S-7600A TCP/IP NETWORK STACK LSI - Revision 1.3 Hardware Specification S-7600A TCP/IP Network Stack LSI Components Marketing Dept. Marketing Section 2 Phone +81-43-211-1028 Fax +81-43-211-8035 8, Nakase 1-chome, Mihama-ku Chiba-shi, Chiba 261-8507, Japan Seiko Instruments Inc. TCP/IP Network Stack LSI S-7600A Hardware Specification Revision 1.3 TABLE OF CONTENTS 1. INTRODUCTION........................................................................................................................... 1-1 1.1. 1.2. 1.3. 1.4. 1.5. 1.6. 1.7. PRODUCT OVERVIEW ............................................................................................................... 1-1 FEATURES ............................................................................................................................... 1-1 BENEFITS ................................................................................................................................. 1-1 TRADEMARKS ........................................................................................................................... 1-2 DEFINITIONS ............................................................................................................................ 1-2 APPLICABLE DOCUMENTS ......................................................................................................... 1-2 CAUTIONS ................................................................................................................................ 1-2 2. FUNCTIONAL BLOCK DIAGRAM ............................................................................................... 2-1 3. TERMINALS.................................................................................................................................. 3-1 3.1. 3.2. 3.3. 3.4. 4. ELECTRICAL CHARACTERISTICS............................................................................................. 4-1 4.1. 4.2. 4.3. 4.4. 5. PIN ASSIGNMENT...................................................................................................................... 3-1 PACKAGE DIMENSIONS ............................................................................................................. 3-2 PIN DESCRIPTION ..................................................................................................................... 3-3 PIN CONFIGURATION ................................................................................................................ 3-4 ABSOLUTE MAXIMUM RATINGS .................................................................................................. 4-1 RECOMMENDED OPERATING CONDITIONS ................................................................................. 4-1 DC CHARACTERISTICS ............................................................................................................. 4-2 POWER CURRENT CONSUMPTION ............................................................................................. 4-2 MPU INTERFACE ......................................................................................................................... 5-1 5.1. OVERVIEW ............................................................................................................................... 5-1 5.2. PARALLEL INTERFACE ............................................................................................................... 5-1 5.2.1. 68k Family MPU Mode.................................................................................................... 5-2 5.2.1.1. 5.2.1.2. 5.2.2. Write Cycle Timing ................................................................................................................5-2 Read Cycle Timing ................................................................................................................5-3 x80 Family MPU Mode.................................................................................................... 5-4 5.2.2.1. 5.2.2.2. Write Cycle Timing ................................................................................................................5-4 Read Cycle Timing ................................................................................................................5-5 5.3. SERIAL INTERFACE ................................................................................................................... 5-6 5.3.1. Write Cycle Timing.......................................................................................................... 5-6 5.3.2. Read Cycle Timing.......................................................................................................... 5-7 5.4. INTERRUPT............................................................................................................................... 5-8 6. MEMORY REQUIREMENTS ........................................................................................................ 6-1 6.1. 6.2. 6.3. 7. OVERVIEW ............................................................................................................................... 6-1 MEMORY INTERFACE ARCHITECTURE ........................................................................................ 6-1 MEMORY MAP .......................................................................................................................... 6-2 S-7600A REGISTER DEFINITIONS ............................................................................................. 7-1 7.1. OVERVIEW ............................................................................................................................... 7-1 7.2. IAPI REGISTER MAP................................................................................................................. 7-1 7.3. REGISTER DEFINITIONS ............................................................................................................ 7-4 7.3.1. Revision Register (0x00)................................................................................................ 7-4 7.3.2. General Control Register (0x01) .................................................................................... 7-4 7.3.3. Generic Socket Location Register (0x02) ...................................................................... 7-5 7.3.4. Master Interrupt (0x04) .................................................................................................. 7-5 7.3.5. Serial Port Configuration / Status Register (0x08) ......................................................... 7-6 7.3.6. Serial Port Interrupt Register (0x09) .............................................................................. 7-8 7.3.7. Serial Port Interrupt Mask Register (0x0A) .................................................................... 7-8 7.3.8. Serial Port Data Register (0x0B).................................................................................... 7-9 7.3.9. BAUD Rate Divider Registers (0x0C-0x0D)................................................................... 7-9 Seiko Instruments Inc. i TCP/IP Network Stack LSI S-7600A 7.3.10. 7.3.11. 7.3.12. 7.3.13. 7.3.14. 7.3.15. 7.3.16. 7.3.17. 7.3.18. 7.3.19. 7.3.20. 7.3.21. 7.3.22. 7.3.23. 7.3.24. 7.3.25. 7.3.26. 7.3.27. 7.3.28. 7.3.29. 7.3.30. 7.3.31. 7.3.32. 7.3.33. 7.3.34. 8. Hardware Specification Revision 1.3 Our IP Address Registers (0x10-0x13) ...................................................................... 7-9 Clock Divider Registers (0x1C-0x1D) ...................................................................... 7-10 Index Register (0x20) ............................................................................................... 7-10 Type of Service Register (TOS) (0x21) .................................................................... 7-10 Socket Config Status Low Register (0x22)............................................................... 7-11 Socket Status Mid Register (0x23)........................................................................... 7-13 Socket Activate Register (0x24) ............................................................................... 7-14 Socket Interrupt Register (0x26) .............................................................................. 7-14 Socket Data Available Register (0x28)..................................................................... 7-15 Socket Interrupt Mask Low Register (0x2A)............................................................. 7-16 Socket Interrupt Mask High Register (0x2B)............................................................ 7-16 Socket Interrupt Low Register (0x2C) ...................................................................... 7-17 Socket Interrupt High Register (0x2D) ..................................................................... 7-17 Socket Data Register (0x2E).................................................................................... 7-18 TCP Data Send and Buffer Out Length Registers (0x30-0x31) ............................... 7-18 Buffer In Length Registers (0x32-0x33) ................................................................... 7-18 Urgent Data Pointer Registers (0x34-0x35) ............................................................. 7-18 Their Port Registers (0x36-0x37) ............................................................................. 7-19 Our Port Registers (0x38-0x39) ............................................................................... 7-19 Socket Status High Register (0x3A)......................................................................... 7-19 Their IP Address Registers (0x3C-0x3F) ................................................................. 7-20 PPP Control and Status Register (0x60).................................................................. 7-21 PPP Interrupt Code (0x61) ....................................................................................... 7-22 PPP Max Retry, (0x62).............................................................................................. 7-22 PAP String (0x64)..................................................................................................... 7-23 DATA COMMUNICATIONS.......................................................................................................... 8-1 8.1. OVERVIEW ............................................................................................................................... 8-1 8.2. SERIAL PORT REGISTER MAP ................................................................................................... 8-1 8.2.1. Hardware Flow Control (RTS/CTS Handshaking) .......................................................... 8-2 8.2.2. Serial Port Control........................................................................................................... 8-2 8.3. TCP/UDP DATA COMMUNICATIONS .......................................................................................... 8-3 8.3.1. TCP Data Communications ............................................................................................ 8-3 8.3.2. UDP Data Communications ............................................................................................ 8-4 9. RESET FUNCTIONS .................................................................................................................... 9-1 9.1. OVERVIEW ............................................................................................................................... 9-1 9.1.1. Hardware Reset Function ............................................................................................... 