SHARP PQ30RV31

Low Power-Loss Voltage Regulators
PQ30RV31
PQ30RV31
Variable Output Low Power-Loss Voltage Regulator
■ Outline Dimensions
¡Maximum output current : 3A
¡Compact resin full-mold package.
¡Low power-loss (Dropout voltage : MAX.0.5V)
¡Variable output voltage (setting range : 1.5 to 30V)
¡Built-in ON/OFF control function.
(Unit : mm)
4.5±0.2
10.2MAX
2.8±0.2
7.4±0.2
3.6±0.2
13.5MIN
29.1MAX
PQ30RV31
■ Applications
φ3.2±0.1
4-1.4
+0.3
-0
4-0.6
+0.2
-0.1
(1.5)
(0.5)
3-(2.54)
¡Power supply for print concentration control of word processors
¡Series power supply for motors and solenoid
¡Series power supply for VCRs and TVs
4.8MAX
15.6±0.5
■ Features
1
● 2
● 3
● 4
●
Internal connection diagram
1
2
Specific IC
4
3
■ Absolute Maximum Ratings
*1
*1
*2
*1
*2
Parameter
Input voltage
Output adjustment terminal voltage
Output current
Power dissipation (No heat sink)
Power dissipation (With infinite heat sink)
Junction temperature
Operating temperature
Storage temperature
Soldering temperature
1 DC input (VIN)
2 DC output (VO)
3 GND
4 Output voltage
minute
adjustment
terminal (VADJ)
(Ta=25˚C)
Symbol
Rating
Unit
VIN
35
V
VADJ
7
V
IO
3
A
PD1
2.0
W
PD2
20
W
Tj
150
˚C
Topr
-20 to +80
˚C
Tstg
-40 to +150
˚C
Tsol
260 (For 10s) ˚C
All are open except GND and applicable terminals.
Overheat protection function may operate at 125=<Tj=<150˚C.
· Please refer to the chapter“ Handling Precautions ”.
“ In the absence of confirmation by device specification sheets,SHARP takes no responsibility for any defects that may occur in equipment using any SHARP devices
shown in catalogs,data books,etc.Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device. ”
Low Power-Loss Voltage Regulators
■ Electrical Characteristics
(Unless otherwise specified, condition shall be VIN=12V, Vo=10V, Io=1.5A, R1=390Ω, Ta=25˚C)
Parameter
Symbol
VIN
VO
RegL
RegI
RR
Vref
TcVref
Input voltage
output voltage
Load regulation
Line regulation
Ripple rejection
Reference voltage
Temperature coefficient of reference voltage
Dropout voltage
Vi-O
Quiescent current
*3
PQ30RV31
Iq
Conditions
IO=5mA to 3A
VIN=11 to 21V, IO=0.5mA
Refer to Fig. 2
Tj=0 to 125˚C,IO=5mA
*3, IO=3A
*3, IO=2A
IO=0
MIN.
4.5
1.5
45
1.225
-
TYP.
0.5
0.5
70
1.25
±1.0
0.3
0.2
-
MAX.
35
30
2.0
2.5
1.275
1.0
0.5
7
Unit
V
V
%
%
dB
V
%/˚C
V
mA
Input voltage shall be the value when output voltage is 95% in comparison with the initial value.
Fig.1 Test Circuit
VIN
1
●
R2
3
●
0.33µF
A
VO
47µF
2
●
+
V
Vref
R1
Iq 390Ω
R2
R2
VO=Vref X 1+ -------- =1.25X 1+ -------R1
R1
IO
A
4
●
[R1=390Ω, Vref =1.25V]
RL
V
Fig.2 Test Circuit of Ripple Rejection
+
2
●
~
R2
3
●
VIN
0.33µF
4
●
47µF
R1
390Ω
Fig.3 Power Dissipation vs. Ambient
Temperature
Power dissipation PD (W)
40
PD1 :No heat sink
PD2 :With infinite heat sink
30
PD2
20
IO=0.5A, VIN=12V, VO=10V
f=120Hz (sine wave)
ei=0.5Vrms
RR=20 log (ei/eo)
IO
+
10
V
~ eo
RL
Fig.4 Overcurrent Protection
Characteristics (Typical Value)
100
Relative output voltage (%)
1
●
ei
80
60
40
20
PD1
0
0
0
50
100
150
Ambient temperature Ta (˚C)
Note) Oblique line portion:Overheat protection may operate in
this area.
