CXD2720Q Single-Chip Digital Signal Processor for Karaoke Description The CXD2720Q is a digital signal processor LSI for Karaoke, suitable for use in LD/CD/CD-G/video CD and the like. A large capacity DRAM and AD/DA converters are built in, and Karaoke functions such as key control, microphone echo and voice canceling are contained on a single chip. Features • 3-channel 1-bit AD converter and decimation filter S/N ratio: 88 dB THD + N: 0.016% Filter pass band ripple: less than ±0.5dB Filter stop band attenuation: less than –41dB (all characteristics are typical values) • 2-channel 1-bit DA converter and oversampling filter S/N ratio: 98dB THD + N: 0.006% Filter pass band ripple: less than ±0.2dB Filter stop band attenuation: less than –41dB (all characteristics are typical values) • In addition to analog input/output, 2-channel input/ 2-channel output of digital input/output are provided. The interface also supports a variety of formats. • 128K-bit DRAM for key control and microphone echo processing Functions • Key controller pitch setting can be varied to a maximum of ±1 octave with a precision of 14 bits • Microphone echo delay time can be varied to a maximum of 185ms (when Fs = 44.1kHz) • Voice canceller supports settings other than center by the panpot volume • Voice parametric equalizer • Voice pitch shifter • Mixing function to support sound multiplexing software • Digital de-emphasis function 100 pin QFP (Plastic) Structure Silicon gate CMOS Applications Equipment having Karaoke function, such as LD/CD, compact music center, video games, etc. Absolute Maximum Ratings • • • • • (Ta = 25°C, VSS = 0V) Supply voltage VDD VSS – 0.5 to +7.0 V Input voltage VI VSS – 0.5 to VDD + 0.5 V Output voltage VO VSS – 0.5 to VDD + 0.5 V Operating temperature Topr –20 to +75 °C Storage temperature Tstg –55 to +150 °C Recommended Operating Conditions • Supply voltage VDD 4.5 to 5.5 (5.0 typ.) V • Operating temperature Ta –20 to +75 °C Input/Output Capacitance 9 (max.) pF • Input capacitance CIN • Output capacitance COUT 11 (max.) pF • Input/output capacitance CI/O 11(max.) pF ∗ Measurement conditions: VDD = VI = 0V, F = 1MHz Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits. –1– E96426-ST CXD2720Q Block Diagram 128K bit DELAY RAM RVDT 3 SCK 4 XLAT 5 MICRO COMPUTER I/F REDY 6 TRDT 25 AO1P DAC1 7 26 AO1N DAC2 39 AO2N 40 AO2P ADC1 29 AIN1 ADC2 36 AIN2 ADC3 22 AIN3 DSP LRCK 88 BCK 87 SERIAL DATA I/F SI 86 SO 12 XWO 8 CLOCK GENERATOR /TIMING CIRCUIT 33 82 32 XTLI XTLO BFOT NC NC VSS4 NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC VDD2 VSS5 NC NC NC NC NC NC NC NC NC VSS6 Pin Configuration 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 X768 81 50 NC BFOT 82 49 NC INVI 83 48 NC NC 84 47 NC NC 85 46 NC SI 86 45 NC BCK 87 44 NC LRCK 88 43 VDD1 XMST 89 42 VSS3 VSS7 90 41 AVS5 NC 91 40 AO2P NC 92 39 AO2N NC 93 38 AVD5 NC 94 37 AVD2 NC 95 36 AIN2 NC 96 35 AVS2 NC 97 34 XVSS NC 98 33 XTLI –2– AVD1 AIN1 AVS1 AVS4 AO1P AO1N AVD4 AIN3 AVD3 AVS3 VSS2 TST5 TRDT TST3 REDY TST4 XLAT TST2 SCK 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 TST1 RVDT 8 TST0 7 XS24 6 SO 5 VDD0 4 VSS1 3 XWO 2 XRST 1 VSS0 32 XTLO 31 XVDD AVS0 VDD3 99 AVD0 100 CXD2720Q Pin Description Pin No. Symbol I/O Description 1 AVS0 — DRAM digital GND. 2 VSS0 — Digital GND. 3 RVDT I Data input for microcomputer interface. 4 SCK I Shift clock input for microcomputer interface. 5 XLAT I Latch input for microcomputer interface. 6 REDY O Transmission enabling signal output for microcomputer interface. Transmission prohibited when Low. 7 TRDT O Serial data output for microcomputer interface. 8 XWO I Window open input for synchronization. Normally High. 9 XRST I System reset input. Resets when Low. 10 VSS1 — Digital GND. 11 VDD0 — Digital power supply. 12 SO O 1-sampling 2-channel serial data output. 13 XS24 I Serial data 24-/32-bit slot selection. 24-bit slot when Low. (valid for slave mode) 14 TST0 I Test pin. Normally set Low. 15 TST1 I Test pin. Normally set Low. 16 TST2 I Test pin. Normally set Low. 17 TST3 I Test pin. Normally set Low. 18 TST4 I Test pin. Normally set Low. 19 TST5 I Test pin. Normally set Low. 20 VSS2 — Digital GND. 21 AVS3 — CH3 AD converter GND. 22 AIN3 I 23 AVD3 — CH3 AD converter power supply. 24 AVD4 — CH1 DA converter power supply. 25 AO1P O CH1 DA converter analog positive phase output. 26 AO1N O CH1 DA converter analog reversed phase output. 27 AVS4 — CH1 DA converter GND. 28 AVS1 — CH1 AD converter GND. 29 AIN1 I CH1 AD converter analog input. 30 AVD1 — CH1 AD converter power supply. 31 XVDD — Digital power supply for master clock. 32 XTLO O Crystal oscillator circuit output. 33 XTLI I Crystal oscillator circuit input. 34 XVSS — Digital GND for master clock. 35 AVS2 — CH2 AD converter GND. CH3 AD converter analog input (for microphone input). –3– CXD2720Q Pin No. Symbol I/O Description 36 AIN2 I CH2 AD converter analog input. 37 AVD2 — CH2 AD converter power supply. 38 AVD5 — CH2 DA converter power supply. 39 AO2N O CH2 DA converter analog reversed phase output. 40 AO2P O CH2 DA converter analog positive phase output. 41 AVS5 — CH2 DA converter GND. 42 VSS3 — Digital GND. 43 VDD1 — Digital power supply. 44 to 52 NC 53 VSS4 Normally open. — 54 to 68 NC Digital GND. Normally open. 69 VSS5 — Digital GND. 70 VDD2 — Digital power supply. 71 to 79 NC Normally open. 80 VSS6 — 81 X768 I Test input pin. Normally set Low. 82 BFOT O Clock, frequency-divider output (384fs). 83 INVI I Test pin. Normally set Low. 84 NC Normally open. 85 NC Normally open. 86 SI 87 BCK I/O Serial bit transmission clock for serial input/output data SI and SO. 88 LRCK I/O Sampling frequency clock for serial input/output data SI and SO. 89 XMST I 90 VSS7 I — 91 to 98 NC Digital GND. 1-sampling 2-channel serial data input. BCK, LRCK master/slave mode switching input. Master mode when Low. Digital GND. Normally open. 99 VDD3 — Digital power supply. 