CXA3086Q 6-bit 140MSPS Flash A/D Converter Description The CXA3086Q is an 6-bit high-speed flash A/D converter capable of digitizing analog signals at the maximum rate of 140MSPS. ECL, PECL or TTL can be selected as the digital input level in accordance with the application. The TTL digital output level allows 1: 2 demultiplexed output. 48 pin QFP (Plastic) Features • Differential linearity error: ±0.2LSB or less • Integral linearity error: ±0.2LSB or less • High-speed operation with a maximum conversion rate of 140MSPS • Low input capacitance: 7pF • Wide analog input bandwidth: 200MHz • Low power consumption: 358mW • Low error rate • Excellent temperature characteristics • 1: 2 demultiplexed output • 1/2 frequency divided clock output (with reset function) • Compatible with ECL, PECL and TTL digital input levels • Single +5V power supply operation available • Surface mounting package P2D3 5 DGND2 P2D4 6 P2D0 (LSB) P2D5 (MSB) 7 P2D2 DGND2 8 P2D1 DVCC2 9 RESET/E RESETN/T Applications • Magnetic recording (PRML) • Communications (QPSK, QAM) • LCDs • Digital oscilloscopes 12 11 10 RESETN/E Pin Configuration (Top View) Structure Bipolar silicon monolithic IC 4 3 2 1 DVEE3 13 48 DVCC2 47 DVCC1 AGND 14 46 DGND1 VRBS 15 VRB 16 45 N.C. 44 PS AVCC 17 43 CLKOUT N.C. 18 42 INV VIN 19 41 SELECT AVCC 20 40 N.C. VRT 21 39 DGND1 VRTS 22 38 DVCC1 AGND 23 DGND3 24 37 DVCC2 DGND2 P1D5 (MSB) P1D4 P1D3 P1D2 P1D1 DGND2 P1D0 (LSB) DVCC2 CLK/T CLKN/E CLK/E 25 26 27 28 29 30 31 32 33 34 35 36 Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits. –1– E95619C77 CXA3086Q Absolute Maximum Ratings (Ta = 25°C) • Supply voltage AVCC, DVCC1, DVCC2 DGND3 DVEE3 DGND3 – DVEE3 Unit V V V V –0.5 to +7.0 –0.5 to +7.0 –7.0 to +0.5 –0.5 to +7.0 • Analog input voltage • Reference input voltage VIN VRT – 2.7 to AVCC V VRT 2.7 to AVCC V VRB VIN – 2.7 to AVCC V |VRT – VRB| 2.5 V • Digital input voltage ECL (∗∗∗/E∗1) DVEE3 to +0.5 V PECL (∗∗∗/E) –0.5 to DGND3 V TTL (∗∗∗/T, INV, PS) –0.5 to DVCC1 V other (SELECT) –0.5 to DVCC1 V VID∗2 (|∗∗∗/E – ∗∗∗N/E|) 2.7 V • Storage temperature Tstg –65 to +150 °C • Allowable power dissipationPD 1.2 W (when mounted on a glass fabric base epoxy board with 76mm x 114mm, 1.6mm thick) Recommended Operating Conditions • • • • • • With a single power supply With dual power supplies Unit Min. Typ. Max. Min. Typ. Max. Supply voltage DVCC1, DVCC2, AVCC +4.75 +5.0 +5.25 +4.75 +5.0 +5.25 V DGND1, DGND2, AGND –0.05 0 +0.05 –0.05 0 +0.05 V DGND3 +4.75 +5.0 +5.25 –0.05 0 +0.05 V –0.05 0 +0.05 –5.5 –5.0 –4.75 V DVEE3 Analog input voltage VIN VRB VRT VRB VRT V Reference input voltage VRT +2.9 +4.1 +2.9 +4.1 V VRB +1.4 +2.6 +1.4 +2.6 V |VRT – VRB| 1.5 2.1 1.5 2.1 V Digital input voltage ECL (∗∗∗/E) : VIH DGND3 – 1.05 DGND3 – 0.5 V : VIL DGND3 – 3.2 DGND3 – 1.4 V PECL (∗∗∗/E) : VIH DGND3 – 1.05 DGND3 – 0.5 V : VIL DGND3 – 3.2 DGND3 – 1.4 V TTL (∗∗∗/T, INV, PS): VIH 2.0 2.0 V : VIL 0.8 0.8 V other (SELECT) : VIH DVCC1 DVCC1 V : VIL DGND1 DGND1 V ∗ 2 VID (|∗∗∗/E – ∗∗∗N/E|) 0.4 0.8 0.4 0.8 V Maximum conversion rate Fc (Straight mode) 100 100 MSPS (DMUX mode) 140 140 MSPS Ambient temperature Ta –20 +75 –20 +75 °C ∗1 ∗∗∗/E and ∗∗∗/T indicate CLK/E and CLK/T, etc. for the pin name. ∗2 VID: Input Voltage Differential ECL and PECL switching level DGND3 VIH (max.) VIL VTH (DGND3 – 1.2V) VID VIH VIL (min.) –2– CXA3086Q Block Diagram AVCC DVCC1 INV 17 20 DVCC2 38 47 42 9 DGND3 28 37 48 24 VRTS 22 r1 VRT 21 (MSB) r 35 P1D5 1 34 P1D4 LATCHA 2 r • • • 33 P1D3 32 P1D2 6bit 31 P1D1 30 P1D0 30 (LSB) 31 r 32 r ENCODER VIN 19 6bit 6bit LATCH r TTLOUT r 6bit (MSB) 33 r2 r 6 P2D4 62 6bit TTLOUT r • • • LATCHB r 7 P2D5 5 P2D3 4 P2D2 3 P2D1 63 VRB 16 2 P2D0 VRBS 15 (LSB) 18 CLK/T 27 40 Delay CLK/E 25 N.C. 45 CLKN/E 26 D Q Q RESETN/T 10 Select 43 CLKOUT RESETN/E 12 RESET/E 11 14 23 AGND 44 41 PS SELECT –3– 39 46 DGND1 1 8 29 36 DGND2 13 DVEE3 CXA3086Q Pin Description and I/O Pin Equivalent Circuit Pin No. Symbol I/O Standard voltage level Equivalent circuit Description 14, 23 AGND GND Analog ground. Separated from the digital ground. 17, 20 AVCC +5V (typ.) Analog power supply. Separated from the digital power supply. 1, 8, DGND1 29, 36, DGND2 39, 46 GND Digital ground. 9, 28, DVCC1 37, 38, DVCC2 47, 48 +5V (typ.) Digital power supply. 24 +5V (typ.) (With a single power supply) DGND3 Digital power supply. Ground for ECL input. +5V for PECL and TTL input. GND (With dual power supplies) 13 GND (With a single power supply) DVEE3 Digital power supply. –5V for ECL input. Ground for PECL and TTL input. –5V (typ.) (With dual power supplies) No connected pin. Not connected with the internal circuits. 