SONY CXA2078Q

CXA2078Q
I2C Bus-Compatible Audio/Video Switch with Electronic Volume
Description
The CXA2078Q is an I2C programmable audio,
video switch designed for set top box applications. It
interfaces from digital encoder sources to TV, VCR
and auxilliary scart connectors.
64 pin QFP (Plastic)
Features
• 3 scart independent audio/video switching (TV, VCR,
AUX)
• 0 to –63dB volume control with click noise reduction
• 5 stereo audio inputs
• I2C control with two address setting
• Scart Function Switching input and output
• Scart Fast Blanking for OSD
• RF modulator output with Y/C mix option
• On-chip +12V to +9V voltage regulator
• 4 logic outputs
Applications
Audio/Video switch featuring I2C bus compatibility
for set top box
Structure
Bipolar silicon monolithic IC
Absolute Maximum Ratings
• Supply voltage
VCC
• Operating temperature Topr
• Storage temperature
Tstg
• Allowable power dissipation
PD
Operating Conditions
• Supply voltage
• Operating voltage
12
–20 to +75
–65 to +150
500
+10.7 to +12
9 ± 0.5
V
°C
°C
mW
V
V
Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by
any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the
operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.
–1–
E97843-PS
CXA2078Q
VOUT8
MONO
TRAP
RIN4
FNC_TVB
FNC_TVA
LIN4
HW MUTE
FBLK_IN1
DIG_GND
LOG_4
LOG_3
LOG_2
DIG_VCC
LOG_1
VOUT4
LTV
VOUT3
RTV
Pin Configuration
51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33
VOUT2 52
32 ROUT1
FBLK_OUT 53
31 VOUT5
VOUT1 54
30 LOUT1
VCC_12V 55
29 VOUT6
VREG_9V 56
28 ROUT2
VREG_BASE 57
27 VOUT7
VIDEO_VCC 58
26 LOUT2
RIN5 59
25 AUDIO_VCC
FBLK_IN2 60
24 VIN12
LIN5 61
23 BIAS_AUDIO
VIN1 62
22 VIN8
FNC_VCR
VIN6
FNC_AUX
VIN10
VIDEO_GND
VIN2
VIN9
–2–
RIN3
9 10 11 12 13 14 15 16 17 18 19
LIN2
8
VIN11
7
VIN7
6
RIN2
5
ADR
4
AUDIO_GND
3
SCL
2
SDA
1
BIAS_VIDEO
20 VIN4
LIN1
21 LIN3
VIN3 64
VIN5
RIN1 63
CXA2078Q
Block Diagram
TYPICAL CONFIGURATION
SOURCE
TYPICAL LOAD
OUTPUT
FBLK_SW
FBLK_IN1
ENC
41
Comparator
Comparator
FBLK_IN2
60
DIGITAL (OSD)
BLUE
VIN1
62
AUX
BLUE
VIN2
18
DIGITAL (OSD)
GREEN
VIN3
64
AUX
GREEN
VIN4
20
CVBS
VIN5
DIGITAL (NO OSD)
CHROMA
VIN6
6
VCR
CHROMA
VIN7
14
22
RED
AUX
RED
CHROMA
VIN8
DIGITAL (OSD)
CVBS
LUMA
VIN9
4
DIGITAL (NO OSD) CVBS
LUMA
VIN10
8
VCR
CVBS
LUMA
VIN11
16
AUX
CVBS
LUMA
VIN12
24
53 FBLK_OUT
VIDEO
SWITCH1 (TV)
×2
54
VOUT1
(BLUE)
×2
52
VOUT2
(GREEN)
×2
50 VOUT3
(RED/CHROMA)
×2
48
Mute BIAS
2
CHROMA
DIGITAL (OSD)
5V
0V
MODE1 MODE2
AUX
TV
VOUT4
(CVBS/LUMA)
VIDEO
SWITCH2 (VCR)
(OSD = On-Screen Display)
×2
31 VOUT5
(CHROMA)
×2
29
VOUT6
(CVBS/LUMA)
27
VOUT7
(CVBS)
AUX
33
VOUT8
(CVBS)
RF MOD
35
TRAP
51
RTV
VCR
VIDEO
SWITCH3 (AUX)
×2
MIX_SW
×2
Input attenuation = 6dB
with 6k external resistor.
RIN1
6k
63
Y/C MIXER
Att.
RIN2
6k
15
Att.
RIN3
6k
19
Att.
RIN4
6k
36
Att.
RIN5
6k
59
Att.
LIN1
6k
1
Att.
LIN2
6k
17
Att.
LIN3
6k
21
Att.
LIN4
6k
39
Att.
LIN5
6k
61
Att.
VCC_12V
55
VREG_BASE
57
VREG_9V
56
VIDEO_VCC
58
BIAS_VIDEO
3
VIDEO_GND
9
AUDIO_VCC
25
BIAS_AUDIO
23
AUDIO_GND
13
AUDIO
SWITCH1 (TV)
VOLUME CONTROL
& MUTE
×2
8dB
step
1dB
step
8dB
step
1dB
step
TV
×2
AUDIO
Z.C.D
SWITCH2 (VCR)
Logic
×2
49
LTV
34
MONO
32
ROUT1
RF MOD
VCR
9V
REG
4.05V
BIAS
1
×2
30
LOUT1
×2
28
ROUT2
AUDIO
SWITCH3 (AUX)
AUX
DIG_VCC
47
DIG_GND
42
SDA
11
4.5V
BIAS
2
×2
26
LOUT2
Mute
BIAS
4.5V
I2C
INTERFACE
LOGIC
38 FNC_TVA
37
FNC_TVB
SCL
10
46
LOG_1
ADR
12
45
LOG_2
FNC_VCR
5
44
LOG_3
FNC_AUX
7
43
LOG_4
HW MUTE
40
P.O.D
MONITOR
–3–
TV
CXA2078Q
Pin Description
Pin
No.