9-1 9.1.2. Software Reset Function................................................................................................. 9-1 10. APPLICATION EXAMPLES........................................................................................................ 10-1 10.1.1. In Case of x80 Family MPU with LCD Controller .......................................................... 10-1 10.1.2. In Case of 68k Family MPU with LCD Controller .......................................................... 10-2 10.1.3. In Case of Serial Interface with LCD Controller ............................................................ 10-3 ii Seiko Instruments Inc. TCP/IP Network Stack LSI S-7600A Hardware Specification Revision 1.3 LIST OF FIGURES FIGURE 2-1 FIGURE 3-1 FIGURE 3-2 FIGURE 3-3 FIGURE 5-1 FIGURE 5-2 FIGURE 5-3 FIGURE 5-4 FIGURE 5-5 FIGURE 5-6 FIGURE 5-7 FIGURE 6-1 FIGURE 8-1 FIGURE 9-1 FIGURE 9-2 FIGURE 10-1 FIGURE 10-2 FIGURE 10-3 BLOCK DIAGRAM ............................................................................................................... 2-1 PIN ASSIGNMENT .............................................................................................................. 3-1 PACKAGE DIMENSIONS ...................................................................................................... 3-2 CONFIGURATION OF EACH PIN ........................................................................................... 3-4 68K FAMILY MPU W RITE TIMING ....................................................................................... 5-2 68K FAMILY MPU READ TIMING ......................................................................................... 5-3 X80 FAMILY MPU W RITE CYCLE TIMING ............................................................................ 5-4 X80 FAMILY MPU READ CYCLE TIMING.............................................................................. 5-5 SERIAL INTERFACE W RITE TIMING ..................................................................................... 5-6 SERIAL INTERFACE READ TIMING ....................................................................................... 5-7 INT1 INTERRUPT TIMING ................................................................................................... 5-8 MEMORY INTERFACE ARCHITECTURE ................................................................................. 6-1 SERIAL DATA FORMAT ....................................................................................................... 8-1 HARDWARE RESET TIMING ................................................................................................ 9-1 SOFTWARE RESET TIMING ................................................................................................. 9-1 EXAMPLE FOR X80 FAMILY MPU...................................................................................... 10-1 EXAMPLE FOR 68K FAMILY MPU...................................................................................... 10-2 EXAMPLE FOR SERIAL INTERFACE .................................................................................... 10-3 Seiko Instruments Inc. iii TCP/IP Network Stack LSI S-7600A Hardware Specification Revision 1.3 LIST OF TABLES TABLE 3-1 PIN ASSIGNMENT .................................................................................................................. 3-1 TABLE 3-2 PIN DESCRIPTION.................................................................................................................. 3-3 TABLE 4-1 ABSOLUTE MAXIMUM RATINGS .............................................................................................. 4-1 TABLE 4-2 RECOMMENDED OPERATING CONDITIONS .............................................................................. 4-1 TABLE 4-3 DC CHARACTERISTICS .......................................................................................................... 4-2 TABLE 4-4 POWER CURRENT CONSUMPTION .......................................................................................... 4-2 TABLE 5-1 INTERFACE SELECTION.......................................................................................................... 5-1 TABLE 5-2 CONNECTION RELATIONSHIP BETWEEN MPU AND PINS .......................................................... 5-1 TABLE 5-3 68K FAMILY MPU W RITE CYCLE TIMING ................................................................................ 5-2 TABLE 5-4 68K FAMILY MPU READ CYCLE TIMING ................................................................................. 5-3 TABLE 5-5 X80 FAMILY MPU W RITE CYCLE TIMING ................................................................................ 5-4 TABLE 5-6 X80 FAMILY MPU READ CYCLE TIMING ................................................................................. 5-5 TABLE 5-7 SERIAL INTERFACE W RITE CYCLE TIMING .............................................................................. 5-6 TABLE 5-8 SERIAL INTERFACE READ CYCLE TIMING ................................................................................ 5-7 TABLE 5-9 INTERRUPT SELECTION TABLE ............................................................................................... 5-8 TABLE 6-1 S-7600A MEMORY MAP (BANK 0) ......................................................................................... 6-2 TABLE 6-2 S-7600A MEMORY MAP (BANK 1) ......................................................................................... 6-2 TABLE 7-1 IAPI REGISTER MAP ............................................................................................................. 7-2 TABLE 7-2 IAPI REGISTER MAP (CONTINUED) ........................................................................................ 7-3 TABLE 7-3 REVISION REGISTER BIT DEFINITIONS .................................................................................... 7-4 TABLE 7-4 REVISION REGISTER DESCRIPTION ........................................................................................ 7-4 TABLE 7-5 GENERAL CONTROL REGISTER BIT DEFINITIONS .................................................................... 7-4 TABLE 7-6 GENERAL CONTROL REGISTER DESCRIPTION......................................................................... 7-4 TABLE 7-7 GENERIC SOCKET LOCATION REGISTER BIT DEFINITIONS ....................................................... 7-5 TABLE 7-8 GENERIC SOCKET LOCATION REGISTER DESCRIPTION ........................................................... 7-5 TABLE 7-9 MASTER INTERRUPT REGISTER BIT DEFINITIONS .................................................................... 7-5 TABLE 7-10 MASTER INTERRUPT REGISTER DESCRIPTIONS (CONTINUED) ............................................... 7-6 TABLE 7-11 CONF STATUS REGISTER BIT DEFINITIONS ........................................................................... 7-6 TABLE 7-12 CONF STATUS REGISTER DESCRIPTION ............................................................................... 7-7 TABLE 7-13 SERIAL PORT INTERRUPT REGISTER BIT DEFINITIONS .......................................................... 7-8 TABLE 7-14 SERIAL PORT INTERRUPT REGISTER DESCRIPTION ............................................................... 7-8 TABLE 7-15 SERIAL PORT INTERRUPT MASK REGISTER BIT DEFINITIONS ................................................. 7-8 TABLE 7-16 SERIAL PORT INTERRUPT MASK REGISTER DESCRIPTION ..................................................... 7-8 TABLE 7-17 OUR IP ADDRESS REGISTER BIT DEFINITIONS (0X10) .......................................................... 7-9 TABLE 7-18 OUR IP ADDRESS REGISTER BIT DEFINITIONS (0X11) .......................................................... 7-9 TABLE 7-19 OUR IP ADDRESS REGISTER BIT DEFINITIONS (0X12) ........................................................ 7-10 TABLE 7-20 OUR IP ADDRESS REGISTER BIT DEFINITIONS (0X13) ........................................................ 7-10 TABLE 7-21 INDEX REGISTER BIT DEFINITION ....................................................................................... 7-10 TABLE 7-22 INDEX REGISTER DESCRIPTION.......................................................................................... 7-10 TABLE 7-23 SOCKET CONFIG STATUS LOW REGISTER BIT DEFINITIONS ................................................ 7-11 TABLE 7-24 SOCKET CONFIG STATUS LOW REGISTER DESCRIPTION ..................................................... 7-12 TABLE 7-25 SOCKET STATUS MID REGISTER BIT DEFINITIONS .............................................................. 7-13 TABLE 7-26 SOCKET STATUS MID REGISTER DESCRIPTION................................................................... 7-13 TABLE 7-27 SOCKET ACTIVATE REGISTER BIT DEFINITIONS .................................................................. 7-14 TABLE 7-28 SOCKET ACTIVATE REGISTER DESCRIPTION....................................................................... 7-14 TABLE 7-29 SOCKET INTERRUPT REGISTER BIT DEFINITIONS ................................................................ 7-14 TABLE 7-30 SOCKET INTERRUPT REGISTER DESCRIPTION .................................................................... 7-15 TABLE 7-31 SOCKET DATA AVAIL REGISTER BIT DEFINITIONS ............................................................... 7-15 TABLE 7-32 SOCKET DATA AVAIL REGISTER DESCRIPTION ................................................................... 7-15 TABLE 7-33 SOCKET INTERRUPT MASK LOW REGISTER BIT DEFINITIONS .............................................. 7-16 TABLE 7-34 SOCKET INTERRUPT MASK LOW REGISTER DESCRIPTION ................................................... 7-16 TABLE 7-35 SOCKET INTERRUPT MASK HIGH REGISTER BIT DEFINITIONS .............................................. 7-16 TABLE 7-36 SOCKET INTERRUPT MASK HIGH REGISTER DESCRIPTION .................................................. 7-16 TABLE 7-37 SOCKET INTERRUPT LOW REGISTER BIT DEFINITIONS ........................................................ 7-17 TABLE 7-38 SOCKET INTERRUPT LOW REGISTER DESCRIPTION............................................................. 7-17 TABLE 7-39 SOCKET INTERRUPT HIGH REGISTER BIT DEFINITIONS ....................................................... 7-17 iv Seiko Instruments Inc. TCP/IP Network Stack LSI S-7600A Hardware Specification Revision 1.3 TABLE 7-40 SOCKET INTERRUPT HIGH REGISTER DESCRIPTION ............................................................ 7-18 TABLE 7-41 THEIR PORT REGISTER BIT DEFINITIONS (0X36) ................................................................ 7-19 TABLE 7-42 THEIR PORT REGISTER BIT DEFINITIONS (0X37) ................................................................ 7-19 TABLE 7-43 OUR PORT REGISTER BIT DEFINITIONS (0X38)................................................................... 7-19 TABLE 7-44 OUR PORT REGISTER BIT DEFINITIONS (0X39)................................................................... 7-19 TABLE 7-45 SOCKET STATUS HIGH REGISTER BIT DEFINITIONS ............................................................. 7-19 TABLE 7-46 SOCKET STATUS HIGH REGISTER DESCRIPTION ................................................................. 7-20 TABLE 7-47 THEIR IP ADDRESS REGISTER BIT DEFINITIONS (0X3C) ..................................................... 7-20 TABLE 7-48 THEIR IP ADDRESS REGISTER BIT DEFINITIONS (0X3D) ..................................................... 7-20 TABLE 7-49 THEIR IP ADDRESS REGISTER BIT DEFINITIONS (0X3E)...................................................... 7-20 TABLE 7-50 THEIR IP ADDRESS REGISTER BIT DEFINITIONS (0X3F) ...................................................... 