18, 40, N.C. 45 25 CLK/E I Clock input. I CLK/E complementary input. When left open, this pin goes to the threshold potential. Only CLK/E can be used for operation, but complementary input is recommended to attain fast and stable operation. DGND3 26 CLKN/E r r 12 25 ECL/ PECL RESETN/E I 1.2V 12 11 26 DVEE3 11 RESET/E r r Reset input. When the input is set to low level, the built-in CLK frequency divider circuit can be reset. RESETN/E complementary input. When left open, this pin goes to the threshold voltage. Only RESETN/E can be used for operation. I –4– CXA3086Q Pin No. Symbol I/O Standard voltage level Equivalent circuit Description DVCC1 27 CLK/T r/2 I TTL 10 27 1.5V r 10 RESETN/T I DGND1 DVEE3 42 INV TTL 44 PS Reset input. When left open, this input goes to high level. When the input is set to low level, the built-in CLK frequency divider circuit can be reset. Data output polarity inversion input. When left open, this input goes to high level. (See Table 1. I/O Correspondence Table.) DVCC1 I Clock input. Power saving input. When the input is set to low level, the power saving mode is set. In this time the all TTL outputs go into the high-impedance state. Normally, set to high level or left open. 42 44 I DGND1 DVEE3 DVCC1 41 Vcc or GND SELECT Data output mode selection. (See Table 2. Operating Mode Table.) 41 DGND1 DVEE3 22 VRTS O +4.0V (typ.) Reference voltage sense. By-pass to AGND with a 0.1µF chip capacitor. 22 21 r1 r Comparator 1 r 21 16 VRT VRB I I VRTS +r1 x Iref Comparator 2 Top reference voltage. By-pass to AGND with a 1µF tantal capacitor and a 0.1µF chip capacitor. Comparator 62 Bottom reference voltage. By-pass to AGND with a 1µF tantal capacitor and a 0.1µF chip capacitor. r r r VRBS –r2 x Iref r r Comparator 63 r2 15 VRBS O +2.0V (typ.) r Reference voltage sense. By-pass to AGND with a 0.1µF chip capacitor. 16 15 –5– CXA3086Q Pin No. Symbol I/O Standard voltage level Equivalent circuit AVCC Description Comparator AVCC 19 VIN I VRT to VRB Analog input. DVEE3 30 to 35 P1D0 to P1D5 O 2 to 7 P2D0 to P2D5 O Vref 19 AGND Port 1 side data output. DVCC1 DVCC2 2 TTL 100k DGND1 43 CLKOUT to 7 30 to 35 Port 2 side data output. 43 DGND2 DVEE3 Clock output. (See Table 2. Operating Mode Table.) O –6– CXA3086Q Electrical Characteristics (DVCC1, 2, AVCC, DGND3 = +5V, DGND1, 2, AGND, DVEE3 = 0V, VRT = 4V, VRB = 2V, Ta = 25°C) Item Symbol Conditions Min. Resolution EIL EDL Analog input Analog input capacitance Analog input resistance Analog input current CIN RIN IIN Reference input Reference resistance Reference current Residual resistance r1 r2 Rref∗3 Iref∗4 r1 r2 Digital input (ECL, PECL) Digital input voltage: High : Low Threshold voltage Digital input current : High : Low Digital input capacitance VIH VIL VTH IIH IIL Digital input (TTL) Digital input voltage: High : Low Threshold voltage Digital input current : High : Low Digital input capacitance VIH VIL VTH IIH IIL Digital output (TTL) Digital output voltage : High VOH : Low VOL Leak current during output off IOZ Output rise time Output fall time Max. 6 DC characteristics Integral linearity error Differential linearity error Switching characteristics Maximum conversion rate Aperture jitter Sampling delay Clock high pulse width Clock low pulse width RESET Signal setup time RESET Signal hold time CLKOUT output delay Data output delay Typ. Fc Taj Tds Tpw1 Tpw0 T_rs T_rh Td_clk Tdo1 Tdo2 Tr Tf VIN = 2Vp-p, Fc = 5MSPS VIN = +3.0V + 0.07Vrms bits ±0.2 ±0.2 LSB LSB 150 125 pF kΩ µA 308 12.5 5.7 5.7 Ω mA Ω Ω DGND3 – 0.5 DGND3 – 1.4 V V V µA µA pF 7 16 0 160 6.5 3.0 3.0 225 9.0 4.2 4.2 DGND3 – 1.05 DGND3 – 3.2 DGND3 – 1.2 VIH = DGND3 – 0.8V VIL = DGND3 – 1.6V –50 –75 +50 0 5 0 0 5 V V V µA µA pF 0.5 70 V V µA 2.0 0.8 1.5 VIH = 3.5V VIL = 0.2V –50 –500 IOH = –2mA IOL = 1mA Power saving mode –15 DMUX mode 140 CLK CLK RESETN – CLK RESETN – CLK DMUX mode 0.8 to 2.0V 0.8 to 2.0V (CL = 5pF) (CL = 5pF) (CL = 5pF) (CL = 5pF) (CL = 5pF) ∗ These characteristics are for PECL input, unless otherwise specified. –7– 2.4 3 2.9 2.9 3.5 0 4.5 T∗5 6.5 10 4.5 7 T+1 8 2 2 Unit 6 8 T+2 10 MSPS ps ns ns ns ns ns ns ns ns ns ns CXA3086Q Item Symbol Conditions Dynamic characteristics Input bandwidth S/N ratio Min. VIN = 2Vp-p, –3dB Fc = 140MSPS, fin = 1kHz Fs DMUX mode Fc = 140MSPS, fin = 34.999MHz