Symbol
62
18
64
20
2
6
14
22
4
8
16
24
VIN1
VIN2
VIN3
VIN4
VIN5
VIN6
VIN7
VIN8
VIN9
VIN10
VIN11
VIN12
63
15
19
36
59
1
17
21
39
61
RIN1
RIN2
RIN3
RIN4
RIN5
LIN1
LIN2
LIN3
LIN4
LIN5
Pin
voltage
Equivalent circuit
Description
VCC = 12V
VCC = 9V
14µA
62 14
Video signal inputs.
Input impedance typically
120kΩ.
120k
18 22
4.6V
64 4
147
20 8
2 16
60µA
6 24
VCC = 12V
4.5V
63 1
33k
15 17
Audio signal inputs.
Input impedance typically
60kΩ.
19 21
4.5V
27k
36 39
59 61
7µA
VCC = 9V
VCC = 12V
54
52
50
48
31
29
27
33
VOUT1
VOUT2
VOUT3
VOUT4
VOUT5
VOUT6
VOUT7
VOUT8
200
140µF
54 31
52 29
3.9V
Video signal outputs.
50 27
48 33
280µA
VCC = 9V
VCC = 12V
51
32
28
49
30
26
RTV
ROUT1
ROUT2
LTV
LOUT1
LOUT2
33µA
22k
51
4.5V
32
28
Audio signal outputs.
20k
55
20k
49
30
33µA
26
–4–
CXA2078Q
Pin
No.
Symbol
Pin
voltage
Equivalent circuit
Description
VCC = 9V
75µA
VCC = 12V
200
34
MONO
4.5V
Audio mono signal output.
34
200
20k
75µA
VCC = 9V
VCC = 12V
14µA
11k
3
BIAS_
VIDEO
3.9V
Reference Bias for video
circuit.
Connected to GND with
capacitor.
3
200
9k
VCC = 9V
VCC = 12V
20k
23
BIAS_
AUDIO
4.5V
Reference Bias for audio
circuit.
Connected to GND with
capacitor.
23
20k
7µA
VCC = 12V
VCC = 9V
40k
37
38
FNC_TVB
FNC_TVA
—
37
38
20k
–5–
2.7V
I2C controlled output
giving 0/2V.
Maximum load current
= 800µA
CXA2078Q
Pin
No.
Symbol
Pin
voltage
Equivalent circuit
Description
VCC = 12V
77.7k
56
VREG_9V
9V
Pin connected to emitter
of external regulator
transistor.
56
13.5k
120µA
VCC = 12V
VCC = 12V
1mA
57
57
VREG_
BASE
Connection to base of
external regulator
transistor.
9.7V
413
15p
120µA
VCC = 9V
40µA
4k
10
SCL
—
10
40k
10k
I2C Clock Input.
VIL = 1.5V (max)
VIH = 3.0V (min)
VCC = 9V
40µA
4k
11
SDA
—
11
4.5k
–6–
40k
I2C Data input/output.
VIL = 1.5V (max)
VIH = 3.0V (min)
VOL = 0.4V (max)
CXA2078Q
Pin
No.
Symbol
Pin
voltage
Equivalent circuit
Description
HW MUTE: This pin is
active high > 2.5V.
When high, audio outputs
RTV, LTV and MONO are
muted.
ADR: Selects the I2C
address for the IC.
< 1.5V = Low Add = 90H
> 2.5V = High Add = 92H
VCC = 12V
12
40
ADR
HW MUTE
147
40
28k
VCC = 12V
43
44
45
46
LOG_4
LOG_3
LOG_2
LOG_1
72k
12
—
VCC = 9V
8µA
3V
43
—
40k
44
45
46
4.5k
Open collector logic Pins.
Maximum current sink
= 1mA
7.5k
VCC = 9V
VCC = 12V
Connection to external
trap circuit.
Trap components should
be kept as close as
possible to this pin.
1k
35
35
TRAP
3.9V
147
470µA
VCC = 12V
VCC = 9V
100
53
FBLK_
OUT
—
100µA
53
100µA
–7–
Fast Blank output set by
I2C, FBLK_IN1 or
FBLK_IN2.
High = 5.1V
Low = 1.2V
Connected to external
emitter follower.
Maximum load current
= 800µA
CXA2078Q
Pin
No.
Symbol
Pin
voltage
Equivalent circuit
Description
VCC = 12V
VCC = 9V
50µA
41
60
FBLK_IN1
FBLK_IN2
—
Fast Blank inputs.
Low = < 0.4V
High = > 1.0, < 3.0
147
41
60
90µA
VCC = 9V
80µA
50k
5
7
FNC_VCR
FNC_AUX
Function switching input
(Scart pin 8).
Typical levels
= 0V/6V/12V
50k
5
—
7
10k
–8–
100k
CXA2078Q
Electrical Characteristics
Absolute Maximum Ratings
Supply Voltage
Vcc_12V
Operating Conditions
• Supply Voltage
• Voltage Regulation
• Operating Voltage
Vcc_12V
Vreg_9V
Video_Vcc, Dig_Vcc,
Audio_Vcc
12
12 to 10.7
9 ± 0.45
9 ± 0.5
9 ± 0.5
V
V
V (from 12V supply)
V
V
FNC_TVA (pin 38) and FNC_TVB (pin 39) are static sensitive.
Precaution should be taken (note 8 in "Notes on Operation").
Operation of the CXA2078Q using a 9V supply connected directly to the VCC_12V, Video_VCC, AUDIO_VCC
and Dig_VCC pins is possible but not recommended. (The unused on-chip voltage regulator is then forced to
have pins Vreg_base and Vreg_9V floating.)
–9–
CXA2078Q
Electrical Characteristics
Nominal conditions (Ta = 25°C)
Item
Current Consumption
Symbol
ICC
Conditions
VCC_12V = 12V, No signal, no load
Video system
Typ.
Max.
Unit
30
50
70
mA
Nominal conditions (Ta = 25°C, Vcc_12V = 12V)
VVPin
Vout1 – 8
VVPout
Vout8 (mix)
VVPoutm
GVv
GVYC
Bandwidth
(except Y/C mixer)
fV3dB
Bandwidth of Y/C Mixer
fYC3dB
Input dynamic range
Output dynamic range
Cross talk
VDRVI
VDRVO
Vctv
S/N ratio
S/NV
Input Impedance
ZinV
Non-linearity
Lin
Min.