7-20 TABLE 7-51 PPP CONTROL AND STATUS REGISTER BIT DEFINITIONS (0X60) ........................................ 7-21 TABLE 7-52 PPP CONTROL STATUS REGISTER DESCRIPTION ............................................................... 7-21 TABLE 7-53 PPP INTERRUPT CODE REGISTER BIT DEFINITIONS ........................................................... 7-22 TABLE 7-54 PPP INTERRUPT ERROR CODES ........................................................................................ 7-22 TABLE 7-55 PPP MAX RETRY REGISTER.............................................................................................. 7-22 TABLE 7-56 PAP STRING FORMAT ....................................................................................................... 7-23 TABLE 7-57 PAP STRING EXAMPLE...................................................................................................... 7-23 TABLE 8-1 SERIAL PORT REGISTER MAP ................................................................................................ 8-1 TABLE 8-12 HEADER STRUCTURE .......................................................................................................... 8-5 Seiko Instruments Inc. v TCP/IP Network Stack LSI S-7600A Hardware Specification Revision 1.3 1. Introduction 1.1. Product Overview The S-7600A is a LSI that integrates TCP/IP network stack. It offers your devices a quicker and easier connectivity to a network with its on-chip serial interface and a static RAM that operates as a buffer. Implementing this LSI into your system can significantly reduce your software development cost. Also its low operating frequency gives benefits to the power consumption. TM The S-7600A also supports a microprocessor interface via the iReady iAPI register set, and connection to Physical Transport Layer Interface. iAPI consists of a set of register and operating definitions that allow any micro controller system to interface with the internal modules. 1.2. Features z z z z z z z z z z Industry standard protocols support : TCP/IP (Ver. 4.0) PPP (STD-51-compliant) UDP General purpose sockets : Configured for two sockets MPU interface : 68k/x80(MOTO/Intel) bus interface or Synchronous serial interface Physical Transport Layer Interface : Universal Asynchronous Receiver/Transmitter (UART) Low clock rate : Multiplied four by the bit-rate Operating frequency : 256kHz typical Low power consumption : Full-transmitting Operating current consumption : 0.9mA typ. Non-transmitting Operating current consumption : 150µA typ. Standby current consumption : 1.0µA typ. Stand-by mode : held by RESET signal Wide operating voltage range : 2.4V to 3.6V Easier application development : TM portable iAPI support 1.3. Benefits z z Off-loads MIPS allowing system to operate with low end and low cost processors. Consumes minimal power-up to 1/100 of competing solution. Seiko Instruments Inc. 1-1 TCP/IP Network Stack LSI S-7600A Hardware Specification Revision 1.3 1.4. Trademarks TM TM iReady iAPI and iAPI is a trademark of iReady Corporation. All other products and brand names are trademarks and registered trademarks of their respective companies. 1.5. Definitions z z z z z IP PPP TCP UDP API Internet Protocol Point-to-Point Protocol Transmission Control Protocol User Datagram Protocol Application Programming Interface 1.6. Applicable Documents z z S-7600A Functional Specification S-7600A API Application Manual 1.7. Cautions 1. 2. 3. 4. 5. 1-2 DO NOT apply a voltage or current that exceeds the absolute maximum ratings to terminals. If applied, the IC may malfunction or be destroyed. The standard values are set with sufficient margins, but use the IC within the recommended operating conditions to optimize device quality. Measures against static electricity 2.1 When transporting or storing ICs, use conductive containers or metal coated boxes. 2.2 Check that there is no current leakage in electrical facilities, and be sure to ground them. Also ensure that workbenches and people who handle ICs are grounded. Excessive external noise to the power supply or I/O terminals of CMOS ICs causes latch-up, leading to faults and damage. If latch-up has occurred, immediately turn off the device, eliminate the cause, and turn on the device again. Keep the IC away from mechanical vibration, shock, and sudden changes in temperature. These may cause wires to break. Environment 5.1 Use and store ICs below the absolute maximum rated temperature. 5.2 DO NOT use or store ICs where condensation can occur. 5.3 DO NOT use ICs where they are directly exposed to dust, salt, or acid gas such as SO2. These may cause leaks between element leads and cause corrosion. 5.4 To store ICs for a long time, DO NOT process them. During storage, DO NOT apply any load to ICs. Seiko Instruments Inc. TCP/IP Network Stack LSI S-7600A Hardware Specification Revision 1.3 2. Functional Block Diagram Figure 2-1 shows a functional block diagram of the S-7600A. There are blocks of the Network Stack and other functions related to it. The S-7600A has the interface for a host MPU and a Physical layer for various data terminal equipment. MPU Interface CS PSX C86 RS READX WRITEX BUSYX INTCTL INT1 INT2X UDP TCP IP SRAM Interface Network Stack SD(7:0) SRAM 10Kbytes PPP CLK RESETX Physical Layer Interface 16-byte 1-byte FIFO BUFFER P2S DSRX RTSX RXD RI DCD DTRX TXD CTSX S2P Figure 2-1 Block Diagram The transport and network layers contain: z Two general sockets that provide connectivity between the application layer and the transport layer. z TCP/UDP module that allows for reliable (retransmission) and unreliable (no retransmission) datagram deliveries. z IP module that provides connectionless packet delivery. z PPP module that provides point-to-point connection link between two hosts. Seiko Instruments Inc. 2-1 TCP/IP Network Stack LSI S-7600A Hardware Specification Revision 1.3 3. Terminals 3.1. Pin Assignment Figure 3-1 shows Pin Assignment in Package. TI3 RS CS READX C86 VSS WRITEX PSX INTCTRL INT1 TO5 SD1 TO6 SD0 TO7 1 24 13 TXD TO4 SD2 RTSX TO3 SD3 DTRX TO2 SD4 DCD TO1 SD5 RXD VDD VDD RI TI7 TI1 DSRX TI6 SD6 CTSX TI2 VSS TI5 CLK TI4 NC RESETX 48 SD7 TEST 37 25 INT2X BUSYX 36 12 Figure 3-1Pin Assignment Table 3-1 shows signal names, listed by Pin Number. Pin No. 1 2 3 4 5 6 7 8 9 10 11 12 Pin name RESETX TEST CLK VSS CTSX DSRX RI RXD DCD DTRX RTSX TXD Pin No. 13 14 15 16 17 18 19 20 21 22 23 24 Table 3-1 3-1 Pin name TO7 TO6 TO5 TO4 TO3 TO2 TO1 VDD TI7 TI6 TI5 TI4 Pin No. 25 26 27 28 29 30 31 32 33 34 35 36 Pin Assignment Seiko Instruments Inc. Pin name TI3 RS CS C86 READX VSS PSX WRITEX INTCTRL INT1 INT2X BUSYX Pin No. 37 38 39 40 41 42 43 44 45 46 47 48 Pin name SD7 NC TI2 SD6 TI1 VDD SD5 SD4 SD3 SD2 SD1 SD0 TCP/IP Network Stack LSI S-7600A Hardware Specification Revision 1.3 3.2. Package Dimensions S-7600A is housed in a 48-pin QFP package with 0.5mm pin pitch spacing. The package layout is depicted in Figure 3-2. 0.5±0.3 9.0±0.3 7.0 25 37 24 48 13 7.0 0.15 12 +0.10 -0.06 1.7m ax. 1.40±0.20 1 +0.10 0.20 -0.05 Figure 3-2 0.50 0~ 0.20 9.0±0.3 36 UNIT:m m Package Dimensions Seiko Instruments Inc. 3-2 TCP/IP Network Stack LSI S-7600A Hardware Specification Revision 1.3 3.3. Pin Description The pins and signal descriptions are listed by function in Table 3-2. Name VDD1,VDD2 VSS1,VSS2 RESETX TEST, TI1 to TI7 TO1 to TO7 CLK CTSX DSRX RI RXD DCD DTRX RTSX TXD RS CS C86 READX PSX WRITEX INTCTRL INT1 INT2X BUSYX SD7 SD6 SD5 SD0 to SD4 I/O I I Description Positive power supply GND potential Reset input Test input (pull-down resistor is built in) When normal use, connect to VSS or open O Test output When normal use, open I Clock input I Clear to send input I Data set ready input I Ring indicator input I Serial received data input I Data carrier detect input O Data terminal ready output O Request to send output O Serial transmit data output I Register selection input I Chip selection input I MPU interface mode selection input 68k mode : 1 x80 mode : 0 I x80 mode : read requirement input 68k mode : enable input I parallel/serial interface selection input I x80 mode : write requirement input 68k/Serial mode : read/write selection input I INT1/INT2X drive type(CMOS/OD) selection input *OT Interrupt output(active High) from S-7600A chip to MPU *OT Interrupt output(active Low) from S-7600A chip to MPU O busy indicator output *B x80/68k mode : data bus Serial mode : serial data input *B x80/68k mode : data bus Serial mode : serial clock input *B x80/68k mode : data bus Serial mode : serial data output *B Data bus *OT : Tri-state output *B : bi-directional Table 3-2 3-3 Pin Description Seiko Instruments Inc. Type A B D C C C C C C D D D C C C C C C C E E D F F F F TCP/IP Network Stack LSI S-7600A Hardware Specification Revision 1.3 3.4. Pin Configuration Figure 3-3 shows configuration of each pin. A B pad pad cin cin Vss C D pad pad cin E in F cin pad pad in in oen oen Figure 3-3 Configuration of Each Pin Seiko Instruments Inc. 3-4 TCP/IP Network Stack LSI S-7600A Hardware Specification Revision 1.3 4. Electrical Characteristics 4.1. Absolute Maximum Ratings Parameter Symbol Storage temperature Rating Unit Tsta -40 to +125 °C Operating temperature Topr -40 to +85 °C Power supply voltage VDD Ta=25°C -0.3 to +4.0 V Input voltage VIN Ta=25°C VSS-0.3 to VDD+0.3 V Output voltage VOUT Ta=25°C VSS to VDD V Table 4-1 Conditions Absolute Maximum Ratings 4.2. Recommended Operating Conditions Parameter Symbol Conditions Min. Typ. Max. Unit Note Operating Frequency FOPR Ta=-40 to +85°C - 0.256 5 MHz 1 Pw Ta=-40 to +85°C 80 - - nS VDD Ta=-40 to +85°C 2.4 - 3.6 V VIN Ta=-40 to +85°C 0 - VDD V range Clock Pulse width Operating voltage range Input voltage Note1: The clock is given by the CLK pin and needs to be as four times or more fast as the BAUD rate. (The multiplier is an integer whose tolerance is <±2%) Table 4-2 4-1 Recommended Operating Conditions Seiko Instruments Inc. TCP/IP Network Stack LSI S-7600A Hardware Specification Revision 1.3 4.3. DC Characteristics Unless otherwise specified: VDD=3.0V, VSS=0V, Ta=25°C Conditions Min. Typ. Max. Unit Parameter Symbol Low level input VIL 0.2× VDD - - V VIH - - 0.8× VDD V voltage High level input voltage Low level input ILL VIN=VSS -1.0 - 1.0 µA ILH All input terminals without pull-down resister -1.0 - 1.0 µA 18 70 220 µA leakage current High level input leakage current VIN=VDD High level input IIH current All input terminals with pull-down resister VIN=VDD Low level output IOL VOL=0.4V 5.0 - - mA IOH VOH=2.6V - - -3.5 mA - 0.46 - V current High level output current Schmitt Hysteresis VWD voltage Table 4-3 DC Characteristics 4.4. Power Current Consumption Parameter Symbol Full-transmitting Operating current consumption IDD1 Non-transmitting Operating current consumption IDD2 Unless otherwise specified: VDD=3.0V, VSS=0V, Ta=25°C Conditions Min. Typ. Max. Unit Ta=-40 to +85°C - 0.9 2.2 mA - 150 300 µA - 1.0 15.0 FOPR=256KHz Ta=-40 to +85°C FOPR=256KHz RESETX=VSS Ta=-10 to +70°C Standby current consumption Is Ta=-40 to +85°C Table 4-4 30.0 µA Power Current Consumption Seiko Instruments Inc. 4-2 TCP/IP Network Stack LSI S-7600A Hardware Specification Revision 1.3 5. MPU Interface 5.1. Overview The S-7600A supports two MPU interfaces: parallel and serial. In parallel interface mode, S-7600A can interface with x80 Family MPU or 68k Family MPU. PSX CS RS READ WRITEX BUSYX C86 SD7 SD6 SD5 SD4 to SD0 WRITEX BUSYX L D7 D6 D5 D4 to D0 X H: CS RS parallel x80 H: READ X CS RS E R/WX BUSYX H D7 D6 D5 D4 to D0 CS RS H or L R/WX BUSYX H or L SI SCL SO Hi-Z parallel 68k L: serial Table 5-1 Interface Selection 5.2. Parallel Interface Setting PSX to “H” select the parallel interface. In parallel interface mode the S-7600A can interface with either x80 Family MPU or 68k Family MPU. The desired MPU mode can be selected by setting the C86 pin to “H” or “L”. RS 68k Family MPU x80 Family MPU Function R/WX WRITEX 1 1 0 1 Read Register 1 0 1 0 Write Register 0 1 0 1 Read Index Register 0 0 1 0 Write Index Register Table 5-2 5-1 READX Connection Relationship between MPU and Pins Seiko Instruments Inc. TCP/IP Network Stack LSI S-7600A Hardware Specification Revision 1.3 5.2.1. 