100 AVD0 — Digital power supply for DRAM. –4– CXD2720Q DC Characteristics (AVD0 to 5 = XVDD = VDD0 to 3 = 5V ± 10%, AVS0 to 5 = XVSS = VSS0 to 7 = 0V, Ta = –20 to +75°C) Item Input voltage (1) Symbol Conditions Min. Typ. 0.7VDD High level VIH Low level VIL Input voltage (2) ∗1, ∗4, ∗5 V ∗3 0.2VDD V ∗3 VDD V ∗2 V ∗6, ∗7, ∗8 V ∗6, ∗7, ∗8, ∗9 V ∗10 V ∗10 V ∗11 VDD/2 V ∗11 0.8VDD Low level VIL Unit Applicable pins ∗1, ∗4, ∗5 V V 0.3VDD High level VIH Input voltage (3) Max. Analog input VSS Output voltage High level VOH (1) Low level VOL IOH = –2.0mA VDD – 0.8 Output voltage High level VOH (2) Low level VOL IOH = –6.0mA Output voltage High level VOH (3) Low level VOL IOH = –12.0mA Input leak current (1) II VIH = VDD, VSS –10 10 µA ∗1, ∗3, ∗5 Input leak current (2) II VIH = VDD, VSS –40 40 µA ∗4 Output leak current IOZ VIH = VDD, VSS –40 40 µA ∗8, ∗9 Feedback resistance RFB 1M 2.5M Ω Resistance between ∗5 and ∗11. Current consumption IDD 79 90 mA VIN IOL = 4.0mA 0.4 VDD – 0.8 IOL = 4.0mA 0.4 VDD/2 IOL = 12.0mA 250k fs = 44.1kHz ∗1 RVDT, SCK, XLAT, XWO, XRST, XS24, TST0 to TST5, X768, SI, XMST ∗2 AIN1, AIN2, AIN3 ∗3 INVI ∗4 During input to bidirectional pins BCK, LRCK ∗5 XTLI ∗6 During output from bidirectional pins BCK, LRCK ∗7 SO, BFOT ∗8 TRDT ∗9 REDY ∗10 AO1P, AO1N, AO2N, AO2P ∗11 XTLO –5– CXD2720Q AC Characteristics (AVD0 to 5 = XVDD = VDD0 to 3 = 5V±10%, AVS0 to 5 = XVSS = VSS0 to 7 = 0V, Ta = –20 to +75°C) Serial Audio Interface Timing [Slave mode] 0.7VDD 0.3VDD BCK tSSI tHSI 0.7VDD 0.3VDD SI tDSSO SO tHLR tSLR 0.7VDD 0.3VDD LRCK [Master mode] BCK tDLR LRCK tDMSO SO Item SI setup time SI hold time SO delay time LRCK setup time LRCK hold time LRCK delay time SO delay time Symbol tSSI tHSI tDSSO tSLR tHLR tDLR tDMSO Conditions Min. Max. Unit Slave mode 20 ns Slave mode 40 ns Slave mode, CL = 60pF 50 ns Slave mode 20 ns Slave mode 40 ns Master mode, CL = 120pF 50 ns Master mode, CL = 60pF 100 ns –6– CXD2720Q Microcomputer Interface Timing [Write] • Transmission timing for address section, transmission mode section, data section LSB RVDT Address LSB tSWL tSWH 0.7VDD 0.3VDD Mode MSB tDS tDH Data LSB Data MSB 0.7VDD 0.3VDD SCK tSLP tLSD 0.7VDD 0.3VDD XLAT tLWL tLWH REDY • Transmission timing from data section MSB to address section and transmission mode section RVDT Data MSB Address LSB Mode MSB 0.7VDD 0.3VDD tSS 0.7VDD 0.3VDD SCK tSLD 0.7VDD 0.3VDD XLAT tSBD tLDR tRLP tBSP REDY [Read] • Transmission timing for address section and transmission mode section is the same as for write. RVDT Address LSB Mode MSB tSS 0.7VDD 0.3VDD SCK tSLP tRSDP 0.7VDD 0.3VDD XLAT tLWL tLBD 0.7VDD 0.3VDD REDY tLDN tSDD Data LSB TRDT –7– Data MSB CXD2720Q Item Symbol tDS tDH tSWL tSWH tLWL tLWH tSLP tLSD tLBD tSBD tBSP tRLP tRSDP RVDT setup time relative to SCK rise RVDT data hold time from SCK rise SCK Low level width SCK High level width XLAT Low level width XLAT High level width SCK rise preceding time relative to XLAT rise SCK rise wait time relative to XLAT rise Delay time to REDY fall relative to XLAT rise. Delay time to REDY fall relative to SCK rise REDY fall preceding time relative to SCK rise REDY rise preceding time relative to XLAT rise REDY rise preceding time relative to SCK fall XLAT fall wait time relative to SCK rise XLAT fall delay time relative to REDY fall Delay time from XLAT rise until TRDT data becomes active Delay time from SCK rise until TRDT data becomes high-impedance Delay time from SCK fall until TRDT data is verified CK rise wait time for next transmission tSLD tLDR tLDN tSDF tSDD tSS Note 1) t is the cycle of 1/2 the clock frequency applied to the XTLI pin. (384fs) Note 2) REDY and TRDT pins are the values for CL = 60pF. –8– Min. Max. Unit 20 ns 1t + 20 ns 1t + 20 ns 1t + 20 ns 1t + 20 ns 1t + 20 ns 20 ns 3t + 20 ns 3t + 50 ns 4t + 50 ns 20 ns 20 ns 20 ns 3t + 20 ns 20 ns 2t + 40 3t + 80 ns 3t + 80 ns 2t + 70 ns ns CXD2720Q Analog Characteristics (AVD0 to 5 = VDD0 to 3 = XVDD = 5.0V, AVS0 to 5 = VSS0 to 7 = XVSS = 0.0V, Ta = 25°C, DSP: each function = OFF, gain = 1) [1] ADC + DAC connection total characteristics The measurement circuit in Figure 1-1 is used. Unless otherwise indicated, the measurement conditions are as given below. • Input signal ...1.0Vrms, 1kHz • fs....................44.1kHz • Rin .................0Ω Item S/N ratio THD + N Measurement conditions Min. Typ. 1.0Vrms, EIAJ (with “A” weighting filter) 80 88 1.0Vrms, EIAJ 0.016 0.5Vrms, EIAJ 0.012 Max. Unit dB 0.03 % Dynamic range EIAJ 92 dB Channel separation Only ADC characteristics using DAC1, EIAJ 108 dB Level difference between channels Only ADC characteristics using DAC1 0.05 dB Rin = 0Ω 1.26 Rin = 22kΩ 2.06 Analog full-scale input level ADC input impedance Analog current consumption Vrms 34.6 kΩ 21 mA ∗1 Analog input level which outputs digital full scale. An optional analog input signal level Vin (Vrms) of 1.26Vrms or more can be set in digital full scale by the measurement circuit external resistor Rin. The calculation formula for external resistor Rin is: Rin = 27.5 × Vin – 34.6 [kΩ]......(1) However, THD + N characteristics deteriorate for full-scale output as shown in Graph 1, so use of up to 80% (when Rin = 0Ω, 0.8 × 1.26 (Vrms) = 1.0 (Vrms) → “analog full scale”) of the analog signal level is recommended for digital full-scale output. In this case, the Rin calculation formula is the same as formula (1), except that Vin becomes 1.25 × Vin. Note that this change causes the output level after ADC + DAC to change. Most of the above specifications are measurement values for analog full scale. –9– CXD2720Q [2] DAC unit characteristics Use the measurement circuit in Figure 1-2. Unless otherwise specified, the measurement conditions are as follows. • Input signal ....0dB, 1kHz, 16 bit • fs....................44.1kHz Item Measurement conditions S/N ratio Min. EIAJ (with “A” weighting filter) Typ. 98 Max. Unit dB EIAJ (0dB) 0.006 EIAJ (–1dB) 0.004 Dynamic range EIAJ (–60dB) 98 dB Channel separation EIAJ 120 dB Level difference between channels EIAJ 0.05 dB Output level EIAJ (Measure at OUT in Figure 1-2.) 2.0 Vrms THD + N THD + N [%] 1.00 0.10 (Rin = 0Ω) Digital full scale Analog full scale 0.01 –60 –50 –40 –30 –20 –10 Analog input level [dBV] Graph 1. – 10 – 0 10 (1Vrms) % CXD2720Q CXD2720Q (Master mode) 150p 10µ Rin 12k 22k 39k AINx AOxN Vin 2.2k 8200p 2.2k OUT 330p 1M AOxP 820p 12k 22k 39k 150p Figure 1-1. ADC + DAC Measurement Circuit Diagram CXD2720Q (Slave mode) 768fs 48fs fs DATA (fs = 44.1kHz) 150p XTLI BCK 12k 22k 39k LRCK AOxN 2.2k 8200p 2.2k 330p SI AOxP 820p 12k 22k 39k 150p Figure 1-2. DAC Measurement Circuit Diagram – 11 – OUT CXD2720Q Description of Functions 1. Master/Slave Modes [Relevant pins] XMST, LRCK, BCK When connecting multiple CXD2720Qs, or when using as a pair with a D/A converter such as the CXD2558M, one of the CXD2720Q should be in master mode to supply LRCK and BCK. The clock applied to LRCK and BCK in slave mode must be synchronized to either the crystal oscillator clock of the XTLI and XTLO pins or the external clock input from the XTLI pin XMST Mode LRCK, BCK I/O H Slave mode Input L Master mode Output Table 1-1. LRCK, BCK Mode Setting 2. Master Clock System [Relevant pins] XTLI, XTLO, BFOT 768fs (fs = 44.1kHz) is