Typ.
Max.
Unit
No signal, no load (Fig.1)
No signal,no load,Y/C mix inactive
(Fig.1)
No signal, no load, Y/C mix active
(Fig.1)
f = 200kHz, 0.3Vp-p input (Fig.2)
f = 200kHz, 0.3Vp-p input (Fig.2)
0.3Vp-p input, frequency where output
level is –3dB with 200kHz serving as
0dB (Fig. 2)
0.3Vp-p input, frequency where output
level is –3dB with 200kHz serving as
0dB. No trap connected. (See note below)
(Fig.2)
200kHz input (Fig.2)
200kHz, 2.5Vp-p input (Fig.2)
f = 4.43MHz, 1Vp-p input (Fig.2)
Ratio of 0.7Vp-p white video signal to
black line noise. Weighted using
CCIR 567. HPF @ 5kHz,
LPF @ 5MHz. (Fig.2)
1Vrms 1kHz input through 56kΩ.
Attenuation measured to calculate ZinV
(Fig.3)
4.3
4.6
4.9
V
3.6
3.9
4.2
V
3.5
3.8
4.2
V
5.5
5.4
6.0
6.0
6.5
6.4
dB
dB
15
20
7
15
—
MHz
2.5
5.0
—
—
—
—
—
—
–50
Vp-p
Vp-p
dB
—
72
—
dB
94
120
–3
–0.4
Input/V
Gain (except Y/C mixer)
Gain of Y/C mixer
Conditions
MHz
kΩ
V2
Input pin voltage
Symbol
V1
Item
Output pin
voltage
Min.
(Fig.4)
+3
%
V1 = Pin Voltage +0.5V
V2 = Pin Voltage +1V
At output, non-linearity =
Differential Gain
DG
Differential Phase
DP
Sync crush
SC
Delay of Luma over
Chroma through mixer
tcld
V2
–1 × 100
V1 × 2
1.7Vp-p 5-step modulated staircase.
(Chroma and Burst are 150mVp-p
4.43MHz) (Fig.2)
as above. (Fig.2)
Percentage reduction in sync pulse
(0.4Vp-p), with tip at –1.2V input offset.
(Fig.4)
0.4Vp-p square wave input. Input to
output edge delay measured. No trap.
(Fig.2)
1.5
%
1
Deg
0.2
3
%
15
40
ns
Note) Input output path from Vin9 – 12 to Vout 8 through mixer has BW reduced by external stray capacitance
on TRAP pin.
– 10 –
CXA2078Q
Electrical Characteristics
Audio system
Unless otherwise stated: input coupling capacitor 1µF in series with 6kΩ resistor; output coupling capacitor of
10µF; load of 10kΩ.
Nominal conditions (Ta = 25°C, Vcc_12V = 12V)
Item
Input pin voltage
Gain
Symbol
VAPIN
R/LOUT1, 2 GVA
RTV, LTV
GVATV
MONO
GVAM
Audio frequency
response
FAF
Frequency B/W
FBWA1
Distortion
THD
Input Dynamic Range
VdA
Cross talk
(Channel separation)
VctA
R/LOUT1, 2 RRA
Ripple
rejection
RTV, LTV
RRATV
MONO
RRAM
DC Offset -R/Lout1, 2
Voff
Input impedance
Output Impedance
Zin
Zout
Phase Difference
Vpda
S/N ratio
S/NA
Electronic Volume Control
Fine volume attenuation
AEVC
step
Coarse volume
AEVF
attenuation step
Amute
Mute
DC Offset -RTV, LTV
VoffTV
Conditions
Min.
Typ.
Max.
Unit
No signal, no load (Fig. 5)
f = 1kHz, 1Vrms input. (Fig. 6)
f = 1kHz, 1Vrms input. (Fig. 6)
f = 1kHz, 1Vrms "stereo" input. (Fig. 6)
0.3Vp-p input. Output level at 30kHz
with 1kHz serving as 0dB. 6kΩ
removed. (Fig. 7)
0.3Vp-p input; frequency where output
level is –3dB with 1kHz serving as
0dB. 6kΩ removed. No load (Fig. 7)
f = 1kHz, 0.5Vrms, unweighted
response; LPF @400Hz,
HPF @ 80KHz. (Fig. 6)
f = 1kHz (Fig. 6)
f = 1kHz, 1Vrms input on one input,
measure on any other audio output.
(Fig.6)
f = 100Hz, 0.3Vp-p applied to Vcc_aud
(Fig. 8)
f = 100Hz, 0.3Vp-p applied to Vcc_aud
(Fig. 8)
f = 100Hz, 0.3Vp-p applied to Vcc_aud
(Fig. 8)
Offset voltage between any audio input
and R/Lout1, 2 (Fig. 5)
(excluding series external 6kΩ)
(excluding any external series resistor)
f = 1kHz, 1Vrms input to two channels.
Phase difference of stereo output
measured
f = 1kHz, 1Vrms input (at maximum
volume).
HPF @ 20Hz, LPF @ 20kHz. (Fig. 6)
4.2
–0.5
–0.65
–0.65
4.5
0
0
0
4.8
+0.5
+0.35
+0.45
V
dB
dB
dB
–0.3
0
+0.3
dB
—
1
—
MHz
—
0.004
0.2
%
2
—
—
Vrms
—
–88
–76
dB
—
–62
—
dB
—
–75
—
dB
—
–44
—
dB
–30
+2
+30
mV
48
—
60
10
72
—
kΩ
Ω
—
0.05
—
Deg
72
95
—
dB
0.6
1
1.4
dB
7.5
8
8.5
dB
f = 1kHz, 0.5Vrms input. Set by I2C
(Fig.6)
f = 1kHz, 0.5Vrms input. Set by I2C
(Fig.6)
f = 1kHz, 1Vrms input. (Fig.6)
Offset voltage between any audio input
and RTV, LTV outputs (Fig.5)
– 11 –
>80
–30
+2
dB
+30
mV
CXA2078Q
1k
BC547B
47µH
+9V
25pF
1k
Trap
Switch
SW1
1k
+12V
BC547B
+12V
BC547B
+12V
Measurement
Point
1k
51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33
BC547B
1k
+12V
1k
+12V
32
52
BC547B
+12V
BC547B
+9V
+9V
53
31
54
30
55
29
56
28
57
27
58
26
59
25
60
24
61
23
62
22
63
21
64
20
1
2
3
4
5
6
7
8
1k
+12V
BC547B
1k
+12V
BC547B
1k
+12V
BC547B
+9V
22µF
9 10 11 12 13 14 15 16 17 18 19
SCL SDA
47µF
Measurement
Point
Fig. 1. Video system (d.c.test)
Notes) 1. All +9V supplies de-coupled close to supply pins, 25, 47, 58 with 10nF ceramic capacitor.