68k Family MPU Mode This mode can be selected by pulling the C86 input pin “H” and the PSX input pin “H”. In this mode, the address and data are muxed into a single 8-bit bus. All cycles start by placing an address on the bus and setting the RS pin to “L”. In this mode WRITEX signal works as read/write(R/WX) signal and READX is the enable(E) signal for 68k Family MPU interface. After the address cycle, the MPU generates a read or writes strobe by setting the READX and WRITEX pins. The S-7600A MPU interface logic assert a BUSYX signal low during data write and read phases. The MPU samples the BUSYX signal before starting a new cycle. The can initiate a new cycle if the bit is “H”. 5.2.1.1. Write Cycle Timing CS RS WRITEX (R/WX) TEW TAW6 TAH6 TEW TAW6 TAH6 TCYC6 READX (E) TDS6 TDS6 TDH6 TDH6 Address SD7 to 0 Data TBOD6 TBC6 TBD6 BUSYX CLK Figure 5-1 68k Family MPU Write Timing Symbol Description Min Max TCYC6 System Cycle Time 100 ns - TAH6 Address Hold Time 20ns - TAW6 Address Setup Time 20ns - TDS6 Data Setup time 20ns - TDH6 Data Hold Time 20 ns - TEW Enable Pulse Width 40 ns 1.9CLK TBD6 BUSYX Delay Time - 30ns TBC6 BUSYX Pulse Width 2CLK - TBOD6 BUSYX Output Disable Time - 30ns Notes CL=80pF CL=80pF NOTES: • CLK is the clock of S-7600A • Timing is specified of 50% of the signal waveform. • Rise/fall time(20%,80%) of the input signal is 15nsec or less. Table 5-3 68k Family MPU Write Cycle Timing Seiko Instruments Inc. 5-2 TCP/IP Network Stack LSI S-7600A Hardware Specification Revision 1.3 5.2.1.2. Read Cycle Timing CS TEW RS TAH6 TAW6 WRITEX (R/WX) TEW TAW6 TAH6 TEW TAW6 TAH6 TCYC6 READX (E) TDS6 TDH6 TACC6 Address SD7 to 0 TOH6 TACC6 Address TBD6 BUSYX TOH6 Data TBOD TBC6 CLK Figure 5-2 68k Family MPU Read Timing Symbol Description Min Max Notes TCYC6 System Cycle Time 100 ns - TAH6 Address Hold Time 20ns - TAW6 Address Setup Time 20ns - TDS6 Data Setup time 20ns - TDH6 Data Hold Time 20 ns - TACC6 Access time - 30ns CL=80pF TOH6 Output Disable Time 20 ns - CL=80pF TEW Enable Pulse Width 40 ns 1.9CLK TBD6 BUSYX Delay Time - 30ns TBC6 BUSYX Pulse Width 2CLK - TBOD6 BUSYX Output Disable Time - 30ns CL=80pF CL=80pF NOTES: • CLK is the clock of S-7600A • Timing is specified of 50% of the signal waveform. • Rise/fall time(20%,80%) of the input signal is 15nsec or less. Table 5-4 5-3 68k Family MPU Read Cycle Timing Seiko Instruments Inc. TCP/IP Network Stack LSI S-7600A Hardware Specification Revision 1.3 5.2.2. x80 Family MPU Mode This mode is selected by pulling the C86 input pin “L” and the PSX input pin “H”. In this mode, the address and data are muxed onto a single 8-bit bus. All cycles start with the address placed on the bus. This address is then latched internally on the rising edge of WRITEX. The RS pin “L” indicates that the WRITEX strobe is for the address phase. In the next phase, data is either written or read by generating WRITEX or READX strobe. The MPU interface logic will assert the BUSYX signal after READX or WRITEX strobes are de-asserted. The BUSYX signal is de-asserted after the S-7600A complete a read or writes operation. The MPU samples the BUSYX signal before starting a new cycle. The MPU can initiate a new cycle after the BUSYX signal gets de-asserted. 5.2.2.1. Write Cycle Timing CS RS READX TCC8 TAW8 TAH8 TCC8 TAW8 TAH8 TCYC8 WRITEX TDS8 SD7 to 0 TDS8 TDH8 Address read TDH8 Data read TBOD8 TBC8 TBD8 BUSYX CLK Figure 5-3 x80 Family MPU Write Cycle Timing Symbol Description Min Max TCYC8 System Cycle Time 100 ns - TAH8 Address Hold Time 20ns - TAW8 Address Setup Time 20ns - TDS8 Data Setup time 20ns - TDH8 Data Hold Time 20 ns - TCC8 Control Pulse Width 40 ns 1.9CLK TBD8 BUSYX Delay Time - 30ns TBC8 BUSYX Pulse Width 2CLK - TBOD8 BUSYX Output Disable Time - 30ns Notes CL=80pF CL=80pF NOTES: • CLK is the clock of S-7600A • Timing is specified of 50% of the signal waveform. • Rise/fall time(20%,80%) of the input signal is 15nsec or less. Table 5-5 x80 Family MPU Write Cycle Timing Seiko Instruments Inc. 5-4 TCP/IP Network Stack LSI S-7600A Hardware Specification Revision 1.3 5.2.2.2. Read Cycle Timing CS RS TAW8 READX TCC8 TAH8 TCC8 TAW8 TAW8 TAH8 TCC8 TAH8 TCYC8 WRITEX TDS8 TDH TACC8 Address SD7 to 0 TOH8 TBD8 BUSYX TACC8 Address TOH8 Data TBOD TBC8 CLK Figure 5-4 x80 Family MPU Read Cycle Timing Symbol Description Min Max Notes TCYC8 System Cycle Time 100 ns - TAH8 Address Hold Time 20ns - TAW8 Address Setup Time 20ns - TDS8 Data Setup time 20ns - TDH8 Data Hold Time 20 ns - TACC8 Access time - 30ns CL=80pF TOH8 Output Disable Time 20 ns - CL=80pF TCC8 Control Pulse Width 40 ns 1.9CLK TBD8 BUSYX Delay Time - 30ns TBC8 BUSYX Pulse Width 2CLK - TBOD8 BUSYX Output Disable Time - 30ns CL=80pF CL=80pF NOTES: • CLK is the clock of S-7600A • Timing is specified of 50% of the signal waveform. • Rise/fall time(20%,80%) of the input signal is 15nsec or less. Table 5-6 5-5 x80 Family MPU Read Cycle Timing Seiko Instruments Inc. TCP/IP Network Stack LSI S-7600A Hardware Specification Revision 1.3 5.3. Serial Interface This mode is selected by pulling the PSX input pin “L”. In this mode Bit 6 of the Data Bus is used as the serial clock and bit 5 and 7 are used as Data Input and Data Output. Bit 0 to 4 are high impedance. By pulling WRITEX signal to “H” or “L”, the MPU performs a read or write operation. 5.3.1. Write Cycle Timing CS RS WRITEX (R/WX) TAHS TASS TASS TAHS TCYCS SD6 (SCL) TCLLS SD7 (SI) A7 A6 A5 A4 TDHS TDSS TCLHS A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0 BUSYX TBCS TBDS TBODS CLK Figure 5-5 Serial Interface Write Timing Symbol Description Min Max TCYCS System Cycle Time 100 ns 1.9CLK TCLLS Clock L Time 40ns - TCLHS Clocl H Time 40 ns - TASS Address Setup Time 20ns - TAHS Address Hold Time 20ns - TDSS Data Setup time 20ns - TDHS Data Hold Time 20 ns - TBDS BUSYX Delay Time TBCS BUSYX Pulse Width TBODS BUSYX Output Disable Time 2CLK - 30ns Notes CL=80pF 30ns CL=80pF NOTES: • CLK is the clock of S-7600A • Timing is specified of 50% of the signal waveform. • Rise/fall time(20%,80%) of the input signal is 15nsec or less. Table 5-7 Serial Interface Write Cycle Timing Seiko Instruments Inc. 5-6 TCP/IP Network Stack LSI S-7600A Hardware Specification Revision 1.3 5.3.2. Read Cycle Timing CS RS TAHS TASS WRITEX (R/WX) TASS TAHS TAHS TASS TCLHS TCYCS SD6 (SCL) TCLLS SD7 (SI) A7 A6 TDSS A5 A4 A3 A2 A1 TOHS TDHS TOHS TDDS A0 TDDS SD5 (SO) A7 A6 A5 A4 A3 A2 A1 A0 D7 TBDS BUSYX TBCS D6 D5 D4 D3 D2 D1 TBODS CLK Figure 5-6 Serial Interface Read Timing Symbol Description Min Max TCYCS System Cycle Time 100 ns 1.9CLK TCLLS Clock L Time 40ns - TCLHS Clocl H Time 40 ns - TASS Address Setup Time 20ns - TAHS Address Hold Time 20ns - TDSS Data Setup time 20ns - TDHS Data Hold Time 20 ns - TDDS Data delay Time - 30ns CL=80pF TOHS Output Disable Time - 20ns CL=80pF TBDS BUSYX Delay Time - 30ns CL=80pF TBCS BUSYX Pulse Width TBODS BUSYX Output Disable Time 2CLK - Notes 30ns CL=80pF NOTES: • CLK is the clock of S-7600A • Timing is specified of 50% of the signal waveform. • Rise/fall time(20%,80%) of the input signal is 15nsec or less. Table 5-8 5-7 Serial Interface Read Cycle Timing Seiko Instruments Inc. D0 TCP/IP Network Stack LSI S-7600A Hardware Specification Revision 1.3 5.4. Interrupt The interrupt signal outputs an active level while the interrupt flag is set in the interrupt register in the S-7600A’s interrupt register. The interrupt signal returns to an inactive level if the flag clears. Show the interrupt timing in the Figure 5-7. The INT1 and INT2X can be Open Drain or CMOS output depending on the setting of INTCTL. The INT1 and INT2X outputs are CMOS if INTCTL is “H” otherwise outputs are Open Drain. Table 5-9 defines the interrupt selection. Interrupt flag INTCTL INT1 INT2X Set H H L Set L H L Reset H L H Reset L Hi-Z Hi-Z Table 5-9 Interrupt Selection Table CS RS WRITEX Address Data SD7 to 0 BUSYX CLK INT1 Clear (x80 Family MPU mode, INTCTL=high) Figure 5-7 INT1 Interrupt Timing Seiko Instruments Inc. 5-8 TCP/IP Network Stack LSI S-7600A Hardware Specification Revision 1.3 6. Memory Requirements 6.1. Overview S-7600A contains two general sockets along with the TCP/UDP/IP and PPP protocols. Their total memory requirement is 10K bytes. This memory is included on the S-7600A chip. 6.2. Memory Interface Architecture The Network Stack feeds all of its memory requests into a single Memory Arbiter inside of the Network Stack core. The arbiter then feeds out one memory request to the SRAM interface. This interface serves to translate the network stack's timing into signal timing required by the SRAM. This architecture is shown in Figure 6-1. Network Stack TCP / UDP Memory Arbiter IP SRAM Interface PPP Serial Port Figure 6-1 6-1 Memory Interface Architecture Seiko Instruments Inc. SRAM TCP/IP Network Stack LSI S-7600A Hardware Specification Revision 1.3 6.3. Memory Map The memory map has been configured to make the SRAM supporting the S-7600A compact. S-7600A has two 5 K byte memory banks (denoted as “0” and “1”). Their mapping addresses are given in Table 6-1 and Table 6-2. The actual capacity of the incoming buffer is 2047 bytes. The actual capacity of the outgoing buffer is 1023 bytes for TCP mode and 1015 bytes for UDP mode. Table 6-1 S-7600A Memory Map (Bank 0) Address Size Contents 0x0000 - 0x07FF 2K Socket 0 Receive Buffer 0x0800 - 0x0BFF 1K Socket 0 Send Buffer 0x0C00 - 0x0FFF 1K TCP Data Base 0x1000 - 0x13FF 1K IP Buffer Table 6-2 S-7600A Memory Map (Bank 1) Address Size Contents 0x0000 - 0x07FF 2K Socket 1 Receive Buffer 0x0800 - 0x0BFF 1K Socket 1 Send Buffer 0x0C00 - 0x0FFF 1K PPP Buffer 0x1000 - 0x13FF 1K PAP Buffer Seiko Instruments Inc. 6-2 TCP/IP Network Stack LSI S-7600A Hardware Specification Revision 1.3 7. S-7600A Register Definitions 7.1. Overview This section covers the S-7600A's API registers. The register are divided into three types: global, direct and indexed. Global registers occupy the address space from 0x00 to 0x1D and 0x60 to 0x6F. Direct and indexed registers occupy the configuration space from 0x20 to 0x3F. Indexed register require the socket index to be set prior to accessing the registers. 7.2. iAPI Register Map Table 7-1 and Table 7-2 shows the complete iAPI register map for the S-7600A chip. All registers not listed are reserved, and should not be accessed. 7-1 Seiko Instruments Inc. TCP/IP Network Stack LSI S-7600A Table 7-1 Hardware Specification Revision 1.3 iAPI Register Map Add Register Bit Definitions 0x00 Revision Major Revision Number Minor Revision Number 0x01 General_Control - - - - - - - SW_ RST 0x02 General_Socket_ 0 0 0 0 0 0 S1 S0 - - - - - PT_ INT LINK _INT SOCK _INT DCD DSR/ CTS RI DTR RTS SCTL Location 0x04 Master_Interrupt 0x08 Serial_Port_Config S_ HWFC DA V 0x09 PT_ Serial_Port_Int - - - - - - - DSINT_ EN - - - - - - INT 0x0A Serial_Port_Int_ PINT _EN Mask 0x0B Serial_Port_Data Serial Data Register 0x0C - 0x0D BAUD_Rate_Div BAUD Rate Divider Registers 0x10 - 0x13 Our_IP_Address Our IP Address 0x1C Clock_Div_Low Low Byte for 1 kHz clock divider 0x1D Clock_Div_High High Byte for 1 kHz clock divider 0x20 Index Socket index 0x21 TOS* Type of Service Field 0x22 Socket_ Config_Status_Low* TO Buff_ Empty Buff_ Full Data_ Avail/ RST 0x23 Socket_Status_Mid* URG RST Term ConU 0x24 Socekt_Activate - - - - - - S1 S0 0x26 Socket_Interrupt - - - - - - I1 I0 0x28 Socket_Data_Avail - - - - - - DAV1 DAV0 NOTE: - Protocol_Type TCP State 1)Reserved bits are signified by a dash (-). All reserved bits should be written as “0”. 