assumed for the master clock system, and the connection is as shown below. (Please inquire with regard to use at other than fs = 44.1kHz.) (1) Master O 384fs BFOT Frequency divider I XTLI 768fs O 768fs XTLO (2) Slave I 768fs XTLI 768fs O OPEN XTLO – 12 – CXD2720Q 3. Input/Output Synchronization Circuit [Relevant pins] LRCK, XWO During normal operation, synchronization is performed automatically to input LRCK (in slave mode), and phase is matched with serial input data, but if there is a lot of jitter on LRCK, or during power input, synchronization may be impossible. In this case, forced synchronization can be done by making the XWO pin Low for 2/Fs or more. Forced synchronization operation is done by the timing of the second LRCK rising edge after the XWO pin is made Low. When synchronization is completed, return the XWO pin to High. 4. Reset Circuit [Relevant pins] XRST, XTLI, XTLO This LSI must be reset after power is turned ON. Reset is done by making the XRST pin Low for 1/Fs or more after supply voltage satisfies the recommended operating condition, and the crystal oscillator clock of the XTLI, XTLO pins or the external clock input from the XTLI pin is correctly applied. 5. Serial Audio Interface (SIF) [Relevant pins] SI, SO, BCK, LRCK, XS24, XMST Serial data is used for the external communication of the digital audio data. The CXD2720Q has one system each for input and output, and each one inputs/outputs 2 channels of data at 1 sampling cycles. Either the 32-bit clock mode or 24-bit clock mode can be selected. In master mode, the 32 bit clock mode is fixed. (1) Pin Configuration The pins shown in the table below are assigned to SIF. Pin name I/O SI I Serial input; taken synchronized to BCK. SO O Serial output; output synchronized to BCK. BCK I/O BCK input/output; either 32-bit clock mode (64fs) or 24-bit clock mode (48fs). BCK output supports 32-bit clock mode only. LRCK I/O LRCK input/output (1fs). XS24 I SI0 slot number (24/32) selection input. Low: 24-bit slot; High: 32-bit slot. Valid only in slave mode. Set High in master mode. XMST I BCK, LRCK master mode/slave mode switching input. Low: master mode; High: slave mode. Function Table 5-1. Pin Configuration – 13 – CXD2720Q (2) Operation Modes The LRCK/BCK mode and SI/SO system settings can be selected by the setup register settings as follows. LRCK/BCK Mode Setting Setup register Function SQ11 SQ10 SQ09 LRCK format LRCK polarity selection BCK polarity selection relative to LRCK edge Contents “0” : normal, “0” : Lch “H”, “0” : edge↓, “1” : IIS “1” : Lch “L” “1” : edge↑ Table 5-2. LRCK/BCK Mode Setting SI/O System Register Setting SI system Setup register Function SQ08 SQ07 SI data list SI frontward/rearward truncation SQ06 SQ05 SI data word length SI data word length Contents “0” : MSB first, “1” : LSB first “0” : Forward truncation, “1” : Rearward truncation SQ06 SQ05 0 0 : 16 bit 1 1 : 24 bit Table 5-3. SI System Register Setting SO system Setup register Function SQ04 SQ03 SO data list SO forward/rearward truncation SQ02 SQ01 SO data word length Contents “0” : MSB first, “1” : LSB first “0” : Forward truncation, “1” : Rearward truncation SQ02 SQ01 0 0 : 16 bit 0 1 : 18 bit 1 0 : 20 bit 1 1 : 24 bit Table 5-4. SO System Register Setting – 14 – CXD2720Q (3) SIF Format Serial I/F have one input/output system each, and except for slot number, the following formats can be set for input and output, independently, by setting the setup register. It can also be made to support IIS format, to enable connection to Philips and other devices. The timing charts for each data format are given on the following pages. 32-bit slot (XS24 = High) Setup register SQ05 SQ06 SQ07 SQ08 SI format MSB first MSB first LSB first 24 bit Forward truncation 16 bit Forward truncation 24 bit Rearward truncation 1 0 1 1 0 1 0 1 1 0 0 1 Supplement Supports 20, 16 bits Supports 20, 16 bits Table 5-5. 32-bit Slot Serial IN Setup register SQ01 SQ02 SQ03 SQ04 SI format MSB first MSB first MSB first MSB first MSB first LSB first 16 bit 18 bit 20 bit 24 bit 24 bit 24 bit Rearward truncation Rearward truncation Rearward truncation Rearward truncation Forward truncation Rearward truncation 0 1 0 1 1 1 0 0 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 1 Table 5-6. 32-bit Slot Serial OUT 24-bit slot (XS24 = Low) Setup register SQ05 SQ06 SQ07 SQ08 SI format MSB first MSB first 16 bit Rearward truncation 24 bit 0 1 0 1 ∗ 0 0 LSB first 24 bit 1 1 ∗ 1 1 Supplement Supports 20, 16 bits for forward truncation Supports 20, 16 bits for rearward truncation Table 5-7. 24-bit Slot Serial IN Setup register SQ01 SQ02 SQ03 SQ04 SI format MSB first MSB first MSB first MSB first LSB first 16 bit Rearward truncation 18 bit Rearward truncation 20 bit Rearward truncation 24 bit 24 bit 0 1 0 1 1 0 0 1 1 1 1 1 1 ∗ ∗ 0 0 0 0 1 Table 5-8. 24-bit Slot Serial OUT Note 1) When performing 20-bit and 16-bit data input in serial IN 24-bit data format, fill the lower 4 and 8 bits with “0”, respectively. Note 2) ∗ means “don't care”. – 15 – – 16 – SI 23 22 21 20 LSB 00 01 02 03 MSB • LSB first 24 bits 04 19 Invalid • MSB first 24 bits 05 18 Invalid MSB LSB 06 17 07 16 15 14 08 15 09 14 MSB 10 13 13 11 12 12 Lch 12 11 11 13 10 10 14 09 09 15 08 08 16 07 07 17 06 06 18 05 05 19 04 04 20 03 03 00 00 LSB 23 22 23 00 01 MSB LSB 22 LSB MSB 01 01 Figure 5-1. 21 02 02 MSB Rch 02 21 03 20 04 19 Invalid Invalid 05 18 MSB LSB 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00 Invalid 06 17 LSB 07 16 15 14 08 15 09 14 MSB 10 13 13 11 12 12 12 11 11 Rch 13 10 10 14 09 09 15 08 08 16 07 07 17 06 06 18 05 05 19 04 04 20 03 03 21 02 02 00 23 LSB 00 LSB MSB 22 01 01 MSB 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Invalid LSB 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00 MSB LSB 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00 LSB 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 • MSB first 16 bits rearward truncation BCK LRCK Invalid • LSB first 24 bits rearward truncation Invalid MSB • MSB first 16 bits rearward truncation 24 bit slot SI Lch 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00 • MSB first 24 bits forward truncation BCK LRCK 32 bit slot Digital Audio Data Input Timing (with polarities: SQ11 = 0, SQ10 = 0, SQ09 = 0) CXD2720Q – 17 – SO 14 16 15 14 22 21 20 LSB 00 01 02 03 MSB • LSB first 24 bits 23 04 19 MSB • MSB first 24 bits 19 05 18 18 06 17 17 07 16 16 08 15 15 09 14 14 MSB • MSB first 20 bits rearward truncation 17 MSB • MSB first 18 bits rearward truncation 15 LSB LSB " 0 " truncation 10 13 13 13 13 11 12 12 12 12 12 11 11 11 11 Lch 13 10 10 10 10 14 09 09 09 09 15 08 08 08 08 16 07 07 07 07 17 06 06 06 06 18 05 05 05 05 19 04 04 04 04 20 03 03 03 03 00 00 LSB 00 LSB 00 LSB 23 22 23 00 01 MSB LSB 22 02 21 19 MSB 03 20 04 19 05 18 LSB LSB " 0 " truncation LSB 06 17 17 07 16 16 16 08 15 15 15 MSB 09 14 14 14 14 10 13 13 13 13 11 12 12 12 12 12 11 11 11 11 13 10 10 10 10 Rch 14 09 09 09 09 15 08 08 08 08 16 07 07 07 07 17 06 06 06 06 18 05 05 05 05 19 04 04 04 04 20 03 03 03 03 21 02 02 02 02 00 23 LSB 00 LSB 00 LSB 00 LSB MSB 22 01 01 01 01 MSB 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 MSB 18 LSB 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00 LSB 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00 MSB MSB 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00 MSB LSB MSB 17 15 " 0 " truncation LSB MSB 01 01 01 01 MSB Figure 5-2. 