2. All video outputs are loaded with emitter follower during tests.
3. Voltage measurements carried out with a high input impedance DVM. Typically 10GΩ.
– 12 –
CXA2078Q
+12V
1k
BC547B
+9V
+12V
47µH
BC547B
BC547B
+12V
25pF
1k
Trap
Switch
SW1
1k
Measurement
Point
1k
51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33
BC547B
1k
+12V
1k
+12V
+12V
BC547B
+9V
+9V
75
75
32
52
BC547B
53
31
54
30
55
29
56
28
57
27
58
26
59
25
60
24
2.2µF 61
62
23
2.2µF 63
64
21
1k
+12V
BC547B
1k
+12V
BC547B
1k
+9V
2.2µF 75
BC547B
+12V
22µF
22
2.2µF 75
20
2.2µF
SCL SDA
2.2µF
9 10 11 12 13 14 15 16 17 18 19
2.2µF
8
75
75
7
2.2µF
47µF
6
75
5
2.2µF
2.2µF
2.2µF
75
4
75
75
3
2.2µF
2
75
1
75
Input
Signal
Fig. 2. Video system (gain, dynamic range, bandwidth, differential gain, differential phase,
crosstalk, signal to noise, Luma-Chroma delay)
Signal applied to Pins 2, 4, 6, 8, 14, 16, 18, 20, 22, 24, 62, 64
Output Signal Measured from pins 27, 29, 31, 33, 48, 50, 52, 54
Notes) 1. All +9V supplies de-coupled close to supply pins, 25, 47, 58 with 10nF ceramic capacitor.
2. For tests requiring video measuring equipment with 75Ω input impedance, an external video line
driver or buffer is used.
3. For bandwidth tests through Y/C mixer, the trap circuit is switched out using SW1.
4. All video outputs are loaded with emitter follower during tests.
5. For Luma and Chroma input to output delay, measure signal at the I.C. pins.
– 13 –
CXA2078Q
+9V
51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33
31
54
30
55
29
56
28
57
27
58
26
59
25
60
24
56k
2.2µF 61
62
23
56k
2.2µF 63
64
20
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19
SCL SDA
Signal
Input
Measurement
Point
Fig. 3. Video system (input impedance)
Signal applied and measured from pins, 2, 4, 6, 8, 14, 16, 18, 20, 22, 24, 62, 64
Notes) 1. All +9V supplies de-coupled close to supply pins, 25, 47, 58 with 10nF ceramic capacitor.
2. Voltage measurements carried out with a high input impedance DVM. Typically 10GΩ.
– 14 –
56k 2.2µF
47µF
3
56k 2.2µF
2
56k 2.2µF
1
56k 2.2µF
2.2µF
22µF
21
56k
56k
+9V
22
56k 2.2µF
2.2µF
+9V
56k 2.2µF
+9V
56k 2.2µF
BC547B
32
53
56k 2.2µF
+12V
52
CXA2078Q
1k
BC547B
+9V
25pF
1k
Trap
Switch
SW1
1k
+12V
Measurement
Point
1k
51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33
BC547B
1k
+12V
32
52
BC547B
+12V
47µH
BC547B
+12V
BC547B
+12V
1k
+12V
BC547B
+9V
+9V
53
31
54
30
55
29
56
28
57
27
58
26
59
25
60
24
61
23
62
22
63
21
64
20
1
2
3
4
5
6
7
8
1k
+12V
BC547B
1k
+12V
BC547B
1k
+12V
BC547B
+9V
22µF
9 10 11 12 13 14 15 16 17 18 19
SCL SDA
47µF
PSU
Input
Signal
Fig. 4. Video system (linearity, sync crush)
Signal applied to Pins, 2, 4, 6, 8, 14, 16, 18, 20, 22, 24, 62, 64
Output Signal Measured from pins 27, 29, 31, 33, 48, 50, 52, 54
Notes) 1. All +9V supplies de-coupled close to supply pins, 25, 47, 58 with 10nF ceramic capacitor.
2. All video outputs are loaded with emitter follower during tests.
– 15 –
CXA2078Q
Output
Measurement
Point
+9V
HW
mute
+9V
SW1
51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33
32
52
+12V
BC547B
+9V
+9V
53
31
54
30
55
29
56
28
57
27
58
26
59
25
60
24
61
23
62
22
63
21
64
20
1
2
3
4
47µF
5
6
7
8
+9V
22µF
9 10 11 12 13 14 15 16 17 18 19
SCL SDA
Input
Measurement
Point
Fig. 5. Audio system (d.c. tests)
Notes) 1. All +9V supplies de-coupled close to supply pins, 25, 47, 58 with 10nF ceramic capacitor.
2. Voltage measurements carried out with a high input impedance DVM. Typically 10GΩ.
– 16 –
Measurement
Point
10µF 10k
+9V
6k 1µF 600
HW SW1
mute
10µF 10k
10µF 10k
+9V
6k 1µF 600
CXA2078Q
51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33
10µF 10k
32
52
+12V
BC547B +9V
+9V
600 1µF 6k
53
31 10µF
10k
54
30
55
29 10µF
10k
28
56
57
27 10µF
10k
26
58
59
25
600 1µF 6k
60
24
61
23
600 1µF 6k
62
22
63
21
64
20
1
6k
1µF
2
3
4
5
6
7
8
+9V
22µF
6k 1µF
600
9 10 11 12 13 14 15 16 17 18 19
47µF
SCL SDA
600
6k
6k
6k
1µF
1µF
1µF
600
600
600
Input
Signal
Fig. 6. Audio system (gain, dynamic range, Signal to noise, Crosstalk, Distortion, Volume control)
Signal applied to Pins, 63, 1, 59, 61, 15, 17, 19, 21, 36, 39
Output Signal Measured from pins 26, 28, 30, 32, 34, 49, 51
Notes) 1. All +9V supplies de-coupled close to supply pins, 25, 47, 58 with 10nF ceramic capacitor.