2)Indexed registers are signified by an asterisk (*). Seiko Instruments Inc. 7-2 TCP/IP Network Stack LSI S-7600A Table 7-2 Add iAPI Register Map (Continued) Register Bit Definitions 0x2A Socket_Interrupt_ Mask_Low* TO_ En Buff_ Emp_ En Buff_F ull Data_ Avail_ En - - - - 0x2B Socket_Interrupt_ Mask_High* URG_En RST_ En Term_ En ConU_ En - - - - 0x2C Socket_Interrupt_Low* TO Buff_ Empty Buff_ Full Data_ Avail - - - - 0x2D Socket_Interrupt_High* URG RST Term ConU - - - - 0x2E Socket_Data* Socket 8-bit data 0x30 TCP_Data_Send (WO)* Any write causes data to be sent 0x30 - 0x31 Buffer_Out (RO)* Buffer Out Length 0x32 - 0x33 Buffer_In (RO)* Buffer In Length 0x34 - 0x35 Urgent_Data_Pointer* Urgent Data Offset Pointer 0x36 - 0x37 Their_Port* Target Port Address 0x38 - 0x39 Our_Port* Our Port Address 0x3A Socket_Status_High* 0x3C - 0x3F Their_IP_Address* Target IP Address 0x60 PPP_Control_Status PPP_Int 0x61 PPP_Interrupt_Code Interrupt Code 0x62 PPP_Max_Retry 0x64 PPP_String NOTE: 7-3 Hardware Specification Revision 1.3 - - Con_ Val - - - - - Snd _bsy Use_ PAP To_ Dis PPP_ Int_En Kick PPP_ En PPP_ Up / SRset - PPP Maximum retry Pap user name and password 1)Reserved bits are signified by a dash (-). All reserved bits should be written as “0”. 2)Indexed registers are signified by an asterisk (*). Seiko Instruments Inc. TCP/IP Network Stack LSI S-7600A Hardware Specification Revision 1.3 7.3. Register Definitions 7.3.1. Revision Register (0x00) (Read-Only, Default 0x21) This direct read-only register reports back the design revision. See the design revision form in Table 7-3 and Table 7-4. Table 7-3 Bit Revision Register Bit Definitions 7 6 5 4 3 2 1 0 Def. Major Revision Number Minor Revision Number Default 0x2 0x1 Table 7-4 Revision Register Description Bit Bit Name Access Description 7:4 Major Revision Number R This nibble indicates the major revision number for the S-7600A core. 3:0 Minor Revision Number R This nibble indicates the minor revision number for the S-7600A core. 7.3.2. General Control Register (0x01) (Read/Write, Default 0x00) This direct register contains the master software reset. See the register format in Table 7-5 and Table 7-6.See the wave format in figure 9.-2. Table 7-5 General Control Register Bit Definitions Bit 7 6 5 4 3 2 1 0 Def. - - - - - - - SW_RST Default 0 0 0 0 0 0 0 0 NOTE: Reserved bits are signified by a dash (-). All reserved bits should be written as “0”. Table 7-6 Bit 0 General Control Register Description Bit Name SW_RST Access R/W Description Software Reset. This active high reset returns the S-7600A core to power-on reset settings. It is self-clearing and does not need to be written to “0” for proper operations. 0 = Normal operation 1 = Soft reset Seiko Instruments Inc. 7-4 TCP/IP Network Stack LSI S-7600A Hardware Specification Revision 1.3 7.3.3. Generic Socket Location Register (0x02) (Read-Only) This register is used to report back the location of general sockets to the software layer. Only bits [1:0] will be set because the S-7600A chip is equipped with two general sockets. Table 7-7 Generic Socket Location Register Bit Definitions Bit 7 6 5 4 3 2 1 0 Def. S7 S6 S5 S4 S3 S2 S1 S0 Value 0 0 0 0 0 0 1 1 Table 7-8 Generic Socket Location Register Description Bit Bit Name Access Description 7 S7 R Not available 6 S6 R Not available 5 S5 R Not available 4 S4 R Not available 3 S3 R Not available 2 S2 R Not available 1 S1 R General socket 1 available 0 S0 R General socket 0 available 7.3.4. Master Interrupt (0x04) (Read-Only, Default 0x00) This direct register indicates the source of the S-7600A interrupt. Table 7-9 Master Interrupt Register Bit Definitions Bit 7 6 5 4 3 2 1 0 Def. - - - - - PT_INT LINK_INT SOCK_INT Default 0 0 0 0 0 0 0 0 NOTE: Reserved bits are signified by a dash (-). All Reserved bits should be written as “0”. 7-5 Seiko Instruments Inc. TCP/IP Network Stack LSI S-7600A Hardware Specification Revision 1.3 Table 7-10 Bit 2 Master Interrupt Register Descriptions (Continued) Bit Name Access PT_INT R Description Physical Transport Interrupt The physical transport triggers this interrupt. An application should check the Serial Port Int register to determine the actual cause of the interrupt. 1 LINK_INT R Link Layer Interrupt The link layer triggers this interrupt. An application should check the PPP Interrupt Code register to determine the actual cause of the interrupt. 0 SOCK_INT R Socket Interrupt One of the sockets that need servicing causes this interrupt. An application should check the Socket Interrupt register to determine the actual socket number. 7.3.5. Serial Port Configuration / Status Register (0x08) (Read/Write, Default 0X0XX110B) This register configures the serial port as shown in Table 7-11 and Table 7-12. Table 7-11 Conf Status Register Bit Definitions Bit 7 6 5 4 3 2 1 0 Def. S_DAV DCD DSR/ HWFC CTS RI DTR RTS SCTL Default 0 - 0 - - 1 1 0 Seiko Instruments Inc. 7-6 TCP/IP Network Stack LSI S-7600A Table 7-12 Bit 7 Hardware Specification Revision 1.3 Conf Status Register Description Bit Name S_DAV Access R/W Description Serial Port Data Available When read, bit indicates that Serial Port data is available. This bit should be written 0. 6 DCD R/W Carrier Detect This bit reflects the current state of the DCD bit on the serial port. It is independent of the SCTL bit setting. This bit should be written 0. 5 DSR / HWFC R/W Data Send Ready / Hardware Flow Control When read, this bit reflects the current state of the DSR bit on the serial port. When this bit written: 0 = Hardware Flow control is deactivated 1 = Hardware Flow control activated Refer to Chapter 8 for more information about Hardware Flow Control. 4 CTS R Clear To Send This read-only bit reflects the current state of the CTS bit on the serial port. It is independent of the SCTL bit setting. 3 RI R Ring Indicator This read-only bit reflects the current state of the RI bit on the serial port. It is independent of the SCTL bit setting. 2 DTR R/W Data Terminal Ready Reading this bit follows the current state of the DTR bit on the serial port. The MPU can control the DTR by writing to this bit. 1 RTS R/W Request To Send Reading this bit follows the current state of the RTS bit on the serial port. The MPU can control the RTS by writing to this bit. 0 SCTL R/W Serial Port Control This bit determines who controls the serial port. When this bit is low (default), the MPU controls the port. When the SCTL bit is high, the network stack controls the serial serial port. 0 = MPU controls serial port 1 = Hardware controls serial port 7-7 Seiko Instruments Inc. TCP/IP Network Stack LSI S-7600A Hardware Specification Revision 1.3 7.3.6. Serial Port Interrupt Register (0x09) (Read-Only, Default 0X000000B) This register indicates the state of the serial port interrupt. Table 7-13 Serial Port Interrupt Register Bit Definitions Bit 7 6 5 4 3 2 1 0 Def. PT_INT - - - - - - - Default 0 - 0 0 0 0 0 0 NOTE: Reserved bits are signified by a dash (-). All Reserved bits should be written as “0”. Table 7-14 Bit 7 Serial Port Interrupt Register Description Bit Name Access PT_INT Description R Port Transport Interrupt This bit indicates when the serial port interrupt is active. This condition depends on the states of the PINT_EN and DSINT_EN bits in the Serial Port Interrupt Mask Register. When PINT_EN is 1, an interrupt will occur whenever data is available in the serial port input FIFO ("S_DAV" in the Serial Port Configuration/Status Register is 1). When DSINT_EN is 1, an interrupt will be active whenever the CPU can write to the Serial Port Data Register to transmit a byte of data. If both PINT_EN and DSINT_EN are enabled, the interrupt will be active if either condition is met. 7.3.7. Serial Port Interrupt Mask Register (0x0A) (Read/Write, Default 0x00) This register enables the serial port interrupts. The default for this register is 0x00 (interrupts disabled). Table 7-15 Serial Port Interrupt Mask Register Bit Definitions Bit 7 6 5 4 3 2 1 0 Def. PINT_EN DSINT_EN - - - - - - Default 0 0 0 0 0 0 0 0 NOTE: Reserved bits are signified by a dash (-). All Reserved bits should be written as “0”. Table 7-16 Bit 7 Serial Port Interrupt Mask Register Description Bit Name PINT_EN Access R/W Description Port Interrupt Enable This is the enable for the port interrupt. 6 DSINT_EN R/W Data sent interrupt Enable. This is enable for the data sent interrupt. Seiko Instruments Inc. 7-8 TCP/IP Network Stack LSI S-7600A Hardware Specification Revision 1.3 7.3.8. Serial Port Data Register (0x0B) (Read/Write) This register sends data to and reads data from the serial port UART. The data is valid when the S_DAV bit in the Serial Port Config register is set. Data can be written to this register when the PT_INT bit in the Serial Port Interrupt register is set. See the register description in Table 7.-14. Note: This register should only be used when the SCTL bit in the Serial Port config register is low. 7.3.9. BAUD Rate Divider Registers (0x0C-0x0D) (Read/Write, Default 0x0000) These registers set the BAUD rate for the serial port. Calculate the value by using the following formula: Program Value = [(clk Frequency) / (BAUD Rate)] - 1 Where clk is the clock for the S-7600A core Example: The clock rate of the S-7600A is 256 KHz and a BAUD rate of 64 Kbps is desired, the programmed value should be: (256 KHz / 64 k) - 1 = 4 - 1 = 3 Note: The lowest value that should be programmed into these registers is 0x0003. 7.3.10. Our IP Address Registers (0x10-0x13) (Read/Write, Default 0x00000000) These registers store our IP address or the IP address of the local device. The 0x10 register stores the least significant byte and the 0x13 register stores the most significant byte. If the system controller dose not write an IP address, it will be negotiated for during PPP negotiations (floating IP address). When a PPP connection is established (indicated by bit 0, register 60) these registers can be read to query the IP address obtained. Table 7-17 Bit 7 6 5 4 3 2 Def. Least significant byte of the local IP address Default 0x00 Table 7-18 Bit 7-9 Our IP Address Register Bit Definitions (0x10) 1 0 1 0 Our IP Address Register Bit Definitions (0x11) 7 6 5 4 3 2 Def. 3rd byte of the local IP address Default 0x00 Seiko Instruments Inc. TCP/IP Network Stack LSI S-7600A Table 7-19 Hardware Specification Revision 1.3 Our IP Address Register Bit Definitions (0x12) Bit 7 6 5 4 3 2 Def. 2nd byte of the local IP address Default 0x00 Table 7-20 1 0 1 0 Our IP Address Register Bit Definitions (0x13) Bit 7 6 5 4 3 2 Def. Most significant byte of the local IP address Default 0x00 7.3.11. Clock Divider Registers (0x1C-0x1D) (Read/Write, Default 0x03E7) These registers program the 1kHz clock generator. This clock is used internally for various S-7600A timing functions. The following equation determines the value programmed into these registers: (clk Freq/1 kHz) - 1 = Divide Count Where clk Freq is S-7600A clock frequency. Therefore, for a 1 MHz clock, the divide count equals 1M / 1kHz - 1= 999 = 0x03e7. 