21 02 02 02 02 MSB 23 19 17 15 Rch 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00 LSB 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 LSB • MSB first 16 bits rearward truncation BCK 24 bit slot LRCK LSB 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00 MSB • LSB first 24 bits rearward truncation " 0 " truncation LSB 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00 MSB Lch 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00 MSB • MSB first 24 bits forward truncation 23 MSB SO • MSB first 24 bits rearward truncation 19 • MSB first 20 bits rearward truncationMSB 17 • MSB first 18 bits rearward truncation 15 • MSB first 16 bits rearward truncation BCK LRCK 32 bit slot Digital Audio Data Output Timing (with polarities: SQ11 = 0, SQ10 = 0, SQ09 = 0) CXD2720Q CXD2720Q 6. Microcomputer Interface [Relevant pins] RVDT, TRDT, SCK, XLAT, REDY The CXD2720Q performs serial audio interface format setting, volume, coefficient settings of microphone echo delay amount and others by serial data from the microcomputer. Further, bidirectional communication such as internal data read from the CXD2720Q to the microcomputer can be done at the rate of once in 1 LRCK. (1) Pin Structure The five external pins indicated in the table below are allocated for microcomputer interface. Microcomputer interface begins operation when XLAT is received, so RVDT, TRDT, SCK and REDY are connected in common, and by controlling (wiring) only XLAT separately, multiple CXD2720Qs can be used. Pin name I/O RVDT I Serial data input from microcomputer. TRDT O Serial data output to microcomputer. High impedance state unless this pin is set to internal data read state by the microcomputer. Therefore, it is preferable to perform pull-up or pulldown so that potential is not unstable when this pin is not active. SCK I Shift clock for serial data. Input data from RVDT is taken according to SCK rise, and output data from TRDT is sent out according to SCK fall. XLAT I Interprets the 8 bits of RVDT before this signal rises as transmission mode data, and the bits before that as address data. REDY O Transmission prohibited while at Low level. Transmission enabled at High. This pin is an open drain, and must be pulled up externally. Function Table 6-1. Microcomputer Interface External Pins – 18 – CXD2720Q (2) Description of Communication Formats The data transmission timing between the microcomputer interface and coefficient RAM and setup register is called the SV cycle, and is generated once in 1LRCK. The SV cycle is generated immediately preceding the signal processing program, so it has absolutely no effect on signal processing, and there is no risk of the sound being cut. In read/write modes, Address section + Mode section + Data section act as one package of data to perform data transmission between the microcomputer and the CXD2720Q. [Write] • For coefficient RAM Address section (8 bits) RVDT A0 A7 Mode section (8 bits) M0 M7 Data section (16 bits) D0 D15 SCK XLAT REDY TRDT [Read] • For coefficient RAM Address section (8 bits) Mode section (8 bits) RVDT A0 A7 M0 M7 SCK XLAT REDY Data section (16 bits) TRDT D0 Note) For both read and write, the data section is 24 bits for the setup register. Figure 6-1. Examples of Communication – 19 – D15 CXD2720Q (3) Data Structure Data structure is classified in three types, as shown in the table below. All data communication is done with LSB first. Name Bit length Contents Remarks A0 to A7 8 Address section M0 to M7 8 Transmission mode section D0 to D15/SQ00 to SQ23 16/24 Data section Coefficient RAM is 16 bits; setup register is 24 bits Table 6-2. Data Structure (3)-1. Transmission Mode Section The transmission mode section is 8 bits and has the following functions. Bit Name M7 XVMT Function M6 Reserve M5 M4 0: ON (No sound) 1: OFF SO Mute VS1 Data type M3 VS0 M2 VS0 0 0 Setup register Coefficient RAM (K-RAM) Reserve M1 M0 VS1 0 1 VRD Send/Receive 0: Receive 1: Send Note) Polarity as seen from the CXD2720Q Table 6-3. Transmission Mode Section (3)-2. Address Section The coefficient RAM has a 192-word structure, so the address section is 8 bits. The setup register has a 1word structure, so the address section data may be optional. (3)-3. Data Section Sixteen SCK are required, as the coefficient RAM has a 16-bit structure (D0 to D15). The setup register has a 24-bit structure (SQ00 to SQ23), so twenty-four SCK are required. – 20 – CXD2720Q (4) Details of Communication Methods The definitions of signal timing required for control from the microcomputer are given below. (4)-1. Write First, address section data and mode section data are sent from the microcomputer, synchronized to SCK, to the RVDT pin. The address section data is 8 bits both for the coefficient RAM and setup register, and the setup register transmits optional data for 1 word length. Address section data is sent with LSB first. Mode section data is fixed at 8 bits regardless of content. The phase relationship between SCK and RV data (data applied to the RVDT pin) has the following restrictions: • RV data must be verified before SCK rise (tDS ≥ 20ns). • RV data must be held for 1t + 20ns or more after SCK rise (tDH). SCK itself has the following restrictions: • SCK Low level must be 1t+ 20ns or more (tSWL). • SCK High level must also be 1t + 20ns or more (tSWH). After raising SCK which corresponds to mode section final data, XLAT is raised (tSLP ≥ 20ns). XLAT Low level width must be maintained at 1t + 20ns or more (tLWL). Further, fall timing restrictions are: • for the preceding transmission, if REDY falls due to SCK, as for write, 3t + 20ns or more is required. (tSLD) • for the preceding transmission, if REDY falls due to XLAT, as for read, 20ns or