2. When muting audio using Hardware mute, SW1 is closed.
– 17 –
Measurement
Point
10µF 10k
10µF 10k
10µF 10k
+9V
1µF 600
+9V
HW SW1
mute
1µF 600
CXA2078Q
51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33
10µF 10k
32
52
+12V
BC547B +9V
+9V
1µF
600
600 1µF
600 1µF
53
31 10µF
10k
54
30
55
29 10µF
10k
28
56
57
27 10µF
10k
58
26
59
25
60
24
61
23
62
22
63
21
64
20
1
2
3
5
4
6
7
8
+9V
22µF
1µF
9 10 11 12 13 14 15 16 17 18 19
47µF
1µF
SCL SDA
600
1µF
1µF
1µF
600
600
600
Input
Signal
Fig. 7. Audio system (Bandwidth)
Signal applied to Pins, 63, 1, 59, 61, 15, 17, 19, 21, 36, 39
Output Signal Measured from pins 26, 28, 30, 32, 34, 49, 51
Note) All +9V supplies de-coupled close to supply pins, 25, 47, 58 with 10nF ceramic capacitor.
– 18 –
600
Measurement
Point
10µF 10k
+9V
6k 1µF
10µF 10k
10µF 10k
HW SW1
mute
6k 1µF 600
+9V
600
CXA2078Q
51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33
10µF 10k
+12V
52
32
53
31 10µF
10k
30
54
55
BC547B +9V
29 10µF
10k
28
56
57
+9V
58
6001µF 6k
59
27 10µF
10k
26
25
600 1µF 6k
60
+9V
24 100Hz 0.3Vp-p
61
23
600 1µF 6k
62
22
63
21
64
20
1
6k
1µF
2
3
4
5
6
7
8
22µF
6k 1µF
9 10 11 12 13 14 15 16 17 18 19
47µF
SCL SDA
600
6k
6k
6k
1µF
1µF
1µF
600
600
600
Fig. 8. Audio system (Ripple Rejection)
Output Signal Measured from pins 26, 28, 30, 32, 34, 49, 51
Note) All +9V supplies de-coupled close to supply pins, 25, 47, 58 with 10nF ceramic capacitor.
– 19 –
600
2
4
6
8
10
12
14
16
18
1
3
5
7
9
11
13
15
17
19
R
L
47µ
+12V
BC547B
75
75
75
75
5×1k
1µ
1µ
0.47µ
4.7µ
10nF
VOUT2
RIN5
1µ
47µ
ENCODER
0.47µ
0.47µ
0.47µ
0.47µ
0.47µ
9
8
43
7
44
6
45
46
5
47
10k
4
48
10k
3
49
10k
2
50
600
10µ
4.7µ
10k
10nF
9V_REG
1
1µ
64
63
62
61
6k
VIN3
RIN1
VIN1
LIN5
60
59
58
57
56
55
54
53
52
51
600
10µ
6k
6k
FBLK_IN2
6k
VIDEO_VCC
VREG_BASE
VREG_9V
VCC_12V
VOUT1
FBLK_OUT
BC547B
BC547B
BC547B
BC547B
20
+12V
RTV
LIN1
BC547B
75
VOUT3
VIN5
21
LTV
BIAS_VIDEO
1k
10
I2C
CXA2078Q
42
75
+12V
11
41
6k
6k
10k
0.47µ
1µ
0.47µ
1µ
6k
1µ
0.47µ
75
19
18
33
17
34
16
35
15
36
37
47µH
27pF
1k
14
38
6k
1µ
AUDIO4_R
2.2k
10k
TO
MODULATOR
13
10k
2.2k
10k
50
1k
BC547B
12
39
40
6k
1µ
AUDIO4_L
HW_MUTE
HW MUTE
T. V. SCART
VOUT4
VIN9
AUDIO 5
DIG_VCC
FNC_VCR
LOG_1
VIN6
LOG_2
FNC_AUX
LIN4
ADR
LOG_3
VIN10
FNC_TVA
AUDIO_GND
FNC_TVB
VIN7
RIN4
RIN2
LOG_4
VIDEO_GND
TRAP
VIN11
DIG_GND
SCL
MONO
LIN2
FBLK_IN1
SDA
VOUT8
VIN2
– 20 –
RIN3
Typical Application Circuit
20
21
22
23
24
25
26
27
28
29
30
31
32
10µ
10µ
10µ
0.47µ
VIN4
LIN3
VIN8
75
0.47µ
6k
0.47µ
BIAS_AUDIO
VIN12
AUDIO_VCC
LOUT2
VOUT7
ROUT2
VOUT6
LOUT1
VOUT5
ROUT1
10µ
1µ
22µ
75
75
1k
BC547B
1k
75
+12V
2
4
6
8
10
12
14
16
18
20
1
3
5
7
9
11
13
15
17
19
21
AUX SCART
1k
+12V
75
BC547B
1
3
5
7
9
11
13
15
17
19
21
BC547B
2
4
6
8
10
12
14
16
9V_REG
10nF
4.7µ
600
600
600
600
VCR SCART
20
18
75
75
CXA2078Q
CXA2078Q
Description of operation
1. Explanation of Video Section
The video section comprises of 12 high impedance (120kΩ) inputs switched through to 8 video outputs. A
+6dB internal amplifier is connected to each output. The amplifier is required to compensate for the 6dB
attenuation which occurs at the external emitter follower stage used for driving video loads. The typical
external configuration is shown in Fig. 1-1.
A Y/C mixer can be used for mixing Luma and Chroma signals for use with an external RF modulator
connected to Vout8. The Y/C mixer is controllable via the I2C data bus. The circuit is shown in Fig. 1-2 with a
trap circuit used to give 3dB attenuation at 4.43MHz of the Luma signal.
