F ( mA ) 1.4 25˚C 50˚C 100 50 75 85 100 Fig. 4 Relative Threshold Input Current vs. Ambient Temperature 1.6 500 25 Ambient temperature T a ( ˚C ) 20 10 5 2 V CC = 5V I FHL1 = I FHL2 = 1 T a = 25˚C 1.2 1.0 0.8 0.6 1 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0.4 - 25 0 25 Test Circuit For Threshold Input Current vs. Ambient Temperature Voltage regulator Forward current I F 8 10k Ω 7 2 3 50 75 Ambient temperature T a ( ˚C ) Forward voltage V F ( V ) Amp. 5 5V V 6 I FHL1 , I FHL2 represents forward current when output goes from high to low. I FHL1 is a forward current flowing into pin 2 while I FHL2 is one flowing out of pin 2 . 100 PC902 Fig. 6 Low Level Output Voltage vs. Ambient Temperature Fig. 5 Low Level Output Voltage vs. Low Level Output Current 0.2 V CC = 5V T a = 25˚C 0.5 Low level output voltage V OL ( V ) Low level output voltage V OL ( V ) 1.0 0.2 0.1 0.05 VCC = 5V ICC = 16mA 0.15 0.1 8mA 5mA 0.05 0.02 0.01 1 2 5 10 20 Low level output current I 50 OL 0 - 25 100 0 ( mA ) 25 50 Ambient temperature T Fig. 7 Supply Current vs. Supply Voltage 4 Ta= - 25˚C 2 25˚C 2 ICCH ICCL I CCH 85˚C 1 AUX current I AUX ( µ A ) Supply current I CC ( mA ) ICCL I CCH 75 ( ˚C ) 100 Fig. 8 AUX Current vs. Forward Current V CC = 5V V AUX = 1.3V T a = 25˚C 3 I CCL a AUX sink current I AUX2 0 -2 AUX source current AUX source current I AUX1 I AUX1 -4 -6 -8 0 5 10 - 20 - 15 - 10 - 5 Forward current I F ( mA ) 0 0 5 10 Supply voltage V CC ( V ) 15 15 20 Fig. 9 AUX Current vs. Ambient Temperature Test Circuit for AUX 2 AUX sink current I AUX2 I F = 0mA Voltage regulator Forward current IF AUX current I 8 10k Ω 7 2 0 Amp. AUX ( µ A) 1 V CC = 5V V AUX = 1.3V -1 3 6 -2 flowed from 2 terminal { +- :: Current Current flowed out to 2 terminal -3 -4 - 25 IAUX 5 I AUX source current I AUX1 I F = ± 2mA 0 25 50 Ambient Temperature T 75 a ( ˚C ) 100 5V PC902 Fig.10 AUX Terminal Voltage vs. Ambient Temperature Fig.10 Threshold AUX Voltage vs. Ambient Temperature 4 3 V CC = 5V Threshold AUX voltage AUX HL , V AUX LH ( V ) 3 V AUX2 IF = ± 2mA 2 1 V AUX HL 2 1 V AUX LH V AUX terminal voltage VAUX ( V ) V CC = 5V I F = 0mA V AUX1 0 - 25 0 25 50 Ambient temperature T a 75 ( ˚C ) 0 - 25 100 14 ( ms ) t PLH 10 t PHL 6 4 T a = 25˚C V CC = 5V CAUX = 0.01 µ F R L = 680 Ω 2 0 - 20 - 15 - 10 - 5 - 2 0 2 5 10 Forward current I F ( mA ) 75 12 t PLH 15 10 8 t PHL 6 4 2 - 25 20 0 25 50 Ambient temperature T a Test Circuit for Propagation Time Voltage regulator Pulse Generator 8 10k Ω 7 2 100 Ω CRT Frequency f<=10Hz Duty50% 100 V CC = 5V, C AUX = 0.01 µ F R L = 680 Ω, I F = ± 2mA PLH ,t t PHL PHL 8 Propagation delay time t ,t PLH ( ms ) t PLH 50 Fig.13 Propagation Delay Time vs. Ambient Temperature 12 PHL 25 Ambient temperature T a ( ˚C ) Fig.12 Propagation Delay Time vs. Forward Current Propagation delay time t 0 RL 680 Ω 5V Amp. 3 5 6 CAUX 0.01 CRT µF ■ Precautions for Use ( 1 ) It is recommended that a by-pass capacitor of more than 0.01 µ F is added between V CC and GND near the device in order to stabilize power supply line. ( 2 ) Handle this product the same as with other integrated circuits against static electricity. ( 3 ) As for other general cautions, please refer to the chapter “ Precautions for Use ” 75 ( ˚C ) 100