0
1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
Output current IO (A)
Low Power-Loss Voltage Regulators
PQ30RV31
Fig.6 Output Voltage vs. Input Voltage
Fig. 5 Output Voltage Adjustment
Characteristics(Typical value)
15
30
Output voltage VO (V)
Output voltage VO (V)
R1 390Ω
25
20
15
10
R1=390Ω,R2=2.7kΩ,Tj=25˚C
10
RL=∞
5
RL=3.3Ω
5
0
101
0
102
103
R2 (Ω)
104
0.5
IO=3A
0.4
0.3
2A
0.2
1A
0.1
70
No Cref
60
50
40
30
20
Tj=25˚C,VIN=12V
R1=390Ω,R2=2.7kΩ
IO=0.5A,ei=0.5Vrms
0
100
75
0
25
50
Junction temperature Tj (˚C)
0.1
125
Fig.9 Ripple Rejection vs. Output Current
1
10
100
Input ripple frequency f (kHz)
1000
Fig.10 Output Peak Current vs. Dropout
Voltage(Typical)
90
7
Cref=3.3µF
Output peak current IOP (A)
Ripple rejection RR (dB)
Cref=3.3µF
10
0.5A
0
-25
20
80
Ripple rejection RR (dB)
Dropout voltage Vi-O (V)
90
R1=390Ω,R2=2.7kΩ
VIN ; 0.95VO
0.6
5
10
15
Input voltage VIN (V)
Fig.8 Ripple Rejection vs. Input Ripple
Frequency
Fig.7 Dropout Voltage vs. Junction
Temperature
0.7
0
105
80
No Cref
70
60
50 Tj=25˚C
R1=390Ω,R2=2.7kΩ
40 VIN=12V,ei=0.5Vrms,f=120Hz
0
1
2
Output current IO (A)
6.5
6
5.5
5
4.5
R1=390Ω,R2=2.7kΩ,Ta=25˚C
4
3
0
1
2 3 4 5 6 7 8
Dropout voltage Vi-O (V)
9 10
Low Power-Loss Voltage Regulators
PQ30RV31
Fig.8 Ripple Rejection vs. Input Ripple
Frequency
Output peak current IOP (A)
7
6.5
6
5.5
5
4.5
4
-25
VIN=15V,R1=390Ω,R2=2.7kΩ
0
25
50
75
Dropout voltage Vi-O (V)
100
■ ON/OFF Operation
D1
1
●
VIN
R2
VO
2
●
R2
D2
4
●
3
●
CIN
D2
VADJ
VADJ R1
R1
+
R3
CO
RL
RD
RL
VO’
VC
High:Output OFF
Low :Output ON
Equivalent Circuit
in OFF-state
¡ON/OFF operation is available by mounting externally D2 and R3.
¡When VADJ is forcibly raised above VREF (1.25V TYP) by applying the external signal, the output is turned off (pass transistor of
regulator is turned off. When the output is OFF, VADJ must be higher then VREF MAX., and at the same time must be lower than
maximum rating 7V.
In OFF-state, the load current flows to RL from VADJ through R2. Therefore the value of R2 must be as high as possible.
¡VO'=VADJ X RL/ (RL+R2)
occurs at the load. OFF-state equivalent circuit R1 up to 10kΩ is allowed. Select as high value of RL and R2 as possible in this range.
In some case, as output voltage is getting lower (VO<1V), impedance of load resistance rises. In such condition, it is sometime
impossible to obtain the minimum value of VO'. So add the dummy resistance indicated by RD in the figure to the circuit parallel to
the load.