CXD2728Q Single-Chip Dolby Pro Logic Surround Decoder Description The CXD2728Q is a CMOS LSI developed for Dolby Pro Logic Surround. A SRAM for short delay and AD/DA converters are built in, and all functions necessary for Dolby Pro Logic Surround such as an adaptive matrix, a passive decoder including Modified Dolby B-type NR, auto input balance, a noise sequencer and center channel mode control are contained on a single chip. Further, this LSI also supports Dolby 3 Stereo and Virtual Dolby Surround. Features • Dolby Pro Logic Surround decoding with a single chip • 2-channel 1-bit AD converter and decimation filter • 4-channel 1-bit DA converter and oversampling filter • 32K-bit SRAM for short delay • No separation or other variance for digital processing • External parts reduced due to the built-in AD/DA converters 80 pin QFP (Plastic) Recommended Operating Conditions • Supply voltage VDD 3.0 to 3.6 (3.3 typ.) V AVDD 3.1 to 3.5 (3.3 typ.) V Note) Use this IC under the following condition during the normal operation except for the power on. • Supply voltage difference VDD ≤ AVDD + 0.3 V VSS ≤ AVSS – 0.3 V • Operating temperature Ta –20 to +75 °C Functions • Adaptive matrix • Center channel mode control (Normal/Phantom/Wide) • Dolby 3 Stereo • Auto input balance control (ON/OFF) • Noise sequencer • Variable delay time (0 to 46.4ms) • 7kHz low-pass filter (12dB/Oct) • Modified Dolby B-type NR • Simple SFC function • Virtual Dolby Surround • SFC mode Input/Output Capacitance (VDD = VI = 0V, f = 1MHz) • Input capacitance CIN 9 (max.) pF • Output capacitance COUT 11 (max.) pF • Input/output capacitance CI/O 11 (max.) pF Maximum Current Consumption (Ta = 25°C, VDD = 3.6V) • Digital/analog block total: 75.8mA Absolute Maximum Ratings (Ta = 25°C, VSS = 0V) • Supply voltage VDD VSS – 0.5 to +4.6 V AVDD ∗1 AVss – 0.5 to + 4.6 V • Input voltage VID VSS – 0.5 to VDD + 0.5 V ∗2 Vss – 0.5 to 5 to Min (VDD + 4.6, 7.0) V VIA ∗3 AVss – 0.5 to AVD + 0.5 V • Output voltage VOD VSS – 0.5 to VDD + 0.5 V ∗4 Vss – 0.5 to Min (VDD + 4.6, 7.0) V VOA ∗3 AVss – 0.5 to AVDD + 0.5 V • Storage temperature Tstg –55 to +150 °C ∗1 Analog power supply including AVDX ∗2 Pins 28, 31, 32 and 76 ∗3 Analog input/output pin ∗4 Pin 29 Dolby level • During analog input: 200 to 300mVrms • During digital input: –20dBFS Analog Characteristics Conditions: Pro Logic ON Measurement at Dolby level = 300mVrms • S/N: L, Rch = 72dB, C, Sch = 70dB • THD + N: L, Rch = 0.03%, C, Sch = 0.03% ∗ All values typ. Structure Silicon gate CMOS Applications Equipment having Dolby Pro Logic Surround function such as AV amplifiers, receivers and compact music systems This device is available only to parties obtaining the license from Dolby Laboratories Licensing Corporation. "Dolby", the double-D symbol and "Pro Logic" are trademarks of Dolby Laboratories Licensing Corporation. Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits. –1– E98Z02-PS CXD2728Q Block Diagram 32K bit DELAY RAM RVDT 32 ADC1 25 LIN ADC2 80 RIN MICROCOMPUTER I/F SCK 28 XLAT 31 REDY 29 20 AO1N DSP DAC1 21 AO1P LRCK 41 BCK 39 DAC2 SERIAL DATA I/F SI 37 4 AO2N 5 AO2P 16 AO3N DAC3 17 AO3P XMST 42 CLOCK GENERATOR /TIMING CIRCUIT 13 12 8 AO4N 9 AO4P 35 BFOT XTLO XTLI DAC4 LRCK T.P XMST T.P T.P VSS2 T.P T.P T.P T.P VDD2 T.P T.P T.P T.P T.P VSS3 T.P T.P T.P T.P T.P T.P T.P Pin Configuration 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 VSS4 65 40 VSS1 T.P 66 39 BCK T.P 67 38 T.P T.P 68 37 SI T.P 69 36 T.P T.P 70 35 BFOT VDD0 71 34 XS24 T.P 72 33 VDD1 T.P 73 32 RVDT T.P 74 31 XLAT T.P 75 30 T.P 29 REDY XRST 76 T.P 77 28 SCK VSS5 78 27 VSS0 AVS2 79 26 AVS1 RIN 80 LREF AVD1 AVD3 AO1P AVS3 AO1N AO4P AVS5 AO4N AO3P AVS6 AO3N AVS4 –2– AVD5 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 AVSX 8 XTLI 7 XTLO 6 AVDX 5 AVD6 4 AO2P AVD2 3 AVD4 2 AO2N 1 RREF 25 LIN CXD2728Q Pin Description Pin No. Symbol Notations in parentheses indicate the fixed pin connection status. Description I/O 1 RREF O R-ch AD converter reference. 2 AVD2 — R-ch AD converter power supply. (AVDD) 3 AVD4 — R-ch DA converter power supply. (AVDD) 4 AO2N O R-ch DA converter opposite phase PWM output. 5 AO2P O R-ch DA converter forward phase PWM output. 6 AVS4 — R-ch DA converter GND. (AVSS) 7 AVS6 — S-ch DA converter GND. (AVSS) 8 AO4N O S-ch DA converter opposite phase PWM output. 9 AO4P O S-ch DA converter forward phase PWM output. 10 AVD6 — S-ch DA converter power supply. (AVDD) 11 AVDX — Oscillator analog power supply. (AVDD) 12 XTLO O Oscillator output. 13 XTLI I Oscillator input. 14 AVSX — Oscillator analog GND. (AVSS) 15 AVD5 — C-ch DA converter power supply. (AVDD) 16 AO3N O C-ch DA converter opposite phase PWM output. 17 AO3P O C-ch DA converter forward phase PWM output. 18 AVS5 — C-ch DA converter GND. (AVSS) 19 AVS3 — L-ch DA converter GND. (AVSS) 20 AO1N O L-ch DA converter opposite phase PWM output. 21 AO1P O L-ch DA converter forward phase PWM output. 22 AVD3 — L-ch DA converter power supply. (AVDD) 23 AVD1 — L-ch AD converter power supply. (AVDD) 24 LREF O L-ch AD converter reference. 25 LIN I L-ch AD converter analog input 26 AVS1 — L-ch AD converter GND. 27 VSS0 — Digital GND. 28 SCK I Shift clock input for microcomputer interface. 29 REDY O Transfer enabling signal output for microcomputer interface. Transfer prohibited when Low. 30 T.P O Test monitor. Normally outputs Hi-Z. 31 XLAT I Latch input for microcomputer interface. 32 RVDT I Data input for microcomputer interface. 33 VDD1 — (AVSS) (VSS) Digital power supply. (OPEN) (VDD) (OPEN): Open, (VDD): +3.3V digital power supply, (AVDD): +3.3V analog power supply (Vss): Digital GND, (AVss): Analog GND –3– CXD2728Q Notations in parentheses indicate the fixed pin connection status. Pin No. Symbol I/O Description 34 XS24 I Serial data 24-/32-bit slot selection. 24-bit slot when Low. [valid for slave mode] 35 BFOT O Clock frequency-division output. (384/768/256/512fs) 36 T.P O Test output. Normally outputs Low. 37 SI I 1-sampling 2-channel serial data input. 