7.3.12. Index Register (0x20) (Read/Write, Default 0x00) This register must be programmed prior to accessing indexed socket registers. Valid programmed values are 0x00 and 0x01. If the selected socket number has not changed since the last access, this register not need to be reprogrammed. Table 7-21 Bit Index Register Bit Definition 7 6 5 4 3 Def. Socket Index [7:0] Default 0x00 Table 7-22 Bit 7:0 2 1 0 Index Register Description Bit Name Socket_Index Access R/W Description 0x00 : General Socket 0 Selected 0x01: General Socket 1 Selected All other values are reserved 7.3.13. Type of Service Register (TOS) (0x21) (Read/Write, Default 0x00) This register configures the TOS field in the IP header for outgoing datagrams. It is an optional setting that defaults to 0x00. Seiko Instruments Inc. 7-10 TCP/IP Network Stack LSI S-7600A Hardware Specification Revision 1.3 7.3.14. Socket Config Status Low Register (0x22) (Read/Write, Default 0x40) This register configures the socket. Table 7-23 Socket Config Status Low Register Bit Definitions Bit 7 6 5 4 3 Def. TO Buff_ Empty Buff_Full Data_ Avail / RST - Default 0 1 0 0 0 2 1 Protocol_Type NOTE: Reserved bits are signified by a dash ( - ). All reserved bits should be written as “0”. 7-11 Seiko Instruments Inc. 0 0 TCP/IP Network Stack LSI S-7600A Table 7-24 Bit 7 Hardware Specification Revision 1.3 Socket Config Status Low Register Description Bit Name TO Access R Description TCP Timeout This bit indicates that a TCP timeout condition occurred while attempting to establish a TCP connection or while waiting for a TCP packet after the connection was established. 0 = Normal Operating Condition 1 = Timeout Occurred 6 Buff_Empty R This bit indicates whether or not a socket’s outgoing data buffer is empty. The bit sets on an empty condition. It then clears and remains clear as long as there is any data in the socket’s outgoing data buffer. 0 = Buffer Not Empty 1 = Buffer Empty 5 Buff_Full R This bit indicates whether the outgoing buffer is full (1023 bytes or more). It also triggers an interrupt when the outgoing data buffer is full, and the Buff_Full_En bit in the Socket Interrupt Mask Low register (0x2A) is set. The Data Register should not be written to when this bit is a “1”. 0 = Buffer Space Available 1 = No Buffer Space Available 4 2:0 Data_Avail / RST R/W Writing this bit resets all socket parameters to default settings. It is self-clearing and dose not need to be written to low for proper operations. Before resetting, ensure that Snd_Bsy bit of Socket Status High register (0x3A) is 0. When read, this bit indicates that the socket has data available. Protocol_Type R/W These bits are used to set the protocol of the socket. All decodes not shown are reserved. 010 = TCP Client Mode 101 = UDP Mode 110 = TCP Server mode Seiko Instruments Inc. 7-12 TCP/IP Network Stack LSI S-7600A Hardware Specification Revision 1.3 7.3.15. Socket Status Mid Register (0x23) (Read-Only, Default 0x00) This read-only register reports other socket status conditions. Table 7-25 Socket Status Mid Register Bit Definitions Bit 7 6 5 4 Def. URG RST Term ConU TCP State Default 0 0 0 0 0x0 Table 7-26 Bit 7 3 2 1 0 Socket Status Mid Register Description Bit Name URG Access R Description This bit indicates the arrival of urgent data. Writing a “1” to the URG bit in the Socket Interrupt register (bit 7) clears this bit. 0 = No urgent data present 1 = Urgent data present 6 RST R This bit indicates when the socket receives the RST signal from the TCP peer. 0 = No RST received 1 = RST received 5 Term R This bit indicates when the socket terminates from the source and triggers an interrupt if the Term_En bit is set in the Socket Interrupt Mask High register (0x2B). The interrupt mask setting does not effect the reporting of this status bit. 0 = Normal Operating Condition 1 = Socket terminated from source This bit becomes “1” when the S-7600A receives a TCP segment with the FIN flag on. This means that the remote peer has requested to close the TCP connection. 4 ConU R This bit indicates when the socket establishes a connection to a host machine. The bit clears when the connection terminates (by either end). 0 = No Connection Established 1 = Connection Established 3:0 TCP State R These bits indicate the current TCP state. 0 = CLOSED 1 = SYN_SENT 2 = ESTABLISHED 3 = CLOSE_WAIT 4 = LAST_ACK 5 = FIN_WAIT1 6 = FIN_WAIT2 7 = CLOSING 8 = TIME_WAIT 9 = LISTEN a = SYN_RECVD 7-13 Seiko Instruments Inc. TCP/IP Network Stack LSI S-7600A Hardware Specification Revision 1.3 7.3.16. Socket Activate Register (0x24) (Read/Write, Default 0x00) This register is used to activate the sockets and also show the current status of each socket. Setting a bit to “1” activates the corresponding socket. This register defaults to 0x00 upon resets. Table 7-27 Socket Activate Register Bit Definitions Bit 7 6 5 4 3 2 1 0 Def. - - - - - - S1 S0 Default 0 0 0 0 0 0 0 0 Table 7-28 Socket Activate Register Description Bit 1 Bit Name S1 Access R/W Description This bit is used to activate general socket 1. 0 = General socket 1 inactive 1 = General socket 1 active 0 S0 R/W This bit is used to activate general socket 0. 0 = General socket 0 inactive 1 = General socket 0 active 7.3.17. Socket Interrupt Register (0x26) (Read-Only, Default 0x00) This register indicates which socket has interrupts pending. When identification of an interrupting socket occurs, the actual source of the interrupt is determined by examining the specific socket’s interrupt register. Table 7-29 Socket Interrupt Register Bit Definitions Bit 7 6 5 4 3 2 1 0 Def. - - - - - - I1 I0 Default 0 0 0 0 0 0 0 0 Seiko Instruments Inc. 7-14 TCP/IP Network Stack LSI S-7600A Table 7-30 Socket Interrupt Register Description Bit 1 Hardware Specification Revision 1.3 Bit Name Access I1 Description R This bit is used to indicate that socket 1 has an interrupt pending. 0 = General socket 1 interrupt inactive 1 = General socket 1 interrupt active 0 I0 R This bit is used to indicate that socket 0 has an interrupt pending. 0 = General socket 0 interrupt inactive 1 = General socket 0 interrupt active 7.3.18. Socket Data Available Register (0x28) (Read-Only, Default 0x00) This read-only register indicates which socket has data pending in the input buffer. A “1” in a bit position indicates that the socket has data available. The bit remains set as long as there is data available. Table 7-31 Socket Data Avail Register Bit Definitions Bit 7 6 5 4 3 2 1 0 Def. - - - - - - DAV1 DAV0 Default 0 0 0 0 0 0 0 0 Table 7-32 Bit 1 Socket Data Avail Register Description Bit Name DAV1 Access R Description This bit is used to indicate that socket 1 has data available. 0 = General socket 1 has no data available 1 = General socket 1 has data available 0 DAV0 R This bit is used to indicate that socket 0 has data available. 0 = General socket 0 has no data available 1 = General socket 0 has data available 7-15 Seiko Instruments Inc. TCP/IP Network Stack LSI S-7600A Hardware Specification Revision 1.3 7.3.19. Socket Interrupt Mask Low Register (0x2A) (Read/Write, Default 0x00) This register reports certain interrupt conditions. Setting a bit enables the corresponding interrupt. Table 7-33 Bit Socket Interrupt Mask Low Register Bit Definitions 7 6 5 4 3 2 1 0 Def. TO_En Buff_ Emp_En Buff_Full_En Data_Avail_En - - - - Default 0 0 0 0 0 0 0 0 NOTE: Reserved bits are signified by a dash (-). All reserved bits should be written as “0”. Table 7-34 Bit Socket Interrupt Mask Low Register Description Bit Name Access Description 7 TO_En R/W Writing a “1” enables the Timeout interrupt. 6 Buff_Empty_En R/W Writing a “1” enables the Buffer Empty interrupt. 5 Buff_Full_En R/W Writing a “1” enables the Buffer Full interrupt. 4 Data_Avail_En R/W Writing a “1” enables the Data Available interrupt. 7.3.20. Socket Interrupt Mask High Register (0x2B) (Read/Write, Default 0x00) This register enables certain types of interrupt conditions. Setting bits enables their corresponding interrupts. Table 7-35 Socket Interrupt Mask High Register Bit Definitions Bit 7 6 5 4 3 2 1 0 Def. URG_En RST_En Term_En ConU_En - - - - Default 0 0 0 0 0 0 0 0 NOTE: Reserved bits are signified by a dash (-). All reserved bits should be written as “0”. Table 7-36 Bit Socket Interrupt Mask High Register Description Bit Name Access Description 7 URG_En R/W Writing a “1” to enable the Urgent Data interrupt. 6 RST_En R/W Writing a “1” to enable the Connection Reset interrupt. 5 Term_En R/W Writing a “1” to enable the Socket Termination interrupt. 4 ConU_En R/W Writing a “1” to enable the Connection Up interrupt. Seiko Instruments Inc. 7-16 TCP/IP Network Stack LSI S-7600A Hardware Specification Revision 1.3 7.3.21. Socket Interrupt Low Register (0x2C) (Read/Write, Default 0x00) This register reports certain interrupt conditions. When an interrupt condition occurs and its enable bit is set, the hardware sets the corresponding bit. Writing a "1" to the bit clears it. Disabling the corresponding enable bit prevents the interrupt from showing. Table 7-37 Socket Interrupt Low Register Bit Definitions Bit 7 6 5 4 3 2 1 0 Def. TO Buff_Emplty Buff_Full Data_Avail - - - - Default 0 0 0 0 0 0 0 0 NOTE: Reserved bits are signified by a dash (-). All reserved bits should be written as “0”. Table 7-38 Bit Socket Interrupt Low Register Description Bit Name Access Description 7 TO R/W This interrupt is generated when a timeout condition occurred while trying to establish a connection. Writing a “1” to this bit clears the interrupt. 6 Buff_Empty R/W This interrupt is generated when outgoing buffer is empty. Writing a “1” to this bit clears the interrupt. 5 Buff_Full R/W This interrupt is generated when the outgoing buffer is full (1023 bytes). Writing a “1” to this bit clears the interrupt. Do not use this bit in UDP. 4 Data_Avail R/W This interrupt is generated when data is available from the incoming buffer. Writing a “1” to this bit clears the interrupt. 7.3.22. Socket Interrupt High Register (0x2D) (Read/Write, Default 0x00) This register reports certain interrupt conditions. When an interrupt condition occurs and its enable bit is set, the hardware sets the corresponding bit. Writing a "1" to the bit clears it. Disabling the corresponding enable bit prevents the interrupt from showing. Table 7-39 Socket Interrupt High Register Bit Definitions Bit 7 6 5 4 3 2 1 0 Def. URG RST Term ConU - - - - Default 0 0 0 0 0 0 0 0 NOTE: Reserved bits are signified by a dash (-). All reserved bits should be written as “0”. 7-17 Seiko Instruments Inc. TCP/IP Network Stack LSI S-7600A Table 7-40 Bit Hardware Specification Revision 1.3 Socket Interrupt High Register Description Bit Name Access Description 7 URG R/W This interrupt is generated when urgent data arrives. The system interface should read the Urgent Data Pointer register to see the location of the data. Writing a “1” to this bit clears the interrupt. 6 RST R/W This interrupt is generated when a TCP peer sends the socket RST flag indicating that the current TCP session is not valid. Writing a “1” to this bit clears this interrupt. When this condition occurs, the hardware no longer operates and re-initializing the socket is recommended. 5 Term R/W This interrupt is generated when the socket connection is terminated and a TCP FIN flag is received. Writing a “1” to this bit clears the interrupt. 4 ConU R/W This interrupt is generated when a connection is established. Writing a “1” to this bit clears the interrupt. 7.3.23. Socket Data Register (0x2E) (Memory Mapped Read/Write, Default 0x00) This register is used by a system controller to read incoming data packets and write outgoing data. Data transmissions start for TCP connections only after a write occurs at 0x30. 7.3.24. TCP Data Send and Buffer Out Length Registers (0x30-0x31) (Read/Write, Default 0x03FF) When read, these registers report the amount of space available in the outgoing buffer. Register 0x30 stores the least significant byte; 0x31 stores the most significant byte. Writing any data to 0x30 causes data transmissions to start on TCP connections. 