Video_VCC = 9V
VCC = 12V
SCART_in
Switch
75Ω
BC547B
Vin
SCART_out
Vout
AMP
0.47µ
beta = 250
120kΩ
75Ω
Load
Vbias
75Ω
1kΩ
75Ω
Vbias
Video element
Fig. 1-1. Video circuit element: 6dB gain amplifier with external emitter follower
R/C
CVBS/Y
Vout3
6dB
Vout4
6dB
1kΩ
1kΩ
6.5kΩ
0dB
Vout8
6dB
147Ω
6.5kΩ
0dB
TRAP
1kΩ
47µF
25pF
Fig. 1-2. Y/C MIXER Circuit
– 21 –
CXA2078Q
2. Explanation of Audio System.
Audio Switch and Amplifier
The audio system consists of 5 stereo inputs, 3 stereo outputs and a mono output. Each output can be
independently connected to any one of five inputs, Lin1 to Lin5 for the left stereo audio channel, and Rin1 to
Rin5 for the right hand audio channel. In all cases, the input to the switch and amplifier is composed of a
potential divider consisting of a 27kΩ series resistor and a 33kΩ connected to a voltage source (4.5V). When
used in conjunction with an external 6kΩ series input resistor, the input configuration forms a –6dB attenuator
(Fig. 2-1). The net gain of the audio system is zero as there is an internal +6dB amplifier on each output. The
output impedance of the audio amplifier is near zero, and is used to drive the external SCART circuit. The
output is capacitively coupled through a 10µF capacitor, and an optional 600Ω series compliance resistor.
Depending on the length and type of cable used in the scart cable connector, the load seen at the scart
terminal will consist of a parallel capacitor, (100pF to 400pF) and mandatory 10kΩ resistor connected to
ground (Fig. 2-2). The customer may chose to place an alternative audio output filter at the AV switch output.
TV audio output
The TV audio section is composed of an audio switch and 0dB amplifier followed by two variable gain stages,
corresponding to the course and fine electronic volume control amplifiers, EVC and EVF. The EVC amplifier
attenuates the input signal in steps of 8dB. A range of attenuation from 0dB to 56dB can be programmed by
means of the I2C interface. Similarly, the fine volume control (EVF) can be programmed to provide a range of
attenuations between 0dB and 7dB. The attenuated signal is passed through to the output buffer stage which
provides the necessary +6dB gain, and is used to drive the SCART connector. The final output buffer can also
act as a –80dB (mute) amplifier (Fig. 2-4).
Zero Cross Detector (ZCD)
The zero cross detector reduces the effect of "click noise" when implementing a volume change or an audio
mute. The change volume or mute instruction sent by I2C will only be implemented when a minimal (ie zero
cross) signal amplitude is detected.
The zero cross detection circuit can be turned off by setting the "ZCD" bit low in the I2C write mode.
The status of the zero cross detector can be checked in the I2C read mode (Z.C status). When this bit is high,
a zero cross condition has been detected subsequent to the issue of an I2C volume change or mute
instruction. This may be useful if the input waveform is very low frequency, whereupon the microprocessor can
re-issue the same instruction, with the zero cross detector circuit switched off.
I2C Mute
The mute instruction in the I2C format refers to the TV audio circuit. Audio mute can be implemented after a
audio zero cross detection, or immediately depending on whether ZCD = 1 or 0.
It can be seen from the I2C write format that the same mute bit occurs in DATA1 and DATA5. This allows the
software to action an immediate mute, make any suitable changes to the audio source or electronic volume
control and after a minimum period of 4 × 90µs (360µs) un-mute the output buffer. Such a period provides
ample time to allow any transient ac voltages to settle during an audio source change.
– 22 –
CXA2078Q
1µF
Audio in
R/L in
6kΩ
(external)
600Ω
10µF
ATT = –6dB
SCART
Audio out
600
27kΩ
400pF
(external)
33kΩ
Terminal
10kΩ
(internal)
4.5V
Fig. 2-2. Audio output configuration
Fig. 2-1. Audio input configuration
–6dB
R/L in
R/L in
R/L in
R/L in
R/L in
ATT
ATT
ATT
ATT
ATT
+6dB
Audio
output
Mute
4.5V
Fig. 2-3. VCR and AUX audio configuration
I2C Registers
ATT
ATT
ATT
ATT
ATT
0dB
0 to –56dB
EVC
0 to –7dB
EVF
Audio
Switch
+6dB
Mute
(–80dB)
Mute
Zero
Cross
Detect
TV
Audio
Output
to control
logic
Fig. 2-4. T.V. audio section and Electronic Volume Control
– 23 –
CXA2078Q
I2C Interface Data Format
IC Control Data Format
S Slave address A
DATA1
S: Start condition
A
DATA2
A: Acknowledge
A
DATA3
A
DATA4
A
DATA5
A
P: Stop condition
There are two possible addresses depending on external address pin (12) tied high or low.
Pin 12 = high, Address = 92 Hex
Ao = 1
Pin 12 = low, Address = 90 Hex
Ao = 0
General I2C data structure (write mode)
Address
b7
b6
b5
b4
b3
b2
b1
b0
1
0
0
1
0
0
Ao
(W) 0
TVMute
Z.C.D
Data1
EVF
EVC
Data2
FBLK
Vid_Sw1 (TV)
Aud_Sw1 (TV)
Data3
FNC
Vid_Sw2 (VCR)
Aud_Sw2 (VCR)
Vid_Sw3 (AUX)
Aud_Sw3 (AUX)
Data4
Y/C Mix
x
Data5
TVMute
x
Key
EVC:
EVF:
TVMute:
Z.C.D:
Vid_Sw1:
Vid_Sw2:
Vid_Sw3:
Aud_Sw1:
Aud_Sw2:
Aud_Sw3:
FNC:
FBLK:
Y/C Mix:
LOG1-LOG4:
x
x
LOG4
LOG3
LOG2
Electronic Volume Course (8dB steps)
Electronic Volume Fine (1dB steps)
TV Audio mute. Controls the TV audio output buffer. (Same bit appears in data 1 & 5)
Zero cross detector active. When ZCD = 1 volume and mute change at zero cross.