Fs DMUX mode Fc = 140MSPS, fin = 1kHz Fs DMUX mode Error > 4LSB Fc = 140MSPS, fin = 34.999MHz Fs DMUX mode Error > 4LSB Fc = 100MSPS, fin = 24.999MHz Fs straight mode Error > 4LSB ICC IEE Pd∗7 ICC + IEE Pd 54.0 0.4 290 2.0 28 Power saving mode Power saving mode Unit 37.0 MHz dB 34.5 dB { { { Power supply Supply current Supply current Power consumption Supply current Power consumption Max. 200 { { Error rate Typ. 67.5 0.6 360 10–12 TPS∗6 10–9 TPS 10–9 TSP 90 0.8 470 8.0 58 mA mA mW mA mW ∗3 Rref: Resistance value between VRT and VRB ∗4 Iref = VRT – VRB Rref 1 ∗5 T = Fc ∗6 TPS: Times Per Sample ∗7 Pd = (ICC + IEE) · VCC + (VRT – VRB) 2 Rref INV Step 1 D5 VRTS VRBS 63 62 : 32 31 : 1 0 1 1 1 1 1 1 1 1 1 1 : 1 0 0 0 0 0 1 1 1 1 : 0 0 0 0 0 0 0 0 0 0 0 D0 D5 1 0 0 0 0 0 0 0 0 0 : 0 0 1 1 1 1 1 0 0 0 : 1 1 1 1 1 0 1 1 1 1 Table 1. I/O Correspondence Table D0 0 0 0 1 1 1 0 0 1 0 1 1 Step VIN 63 62 61 60 59 58 · · · · · · · 5 4 3 2 1 0 1LSB r1 × Iref r2 × Iref VRT VRTS VRBS VRB VIN –8– CXA3086Q Electrical Characteristics Measurement Circuit Sampling Delay Measurement Circuit Aperture Jitter Measurement Circuit Current Consumption Measurement Circuit 5V 5V A Icc A IEE 100MHz 4V AVCC DVCC1 DVCC2 VRT 1.95V OSC1 φ: Variable DGND3 VIN 6 fr VIN Logic Analizer CXA3086Q 5MHz PECL CLK/E CLK 1024 samples OSC2 DGND2 DGND1 AGND VRB 2V Amp ECL Buffer DVEE3 100MHz Integral Linearity Error Measurement Circuit Differential Linearity Error Measurement Circuit Aperture Jitter Measurement Method +V VRT VIN S2 VRB S1: ON when A < B S2: ON when A > B S1 CLK A<B A>B Comparator VIN CXA3086Q 6 A6 to A1 B6 to B1 A0 B0 VIN 6 Buffer CLK “0” 00···0 to 11···0 Controller Where σ (LSB) is the deviation of the output codes when the largest slew rate point is sampled at the clock which has exactly the same frequency as the analog input signal, the aperture jitter Taj is: Taj = σ/ Error Rate Measurement Circuit VIN FC – 1kHz 4 2Vp-p Sin Wave CXA3086Q 6 CLK + 4LSB Signal Source ∆υ ∆t = σ/ ( 64 2 × 2πf ) A Latch B CLK σ (LSB) Sampling timing fluctuation (= aperture jitter) “1” DVM Signal Source 33 32 31 30 29 ∆υ ∆t –V 1/8 FC –9– Latch Comparator A>B Pulse Counter CXA3086Q Description of Operating Modes The CXA3086Q has two types of operating modes which are selected with Pin 41 (SELECT). Operating mode SELECT Maximum conversion rate Data output Clock output DMUX mode VCC 140MSPS Demultiplexed output 70Mbps The input clock is 1/2 frequency divided and output. 70MHz Straight mode GND 100MSPS Straight output 100Mbps The input clock is inverted and output. 100MHz Table 2. Operating Mode Table 1. DMUX mode (See Application Circuits (1), (2) and (3).) Set the SELECT pin to Vcc for this mode. In this mode, the clock frequency is divided by 2 in the IC, and the data is output after being demultiplexed by this 1/2 frequency divided clock. The 1/2 frequency divided clock, which has adequate setup time and hold time for the output data, is output from the CLKOUT pin. When resetting this 1/2 frequency divided clock, the low level of the RESET signal should be input to the RESETN pin (Pin 10 or 12). The RESET signal requires the setup time (T_rs ≥ 3.5ns) and hold time (T_rh ≥ 0ns) to the clock rising edge because it is synchronized with and taken in the clock. Therefore, set the RESET signal to low for T_rs (min.) + T_rh (min.) = 3.5ns or longer to the clock rising edge. The reset period can be extended by making the low level period of the RESET signal longer because the clock output pin is fixed to low (reset) during the low level period at the clock rising edge. If the reset start timing is regarded as not important, the timing where the RESET signal is set from high to low is not so consequence. However, when the reset is released this timing must become significant because the timing is used to commence the 1/2 frequency divided clock. In this case, the setup time (T_rs) is also necessary. See the timing chart for detail. (This chart shows the example of reset for 2T.) The A/D converter can operate at FC (min.) = 140MSPS in this mode. – 10 – CXA3086Q When the RESET signal is not used. AAAA AAAA AAAA AAAA AAAA CLK CXA3086Q CLK CLK A A CLKOUT 6bit DATA RESETN CXA3086Q CLK B B CLKOUT 6bit DATA RESETN When the RESET signal is used. AAA AAA AAA AAA AAA CLK RESET signal CXA3086Q CLK A CLK CLKOUT DATA RESETN CXA3086Q B CLK RESET signal RESETN (Reset period) 6bit CLKOUT (Reset period) 6bit DATA 2. Straight mode (See Application Circuits (4), (5) and (6).) Set the SELECT pin to GND for this mode. In this mode, data output can be obtained in accordance with the clock frequency applied to the A/D converter for applications which use the clock applied to the A/D converter as the system clock. The A/D converter can operate at Fc (min.) = 100MSPS in this mode. Digital input level and supply voltage settings The logic input level for the CXA3086Q supports ECL, PECL and TTL levels. The power supplies (DVEE3, DGND3) for the logic input block must be set to match the logic input (CLK and RESET signals) level. Digital input level DVEE3 DGND3 ECL PECL TTL –5V 0V 0V 0V +5V +5V Supply voltage Application circuits ±5V +5V +5V Table 3. Logic Input Level and Power Supply Settings – 11 – (1) (4) (2) (5) (3) (6) CXA3086Q Application Circuit 1 (1) DMUX ECL input +5V (D) DG P2D0 to P2D5 6 bit Digital Data DG ECL RESET Signal 12 11 10 9 8 7 6 5 4 3 2 1 –5V (D) 13 48 AG 14 47 15 46 AG 16 45 +5V (A) 17 44 2V AG +5V (A) 18 43 19 42 20 41 AG 21 40 22 39 AG 23 38 DG 24 4V 6 bit Digital Data Latch 37 +5V (D) DG +5V (D) DG +5V (D) 25 26 27 28 29 30 31 32 33 34 35 36 ECL-CLK P1D0 to P1D5 6 bit Digital Data DG DG +5V (D) 6 bit Digital Data Latch (2) DMUX PECL input +5V (D) DG DG PECL RESET Signal 12 11 10 9 8 7 6 5 4 3 2 13 48 AG 14 47 15 46 AG 16 45 +5V (A) 17 44 AG +5V (A) 4V AG 6 bit Digital Data Latch 1 DG 2V P2D0 to P2D5 6 bit Digital Data 18 43 19 42 20 41 21 40 22 39 AG 23 38 +5V (D) 24 37 +5V (D) DG +5V (D) DG +5V (D) 25 26 27 28 29 30 31 32 33 34 35 36 PECL-CLK P1D0 to P1D5 6 bit Digital Data DG DG +5V (D) 6 bit Digital Data Latch (3) DMUX TTL input +5V (D) DG DG TTL RESET Signal 12 11 10 9 8 7 6 5 4 3 2 13 48 AG 14 47 15 46 AG 16 45 +5V (A) 17 44 AG +5V (A) 18 43 19 42 20 41 AG 21 40 22 39 AG 23 38 +5V (D) 24 4V 6 bit Digital Data Latch 1 DG 2V P2D0 to P2D5 6 bit Digital Data 37 +5V (D) DG +5V (D) DG +5V (D) 25 26 27 28 29 30 31 32 33 34 35 36 TTL-CLK DG DG +5V (D) – 12 – P1D0 to P1D5 6 bit Digital Data 6 bit Digital Data Latch CXA3086Q (4) Straight ECL input +5V (D) DG 12 11 10 9 8 DG 6 7 5 4 1 2 3 –5V (D) 13 48 AG 14 47 15 46 AG 16 45 +5V (A) 17 44 2V AG +5V (A) 4V AG 18 43 19 42 20 41 21 40 22 39 AG 23 38 DG 24 37 +5V (D) DG +5V (D) DG DG +5V (D) 25 26 27 28 29 30 31 32 33 34 35 36 ECL-CLK P1D0 to P1D5 6 bit Digital Data DG DG +5V (D) ECL 6 bit Digital Data Latch TTL (5) Straight PECL input +5V (D) DG 12 11 10 9 8 DG 7 6 5 4 3 2 1 DG 13 48 AG 14 47 15 46 16 45 17 44 2V AG +5V (A) +5V (D) DG 18 43 19 42 +5V (D) 20 41 DG AG 21 40 22 39 AG 23 38 +5V (D) 24 AG +5V (A) 4V 37 DG +5V (D) 25 26 27 28 29 30 31 32 33 34 35 36 PECL-CLK P1D0 to P1D5 6 bit Digital Data DG DG +5V (D) PECL 6 bit Digital Data Latch TTL (6) Straight TTL input +5V (D) DG 12 11 10 9 8 DG 7 6 5 4 3 2 1 DG 13 48 AG 14 47 15 46 AG 16 45 +5V (A) 17 44 2V +5V (D) DG 18 43 19 42 +5V (D) 20 41 DG AG 21 40 22 39 AG 23 38 +5V (D) 24 AG +5V (A) 4V 37 DG +5V (D) 25 26 27 28 29 30 31 32 33 34 35 36 TTL-CLK DG +5V (D) DG – 13 – P1D0 to P1D5 6 bit Digital Data 6 bit Digital Data Latch CXA3086Q Application Circuit 2 Straight Mode TTL I/O (When a single power supply is used) AG Analog input 1µF 4V +5V (A) AG AG AG AG 1µF 10µF VRTS 2V short VRBS short 23 22 21 20 19 18 17 16 15 14 AGND VRTS VRT AVCC VIN N.C. AVCC VRB VRBS AGND RESETN/E 12 25 CLK/E 26 CLKN/E TTL CLK 13 DVEE3 24 DGND3 DG RESET/E 11 27 CLK/T RESETN/T 10 28 DVCC2 DVCC2 9 29 DGND2 DGND2 8 (LSB) P1D0 30 P1D0 P2D5 7 P2D5 (MSB) P1D1 31 P1D1 P2D4 6 P2D4 P1D2 32 P1D2 P2D3 5 P2D3 P1D3 33 P1D3 P2D2 4 P2D2 P1D4 34 P1D4 P2D1 3 P2D1 (MSB) P1D5 35 P1D5 P2D0 2 P2D0 (LSB) DVCC1 DGND1 N.C. SELECT INV CLKOUT PS N.C. DGND1 DVCC1 DVCC2 DGND2 1 DVCC2 36 DGND2 37 38 39 40 41 42 43 44 45 46 47 48 CLKOUT 10µF DG +5V (D) Short the analog system and digital system at one point immediately under the A/D converter. See the Notes on Operation. is the chip capacitor of 0.1µF. Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same. – 14 – CXA3086Q DMUX Mode Timing Chart (Select = VCC) Tds N–1 N+6 4.5ns (typ.) N+5 N+7 VIN N+3 N T N+4 N+2 N+1 CLK Tpw1 Tpw0 Tdo2; 8ns (typ.) 6.5ns (min.) 10ns (max.) P1D0 to D5 N+1 P2D0 to D5 N Td_clk; AA AA AA AAAAAA 7ns (typ.) Tdo1 T + 1ns (typ.) 8ns (max.) 4.5ns (min.) CLK OUT (Reset period) 2.0V 2.0V 2.0V 0.8V 0.8V 0.8V 4.5ns (min.) 8ns (max.) T_rh T_rs T_rh T_rs Td_clk RESET signal – 15 – 2.0V 0.8V 2.0V 0.8V ≈T N+3 N+2 ≈T CXA3086Q Straight Mode Timing Chart (Select = GND) N+2 N–1 N+1 VIN N+3 Tds 4.5ns (typ.) N T CLK Tpw1 Tpw0 Tdo2; 8ns (typ.) 6.5ns (min.) 10ns (max.) P1D0 to D5 N–4 2.0V N–3 N–2 N–1 N N–4 N–3 N–2 N–1 0.8V P2D0 to D5 N–5 2.0V 0.8V Td_clk; 7ns (typ.) 4.5ns (min.) 8ns (max.) CLK OUT (CLK is inverted and output.) 