38 T.P I Test input. Normally inputs Low. 39 BCK I/O Serial bit transfer clock for serial input data SI. 40 VSS1 — Digital GND. 41 LRCK I/O Sampling frequency clock for serial input data SI. 42 XMST I BCK and LRCK master/slave mode switching input. Master mode when Low. I Test input. Normally inputs Low. (VSS) Digital GND. (VSS) Test input. Normally inputs Low. (VSS) Digital power supply. (VDD) Test input. Normally inputs Low. (VSS) Digital GND. (VSS) Test input. Normally inputs Low. (VSS) Digital GND. (VSS) Test input. Normally inputs Low. (VSS) Digital power supply. (VDD) I Test input. Normally inputs Low. (VSS) 43 to 45 T.P 46 VSS2 47 to 50 T.P 51 VDD2 52 to 56 T.P 57 VSS3 58 to 64 T.P 65 VSS4 66 to 70 T.P 71 VDD0 72 to 75 T.P — I — I — I — I — (OPEN) (VSS) (VSS) 76 XRST I System reset input. Reset when Low. 77 T.P I Test input. Normally inputs High. (VDD) 78 VSS5 — Digital GND. (VSS) 79 AVS2 — R-ch AD converter GND. 80 RIN I (AVSS) R-ch AD converter analog input. (OPEN): Open, (VDD): +3.3V digital power supply, (AVDD): +3.3V analog power supply (Vss): Digital GND, (AVss): Analog GND ∗ The CXD2728Q has 3 digital and 7 analog power supplies and the order of turning them on is not specified. –4– CXD2728Q DC Characteristics (VDD0 to 2 = 3.0 to 3.6V, AVD1 to 6 = AVDX = 3.1 to 3.5V, AVS1 to 6 = AVSX = VSS0 to 5 = 0V, Ta = –20 to +75°C) Item Symbol Input voltage (1) High level VIH Input voltage (2) High level VIH Input voltage (3) High level VIH Low level Low level Low level Input voltage (4) VIL VIL VIL CMOS input Schmitt input LVTTL input Min. Typ. Max. Unit Applicable pins V ∗1, ∗2, ∗6, ∗7 V ∗1, ∗2, ∗6, ∗7 V ∗5 V ∗5 V ∗3 0.8 V ∗3 VDD V ∗4 V ∗8, ∗9, ∗13 V ∗8, ∗9, ∗13 V ∗11 0.7VDD 0.3VDD 0.8VDD 0.2VDD 2.0 Analog input VSS Output voltage High level VOH (1) Low level VOL IOH = –4.0mA VDD – 0.4 Output voltage High level VOH (2) Low level VOL IOH = –12.0mA IOL = 12.0mA VDD/2 V ∗11 Output voltage (3) Low level VOL IOL = 4.0mA 0.4 V ∗10 Input leak current (1) II VIH = VDD, VSS –10 10 µA ∗1, ∗7 Input leak current (2) II VIH = VDD, VSS –40 40 µA ∗2, ∗3, ∗5, ∗6 Output leak current IOZ VIH = VDD, VSS –40 40 µA ∗9, ∗10 Feedback resistance RFB 2.5M Ω Resistance between ∗7 and ∗11 ∗1 ∗2 ∗3 ∗4 ∗5 ∗6 ∗7 ∗8 ∗9 ∗10 ∗11 ∗12 ∗13 VIN Conditions IOL = 4.0mA 0.4 VDD/2 250k TST0 to TST4, XMST XS24, SI SCK, XLAT, RVDT LIN, RIN XRST During input to bidirectional pins BCK, LRCK XTLI During output from bidirectional pins BCK, LRCK BFOT REDY XTLO LREF, RREF AO1P, AO1N, AO2P, AO2N, AO3P, AO3N, AO4P, AO4N –5– 1M CXD2728Q AC Characteristics (VDD0 to 2 = 3.0 to 3.6V, AVD1 to 6 = AVDX = 3.1 to 3.5V, AVS1 to 6 = AVDX = VSS0 to 5 = 0V, Ta = –20 to +75°C) Input Timing from Power-on to Input Pin VDD 0.95VDD Determined by the crystal and other external circuit conditions Stable (clock applied correctly) ····· XTLI 1/fs or more 2.0V 0.8V XRST 1/fs or more Input pins 0.7VDD 0.2VDD First input Serial Audio Interface Timing [Slave mode] 0.7VDD 0.2VDD BCK tSSI tHSI 0.7VDD 0.2VDD SI tSLR tHLR 0.7VDD 0.2VDD LRCK [Master mode] BCK tDLR LRCK Item SI setup time SI hold time LRCK setup time LRCK hold time LRCK delay time Symbol tSSI tHSI tSLR tHLR tDLR Conditions Min. Max. Unit Slave mode 20 ns Slave mode 40 ns Slave mode 20 ns Slave mode 40 ns Master mode, CL = 120pF –6– 50 ns CXD2728Q Microcomputer Interface Timing Transfer timing for