more is required. (tLDR) Further, if preceding transmissions have been performed and REDY = Low, it is necessary to wait for REDY = High to raise XLAT. The procedure until this point is the same for write and read. RVDT A0 A7 M0 tDS tDH tSWL tSWH M7 D0/SQ00 D15/SQ23 SQ00 SQ23 A0 M7 tSS SCK tSLP tLSD tBSP tSLP XLAT tSLD or tLWH tLWL tSLD tLDR tRLP tSBD REDY TRDT High-Z Figure 6-2. Write Timing – 21 – tLDR tRLP CXD2720Q Data section write begins after XLAT rise, and here also transmission must be with LSB first, with tDS and tDH restrictions. In addition, after raising XLAT at the starting point for sending to the data section, wait for 3t + 20ns or more for the first SCK rise. (tLSD) When 16 bits (coefficient RAM) or 24 bits (setup register) of this write is repeated, REDY = Low within 4t + 50ns, and the microcomputer is informed of waiting status for the SV cycle, which is the dedicated data rewrite cycle by microcomputer interface. (tSBD) When REDY goes High again, the corresponding data is written. The next communication restarts by using the REDY signal as follows. • When REDY = Low, the SCK for the next transmission can rise (tBSP ≥ 20ns ). • In the same way, when REDY = Low, the XLAT for the next transmission can fall (tLDR ≥ 20ns). REDY will fall due to this transmission, but it is prohibited for XLAT to rise for the next transmission before the REDY rises. Be sure to raise the next XLAT after REDY falls (tRLP ≥ 20ns ). In order to restart the next transmission without using the REDY signal, the following conditions must be observed: • There should be 2t + 40ns or more left between the SCK rise for the final data section and the SCK rise for the next transmission (tSS). • In the same way, the XLAT for the next transmission can fall after waiting 3t + 20ns or more after the final data section SCK rise (tSLD). The tss and tSLD here are shorter times than tSBD ≤ 4t + 50ns, so the restriction conditions are not much strict. However, even in this case the rise of XLAT for the next transmission must come after REDY rise (tRLP ≥ 20ns). Further, the restriction for XLAT fall at the starting point of this write from tSLD can be: • tSLD ≥ 3t + 20ns if the preceding transmission was “write”. – 22 – CXD2720Q (4)-2. Read First, address section and mode section data are transmitted synchronized to SCK, and XLAT is raised matched with this; the procedure until this point is the same as for write, so the description is omitted here. Read differs from write in that after XLAT rise, REDY falls within 3t + 50ns (tLBD), and the microcomputer is informed of SV cycle waiting. At this time, the TRDT pin changes from high-impedance state to active state (tLDN ≤ 3t + 80ns) simultaneously with REDY fall. When the read data is ready, the REDY pin changes from Low to High. When the data read out from the TRDT pin is made TR, and SCK falls (tRSDP ≥ 20ns) when the REDY pin goes High, the first TR data is defined within 2t + 70ns (tSDD). The microcomputer reads this data at SCK rise. The TR data is read in order from the LSB with 16 bits for the coefficient RAM and 24 bits for the setup register by adding SCK, the corresponding data is all read, and then read is completed. Next, the method for restarting transmission after read is completed is described. As in Case 1, there is a method for sending address section and mode section data consecutively after reading all of the 16- or 24-bit data. There should be 2t + 40ns or more left between the SCK rise for the final data read and the next SCK rise (tss), and this is established by the conditions tSWL ≥ 1t + 20ns and tSWH ≥ 1t + 20ns. Further, at this read REDY changes from High to Low, but it is prohibited for the XLAT for the next transmission to fall before this. If REDY = Low has been verified, XLAT can fall (tLDR ≥ 20 ns). Also, while 16- or 24-bit data is being read from the TRDT pin, address and mode section data writing to the RVDT pin for the next transmission can be started. In Case 3, the final section of read data and the final data in the mode section overlap, and this allows shifting to the next transmission processing in the shortest possible time after data read. It is also possible to have data read and address and mode section write overlap partially, as shown by Case 2. – 23 – CXD2720Q RVDT A0 tDS A7 M0 M7 A0 A1 M7 tDH SCK tSWL tSWH XLAT tSLP tLWL tRSDP tSLP tLBD tSLD or tLWH REDY tLDR tLDN tLDR tRLP tSDD TRDT A0 tDS A7 M0 tSDD SQ00 D0/SQ00 case1 RVDT tSS tSDD SQ22 tSDF SQ23 D14/SQ22 D15/SQ23 M7 A5 A6 M7 tDH SCK tSWL tSWH XLAT tSLP tLWL tRSDP tLBD tSLD or tLWH REDY tSLP tLDR tLDN tLDR tRLP tSDD TRDT A0 tDS A7 M0 tSDD SQ00 D0/SQ00 case2 RVDT tSS tSDD SQ22 tSDF SQ23 D14/SQ22 D15/SQ23 M7 M7 tDH SCK tSWL XLAT tSWH tSLP tLWL tRSDP tLBD tSLD or tLWH REDY tSLP tLDR tLDN tLDR tRLP tSDD TRDT tSDD SQ00 D0/SQ00 case3 Figure 6-3. Read Timing – 24 – tSDD SQ22 SQ23 D14/SQ22 D15/SQ23 CXD2720Q 7. Setup Register When the setup register is selected for microcomputer interface transmission mode, the following settings are possible for serial audio interface and DAC. Data section bit Control SQ23 to 12 Reserve bit When system reset is Low Must be Low for setup register setting change All Low SQ11 LRCK format 0: normal 1: IIS Normal SQ10 LRCK polarity selection 0: Lch High 1: Lch Low Lch High SQ09 BCK polarity selection relative to LRCK edge 0: Falling edge 1: Rising edge Falling edge SQ08 SI data list 0: MSB first 1: LSB first (24-bit rearward truncation) MSB first SQ07 SI frontward/rearward truncation 0: Frontward truncation (valid only for MSB first/24 bits/32 slots) Frontward truncation 1: Rearward truncation SQ06, 05 SI data word length SQ06 0 1 SQ04 SO data list 0: MSB first 1: LSB first LSB first SQ03 SO frontward/rearward truncation 0: Frontward truncation 1: Rearward truncation Frontward truncation SQ02, 01 SO data word length SQ02 0 0 1 1 16 bits SQ00 DAC forced mute 0: ON 1: OFF SQ05 0 1 SQ01 0 1 0 1 : 16 bits : 24 bits : 16 bits : 18 bits : 20 bits : 24 bits 16 bits ON Table 7-1. – 25 – CXD2720Q 8. Coefficient RAM Setting When the coefficient RAM is selected in microcomputer interface transmission mode, the coefficient parameters such as each section's volumes and microphone echo delay amount can be set. Data settings other than those given following in Tables 8-1 and 8-2 are “don't care”. (1) Fixed Values for System Initialization When the system is initialized, the coefficient RAM must be set at the fixed values, shown below, due to internal operation. Address Fixed value 01H 68A9H 02H 5121H 03H 0000H 0DH 0000H 12H 8B2AH 