2.0V 0.8V RESET signal – 16 – CXA3086Q Timing of A/D Converter and Peripheral Circuit In the maximum clock rate of the DEMUX Mode, the timing of 3 channels of ADC CLK OUT in same phase is described in detail as below. For example, the CLK OUT from one of the ADC is used as the data latch clock. The clock delay and data delay are showed in the following specification, i.e. Td_clk 4.5ns (min.) to 8.0ns (max.) Tdo2 6.5ns (min.) to 10ns (max.) These values are considered in all the temperature change and power supply variation. When the maximum clock rate 140MSPS is used, the set-up time (ts) is seemed to be very small from above specifications. But the 3 channels of ADC are in the same circuit board, so that the DATA OUT delay and CLK OUT delay will be changed in same trend at the same condition of the temperature change and power supply variation. As a result, 0.5ns of the delay will be faster, when the highest temperature and highest power supply is used. Also, 0.5ns of the delay will be later, when the lowest temperature and lowest power supply is used. These delay can be omitted in this case. When Ta = 25°C, VCC = +5V, the clock delay and data delay are Td_clk 5.0ns (min.) to 7.5ns (max.) Tdo2 7.0ns (min.) to 9.5ns (max.) The timing of the DATA OUT and CLK OUT with above delay variation is showed in below. Consequently, the set-up time for the data latching can be obtained as ts (min.) = 2.5ns. The output delay change of the DATA OUT and CLK OUT due to the temperature change and the power supply variation should have the same trend of the delay change, the minimum ts = 2.5ns can be guaranteed at any temperature change and power supply variation. Analog input R Analog input G Analog input B CLK RESET CXA3086Q Vin P1D/out CLK P2D/out RESET CLK OUT Gate Array 6bit 6bit CXA3086Q Vin P1D/out CLK P2D/out RESET CLK OUT Latch 6bit 6bit CXA3086Q Vin P1D/out CLK P2D/out RESET CLK OUT 6bit 6bit 7ns ( = 1/140MSPS) CLK th-reset RESET signal Td_clk (min.) 5.0ns <4.5ns> CLK OUT Td_clk (max.) 7.5ns <8.0ns> Tdo2 (min.) 7.0ns <6.5ns> Tdo2 (min.) 9.5ns <10ns> ts (min.) 2.5ns th (min.) 6.5ns P1D/out P2D/out 14ns Note: In the timing chart, the values in the brackets < > are included all the temperature change and the power supply variation. – 17 – CXA3086Q Notes on Operation • The CXA3086Q is a high-speed A/D converter which is capable of TTL, ECL and PECL level clock input. Characteristic impedance should be properly matched to ensure optimum performance during high-speed operation. • The power supply and grounding have a profound influence on converter performance. The power supply and grounding method are particularly important during high-speed operation. General points for caution are as follows. — The ground pattern should be as large as possible. It is recommended to make the power supply and ground patterns wider at an inner layer using a multi-layer board. — To prevent interference between AGND and DGND and between AVcc and DVcc, make sure the respective patterns are separated. To prevent a DC offset in the power supply pattern, connect the AVcc and DVcc lines at one point each via a ferrite-bead filter Shorting the AGND and DGND patterns in one place immediately under the A/D converter improves A/D converter performance. — Ground the power supply pins (AVcc, DVcc1, DVcc2, DVEE3) as close to each pin as possible with a 0.1µF or larger ceramic chip capacitor. (Connect the AVcc pin to the AGND pattern and the DVcc1, DVcc2 and DVEE3 pins to the DGND pattern.) — The digital output wiring should be as short as possible. If the digital output wiring is long, the wiring capacitance will increase, deteriorating the output slew rate and resulting in reflection to the output waveform since the original output slew rate is quite fast. • The analog input pin VIN has an input capacitance of approximately 7pF. To drive the A/D converter with proper frequency response, it is necessary to prevent performance deterioration due to parasitic capacitance or parasitic inductance by using a large capacity drive circuit. keeping wiring as short as possible, and using chip parts for resistors and capacitors, etc. • The VRT and VRB pins must have adequate by-pass to protect them from high-frequency noise. By-pass them to