7.3.25. Buffer In Length Registers (0x32-0x33) (Read-Only, Default 0x0000) These read-only registers report the amount of data available in the received data buffer. 0x32 stores the least significant byte; 0x33 stores the most significant byte. 7.3.26. Urgent Data Pointer Registers (0x34-0x35) (Read-Only, Default 0x0000) These read-only registers report the offset to the start of urgent data (as marked through the TCP header) relative to the incoming data buffer. Register 0x34 stores the least significant byte; 0x35 stores the most significant byte. Seiko Instruments Inc. 7-18 TCP/IP Network Stack LSI S-7600A Hardware Specification Revision 1.3 7.3.27. Their Port Registers (0x36-0x37) (Read/Write, Default 0x0000) These registers specify the destination port for an outgoing data packets. For TCP client or UDP mode, this value must be set prior to activating the socket. For TCP server mode, these registers are automatically setup on a connection with the peer’s port number. Register 0x36 stores the least significant byte and 0x37 stores the most significant byte. Table 7-41 Bit Their Port Register Bit Definitions (0x36) 7 6 5 4 3 2 Def. Least significant byte of the target port number Default 0x00 Table 7-42 Bit 1 0 1 0 Their Port Register Bit Definitions (0x37) 7 6 5 4 3 2 Def. Most significant byte of the target port number Default 0x00 7.3.28. Our Port Registers (0x38-0x39) (Read/Write, Default 0x0000) These registers are used it indicate the source port for an outgoing data packet. When setting a TCP client or sending data using UDP, these registers should be set to the proper value. Normally in client applications, the software increments the value of this register. The TCP and UDP server application should set these registers to be the value used by the server applications. Register 0x38 stores the least significant byte; 0x39 stores the most significant byte. Table 7-43 Bit Our Port Register Bit Definitions (0x38) 7 6 5 4 3 2 Def. Least significant byte of the local port number Default 0x00 Table 7-44 Bit 1 0 1 0 Our Port Register Bit Definitions (0x39) 7 6 5 4 3 2 Def. Most significant byte of the local port number Default 0x00 7.3.29. Socket Status High Register (0x3A) (Read-Only, Default 0x00) This register reports the busy status of the socket. Table 7-45 Socket Status High Register Bit Definitions Bit 7 6 5 4 3 2 1 0 Def. - - - - - - - Snd_Bsy Default 0 0 0 0 0 0 0 0 NOTE: Reserved bits are signified by a dash (-). All reserved bits should be written as “0”. 7-19 Seiko Instruments Inc. TCP/IP Network Stack LSI S-7600A Table 7-46 Bit 0 Hardware Specification Revision 1.3 Socket Status High Register Description Bit Name Access Snd_Bsy Description R This bit indicates that the current socket is busy sending TCP segments. Before the socket is reset, this bit should be 0. 0 = Socket not busy 1 = Socket busy 7.3.30. Their IP Address Registers (0x3C-0x3F) (Read/Write, Default 0x00000000) These registers indicate the destination IP address for the socket. For TCP client or UDP mode, this value must be set prior to activating the socket. For TCP server mode, these register are automatically setup on a connection with the peer’s IP address The registers can be written in any order. Table 7-47 Bit Their IP Address Register Bit Definitions (0x3C) 7 6 5 4 3 2 1 0 2 1 0 2 1 0 2 1 0 Def. Least significant byte of Destination IP address Default 0x00 Table 7-48 Bit Their IP Address Register Bit Definitions (0x3D) 7 6 5 4 3 Def. 3rd byte of Destination IP address Default 0x00 Table 7-49 Bit Their IP Address Register Bit Definitions (0x3E) 7 6 5 4 3 Def. 2nd byte of Destination IP address Default 0x00 Table 7-50 Bit Their IP Address Register Bit Definitions (0x3F) 7 6 5 4 3 Def. Most significant byte of Destination IP address Default 0x00 Seiko Instruments Inc. 7-20 TCP/IP Network Stack LSI S-7600A Hardware Specification Revision 1.3 7.3.31. PPP Control and Status Register (0x60) (Read/Write, Default 0x00) This register control the PPP layer and reports its status. Table 7-51 PPP Control and Status Register Bit Definitions (0x60) Bit 7 6 5 4 3 2 1 0 Def. PPP_Int Con_Val Use_ PAP TO_Dis PPP_Int_En Kick PPP_En PPP_Up /SRst Default 0 0 0 0 0 0 0 0 Table 7-52 Bit 7 PPP Control Status Register Description Bit Name PPP_Int Access R/W Description PPP Interrupt This bit indicates that the PPP triggered an interrupt condition. Read the PPP interrupt code register to determine the cause. Writing a “1” to this bit position clears the interrupt. 6 Con_Val R/W Connection Valid This bit indicates to the network stack that the underlying connection is up and valid. 0 = Connection down 1 = Connection up 5 Use_PAP R/W This bit enables PAP authentication within the PPP protocol. If enabled, a PAP request is issued after PAP authentication is negotiated. The PAP string enters through register 0x64. 0 = PAP disabled (default) 1 = PAP enabled 4 TO_Dis R/W Timeouts Disabled This bit disables the PPP block from timeouts for diagnostic purposes. It should remain enable for normal operations. 0 = Timeouts enabled (default) 1 = Timeouts disabled 3 PPP_Int_En R/W PPP Interrupt Enable This bit enables the PPP interrupt. 0 = PPP Interrupt disabled (default) 1 = PPP Interrupt enabled 2 Kick W PPP Kick Start When written to a 1, this bit will start the PPP if it falls into a timeout condition. It clears once the kick operation performs. This bit is self-clearing. 1 PPP_En R/W PPP Enable This bit enables the PPP layer. The bit must be set before any transmissions occur. 0 = PPP disabled (default) 1 = PPP enabled 7-21 Seiko Instruments Inc. TCP/IP Network Stack LSI S-7600A Hardware Specification Revision 1.3 Bit Bit Name Access Description 0 PPP_UP/SRst R/W When read, this bit indicates when the PPP layer establishes a connection. 0 = PPP Connection down 1 = PPP Connection established When written, this bit will reset the PPP engine. It is self-clearing and goes not need to be written low for normal operations. 0 = PPP Normal operation 1 = PPP Reset 7.3.32. PPP Interrupt Code (0x61) (Read-Only, Default 0x00) This register indicates the interrupt condition that causes the PPP interrupt to trigger. Table 7-53 Bit PPP Interrupt Code Register Bit Definitions 7 6 5 4 3 Def. PPP Interrupt Code Default 0 Table 7-54 2 1 0 PPP Interrupt Error Codes Error Code Definition 0x00 Reserved 0x01 PPP Failed initial LCP negotiations 0x02 PPP Failed NCP negotiations 0x05 PAP Failed negotiations 7.3.33. PPP Max Retry, (0x62) (Read/Write, Default 0x0A) This register configures the maximum retry number. This number is used to determine the maximum number of configuration requests that are sent during the PPP negotiation stage. Table 7-55 Bit PPP Max Retry Register 7 6 5 4 3 2 1 Def. - PPP Maximum Retry Default 0x0 0xA 0 NOTE: Reserved bits are signified by a dash (-). Seiko Instruments Inc. 7-22 TCP/IP Network Stack LSI S-7600A Hardware Specification Revision 1.3 7.3.34. PAP String (0x64) (Write-Only) This write-only register enters the string for the PAP configuration request packet. Enter the string according to the format shown Table 7-56. Table 7-56 PAP String Format Byte String [0] Length of username [1] First byte of username [2] Second byte of username [n] Last byte of username (where n is the length of the username string) [n+1] Length of password [n+2] First byte of password [n+m+1] Last byte of password (where m is the length of the password string) As an example, if the username string is “joe” and the password is “public”, enter the bytes as shown in Table 7-57. Table 7-57 PAP String Example byte:0 0x03 Length of username string byte:1 0x6a Character “j” byte:2 0x6f Character “o” byte:3 0x65 Character “e” byte:4 0x06 Length of password string byte:5 0x70 Character “p” byte:6 0x75 Character “u” byte:7 0x62 Character “b” byte:8 0x6C Character “l” byte:9 0x69 Character “I” byte:a 0x63 Character “c” If PAP is used, the Use_PAP bit must be set in the PPP Control and Status register (0x60) prior to entering the PAP string. 7-23 Seiko Instruments Inc. TCP/IP Network Stack LSI S-7600A Hardware Specification Revision 1.3 8. Data Communications 8.1. Overview The S-7600A chip contains a on-board serial port for physical transports. The data format of the serial port is fixed at 1 start bit (logic "0"), 8 data bits, 1 stop bit (logic "1") and no parity bits. The data bits are sent out, least significant bit first. This data format is shown in Figure 8-1. Also included with the serial port is a 16- byte Receive FIFO and 1-byte Send Buffer. Figure 8-1 rxd / txd Serial Data Format start D0 D1 D2 D3 D4 D5 D6 D7 stop 8.2. Serial Port Register Map The following registers are used to communicate with the serial port. Table 8-1 Add 0x08 Serial Port Register Map Register Serial_Port_Config Bit Definitions S_DAV DCD DSR/ CTS RI DTR RTS SCTL HWFC 0x09 Serial_Port_Int PT_INT - - - - - - - 0x0A Serial_Port_Int_ PINT_E N DSINT_ EN - - - - - - Mask 0x0B Serial_Port_Data Serial Port Data Register 0x0C 0x0D BAUD_Rate_Div BAUD Rate Divider Registers Seiko Instruments Inc. 8-1 TCP/IP Network Stack LSI S-7600A Hardware Specification Revision 1.3 8.2.1. Hardware Flow Control (RTS/CTS Handshaking) The Hardware Flow Control is turned off by default. In this mode, data is transmitted independent of the state of the CTSX signal. While the MPU is in control of the serial port, it can monitor the state of all the serial port control signals and control when data gets sent or received, either through polling the status bits or interrupts. It can also control the RTSX signal by asserting the RTS bit in the Serial Port Config register. When the S-7600A controls the serial port, data will be sent out as soon as it is available from the PPP layer. When receiving data, the software in the MPU control mode should read the data out of the 16-byte FIFO fast enough to prevent buffer overflow. Hardware Flow Control can be turned on by writing a "1" to bit 5 (DSR/HWFC) of the Serial Port Config Register (0x08). With the hardware flow control turned on, full RTS/CTS handshaking is supported. When the serial port detects that CTS is de-asserted, it will stop sending data until CTS is reasserted. Any byte output at the time CTS is de-asserted will complete, but no further bytes will be sent until CTS is asserted. In the other direction, the S-7600A will de-assert RTS if the serial port’s 16-byte FIFO is half full. This indicates to the machine on the other end of the serial line to stop transmitting data. The RTS bit will reassert when the MPU or the S-7600A has read data out of the Receive FIFO and room becomes empty. If the machine communicating with the S-7600A over the serial port does not support RTS/CTS handshaking, the Receive FIFO may overflow and data loss will occur. 