13H 3BF7H 14H 38DFH 15H 4E77H 16H 2E90H 17H 0000H 19H 0000H 1AH 2000H 1BH 4000H 1DH 4000H 20H 0010H 21H 4000H 23H 4000H 24H 1600H 25H 2A00H 26H 3FF0H 27H 8000H 28H 0000H 2DH 0008H 30H 0000H 32H 0000H 41H 8000H 46H 0000H 50H 0008H 58H 0008H Table 8-1. ∗ For Fs = 44.1kHz. Please inquire with regard to use at other than Fs = 44.1kHz, as the fixed values change. – 26 – CXD2720Q (2) Setting Data The relationships between the coefficient RAM and each function during DSP operation are as follows. Address Name Function Setting value 00H Ki SI data input level control Refer to Table 12-1 for setting value 04H Ke De-emphasis ON/OFF ON/AC19H; OFF/0000H 05H KisLm SI CH1 data → Lch mix Refer to Table 12-1 for setting value 06H KisRc SI CH2 data → Lch mix Refer to Table 12-1 for setting value 07H KiaLm ADC CH1 data → Lch mix Refer to Table 12-1 for setting value 08H KiaRc ADC CH2 data → Lch mix Refer to Table 12-1 for setting value 09H KisRm SI CH2 data → Rch mix Refer to Table 12-1 for setting value 0AH KisLc SI CH1 data → Rch mix Refer to Table 12-1 for setting value 0BH KiaRm ADC CH2 data → Rch mix Refer to Table 12-1 for setting value 0CH KiaLc ADC CH1 data → Rch mix Refer to Table 12-1 for setting value 0EH DC1sw DC cut1 ON/OFF for accompaniment ON/4000H; OFF/0000H 0FH DC1f0 DC cut1 cut-off frequency for accompaniment Refer to Table 14-1 for setting value 10H PL Panpot volume for voice cancellation Refer to Table 9-1 for setting value 11H PR Panpot volume for voice cancellation Refer to Table 9-1 for setting value 18H Kvc Voice cancelling ON/OFF ON/8000H; OFF/0000H 22H nRpR Pitch ratio for accompaniment Refer to Table 10-1 for setting value 2EH Ks Key control ON/OFF for accompaniment ON/8000H; OFF/0000H 31H Kimc Microphone input level control Refer to Table 12-1 for setting value 33H DC2f0 DC cut2 cut-off frequency for voice Refer to Table 14-1 for setting value 34H DC2sw DC cut2 ON/OFF for voice ON/4000H; OFF/0000H 35H PEQa PEQ coefficient for voice Refer to Table 14-4 for setting value 36H PEQb1 PEQ coefficient for voice Refer to Table 14-4 for setting value 37H PEQb2 PEQ coefficient for voice Refer to Table 14-4 for setting value 38H PEQg PEQ coefficient for voice Refer to Table 14-5 for setting value 39H HC1a1 High cut1 for voice Refer to Table 14-2 for setting value 3AH HC1a0 High cut1 for voice Refer to Table 14-2 for setting value 3BH HC1b High cut1 for voice Refer to Table 14-2 for setting value 3CH Kdry Microphone input direct sound mix Refer to Table 12-1 for setting value 3DH Keff Microphone input echo mix Refer to Table 12-1 for setting value 3EH KLm Key control output Lch mix for accompaniment Refer to Table 12-1 for setting value 3FH KRm Key control output Rch mix for accompaniment Refer to Table 12-1 for setting value 40H KLo System volume Lch Refer to Table 12-1 for setting value 42H KRo System volume Rch Refer to Table 12-1 for setting value 44H Tdo Microphone echo delay amount Refer to Table 11-1 for setting value 45H Kre Microphone echo read tap volume Refer to Table 12-2 for setting value Table 8-2 (1). Coefficient RAM Setting Data (1/2) – 27 – CXD2720Q Address Name Function Setting value 47H Tre Microphone echo read tap address Refer to Table 11-1 for setting value 49H Krd Microphone echo input sound mix Refer to Table 12-1 for setting value 4AH Kfb Microphone echo reverberation sound mix Refer to Table 12-1 for setting value 4BH HC2a1 Microphone echo high cut2 Refer to Table 14-3 for setting value 4CH HC2a0 Microphone echo high cut2 Refer to Table 14-3 for setting value 4DH HC2b Microphone echo high cut2 Refer to Table 14-3 for setting value 53H VnRpR Voice pitch ratio Refer to Table 10-1 for setting value 5AH Krmc Microphone input mix Refer to Table 12-1 for setting value 5BH Krmp Voice pitch control output mix Refer to Table 12-1 for setting value Table 8-2. Coefficient RAM Setting Data (2/2) ∗ Refer to 13. DSP Signal Flow regarding the names. 9. Voice Canceller Settings [Relevant pins] PL (address = 10H), PR (address = 11H), Kvc (address = 18H) The vocal sound set at the center can be cancelled by setting Kvc = 8000H and PL, PR = 7000H. Voice canceling at other than center setting can be done by the panpot volume. Panpot volume value is PL for CH1, and PR for CH2, and at the center position they are both 0.857. When voice cancellation is OFF, set Kvc = 0000H and PL, PR = 0000H. PL and PR setting values are hexadecimal notation with D15 as MSB and D0 as LSB. PL PR Setting position PL PR Setting position 7000H 7000H center 7000H 7000H center 7000H 6000H 6000H 7000H 7000H 5000H 5000H 7000H 7000H 4000H 4000H 7000H 7000H 3000H 3000H 7000H 7000H 2000H 2000H 7000H 7000H 1000H 1000H 7000H 7000H 0000H 0000H 7000H CH2 Table 9-1. Settings for Voice Canceller Panpot Volume – 28 – CH1 CXD2720Q 10. Key Controller Setting [Relevant coefficients] nRpR (address = 22H), Ks (address = 2EH), VnRpR (address = 53H), Krmp (address = 5BH) (1) Key Controller Pitch Ratio nRpR (D15,.....,D2) is a 2’s complement format with a decimal point between D14 and D13, and sets the desired pitch ratio directly. (VnRpR has the same type of setting as nRpR.) 15 nRpR = ∑Dn × 2n–14 n=2 The expression range for the pitch ratio is: –2.0 ≤ nRpR ≤ 2.0 – 2–12 but for practical use it is: –0.5 ≤ nRpR ≤ 1.0 or ±1 octave. Use within a range of ± half an octave is recommended for quality of sound, although it depends on the aim and the source. Also, the algorithm is such that allophones will not be generated even when nRpR setting value is changed. (2) Notes on Key Controller OFF The pitch does not change when nRpR and VnRpR are set to 0000H (OFF) when the key controller is OFF, but depending on the internal state during OFF, there is no guarantee that the input value will be output as is. During OFF, after setting nRpR and VnRpR to 0000H (OFF), set the pitch control section to through state with the following settings. Accompaniment controller OFF: Ks = 0000H (OFF) Voice key controller OFF: sKrmp = 0000H (OFF) – 29 – CXD2720Q (3) Examples of Key Controller Setting Examples of pitch ratio setting are illustrated below. nRpR setting values are hexadecimal notation with D15 as MSB and D2 as LSB for a total of 14 bits. (D1 and D0 can be optional data.) CENT nPpR CENT nPpR 0 0000H 0 0000H +50 01E0H –50 FE2EH +100 03CEH –100 FC69H +150 05CAH –150 FAB1H +200 07D6H –200 F905H +250 09F1H –250 F765H +300 0C1BH –300 F5D2H +350 0E56H –350 F44AH +400 10A2H –400 F2CCH +450 12FFH –450 F15AH +500 156EH –500 EFF3H +550 17EEH –550 EE95H +600 1A82H –600 ED42H +650 1D29H –650 EBF8H +700 1FE4H –700 EAB8H +750 