Low Power-Loss Voltage Regulators PQ30RV31 PQ30RV31 Variable Output Low Power-Loss Voltage Regulator ■ Outline Dimensions ¡Maximum output current : 3A ¡Compact resin full-mold package. ¡Low power-loss (Dropout voltage : MAX.0.5V) ¡Variable output voltage (setting range : 1.5 to 30V) ¡Built-in ON/OFF control function. (Unit : mm) 4.5±0.2 10.2MAX 2.8±0.2 7.4±0.2 3.6±0.2 13.5MIN 29.1MAX PQ30RV31 ■ Applications φ3.2±0.1 4-1.4 +0.3 -0 4-0.6 +0.2 -0.1 (1.5) (0.5) 3-(2.54) ¡Power supply for print concentration control of word processors ¡Series power supply for motors and solenoid ¡Series power supply for VCRs and TVs 4.8MAX 15.6±0.5 ■ Features 1 ● 2 ● 3 ● 4 ● Internal connection diagram 1 2 Specific IC 4 3 ■ Absolute Maximum Ratings *1 *1 *2 *1 *2 Parameter Input voltage Output adjustment terminal voltage Output current Power dissipation (No heat sink) Power dissipation (With infinite heat sink) Junction temperature Operating temperature Storage temperature Soldering temperature 1 DC input (VIN) 2 DC output (VO) 3 GND 4 Output voltage minute adjustment terminal (VADJ) (Ta=25˚C) Symbol Rating Unit VIN 35 V VADJ 7 V IO 3 A PD1 2.0 W PD2 20 W Tj 150 ˚C Topr -20 to +80 ˚C Tstg -40 to +150 ˚C Tsol 260 (For 10s) ˚C All are open except GND and applicable terminals. Overheat protection function may operate at 125=<Tj=<150˚C. · Please refer to the chapter“ Handling Precautions ”. “ In the absence of confirmation by device specification sheets,SHARP takes no responsibility for any defects that may occur in equipment using any SHARP devices shown in catalogs,data books,etc.Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device. ” Low Power-Loss Voltage Regulators ■ Electrical Characteristics (Unless otherwise specified, condition shall be VIN=12V, Vo=10V, Io=1.5A, R1=390Ω, Ta=25˚C) Parameter Symbol VIN VO RegL RegI RR Vref TcVref Input voltage output voltage Load regulation Line regulation Ripple rejection Reference voltage Temperature coefficient of reference voltage Dropout voltage Vi-O Quiescent current *3 PQ30RV31 Iq Conditions IO=5mA to 3A VIN=11 to 21V, IO=0.5mA Refer to Fig. 2 Tj=0 to 125˚C,IO=5mA *3, IO=3A *3, IO=2A IO=0 MIN. 4.5 1.5 45 1.225 - TYP. 0.5 0.5 70 1.25 ±1.0 0.3 0.2 - MAX. 35 30 2.0 2.5 1.275 1.0 0.5 7 Unit V V % % dB V %/˚C V mA Input voltage shall be the value when output voltage is 95% in comparison with the initial value. Fig.1 Test Circuit VIN 1 ● R2 3 ● 0.33µF A VO 47µF 2 ● + V Vref R1 Iq 390Ω R2 R2 VO=Vref X 1+ -------- =1.25X 1+ -------R1 R1 IO A 4 ● [R1=390Ω, Vref =1.25V] RL V Fig.2 Test Circuit of Ripple Rejection + 2 ● ~ R2 3 ● VIN 0.33µF 4 ● 47µF R1 390Ω Fig.3 Power Dissipation vs. Ambient Temperature Power dissipation PD (W) 40 PD1 :No heat sink PD2 :With infinite heat sink 30 PD2 20 IO=0.5A, VIN=12V, VO=10V f=120Hz (sine wave) ei=0.5Vrms RR=20 log (ei/eo) IO + 10 V ~ eo RL Fig.4 Overcurrent Protection Characteristics (Typical Value) 100 Relative output voltage (%) 1 ● ei 80 60 40 20 PD1 0 0 0 50 100 150 Ambient temperature Ta (˚C) Note) Oblique line portion:Overheat protection may operate in this area. 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 Output current IO (A) Low Power-Loss Voltage Regulators PQ30RV31 Fig.6 Output Voltage vs. Input Voltage Fig. 5 Output Voltage Adjustment Characteristics(Typical value) 15 30 Output voltage VO (V) Output voltage VO (V) R1 390Ω 25 20 15 10 R1=390Ω,R2=2.7kΩ,Tj=25˚C 10 RL=∞ 5 RL=3.3Ω 5 0 101 0 102 103 R2 (Ω) 104 0.5 IO=3A 0.4 0.3 2A 0.2 1A 0.1 70 No Cref 60 50 40 30 20 Tj=25˚C,VIN=12V R1=390Ω,R2=2.7kΩ IO=0.5A,ei=0.5Vrms 0 100 75 0 25 50 Junction temperature Tj (˚C) 0.1 125 Fig.9 Ripple Rejection vs. Output Current 1 10 100 Input ripple frequency f (kHz) 1000 Fig.10 Output Peak Current vs. Dropout Voltage(Typical) 90 7 Cref=3.3µF Output peak current IOP (A) Ripple rejection RR (dB) Cref=3.3µF 10 0.5A 0 -25 20 80 Ripple rejection RR (dB) Dropout voltage Vi-O (V) 90 R1=390Ω,R2=2.7kΩ VIN ; 0.95VO 0.6 5 10 15 Input voltage VIN (V) Fig.8 Ripple Rejection vs. Input Ripple Frequency Fig.7 Dropout Voltage vs. Junction Temperature 0.7 0 105 80 No Cref 70 60 50 Tj=25˚C R1=390Ω,R2=2.7kΩ 40 VIN=12V,ei=0.5Vrms,f=120Hz 0 1 2 Output current IO (A) 6.5 6 5.5 5 4.5 R1=390Ω,R2=2.7kΩ,Ta=25˚C 4 3 0 1 2 3 4 5 6 7 8 Dropout voltage Vi-O (V) 9 10 Low Power-Loss Voltage Regulators PQ30RV31 Fig.8 Ripple Rejection vs. Input Ripple Frequency Output peak current IOP (A) 7 6.5 6 5.5 5 4.5 4 -25 VIN=15V,R1=390Ω,R2=2.7kΩ 0 25 50 75 Dropout voltage Vi-O (V) 100 ■ ON/OFF Operation D1 1 ● VIN R2 VO 2 ● R2 D2 4 ● 3 ● CIN D2 VADJ VADJ R1 R1 + R3 CO RL RD RL VO’ VC High:Output OFF Low :Output ON Equivalent Circuit in OFF-state ¡ON/OFF operation is available by mounting externally D2 and R3. ¡When VADJ is forcibly raised above VREF (1.25V TYP) by applying the external signal, the output is turned off (pass transistor of regulator is turned off. When the output is OFF, VADJ must be higher then VREF MAX., and at the same time must be lower than maximum rating 7V. In OFF-state, the load current flows to RL from VADJ through R2. Therefore the value of R2 must be as high as possible. ¡VO'=VADJ X RL/ (RL+R2) occurs at the load. OFF-state equivalent circuit R1 up to 10kΩ is allowed. Select as high value of RL and R2 as possible in this range. In some case, as output voltage is getting lower (VO<1V), impedance of load resistance rises. In such condition, it is sometime impossible to obtain the minimum value of VO'. So add the dummy resistance indicated by RD in the figure to the circuit parallel to the load.