Selects the input video sources for Vout1, Vout2, Vout3, Vout4
Selects the input video sources for Vout5, Vout6
Selects the input video sources for Vout7
Selects one of 5 stereo inputs for RTV, LTV
Selects one of 5 stereo inputs for Rout1, Lout1
Selects one of 5 stereo inputs for Rout2, Lout2
Video function switch control
Video Fast Blanking control
When Y/C Mix = 1 converts Y/C input to CVBS for output through Vout8
Logic outputs (open collector). 0 = high impedance. 1 = current sink mode.
– 24 –
LOG1
P
CXA2078Q
General I2C data structure (read mode)
S Slave address A
DATA6
NA
P
NA: No Acknowledge
DATA STRUCTURE
b7
b6
b5
b4
b3
b2
b1
b0
Slave Address
1
0
0
1
0
0
X
(R) 1
Data6
x
x
ZC
STATUS
P.O.D.
FUNC_VCR:
FUNC_AUX:
ZC Status:
P.O.D.:
FUNC_AUX
FUNC_VCR
At pin 5 AV switch monitors the voltage of pin 8 from VCR scart, and records status.
At pin 7 AV switch monitors the voltage of pin 8 from AUX scart, and records status.
ZC Status = 1 indicates that zero cross condition has been achieved after a volume or mute
instruction issued.
Power On Detect. P.O.D. = 1 when DIG_VCC voltage rises above a threshold level of
approximately 5V.
– 25 –
CXA2078Q
3. Video Input I2C Control
3-1. Video Switch 1 (Vid_Sw1) – TV Output
Vout1
Vout2
Vout3
Vout4
B
G/CVBS/Y
R/C
CVBS/Y
Comment
d2_b5 d2_b4 d2_b3
0
0
0
Vin1
Vin3
Vin5
Vin9
Digital encoder
0
0
1
Vbias
Vbias
Vin6
Vin10
Digital encoder
0
1
0
Vbias
Vbias
Vin7
Vin11
VCR
0
1
1
Vin2
Vin4
Vin8
Vin12
Aux
1
0
0
Vbias
Vbias
Vin5
Vin3
Digital encoder
1
0
1
Vin1
Vin3
Vin5
Vin10
Digital encoder
1
1
0
Vin1
Vin3
Vin5
Vin11
Digital encoder
1
1
1
Vbias
Vbias
Vbias
Vbias
Video Mute
Table 3-1. showing which video input pins connect to the four TV output pins
3-2. Video Switch 2 (Vid_Sw2) – VCR Output
Vout5
Vout6
Chroma (C)
CVBS/Y
Comment
d3_b5 d3_b4 d3_b3
0
0
0
Vin5
Vin9
Digital encoder
0
0
1
Vin6
Vin10
Digital encoder
0
1
0
Vin7
Vin11
VCR
0
1
1
Vin8
Vin12
Aux
1
0
0
Vin5
Vin3
Digital encoder
1
0
1
Vbias
Vbias
Video Mute
1
1
0
Vbias
Vbias
Video Mute
1
1
1
Vbias
Vbias
Video Mute
Table 3-2. showing which video input pins connect to the two VCR output pins
– 26 –
CXA2078Q
3-3. Video Switch 3 (Vid_Sw3) – AUX Output
Vout7
Comment
CVBS
d4_b5 d4_b4 d4_b3
0
0
0
Vin9
Digital encoder
0
0
1
Vbias
Video Mute
0
1
0
Vin11
VCR
0
1
1
Vin12
Aux
1
0
0
Vin3
Digital encoder
1
0
1
Vbias
Video Mute
1
1
0
Vbias
Video Mute
1
1
1
Vbias
Video Mute
Table 3-3. showing which video input pins connect to the single AUX output pin
– 27 –
CXA2078Q
4. Fast Blanking operation (Pin 16 on SCART), FBLK
The fast blanking signal instructs the TV to select either the external CVBS information or the external RGB
information. This is used to impose an on screen display (OSD) presentation (normally RGB) upon a CVBS
background. Fast blanking information has the same nominal phase as the RGB and CVBS signal, and is
defined as follows,
Fast blanking output at scart,
1. CVBS mode
2. RGB mode
Scart pin voltage = 0 to 0.4V
Scart pin voltage = 1 to 3.0V
Threshold voltage is approximately 0.75V DC voltage at scart input.
The blanking information is usually generated by the same source as that producing the RGB signal.
I2C Control
In the CXA2078Q, there are two fast blanking inputs, one associated with the auxiliary RGB/CVBS inputs and
another associated with Digital Encoder input. These can be selected by I2C. In addition to the two blanking
inputs, the fast blank pin output can be set to a constant 0V or 5V by means of the I2C control. Hence there are
four possible states. These are controlled according to the following table.
FBLK
d2_b7
d2_b6
0
0
FBLK_OUT (pin 53)
0V∗1
0
1
5V
1
0
same state as FBLK_IN1 (0/5V)
1
1
same state as FBLK_IN2 (0/5V)
∗1 Default = 0V at power up
– 28 –
CXA2078Q
5. Function switch, FNC.
The function switch facility is designed to read the status of the SCART function pin 8 from the VCR and AUX
inputs (IC pin 5, 7). The output function pins FNC_TVA and FNC_TVB are controlled from the IC using a write
instruction. A suitable interface circuit (fig 5-2) will allow FNC_TVA and FNC_TVB to instruct the TV to switch
between display modes.
Read Mode DATA STRUCTURE
Slave Address
b7
b6
b5
b4
b3
b2
b1
b0
1
0
0
1
0
0
X
(R) 1
Z.C
STATUS
P.O.D.