AGND with an approximately 1µF tantal capacitor and 0.1µF chip capacitor as short as possible. • The offset for residual resistance is generated each for the reference voltage pins VRT and VRB. When the offset voltage has no influence on the IC operation, the voltage should be applied to the VRT and VRB pins directly, keeping the VRBS pin open. When the reference voltage is to be supplied to these pins precisely, form the feedback loop circuit with VRT and VRB as a force pin and adjust the offset voltage to be 0V. See the “Application Circuit 2” for details. • If the CLKN/E pin is not used, by-pass this pin to DGND with an approximately 0.1µF capacitor. At this time, approximately DGND3 – 1.2V voltage is generated. However, this is not recommended for use as threshold voltage VBB as it is too weak. • When the digital input level is ECL or PECL level, ∗∗∗/E pins should be used and ∗∗∗/T pins left open. When the digital input level is TTL, ∗∗∗/T pins should be used and ∗∗∗/E pins left open. – 18 – CXA3086Q Example of Representative Characteristics Current consumption vs. Ambient temperature characteristics Current consumption vs. Conversion rate characteristics 90 Current consumption [mA] Current consumption [mA] 70 65 60 55 50 80 fin = fCLK – 1kHz 4 DMUX mode CL = 5pF 70 60 50 –25 25 Ta – Ambient temperature [°C] 75 0 Analog input current vs. Analog input voltage characteristics 70 Fc – Conversion rate [MSPS] 140 Reference current vs. Ambient temperature characteristics 11 Reference current [mA] Analog input current [µA] 100 VRT = 4V VRB = 2V 50 10 9 8 7 0 2 3 Analog input voltage [V] 4 –25 – 19 – 25 Ta – Ambient temperature [°C] 75 CXA3086Q SNR vs. Input frequency response Error rate vs. Conversion rate characteristics 40 10–6 Fc = 140MSPS Error rate [TPS] SNR [dB] 10–7 35 fin = fCLK – 1kHz 4 Error > 4LSB 10–8 10–9 30 10–10 1 3 5 10 30 Input frequency [MHz] 50 100 Fc – Maximum conversion rate [MSPS] Maximum conversion rate vs. Ambient temperature characteristics 180 170 fCLK – 1kHz 4 Error > 4LSB Error rate: 10–9TPS fin = 160 150 140 –25 25 Ta – Ambient temperature [°C] 75 – 20 – 140 160 180 Fc – Conversion rate [MSPS] 200 CXA3086Q CXA3086Q Evaluation Board Description The CXA3086Q Evaluation Board is a special board designed to maximize and facilitate the evaluation performance of the CXA3086Q. After latching the CXA3086Q output data with a frequency divided clock, the analog signal can be regenerated by a 10-bit high-speed D/A converter. The latched data can also be extracted externally via a 24-pin cable connector. Features • Resolution: • Maximum conversion rate: • Supply voltage: • Dual analog input pins: 6 bits 140MSPS (min.) ±5.0V DIR.IN: AC coupling input pin AMP.IN: Operational amplifier input pin • Clock frequency division: 1/1 to 1/16 Absolute Maximum Ratings • Supply voltage VCC VEE –0.5 to +7.0 –7.0 to +0.5 Recommended Operating Conditions • Supply voltage VCC GND VEE • Analog input AMP. IN DIR. IN • Clock input CLK. IN V V Min. +4.75 –5.25 –0.75 1.5 0.8 – 21 – Typ. +5.0 0 –5.0 0 2.0 1.0 Max. +5.25 –4.75 +1.05 2.2 1.2 V V V V Vp-p Vp-p CLK IN AMP IN DIR IN DGND CON3 AGND CON1 AGND CON2 VEE DGND 51Ω AGND 82Ω AGND 51Ω CON6 GND 0.1µF 1kΩ VBB × (–2) 1kΩ 390Ω AGND VCC 130Ω 270Ω Vrt Vrb Vrb Vrt B S1 A (PECL) 4 (PECL) OFFSET OFFSET. R3 SW1 P2D0 to D5 INV SW2 VRB (TTL) 4 CLK S2 CLKOUT P1D0 to D5 VIN CXA3086Q VRT Straight SW4 CON8 (TTL) (TTL) 6 (TTL) 6 INV P1 side DATA PS SW3 A/D D/A INV INV SELECT PS DMUX NORM NORM NORM LATCH LATCH VRT. R2 Counter P2 side DATA CON7 (TTL) 6 (TTL) 6 TTL/ECL TTL/ECL VRB. R1 PECL/TTL – 22 – TTL/ECL (ECL) (ECL) 6 (ECL) 6 AGND CON5 AGND CON4 D/A OUT (–1.0V) P1 side OUT P2 side OUT D/A OUT (–1.0V) FULL SCALE. R4 FULL SCALE. R5 DAC DAC Block Diagram CXA3086Q CXA3086Q Pin Description and I/O Level Pin No. Symbol I/O Standard I/O level Current Description CON1 AMP. IN I 0.95Vp-p Doubles the analog input signal amplitude using the operational amplifier. The input impedance is 50Ω. CON2 DIR. IN I 2.0Vp-p AC coupling input. Suitable for sine waves and other repeating waveforms. The input impedance is 50Ω. CON3 CLK. IN I 1.0Vp-p The CXA3086Q operates at the PECL level clock using the sine wave-to-PECL conversion circuit. The input impedance is 50Ω. CON4 P2 side OUT O 0 to –1V Allows the D/A converted waveform of the CXA3086Q port 2 side data to be observed. The output impedance is 50Ω. CON5 P1 side OUT O 0 to –1V Allows the D/A converted waveform of the CXA3086Q port 1 side data to be observed. The output impedance is 50Ω. VCC I +5.0V GND I 0V VEE I –5.0V CON7 P2 side DATA O TTL The CXA3086Q port 2 side data output is latched at the frequency divided clock and then output. CON8 P1 side DATA O TTL The CXA3086Q port 1 side data output is latched at the frequency divided clock and then output. CON6 0.8A The inside of the board is divided into analog and digital systems. –0.6A Board Adjustments and Settings 1. VRB.R1: CXA3086Q VRB voltage adjusting volume. 