22B3H –750 E980H +800 2597H –800 E852H +850 2892H –850 E72CH +900 2BA2H –900 E60EH +950 2EC9H –950 E4F9H +1000 3208H –1000 E3ECH +1050 3560H –1050 E2E6H +1100 38D0H –1100 E1E8H +1150 3C5BH –1150 E0F1H +1200 4000H –1200 E000H Table 10-1. Pitch Ratio Setting Examples The numeric representation format for pitch ratio here is: 15 nRpR = ∑Dn × 2n–14 n=2 The numeric representation range is: –2.0 ≤ nRpR ≤ 2.0 – 2–12 Also, the relationship formula with music word cent value C is: C nRpR = 2 1200 – 1, C = 1200 log2 [nRpR + 1] [cent] The semitone at average ratio is 100 [cent]. – 30 – CXD2720Q 11. Microphone Echo Delay Amount Setting [Relevant coefficients] Tdo (address = 44H), Tre (address = 47H) Microphone echo delay amount can be varied by setting coefficient Tdo (12 bits from D14 to D3) values. The relationships between the coefficient and the delay amount are shown in Table 11-1. Coefficient Tre (12 bits from D14 to D3) is microphone input echo initial delay time. Set in the range of 0008H to Tdo. Setting value Tdo 0008H 0010H 0018H · · · · 7ff0H 7ff8H 0000H 4096step Delay (fs = 44.1kHz) 0.045ms · · · · · · · · 185.76ms 0.045 ms/step setting possible Table 11-1. Microphone Echo Delay Amount Setting ∗ When Fs = 44.1kHz. Please inquire with regard to use at other than Fs = 44.1kHz, as the delay amount changes. – 31 – CXD2720Q 12. Input/Output Level Settings [Relevant coefficients] Ki (address = 00H), KisLm (address = 05H), KisRc (address = 06H), KiaLm (address = 07H), KiaRc (address = 08H), KisRm (address = 09H), KisLc (address = 0AH), KiaRm (address = 0BH), KiaLc (address = 0CH), Kimc (address = 31H), Kdry (address = 3CH), Keff (address = 3DH), KLm (address = 3EH), KRm (address = 3FH), KLo (address = 40H), KRo (address = 42H), Kre (address = 45H), Krd (address = 49H), Kfb (address = 4AH), Krmc (address = 5AH), Krmp (address = 5BH) The input/output levels and volumes are 2’s complement format with a decimal point between D15 and D14, and hexadecimal notation with D15 as MSB and D0 as LSB. The coefficient and level relationships are as follows. D15 to D0 Level D15 to D0 Level 8000H ↓ FFFFH 0000H 0dB ↓ –90.31dB –∞ 8000H ↓ FFFFH 0000H +12.04dB ↓ –78.27dB –∞ Table 12-1. Input/Output Level Settings (other than Kre) Table 12-2. Input/Output Level Settings (Kre) The input/output levels for 8001H to FFFEH are determined by the following formulas. 14 (Coefficient value) = [ (–1) × D15 + ∑Dn × 2n–15] × (–1) for other than Kre n=0 14 (Coefficient value) = [ (–1) × D15 + ∑Dn × 2n–15] × (–4) for Kre n=0 Input/output level = 20 log [coefficient value] dB ∗ D15 to D0 are negative values, but the calculation is (–1) × (D15 to D0). – 32 – – 33 – Decimation ADC AD2 31H –Kimc DC Cut1 0EH 0FH DC Cut1 –Krd Down Sampling 49H DC Cut2 33H 34H –Kfb 4AH 5BH 5AH –Krmp –Krmc 0BH –KiaRm 0CH –KiaLc 09H –KisRm 0AH –KisLc 08H –KiaRc 07H –KiaLm 06H –KisRc 05H –KisLm High Cut2 4BH 4CH 4DH 53H Pitch Control ∗ Refer to the coefficient RAM setting for information on each coefficient. Decimation DeEmphasis 04H DeEmphasis Decimation ADC –Ki 00H –Ki ADC AD1 SI2 SI1 MIC 13. DSP Signal Flow 45H 11H 18H Tdo 44H Pitch Control 22H 2EH Pitch Control Over Sampling –Kre Tre 47H Delay Line 39H High Cut1 3AH 3BH 10H Voice Cancel Tdi 35H 36H PEQ 37H 38H 3FH –KRm 3EH –KLm 3CH –Kdry 3DH –Keff 42H –KRo 40H –KLo Over Sampling Over Sampling DAC DAC DA2 SO2 DA1 SO1 CXD2720Q CXD2720Q 14. Filter Coefficient Table [Relevant coefficient] DC1f0 (address = 0FH), DC2f0 (address = 33H), HC1b (address = 3BH), HC1a1 (address = 39H), HC1a0 (address = 3AH), HC2b (address = 4DH), HC2a1 (address = 4BH), HC2a0 (address = 4CH), PEQa (address = 35H), PEQb1 (address = 36H), PEQb2 (address = 37H), PEQg (address = 38H) The cut-off frequencies and PEQ gain, Q, and center frequency settings for each signal flow filter are shown in Tables 13-1 to 13-5. Note that if the above setting values are changed during DSP operation, the output level becomes unstable for several 1/fs. Tables 14-1 to 14-5 and digital de-emphasis are given for fs = 44.1kHz. Please inquire with regard to using an fs other than this value. (1) DC Cut1 for Accompaniment/ DC Cut2 for Voice Cut-off frequency (Hz) DC1f0 DC2f0 Cut-off frequency (Hz) DC1f0 DC2f0 Cut-off frequency (Hz) DC1f0 DC2f0 Cut-off frequency (Hz) DC1f0 DC2f0 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 7FA2 7F74 7F45 7F17 7EE9 7EBA 7E8C 7E5E 7E30 7E02 7DD4 7DA6 7D78 7D4B 7D1D 7CEF 7CC2 7C94 7C67 7C39 7C0C 7BDF 7BB2 7B85 7B58 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 7B2B 7AFE 7AD1 7AA4 7A77 7A4B 7A1E 79F1 79C5 7998 796C 7940 7914 78E7 78BB 788F 7863 7837 780B 77DF 77B4 7788 775C 7731 7705 520 530 540 550 560 570 580 590 600 610 620 630 640 650 660 670 680 690 700 710 720 730 740 750 760 76D9 76AE 7683 7657 762C 7601 75D6 75AB 7580 7555 752A 74FF 74D4 74A9 747E 7454 7429 73FF 73D4 73AA 737F 7355 732B 7301 72D6 770 780 790 800 810 820 830 840 850 860 870 880 890 900 910 920 930 940 950 960 970 980 990 1000 72AC 7282 7258 722E 7204 71DB 71B1 7187 715D 7134 710A 70E1 70B7 708E 7064 703B 7012 6FE9 6FBF 6F96 6F6D 6F44 6F1B 6EF2 Table 14-1. – 34 – CXD2720Q (2) High Cut1 for Voice Cut-off frequency (Hz) HC1b HC1a1 HC1a0 Cut-off frequency (Hz) HC1b HC1a1 HC1a0 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000 3100 3200 3300 3400 3500 3600 3700 3800 3900 4000 4100 4200 4300 4400 4500 4600 4700 4800 4900 5000 5100 5200 5300 5400 5500 6EF2 6D5C 6BCB 6A3E 68B6 6733 65B4 6439 62C3 6150 5FE2 5E77 5D11 5BAE 5A4E 58F2 579A 5645 54F3 53A4 5259 5110 4FCB 4E88 4D48 4C0B 4AD0 4998 4863 4730 4600 44D2 43A6 427C 4155 4030 3F0D 3DEC 3CCD 3BAF 3A94 397B 3863 374D 3639 3527 0886 0951 0A1A 0AE0 0BA4 0C66 0D25 0DE3 0E9E 0F57 100E 10C4 1177 1228 12D8 1386 1432 14DD 1586 162D 16D3 1777 181A 18BB 195B 19FA 1A97 1B33 IBCE 1C67 1CFF 1D96 1E2C 1EC1 1F55 1FE7 2079 2109 2199 2228 22B5 2342 23CE 2459 24E3 256C F77A F6AF F5E6 F520 F45C F39A F2DB F21D F162 F0A9 EFF2 EF3C EE89 EDD8 ED28 EC7A EBCE EB23 EA7A E9D3 E92D E889 E7E6 E745 E6A5 E606 E569 E4CD E432 E399 E301 E26A E1D4 E13F E0AB E019 DF87 DEF7 DE67 DDD8 DD4B DCBE DC32 DBA7 DB1D DA94 5600 5700 5800 5900 6000 6100 6200 6300 6400 6500 6600 6700 6800 6900 7000 7100 7200 7300 7400 7500 7600 7700 7800 7900 8000 8100 8200 8300 8400 8500 8600 8700 8800 8900 9000 9100 9200 9300 9400 9500 9600 9700 9800 9900 10000 OFF 3416 3306 31F9 30EC 2FE2 2ED8 2DD0 2CCA 2BC4 2AC0 29BD 28BC 27BB 26BC 25BD 24C0 23C4 22C9 21CF 20D5 1FDD 1EE6 1DEF 1CF9 1C04 1B10 1A1C 192A 1838 1746 1655 1565 1475 1386 1298 11A9 10BC 0FCF 0EE2 0DF5 0D09 0C1E 0B32 0A47 095C 0000 25F4 267C 2703 2789 280E 2893 