Data6
FUNC_AUX
FUNC_VCR
Read mode
Status of I2C registers as a function of the voltage on FNC_AUX (pin 7) and FNC_VCR (pin 5)
Input Pin Voltage
read data6
FNC_AUX or FNC_VCR
Level (SCART Defn)
b3/b1
b2/b0
0V to +2V (default)
(Internal TV)
0
0
+4.5 to +7V
(16:9 External)
0
1
+9.5 to +12V
(4:3 External)
1
1
Write mode
TV Function switch, Interface table
d3_b7
d3_b6
FNC_TVA
Pin voltage
FNC_TVB
Pin voltage
Comment
0
0
2V
2V
Internal TV (default)
0
1
0V
2V
External 16:9
1
0
0V
0V
External 4:3
1
1
0V
0V
External 4:3
Default is Internal TV (0, 0) at power up
– 29 –
CXA2078Q
The two function output pins are controlled via logic to swing from 0 to +2V.
2V
FNC_TVA (38)
< 0.4V
2V
Logic Drive
Circuit
< 0.4V
FNC_TVB (37)
Mux
d3_b7
d3_b6
Fig. 5-1. TV Function switch output
Some external circuitry is required to interface from the IC pins to the SCART pin 8. A typical interface circuit is
shown in Fig. 5-2.
12V
1kΩ
TV scart
pin 8
FNC_TVA
1kΩ
FNC_TVB
2.2kΩ
50Ω
2.2kΩ
CXA2078Q
Fig. 5-2. External circuit for function switch
– 30 –
CXA2078Q
6. Logic outputs
I2C control of logic outputs achieved using bits LOG1 – 4.
Specification
I2C bit 0 = open collector/high output impedance on logic pin
I2C bit 1 = current sink mode resulting in 0.2V saturation voltage on logic pin
Vmax at logic pin = 12V
Imax during current sink = 1mA
VCC = 9V
10kΩ
10kΩ
10kΩ
LOG_1
LOG_2 LOG_3 LOG_4
d5_b3
d5_b2
d5_b1
Logic
Logic
cct.
cct.
d5_b0
Fig. 6-1. Open collector logic outputs
– 31 –
10kΩ
External
resistors
CXA2078Q
7. I2C Audio Signal Control
I2C Audio input select using Aud_Sw1 (TV), Aud_Sw2 (VCR), Aud_Sw3 (AUX)
b2
b1
b0
RTV, ROUT1, ROUT2
LTV, LOUT1, LOUT2
0
0
0
Rin1
Lin1
0
0
1
Rin2
Lin2
0
1
0
Rin3
Lin3
0
1
1
Rin4
Lin4
1
0
0
Rin5
Lin5
1
0
1
Audio mute
Audio mute
1
1
0
Audio mute
Audio mute
1
1
1
Audio mute
Audio mute
I2C Electronic Volume control (coarse) DATA 1, EVC
b7
b6
b5
Gain (dB)
0
0
0
0
0
0
1
–8
0
1
0
–16
0
1
1
–24
1
0
0
–32
1
0
1
–40
1
1
0
–48
1
1
1
–56
I2C Electronic Volume control (fine) DATA 1, EVF
b4
b3
b2
Gain (dB)
0
0
0
0
0
0
1
–1
0
1
0
–2
0
1
1
–3
1
0
0
–4
1
0
1
–5
1
1
0
–6
1
1
1
–7
– 32 –
CXA2078Q
I2C Mute function
TV Mute
DATA1 b1 DATA5 b7
Z.C.D
DATA1 b0
0
0
Un-mute immediately
0
1
Un-mute on next zero cross
1
0
Mute immediately
1
1
Mute on the next zero cross
RTV, LTV, MONO output
Notes on operation
1) Supply de-coupling capacitors, 10nF and 4.7µF in parallel should be inserted as close to the supply pins,
25, 47, 58 as possible.
2) To minimise crosstalk, attention should be given to the routing of audio and video to the IC inputs. PCB
track lengths should be kept as short as possible and preferably, audio placed on a separate layer to the
video.
3) The trap components on pin 35 should be kept as close to the IC as possible to minimise parasitic
capacitance to ground.
4) Attention should be given to the electrolytic capacitors on the input and output signal pins. As the pin's
voltage is between 3.7V and 4.7V dc the positive terminal on the capacitor should be orientated towards the
pin.
5) The audio outputs may be muted at any time after power up by connecting the HW MUTE pin (40) to a
voltage > 2.5V and < 9V.
6) The I2C address of the IC can be changed using the ADR pin (12). By connecting this pin to >5V and <9V
the Address changes from 90H to 92H.
7) When driving video loads with impedance = 75Ω an emitter follower or video line driver is required to be
connected at the video outputs.
Stray capacitance on pins Vout1-8 must be kept to a minimum by placing loads as close to the pins as
possible.
8) As shown on the application schematic, static protection for pins 38 and 37 may typically be achieved using
Zener diodes. Diodes with a Zener voltage > 5V are suitable.
– 33 –
CXA2078Q
Typical audio output distortion
Input = 1kHz,
400Hz – 80kHz BPF
THD [%]
1
0.1
0.01
0.001
0
1
2
Input [Vrms]
3
3.66
Audio frequency characteristics
Audio input/output gain [dB]
4
2
0
–2
Input = 0.3Vp-p
–4
–6
100
1k
10k
Frequency [Hz]
100k
1M
NOTE: Audio input 6kΩ resistor removed for this test.
Video frequency characteristics
Video input/output gain [dB]
8
VOUT1-8 (MIX = OFF)
6
4
VOUT8 (MIX = ON)
2
0
Input = 0.3Vp-p
100k
1M
10M
Frequency [Hz]
– 34 –
50M
CXA2078Q
Package Outline
Unit: mm
64PIN QFP(PLASTIC)
23.9 ± 0.4
+ 0.4
20.0 – 0.1
+ 0.1
0.15 – 0.05
51
0.15
64
20
1
16.3
32
+ 0.4
14.0 – 0.1
52
17.9 ± 0.4
33
+ 0.2
0.1 – 0.05
0.8 ± 0.2
19
+ 0.35
2.75 – 0.15
+ 0.15
0.4 – 0.1
1.0
± 0.12 M
PACKAGE STRUCTURE
PACKAGE MATERIAL
EPOXY RESIN
SOLDER/PALLADIUM
PLATING
SONY CODE
QFP–64P–L01
LEAD TREATMENT
EIAJ CODE
QFP064–P–1420
LEAD MATERIAL
42/COPPER ALLOY
PACKAGE MASS
1.5g
JEDEC CODE
– 35 –