address section, transfer mode section and data section LSB RVDT Address LSB Mode MSB tSWL tDS tSWH 2.0V 0.8V Data LSB Data MSB tDH SCK tSLP 2.0V 0.8V XLAT tLWL tLSD 2.0V 0.8V REDY Transfer timing from data section MSB to address section and transfer mode section RVDT Data MSB Address LSB Mode MSB 2.0V 0.8V tSS 2.0V 0.8V SCK tSLD XLAT 2.0V 0.8V tLDR tSBD tRLP tBSP REDY Item RVDT data setup time relative to SCK rise RVDT data hold time from SCK rise SCK Low level width SCK High level width XLAT Low level width XLAT High level width SCK rise preceding time relative to XLAT rise SCK rise wait time relative to XLAT rise Delay time to REDY fall relative to SCK rise REDY fall preceding time relative to SCK rise REDY rise preceding time relative to XLAT rise REDY rise preceding time relative to SCK fall XLAT fall wait time relative to SCK rise XLAT fall delay time relative to REDY fall SCK rise wait time for next transfer Symbol Min. tDS tDH tSWL tSWH tLWL tLWH tSLP tLSD tSBD tBSP tRLP tRSDP tSLD tLDR tSS 20 ns 1t + 20 ns 1t + 20 ns 1t + 20 ns 1t + 20 ns 1t + 20 ns 20 ns 3t + 20 ns Notes) 1. t is the cycle of 2/3 the clock frequency applied to the XTLI pin. (512fs) 2. The REDY pin is the value for CL = 60pF. –7– Max. 4t + 50 Unit ns 20 ns 20 ns 20 ns 3t + 20 ns 20 ns 2t + 40 ns CXD2728Q Analog Characteristics (AVD0 to 6 = VDD0 to 2 = AVDX = 3.3V, AVS0 to 6 = VSS0 to 5 = AVSX = 0V, fs = 44.1kHz, Ta = 25°C) When Pro Logic mode is on, the input signal level while measuring the center (C) and surround (S) channels should be –3dB smaller than the input level while measuring the left (L) and right (R) channels. At this time, for the C channel, the signal is input in-phase, and for the S channel, the signal is input at reversed phase to each L and R channel. The input level is the same for all measurement items when Pro Logic mode is off. 1. ADC + DAC Connection Total Characteristics These are the total characteristics for the ADC and DAC. Use the analog I/O circuits in the Application Circuit for the measurement circuit. 1-1. When Pro Logic Mode is on Unless otherwise specified, the measurement conditions are as given below. • VIN (L, R measurement) = 300mVrms (0dB), VIN (C, S measurement) = 212mVrms (–3dB) • FIN = 1kHz • Sampling frequency = 44.1kHz • Measured bands = 10Hz to 20kHz Item Measurement conditions CCIR/ARM filter S/N ratio∗1 Measured bands: 70Hz to 300kHz 16.5dB∗2 0dB∗3 (THD + N)/S –3.52dB∗4 Measured bands: 70Hz to 300kHz Head room Channels Min. Typ. L, R 65.5 72 C, S 65.5 70 57 C, S 52 L, R 0.006 1.00 C, S 0.006 1.00 L, R 0.03 C, S 0.03 L, R 0.045 C, S 0.045 L, R 0.23 C, S 0.32 16.5 L, R 25 53 C, S 25 45 Unit dB L, R (THD + N)/S = 1% Matrix rejection∗5 Max. % dB dB Output level (all) 300 mV Level difference between channels (all) ±0.2 dB Current consumption Power supply fluctuation elimination ratio∗6 Analog system (including oscillator circuit) 17.2 Digital system 43.1 100mVrms, 100Hz sine wave L, R 24 C –9 S 30 mA dB ∗1 When VIN = 200mVrms (= –3.52dB = –20dBFS), the S/N ratio is 3.52dB smaller than the values noted in the table above. ∗2 VIN (L, R) = 2.0Vrms, VIN (C, S) = 1.414Vrms ∗3 VIN (L, R) = 300mVrms, VIN (C, S) = 212mVrms ∗4 VIN (L, R) = 200mVrms, VIN (C, S) = 141mVrms ∗5 When the L and R channel gain deviation is 0.1dB or less in the prefilter output. ∗6 Including amplification by the external amplifier (L/Rch: 11.35dB, C/Sch: 14.42dB) –8– CXD2728Q 1-1. When Pro Logic Mode is off Unless otherwise specified, the measurement conditions are as given below. • VIN (L, R, C, S) = 2Vrms (0dB), 1kHz • Sampling frequency = 44.1kHz • Measured bands = 10Hz to 20kHz Item Measurement conditions Channels Min. Typ. Max. Unit S/N ratio "A" weighting filter (all) 90 dB (THD + N)/S∗1 0dB (all) 0.006 % Dynamic range∗2 "A" weighting filter (all) 90 dB 506 mVrms (all) 2.00 Vrms (all) –6 dB ADC maximum input level∗3 Output level∗4 Power supply fluctuation elimination ratio∗5 100mVrms, 100Hz sine wave ∗1 See Graph 1: ADC Characteristics. ∗2 S/(THD + N) during –60dB input ∗3 The ADC maximum input level depends on the supply voltage (AVDn), so when the supply voltage (AVDn) contains deviation, calculate the maximum input level from the formula below and adjust the level so that the waveform is not clipped at the minimum voltage. Maximum input level [Vrms] = 0.506 [Vrms] × Minimum supply voltage [V] 3.3 [V] ∗4 Like the ADC, the DAC conversion gain also varies according to the supply voltage (AVDn). However, the DAC has the reverse characteristics of the ADC, so the total gain between the ADC and DAC is constant. ∗5 Including amplification by the external amplifier (L/Rch: 11.35dB, C/Sch: 14.42dB) 5 2 1 THD + N CH1 [%] 0.500 0.200 0.100 0.050 0.020 0.010 0.005 0.002 0.001 2m 3m 5m 10m 20m 50m 0.1 0.2 GEN VOLT [Vrms] Graph 1. ADC Characteristics –9– 0.5 1 2 CXD2728Q 2. DAC Characteristics Use the digital input and analog output circuits in the Application Circuit for the measurement circuit. 2-1. When Pro Logic mode is on Unless otherwise specified, the measurement conditions are as given below. • Input data = 16.5dBFS (= 0dB), 1kHz, 16 bits • Sampling frequency = 44.1kHz • Measured bands = 10Hz to 20kHz Item Measurement conditions CCIR/ARM filter S/N ratio Measured bands: 70Hz to 300kHz (THD + N)/S Measured bands: 70Hz to 300kHz Channels Matrix rejection Level difference between channels Typ. L, R 76 C 74 S 73 L, R 57 C, S 52 L, R 0.017 C 0.022 S 0.024 L, R 0.23 C 0.32 S 0.33 AVDn [V] 3.3 [V] – 10 – Unit dB % dBFS (all) 300 mVrms L, R 51 C 70 S 56 (all) ±0.2 ∗1 The output level depends on the supply voltage (AVDn) as shown in the formula below. Output level [Vrms] = 300 [mVrms] × Max. –16.5 Dolby level Output level∗1 Min. dB dB CXD2728Q 2-2. When Pro Logic mode is off Unless otherwise specified, the measurement conditions are as given below. • Input data = 0dBFS (= 0dB), 1kHz, 16 bits • Sampling frequency = 44.1kHz • Measured bands = 10Hz to 20kHz Item Measurement conditions S/N ratio Channels "A" weighting filter (THD + N)/S∗1 Dynamic range∗2 "A" weighting filter Output level∗3 Min. Typ. L, R 98 C 97 S 95 L, R 0.005 C, S 0.003 L, R 97 C 96 S 94 (all) 2.01 Max. Unit dB % dB Vrms ∗1 See Graphs 2 and 3. ∗2 S/(THD + N) during –60dB input ∗3 The