2. 3. VRT.R2: OFFSET.R3: 4. 5. 6. FULL SCALE.R4: FULL SCALE.R5: S1: CXA3086Q VRT voltage adjusting volume. Adjusting volume for matching the AMP.IN input and DIR.IN input signal ranges to the CXA3086Q input range. Full-scale adjusting volume for the port 2 D/A output. (–1V: Typ.) Full-scale adjusting volume for the port 1 D/A output. (–1V: Typ.) Switching junction for the dual analog input pins. Set as follows according to the input pins used. Junction A B AMP.IN OPEN SHORT DIR.IN 0.1µF 10kΩ Symbol 7. S2: 8. 9. 10. 11. SW1 SELECT: SW2 A/D INV: SW3 PS: SW4 D/A INV: Setting junction for the clock frequency division ratio. The operating speed after latching is determined by the frequency division ratio set here. When set to CLK OUT, it operates according to the CXA3086Q clock output. CXA3086Q output mode selector switch. CXA3086Q output polarity inversion switch. CXA3086Q PS switch. D/A converter output polarity inversion switch. – 23 – CXA3086Q Notes on Board Operation 1. The factory settings for the CXA3086Q Evaluation Board are as follows. VRB.R1 = 1.5V VRT.R2 = 3.0V OFFSET.R3 = 2.25V FULL SCALE.R4 = –1V FULL SCALE.R5 = –1V S1 S2 A : OPEN, B : SHORT 8 : SHORT (1/8 frequency division) When using the board in this condition, the input signals should be input at the amplitudes shown below. (The frequency is set as desired.) Analog input signal: CON1 (AMP.IN) 0V center, 800mVp-p or less Clock input signal: CON3 (CLK.IN) 0V center, 1.0Vp-p 2. When the analog signal is input from the CON1 (AMP.IN) pin, IC2:CLC404 limits the input dynamic range of the A/D converter's analog input signal. 3. When the analog input signal is a sine wave or other repeating waveform, the signal can be input from the CON2 (DIR.IN) pin with AC coupling. In these cases, the input dynamic range is not limited, but the VRT level may be limited by IC3: NJM3403A. 4. In the evaluation board of the CXA3086Q, CLC404 (Comlinear) is employed for IC2 to drive the analog input signal. Though, CLC505 (Comlinear) can also be used instead of CLC404, there should be a little change in the peripheral circuit in this case. – 24 – CXA3086Q CXA3086Q Evaluation Board Timing Chart N N+3 N+1 CON2 DIR IN 2Vp-p 0V N+2 CON3 CLK IN CXA3086Q CLK 1Vp-p 0V (PECL) CXA3086Q P1 side DATA N–4 N–3 N–2 N–1 (TTL) Approximately 6.0ns CON8 P1 side DATA CLK CON8 P1 side DATA DATA (TTL) Approximately 9.0ns N–6 N–4 N–2 (TTL) N–6 CON5 P1 side OUT N–4 N–2 (Analog regeneration waveform) 0 to –1V Operating Conditions CXA3086Q operating mode : Straight mode Analog input : DIR IN pin input S2 setting : 1/2 frequency divided clock – 25 – CXA3086Q Circuit Diagram CON6 VEE L1 GND L2 L3 VCC L4 L5 L6 DGND C1 33µF C2 33µF C3 33µF DAINV C4 33µF SW4 D/A INV PS AVEE DVEE AGND DGND AVCC SW3 PS DVCC ADINV SW2 A/D INV DVCC SELECT SW1 SELECT C24 0.1µF DVCC AGND C5 1µF AVEE C14 0.1µF AGND C6 1µF DGND P2D5 AVEE P2D4 P2D3 C15 0.1µF P2D2 P2D1 AGND P2D0 AGND 4 R18 51 CON2 DIR IN C19 0.1µF 3 AVCC DVCC2 P2D5 P2D4 P2D3 P2D2 P2D1 13 DVEE3 DVCC2 48 14 AGND DVCC1 47 17 AVCC C20 0.1µF 22 VRTS C16 0.1µF C8 1µF DGND1 39 23 AGND AGND DVCC DVCC2 37 DGND C17 0.1µF DGND2 24 DGND3 C27 0.1µF AGND C27 0.1µF DGND AVCC AGND DVCC 25 26 27 28 29 30 31 32 33 34 35 36 DGND AGND DGND DVCC1 38 P1D5 IC3C NJM3403A 10 8 9 C7 1µF C21 0.1µF P1D4 AGND N.C. 40 C26 0.1µF 21 VRT C10 1µF IC2 7 CLC404 DGND2 AGND 2 3 R14 130 ADINV SELECT SELECT 41 DVCC2 R13 82 CLKOUT INV 42 20 AVCC CLK/T CON1 AMP IN AVCC PS PS 44 CLKOUT 43 IC1 CXA3086Q DVCC DGND C25 N.C. 45 0.1µF 19 VIN S1 DGND C28 0.1µF DGND1 46 18 N.C. B R17 43 1 15 VRBS AVCC R16 4 270 6 2 P2D0 4 DGND2 5 16 VRB A AGND C18 0.1µF 6 P1D3 R15 270 C9 1µF 7 P1D2 R6 51 AGND 8 P1D1 IC3A NJM3403A AGND RESET/E 1 9 P1D0 R10 22k 11 2 3 R11 200k RESETN/T R3 10k IC3B NJM3403A 6 7 5 CLK/E R8 510 R2 1k DGND R12 390k CLKN/E D1 TL431CP R9 7.5k RESETN/E 12 11 10 R7 510 R1 2k DGND2 DGND AVCC P1D5 P1D4 DVCC P1D3 P1D2 CON3 CLK IN DGND IC4B 10H116 (PECL) 7 10 9 6 C13 0.1µF R19 51 DGND R20 1k R21 