2917 299A 2A1D 2A9F 2B21 2BA1 2C22 2CA1 2D21 2D9F 2E1D 2E9B 2F18 2F95 3011 308C 3108 3183 31FD 3277 32F1 336A 33E3 345C 34D5 354D 35C5 363C 36B3 372B 37A1 3818 388E 3905 397B 39F0 3A66 3ADC 3B51 0000 DA0C D984 D8FD D877 D7F2 D76D D6E9 D666 D5E3 D561 D4DF D45F D3DE D35F D2DF D261 D1E3 D165 D0E8 D06B CFEF CF74 CEF8 CE7D CE03 CD89 CD0F CC96 CC1D CBA4 CB2B CAB3 CA3B C9C4 C94D C8D5 C85F C7E8 C772 C6FB C685 C610 C59A C524 C4AF 8000 Table 14-2. – 35 – CXD2720Q (3) High Cut2 for Microphone Echo Cut-off frequency (Hz) HC2b HC2a1 HC2a0 Cut-off frequency (Hz) HC2b HC2a1 HC2a0 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000 3100 3200 3300 3400 3500 3600 3700 3800 3900 4000 4100 4200 4300 4400 4500 4600 4700 4800 4900 5000 5100 5200 5300 5400 5500 5FE2 5D11 5A4E 579A 54F3 5259 4FCB 4D48 4AD0 4863 4600 43A6 4155 3F0D 3CCD 3A94 3863 3639 3416 31F9 2FE2 2DD0 2BC4 29BD 27BB 25BD 23C4 21CF 1FDD 1DEF 1C04 1A1C 1838 1655 1475 1298 10BC 0EE2 0D09 0B32 095C 0788 05B3 03E0 020D 003A 100E 1177 12D8 1432 1586 16D3 181A 195B 1A97 1BCE 1CFF 1E2C 1F55 2079 2199 22B5 23CE 24E3 25F4 2703 280E 2917 2A1D 2B21 2C22 2D21 2E1D 2F18 3011 3108 31FD 32F1 33E3 34D5 35C5 36B3 37A1 388E 397B 3A66 3B51 3C3B 3D26 3E0F 3EF9 3FE2 EFF2 EE89 ED28 EBCE EA7A E92D E7E6 E6A5 E569 E432 E301 E1D4 E0AB DF87 DE67 DD4B DC32 DB1D DA0C D8FD D7F2 D6E9 D5E3 D4DF D3DE D2DF D1E3 D0E8 CFEF CEF8 CE03 CD0F CC1D CB2B CA3B C94D C85F C772 C685 C59A C4AF C3C5 C2DA C1F1 C107 C01E 5600 5700 5800 5900 6000 6100 6200 6300 6400 6500 6600 6700 6800 6900 7000 7100 7200 7300 7400 7500 7600 7700 7800 7900 8000 8100 8200 8300 8400 8500 8600 8700 8800 8900 9000 9100 9200 9300 9400 9500 9600 9700 9800 9900 10000 OFF FE68 FC95 FAC2 F8EE F719 F543 F36C F194 EFBB EDE0 EC02 EA23 E841 E65D E476 E28C E09F DEAE DCBA DAC1 D8C5 D6C4 D4BE D2B3 D0A3 CE8E CC72 CA50 C828 C5F9 C3C2 C184 BF3E BCEF BA98 B837 B5CC B357 B0D7 AE4C ABB5 A911 A660 A3A1 A0D4 0000 40CC 41B5 429F 4389 4473 455E 464A 4736 4822 4910 49FF 4AEE 4BDF 4CD1 4DC5 4EBA 4FB0 50A9 51A3 529F 539D 549E 55A1 56A6 57AE 58B9 59C7 5AD8 5BEC 5D03 5E1F 5F3E 6061 6188 62B4 63E4 651A 6654 6794 68DA 6A25 6B77 6CD0 6E2F 6F96 0000 BF34 BE4B BD61 BC77 BB8D BAA2 B9B6 B8CA B7DE B6F0 B601 B512 B421 B32F B23B B146 B050 AF57 AE5D AD61 AC63 AB62 AA5F A95A A852 A747 A639 A528 A414 A2FD A1E1 A0C2 9F9F 9E78 9D4C 9C1C 9AE6 99AC 986C 9726 95DB 9489 9330 91D1 906A 8000 Table 14-3. – 36 – CXD2720Q (4) PEQ for Voice Center frequency (Hz) PEQa PEQb1 PEQb2 Gain (dB) PEQg 250.0 280.6 315.0 353.6 396.9 445. 4 500. 0 561.2 630.0 707.1 793.7 890.9 1000. 0 1122.5 1259.9 1414.2 1587.4 1781.8 2000.0 2244.9 2519.8 2828.4 3174.8 3563.6 4000.0 4489.8 5039.7 5656.9 6349.6 7127.2 8000.0 023D 0282 02CF 0325 0385 03F0 0467 04EC 0580 0624 06DB 07A6 0886 097E 0A91 0BC0 0D0D 0E7C 100E 11C7 13A8 15B5 17F1 1A5E 1CFF 1FD8 22ED 2642 29DB 2DC1 31FD 7DAE 7D64 7D10 7CB2 7C47 7BCF 7B48 7AAE 7A01 793D 785E 7762 7643 74FD 738B 71E5 7004 6DE0 6B6D 68A1 656E 61C6 5D97 58CF 535A 4D24 4617 3E23 353B 2B5C 2097 847B 8505 859F 864B 870B 87E1 88CF 89D9 8B01 8C4A 8DB7 8F4D 910E 92FE 9524 9781 9A1C 9CFA A01E A38F A752 AB6C AFE4 B4BE BA00 BFB2 C5DC CC85 D3B8 DB84 E3FC 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 0000 01E5 03E7 0608 0849 0AAC 0D33 0FE1 12B7 15B8 18E7 1C46 1FD9 23A1 27A3 2BE2 3061 3524 3A30 3F88 4531 4B30 518A 5844 5F64 Table 14-5. Table 14-4. – 37 – CXD2720Q Filter Characteristics ADC Filter Characteristics (43rd + 15th FIR) Stop band Pass band 500.00 0.00 400.00 –10.00 300.00 –20.00 –30.00 100.00 Response [dB] Response [dB × 10–3] 200.00 0.00 –100.00 –200.00 –300.00 –400.00 –40.00 –50.00 –60.00 –70.00 –500.00 –80.00 –600.00 –90.00 –700.00 –800.00 –100.00 0 5 10 15 1fs 20 Frequency [kHz] 2fs Frequency [kHz] DAC Filter Characteristics (43rd + 7th FIR) Stop band Pass band 0.00 500.00 400.00 –10.00 300.00 –20.00 –30.00 100.00 Response [dB] Response [dB × 10–3] 200.00 0.00 –100.00 –200.00 –300.00 –40.00 –50.00 –60.00 –70.00 –400.00 –500.00 –80.00 –600.00 –90.00 –700.00 –800.00 –100.00 0 5 10 15 1fs 20 Frequency [kHz] Frequency [kHz] – 38 – 2fs SIN DA16 BCK DA15 LRCK LRCK DGND DGND CXD2500Q XTAI DGND 0.01 DGND 84 85 DGND 83 81 82 80 VSS6 79 NC 78 NC 77 NC 76 NC 75 NC 74 NC 73 NC 72 NC 71 NC 70 VDD2 69 VSS5 68 NC 67 NC 66 NC 65 NC 64 NC 63 NC 62 NC 61 NC CXD2720Q 86 87 88 91 92 0.01 DGND 90 DGND 89 93 94 97 95 96 E AGND D AGND 3 2 RVDT VSS0 DGND DGND 0.01 AVS0 1 5 Microcomputer 6 REDY 4 7 TRDT SCK XWO 8 XLAT XRST 9 DGND DGND 0.01 DGND DGND DGND 0.01 AGND 0.01 XWO 98 99 100 0.01 B AGND AGND 0.01 XRST VSS1 10 VDD0 11 SO 12 XS24 13 TST0 14 TST1 15 TST2 16 TST3 17 TST4 18 TST5 19 VSS2 20 AIN3 22 AVS3 21 59 NC 60 NC AVD4 24 AVD3 23 AO1P 25 56 NC 57 NC AO1N 26 55 NC 58 NC AVS4 27 54 NC X768 DGND AIN1 29 AVS1 28 52 NC AVD1 30 31 34 33 32 36 35 38 37 39 40 41 42 43 44 46 45 53 VSS4 51 NC C 0.01 0.01 F 47 DGND AGND 20p AGND 768fs A 0.01 AGND AGND 20p AGND 49 48 0.01 AGND AGND 50 NC INVI BFOT 5532 operational amplifier used NC NC : Digital power supply + 5V NC : AO2 +5V power supply DGND BCK F SI : AO1 +5V power supply VSS7 : AIN3 +5V power supply NC E AVD5 NC D NC : AIN2 +5V power supply AIN2 NC : AIN1 +5V power supply NC XTLI NC B NC XVSS NC – 39 – AVD0 C NC : Crystal oscillator circuit +5V power supply NC NC : DA operational amplifier –12V power supply : AD operational amplifier –12V power supply 3 VSS3 VDD1 4 : DA operational amplifier +12V power supply 2 AVS5 A : AD operational amplifier +12V power supply 1 AO2P LRCK AO2N XMST AVD2 NC AVS2 NC XVDD XTLO VDD3 Application Circuit 22k 22k 22k 22k 12k 100p 6 39k AGND 5 100k 6 5 100p AGND 5 100k 6 7 7 7 7 7 1.8k 10k 1.8k 1.8k 10k 3 2 3 2 3 2 3 2 3 2 AGND 1200p 2200p 1.8k AGND 220p 1000p 10k AGND 1200p 2200p 1.8k AGND 1200p 2200p 1.8k AGND 220p 1000p 10k 3 1 4 2 3 1 3 1 4 2 4 8 4 8 4 8 4 8 4 8 0.01 AGND AGND 1 10µ 1M CH1 OUT AGND 1M AGND 330k AGND 1M AGND AGND 10µ 4.7k 0.01 0.01 AGND AGND 1 10µ 4.7k 0.01 0.01 AGND AGND 1 CH2 OUT AGND 330k AGND 10µ 4.7k 0.01 0.01 AGND AGND 1 10µ 0.01 0.01 AGND AGND 1 0.01 Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same. AGND CH3 IN 6 5 100k AGND AGND AGND 39k AGND CH1 IN AGND CH2 IN 6 39k 5 100p AGND AGND 39k 220p 12k 12k 220p 12k 100p CXD2720Q CXD2720Q Unit: mm 100PIN QFP (PLASTIC) + 0.4 14.0 – 0.01 17.9 ± 0.4 15.8 ± 0.4 + 0.1 0.15 – 0.05 23.9 ± 0.4 + 0.4 20.0 – 0.1 A 0.65 + 0.35 2.75 – 0.15 ±0.12 M (16.3) 0.15 0° to 15° DETAIL A 0.8 ± 0.2 Package Outline PACKAGE STRUCTURE SONY CODE QFP-100P-L01 EIAJ CODE ∗QFP100-P-1420-A JEDEC CODE – 40 – PACKAGE MATERIAL EPOXY RESIN LEAD TREATMENT SOLDER PLATING LEAD MATERIAL COPPER / 42 ALLOY PACKAGE WEIGHT 1.4g