output level depends on the supply voltage (AVDn) as shown in the formula below. AVDn [V] 3.3 [V] 5 5 2 1 0.500 2 1 0.500 THD + N CH1 [%] THD + N CH1 [%] Output level [Vrms] = 2.01 [Vrms] × 0.200 0.100 0.050 0.020 0.010 0.005 0.002 0.001 –60 0.200 0.100 0.050 0.020 0.010 0.005 0.002 –50 –40 –30 –20 –10 0.001 –60 0 GEN VOLT [dBFS] –50 –40 –30 –20 –10 GEN VOLT [dBFS] Graph 2. DAC Characteristics (L, Rch) Graph 3. DAC Characteristics (C, Sch) – 11 – 0 CXD2728Q Description of Functions 1. Master/Slave Modes [Relevant pins] XMST, LRCK, BCK When using the CXD2728Q alone without digital input, set the CXD2728Q to master mode. When using digital input, the CXD2728Q may be set to either master mode or slave mode. The clock applied to LRCK and BCK in slave mode must be synchronized to either the crystal oscillator clock of the XTLI and XTLO pins or the external clock input from the XTLI pin. XMST Mode LRCK, BCK I/O H Slave mode Input L Master mode Output Table 1-1. LRCK, BCK Mode Setting 2. Master Clock System [Relevant pins] XTLI, XTLO, BFOT 768fs (fs = 32 to 48kHz) is assumed for the master clock system, and the connection is as shown below. BFOT outputs the clock obtained by frequency dividing the master clock. The frequency division ratio can be changed by the setup register (SQC04, SQC05). (See "6. Setup Register".) SQC05 SQC04 BFOT 0 0 384fs 0 1 256fs 1 0 512fs 1 1 768fs (1) Master (2) Slave O 512fs BFOT 256fs/384fs/512fs/768fs I 768fs XTLI Frequency divider 512fs Frequency divider O OPEN XTLO 768fs I XTLI Setup Register O XTLO Note) Oscillation circuits may differ according to peripheral circuit and substrate. Consult with crystal oscillator manufacturers about the selecting oscillation circuits. Fig. 2-1. – 12 – CXD2728Q 3. Reset Circuit [Relevant pins] XRST, XTLI, XTLO This LSI must be reset after the power is turned on. Reset is done by setting the XRST pin Low for 1/fs or more after the supply voltage satisfies the recommended operating condition, and the crystal oscillator clock of the XTLI and XTLO pins or the external clock input from the XTLI pin is correctly applied. (See "AC Characteristics".) 4. Serial Audio Interface (SIF) [Relevant pins] SI, BCK, LRCK, XS24, XMST Serial data is used for the external communication of the digital audio data. The CXD2728Q has only one input system, and 2 channels of data are input for each sampling cycle. Either the 32-bit clock mode or the 24-bit clock mode can be selected. In master mode, the mode is fixed to the 32-bit clock mode. (1) Pin Configuration (The pins shown in the table below are assigned to the SIF.) Symbol I SI Function I/O Serial input; taken with synchronized to BCK. BCK I/O BCK I/O; either 32-bit clock mode (64fs) or 24-bit clock mode (48fs). BCK output supports 32-bit clock mode only. LRCK I/O LRCK I/O (1fs). XS24 I SIO slot number (24/32) selection input. Low: 24-bit slot; High: 32-bit slot. Valid only in slave mode. Set High in master mode. Do not switch between High and Low during DSP operation. XMST I BCK, LRCK master mode/slave mode switching input. Low: master mode; High: slave mode. Table 4-1. Pin