8.2.2. Serial Port Control The control of the serial port is turned over to the MPU by default and after any reset condition. In this mode, any data written to the Serial Port Data register will be sent out and all data received will be made available to the MPU via this same register. Prior to using the data register, the MPU should set the BAUD Rate Div register to the proper setting. An interrupt can be triggered when data is available from the serial port by asserting the PINT_EN bit. When this bit is asserted, an interrupt will trigger any time that there is data available to be read from the port. If there is more than one byte in the Receive FIFO, the interrupt will remain active until all bytes are read. An interrupt can also trigger indicating that the outgoing data byte has been sent, by asserting the DSINT_EN bit. This interrupt will trigger whenever there is no more data to be sent. The MPU turns over control to the S-7600A by asserting the SCTL bit in the Serial Port Config register. When the S-7600A controls the port, the MPU should not access the Serial Port Data register. The S7600A chip will automatically send PPP packets to the serial port and read incoming bytes from the serial port. The serial port interrupts are not valid when the S-7600A controls the port. 8-2 Seiko Instruments Inc. TCP/IP Network Stack LSI S-7600A Hardware Specification Revision 1.3 8.3. TCP/UDP Data Communications 8.3.1. TCP Data Communications TCP data communications can be performed if the SCTL-bit of the Serial Port Config register (0x08) is set to “1.” For data transmission, data is written to the Socket Data register (0x2E). The S-7600A stores data in its outgoing buffer via the Socket Data Register. The address of the outgoing buffer is specified by the Buffer Out Length register (0x30-0x31). The value of the Buffer Out Length register is 0x03ff when the outgoing buffer is empty. The value of the Buffer Out Length register decrements each time a byte of data is written to the Socket Data register (0x2E). After the data is written, if any data is written to the TCP Data Send register (0x30), the data in the outgoing buffer is processed by TCP protocols and transmitted. The value of the Buffer Out Length register increases by the value of the number of bytes of transmitted data and returns to 0x03ff when all data has been sent. In TCP data transmission, the outgoing buffer has a capacity of 1023 bytes. Datagrams longer than 1023 bytes are split by the MPU and transmitted in chunks. When the outgoing buffer becomes full (i.e., comes to contain 1023 bytes of data), the value of the Buffer Out Length register becomes 0x0000. This can be confirmed by checking the Buff_Full bit in the Socket Config Status Low register (0x22). It can also be confirmed by examining the Buff_Full bit in the Socket Interrupt Low register (0x2C) following an interrupt. No more than 1023 bytes of data are permitted in the Socket Data register. If data is written to the TCP Data Send register under these conditions, the data in the outgoing buffer is transmitted. The MPU repeats the procedure of sending residual data after verifying that the Buffer Out Length register has been reset to 0x03ff. Transmission of all data in the outgoing buffer can be confirmed by checking the Buff_Empty bit in the Socket Config Status Low register (0x22), as well as the Buff_Empty bit in the Socket Interrupt Low register (0x2C) following an interrupt. When the S-7600A receives TCP data, it applies TCP protocol processing and stores data in the incoming buffer. The address of the incoming buffer is specified by the Buffer In Length register (0x320x33). The value of the Buffer In Length register is 0x0000 when the incoming buffer is empty. Otherwise, it increments by a value equal to the number of bytes of the stored data. Data reception is detected by checking the Data_Avail bit in the Socket Config Status Low register (0x22), Socket Data Available register (0x28), and the Data_Avail bit in the Socket Interrupt Low register (0x2C) following an interrupt. Read the Socket Data register (0x2E) while monitoring the Data_Avail bit in the Socket Config Status Low register. This reads in the received data from the incoming buffer. Each time a byte of data is read out from the Socket Data register, the value of the Buffer In Length register decrements. When all data is read out, its value returns to 0x0000. The incoming buffer can hold up to 2047 bytes of data for TCP data reception. The S-7600A and its peer apply TCP protocols to prevent overflowing incoming buffers during data reception. Seiko Instruments Inc. 8-3 TCP/IP Network Stack LSI S-7600A Hardware Specification Revision 1.3 8.3.2. UDP Data Communications UDP data communications are performed if the SCTL-bit of the Serial Port Config register (0x08) is set to “1.” For data transmission, data is written to the Socket Data register (0x2E). The S-7600A stores data in its outgoing buffer via the Socket Data register. The address of the outgoing buffer is specified by the Buffer Out Length register (0x30-0x31). The value of the Buffer Out Length register is 0x03ff when the outgoing buffer is empty. The value of the Buffer Out Length register decrements each time a byte of data is written to the Socket Data register (0x2E). After the data is written, if any data is written to the TCP Data Send register (0x30), the data stored in the outgoing buffer is processed by UDP protocols and transmitted. Since the value of the Buffer Out Length register increases by the value of the number of bytes of transmitted data, it is reset to 0x03ff when all data has been sent. For UDP data transmission, the outgoing buffer can hold up to 1015 bytes of data. Datagrams longer than 1015 bytes are split by the MPU and transmitted in chunks. When the outgoing buffer accumulates 1015 bytes of data, the value of the Buffer Out Length register becomes 0x0008. No more than 1015 bytes of data are permitted in the Socket Data register. Since this condition is not indicated by the Buff_Full bit in the Socket Config Status Low register (0x22) or by the Buff_Full bit in the Socket Interrupt Low register (0x2C), the Buffer Out Length register must be monitored, or supervised in the application layer. If data is written to the TCP Data Send register under these conditions, the data in the outgoing buffer is transmitted. The MPU repeats the procedure of sending residual data after checking that the Buffer Out Length register has been restored to 0x03ff. The transmission of all data in the outgoing buffer can be confirmed by checking the Buff_Empty bit in the Socket Config Status Low register (0x22) and the Buff_Empty bit in the Socket Interrupt Low register (0x2C) following an interrupt. When the S-7600A receives UDP data, it applies UDP protocol processing and stores the processed data in the incoming buffer after adding 12 bytes of header information. Data reception can be determined by checking whether the value of the Buffer In Length register equals 0x0000 or a different value. The Data_Avail bit in the Socket Config Status Low register (0x22), the Socket Data Available register (0x28), and the Data_Avail bit following an interrupt in the Socket Interrupt Low register (0x2C) can all indicate data reception. Read the Socket Data register (0x2E) while monitoring the Data_Avail bit in the Socket Config Status Low register. This fetches the 12 byte header from the incoming buffer, followed by the data. Table 8-2 shows the header structure. 8-4 Seiko Instruments Inc. TCP/IP Network Stack LSI S-7600A Table 8-12 Hardware Specification Revision 1.3 Header Structure Byte position from head Implication of each byte 0 The most significant byte of their IP address 1 The second significant byte of their IP address 2 The third significant byte of their IP address 3 The least significant byte of their IP address 4 The most significant byte of their port number 5 The least significant byte of their port number 6 The most significant byte of our port number 7 The least significant byte of our port number 8 The most significant byte of UDP datagram size 9 The least significant byte of UDP datagram size 10 The most significant byte of UDP checksum 11 The least significant byte of UDP checksum Remarks 8 bytes of UDP header are not included here Each time a byte of data is read out from the Socket Data register, the value of the Buffer In Length register decrements. When all data is read out, the register value returns to 0x0000. In UDP data reception, the incoming buffer has a maximum capacity of 2047 bytes, including the 12-byte header. The application layer is responsible for using the header information and the buffer control to prevent any overflow in the two incoming buffers. Seiko Instruments Inc. 8-5 TCP/IP Network Stack LSI S-7600A Hardware Specification Revision 1.3 9. Reset Functions 9.1. Overview The S-7600A has two reset functions which are hardware reset and software reset. 9.1.1. Hardware Reset Function The S-7600A operates to be synchronous to the CLK signal(clock input). When the RESETX pin set to low level in two clock period minimum, the S-7600A accept hardware reset input and starts initializing internal circuit at positive edge timing of forth clock. After the RESETX pin return to high level, the S7600A maintains initialized state and turns normal state at positive edge timing of forth clock. See the Figure 9-1. Min. 2 clock RESETX 2nd 1st 3rd 4th 1st 2nd 3rd 4th CLK initialized Figure 9-1 normal Hardware Reset Timing 9.1.2. Software Reset Function The S-7600A is able to initialize the internal circuit by the General Control Register(0x01). Show the reset timing in case of x80 Family MPU mode. See the Figure 9-2. CS RS WRITEX Address Data h01 SD7 to 0 BUSYX CLK normal state x80 Family MPU mode Figure 9-2 9-1 Software Reset Timing Seiko Instruments Inc. initialized state normal state TCP/IP Network Stack LSI S-7600A Hardware Specification Revision 1.3 10. Application Examples 10.1.1. In Case of x80 Family MPU with LCD Controller x80 Family MPU A0 A1 to A7 IORQ S-7600A RS Decoder D0 to D7 PSX CS Driver/ Receiver SD0 to SD7 RD READX WR WRITEX -Personal Computer -MODEM -PDC -PIAFS C86 RES LCD Controller (S-4592,etc.) RS CS PS D0 to D7 RD WR RESET Figure 10-1 RES C86 Example for x80 Family MPU Seiko Instruments Inc. 10-1 TCP/IP Network Stack LSI S-7600A Hardware Specification Revision 1.3 10.1.2. In Case of 68k Family MPU with LCD Controller 68k Family MPU A0 A1 to A7 VMA S-7600A Decoder RS PSX CS C86 Driver/ Receiver D0 to D7 SD0 to SD7 E E (READX) R/W R/WX (WRITEX) RES LCD Controller (S-4592,etc.) RS CS PS C86 D0 to D7 RD WR RES RESET Figure 10-2 10-2 Example for 68k Family MPU Seiko Instruments Inc. -Personal Computer -MODEM -PDC -PIAFS TCP/IP Network Stack LSI S-7600A Hardware Specification Revision 1.3 10.1.3. In Case of Serial Interface with LCD Controller MPU S-7600A PORT1 RS PORT2 CS PORT3 BUSY SOUT SIN SCLK READX C86 Driver/ Receiver SI (SD7) SO (SD5) SCL (SD6) -Personal Computer -MODEM -PDC -PIAFS PSX RES LCD Controller (S-4592,etc.) RS CS PS C86 SI SO SCL RESET Figure 10-3 RES Example for Serial Interface Seiko Instruments Inc. 10-3 TCP/IP Network Stack LSI S-7600A Hardware Specification Revision 1.3 Seiko Instruments Inc. 1-8, Nakase, Mihama-ku, Chiba-shi, Chiba 261, Japan Components Sales Div. Telephone : +81-43-211-1196 Facsimile : +81-43-211-8032 E-mail : [email protected] http://www.sii.co.jp/compo/s7600a/S7600A_TOP.html Seiko Instruments USA Inc. Electronic Components Div. 2990 W. Lomita Blvd, Torrance, CA 90505, USA Telephone : +1-909-934-9334 Facsimile : +1-909-975-5699 E-mail : [email protected] hrrp://www.seiko-usa-ecd.com The S7600A TCP/IP Network Stack LSI is based upon iReady's Internet Tuner® technology. The URL for iReady’s Web site is, http://www.iready.com • • The information herein is subject to change without notice. Seiko Instruments Inc. is not responsible for any problems caused by circuits or other diagrams described herein whose industrial properties, patents or other rights belong to third parties. • When the products described herein include Regulated Products subject to The Wassenaar Arrangement etc., they may not be exported without authorization form the appropriate governmental authority. • The products described herein cannot be used as part of any device or equipment which influences the human body, such as physical exercise equipment, medical equipment, security system, gas equipment, vehicle or airplane, without prior written permission of Seiko Instruments Inc. 10-4 Seiko Instruments Inc.