390 R22 1k R23 82 IC4A 10H116 (PECL) 3 5 4 2 IC4C 10H116 (PECL) 15 13 12 14 P1D1 DVCC P1D0 DGND C23 0.1µF R24 130 11 IC4D 10H116 (PECL) 13 CLK Cout 4 DGND 9 S1 7 S2 R25 130 R28 82 R26 130 R29 82 R27 130 R30 82 DGND DVCC IC5 10H136 (PECL) 12 D0 Q3 3 11 D1 Q2 2 6 D2 Q1 15 5 D3 Q0 14 1/16 1/8 1/4 1/2 CLK CLKN – 26 – CXA3086Q DGND DVcc 1 2 C42 0.1µF IC15 74ALS541 P2D5 3 17 P2D4 4 16 P2D3 5 15 P2D2 6 14 P2D1 7 13 P2D0 8 12 CON7 P2 side DATA IC14 74ALS541 9 11 25 DGND 26 DGND C47 0.1µF DVCC R47 620 Q5 14 DGND 11 CLK DVEE Q4 12 1 MSB AGND 28 9 2 D2 VREF 27 NQ3 10 3 D3 AVEE 26 Q0 24 4 D4 NC 25 NC 24 NQ4 11 2 1D 1Q 19 3 2D P2D5 P2D3 P2D2 P2D1 P2D0 Q3 2Q 18 IC6 74AS574 4 3D P2D4 3Q 17 5 4D 4Q 16 6 5D 5Q 15 7 6D 6Q 14 8 7D 7Q 13 9 8D 8Q 12 P2D5 IC9 100324 15 5D P2D4 NQ0 1 5 D5 17 3D Q1 2 6 D6 21 0D NQ1 3 7 D7 22 1D Q2 5 8 D8 23 2D NQ2 4 9 D9 16 4D P2D3 P2D2 P2D1 P2D0 AGND NQ5 13 19 E 1 OC IC12 CX20201-1 R48 620 C44 0.1µF R37 82 C45 0.1µF NQ5 13 19 E Q4 12 DGND 1 OC P1D4 Q3 3 2D P1D3 P1D1 P1D0 P1D5 P1D3 3Q 17 P1D2 11 NC AGND 18 DGND 17 13 CLKN Q0 24 DVEE AGND 1 MSB AGND 28 VREF 27 AVEE 26 16 4D NQ0 1 3 D3 Q1 2 4 D4 NC 25 21 0D NQ1 3 5 D5 NC 24 22 1D Q2 5 6 D6 23 2D NQ2 4 7 D7 5Q 15 7 6D 6Q 14 8 7D 7Q 13 8 D8 9 8D 8Q 12 9 D9 R50 620 C46 0.1µF DGND 19 OE C54 0.1µF R44 1k R5 2k C55 0.1µF NC 23 IC13 CX20201-1 D3 TL431CP C12 1µF AVEE NC 21 AGND CON5 P1 side OUT NC 19 11 NC AGND 18 12 NC DGND 17 13 CLKN AGND DGND C56 0.1µF INV 16 14 CLK DVEE DVEE 15 17 VBB R51 620 6 B CLKOUT DGND 24 D0 Q0 2 1 D0N 1/16 23 D1 21 D2 20 D2N 1/4 16 D3 IC8 100390 14 D4 CLK 12 D5 11 D5N R31 82 R34 130 R32 82 R35 130 R33 82 R36 130 DGND R46 620 3 DGND Y3 12 10 A3 1/4 R41 620 Y4 14 Y4 13 11 A4 1/2 C50 0.1µF DVEE Y3 15 Q3 8 DVEE Q4 9 13 D4N CLKN DVCC Y2 Q2 4 15 D3N 1/2 Y2 1 IC11 10H124 7 A2 1/8 2 Y1 4 Q1 3 22 D1N 1/8 Y1 5 A1 1/16 1/1 DVCC Q5 10 1 2 S2 C43 0.1µF IC14 74ALS541 P1D5 3 17 P1D4 4 16 P1D3 5 15 P1D2 6 14 P1D1 7 13 P1D0 8 12 CON8 P1 side DATA 25 26 DGND – 27 – R45 270 NC 22 OUT 20 10 LSB DVEE DGND DGND C53 0.1µF DVEE 15 17 3D DAINV CLKOUT C31 0.1µF AGND INV 16 2 D2 6 5D DGND AGND CON4 P2 side OUT R39 130 4Q 16 P1D0 NC 21 12 NC 5 4D P1D1 C11 1µF AVEE R40 130 DVEE DVEE 9 NQ3 10 IC10 100324 15 5D P1D4 2Q 18 IC7 74AS574 4 3D P1D2 R38 82 R49 620 NQ4 11 11 CLK 1Q 19 C52 NC 23 0.1µF NC 22 D2 TL431CP NC 19 14 CLK Q5 14 2 1D R4 2k R43 270 DGND DVCC P1D5 R42 1k OUT 20 10 LSB DVEE C51 0.1µF CXA3086Q Component List No. Product name IC1 CXA3086Q IC2 CLC404AJE IC3 NJM3403AM IC4 MC10H116L IC5 MC10H136L IC6, 7 74AS574N IC8 100390 IC9, 10 100324PC IC11 MC10H124L IC12, 13 CXA20201A-1 IC14, 15 74ALS541N D1 to 3 TL431CP SW1 to 4 ATE1D-2F3-10 S1, 2 JX-1 CON1 to 5 01K0315 CON6 TJ-563 CON7, 8 (FAP-2601-1202) L1 to 6 ZBF503D-00 C1 to 4 Tantal capacitor C5 to 12 Tantal capacitor C13 Ceramic capacitor All parts other than those listed above Chip capacitor Function 6-bit A/D converter OP-AMP OP-AMP ECL Buffer ECL Countor TTL Latch PECL→TTL conversion TTL→ECL conversion TTL→ECL conversion 10-bit D/A converter TTL Buffer Shunt regulator Toggle switch Short pin BNC connector Power supply connector Flat cable connector Ferrite-bead filter 33µF 1µF 0.1µF No. R2 R1, 4, 5 R3 R47 to 51 Product name RJ-5W-1K RJ-5W-2K RJ-5W-10K RGLD4X621J Function 1kΩ volume resistor 2kΩ volume resistor 10kΩ volume resistor 620Ω network resistor R6, 18, 19 R7.8 R9 R10 R11 R12 R13, 23, 28 to 33, 37, 38 R14, 24 to 27, 34 to 36, 39, 40 R15, 16, 43, 45 R17 R20, 22, 42, 44 R21 R41, 46 FRD-25SR (0.25W) FRD-25SR (0.25W) FRD-25SR (0.25W) FRD-25SR (0.25W) FRD-25SR (0.25W) FRD-25SR (0.25W) FRD-25SR (0.25W) FRD-25SR (0.25W) FRD-25SR (0.25W) FRD-25SR (0.25W) FRD-25SR (0.25W) FRD-25SR (0.25W) FRD-25SR (0.25W) 51Ω 510Ω 7.5kΩ 22kΩ 200kΩ 390kΩ 82Ω 130Ω 270Ω 43Ω 1kΩ 390Ω 620Ω 0.1µF ∗ CON7 and 8 are not mounted when boards are shipped. (Manufacturer: YAMAICHI Electronics Co., Ltd.) Component side silk diagram – 28 – CXA3086Q Component side pattern diagram Solder side pattern diagram – 29 – CXA3086Q Package Outline Unit: mm 48PIN QFP (PLASTIC) 15.3 ± 0.4 + 0.1 0.15 – 0.05 + 0.4 12.0 – 0.1 36 25 0.15 24 48 13 13.5 37 12 0.8 + 0.15 0.3 – 0.1 ± 0.12 M 0.9 ± 0.2 1 + 0.2 0.1 – 0.1 + 0.35 2.2 – 0.15 PACKAGE STRUCTURE SONY CODE QFP-48P-L04 EIAJ CODE ∗QFP048-P-1212-B JEDEC CODE PACKAGE MATERIAL EPOXY RESIN LEAD TREATMENT SOLDER / PALLADIUM PLATING LEAD MATERIAL COPPER / 42 ALLOY PACKAGE WEIGHT 0.7g NOTE : PALLADIUM PLATING This product uses S-PdPPF (Sony Spec.-Palladium Pre-Plated Lead Frame). – 30 –