Configuration (2) Operation Modes The LRCK/BCK mode can be selected by the setup register settings as follows. (See "6. Setup Register".) LRCK/BCK Mode Setting Contents Function Setup register SQC15 LRCK format "0": normal, SQC14 LRCK polarity selection "0": Lch "H", "1": Lch "L" SQC13 BCK polarity selection relative to LRCK edge. Valid only in slave mode. Fix to "0" in master mode. "0": edge ↓, Table 4-2. LRCK/BCK Mode Setting – 13 – "1": IIS "1" : edge ↑ CXD2728Q (3) SIF Format The serial audio interface has only one input system, and except for the slot number, the following formats can be set by setting the setup register. The serial audio interface can also support IIS format to enable connection to Philips and other company's devices. The timing charts for each data format are given on the following page. SQC12 SQC11 Data arrangement/Frontward or rearward truncation/Data word length 0 0 MSB first/Frontward truncation/24 bits 0 1 MSB first/Rearward truncation/16 bits 1 0 MSB first/Rearward truncation/18 bits 1 1 MSB first/Rearward truncation/20 bits ∗ All formats support either the 24- or 32-bit slot in slave mode. Table 4-3. Setup Register Settings – 14 – – 15 – SI BCK LRCK 24-bit slot SI BCK LRCK 32-bit slot MSB 21 20 19 18 17 16 15 14 13 12 Lch 11 10 09 08 07 14 13 12 11 10 09 08 07 16 15 14 13 12 11 10 09 08 07 Invalid MSB 19 18 17 16 15 14 13 12 11 10 09 08 07 Invalid MSB • MSB first 20 bits rearward truncation (SQC12, 11 = 1, 1) 17 Invalid MSB • MSB first 18 bits rearward truncation (SQC12, 11 = 1, 0) 15 MSB • MSB first 16 bits rearward truncation (SQC12, 11 = 0, 1) 22 • MSB first 24 bits (SQC12, 11 = 0, 0) 23 LSB LSB 06 06 06 06 05 05 05 05 04 04 04 04 03 03 03 03 02 02 02 02 00 23 22 01 01 01 LSB 00 LSB 00 LSB 00 19 MSB 19 Invalid 20 18 18 17 17 16 16 17 16 MSB Invalid Invalid Invalid Invalid 21 Invalid LSB MSB 01 LSB 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00 Invalid MSB • MSB first 20 bits rearward truncation (SQC12, 11 = 1, 1) Rch 15 15 MSB 15 LSB MSB LSB 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00 MSB 14 14 14 14 13 13 13 13 12 12 12 12 11 11 11 11 Rch 10 10 10 10 09 09 09 09 08 08 08 08 07 07 07 07 06 06 06 06 05 05 05 05 04 04 04 04 03 03 03 03 02 02 02 02 01 01 01 01 LSB 00 LSB 00 LSB 00 LSB 00 LSB 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00 MSB 15 Invalid 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00 LSB 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00 MSB 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00 Invalid MSB • MSB first 18 bits rearward truncation (SQC12, 11 = 1, 0) Invalid Invalid 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00 MSB LSB • MSB first 16 bits rearward truncation (SQC12, 11 = 0, 1) 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00 • MSB first 24 bits frontward truncation (SQC12, 11 = 0, 0) Lch Digital Audio Data Input Timing (with polarities: SQC15 = 0, SQC14 = 0, SQC13 = 0) CXD2728Q CXD2728Q 5. Microcomputer Interface [Relevant pins] RVDT, SCK, XLAT, REDY The CXD2728Q performs the serial audio interface format setting and the coefficient settings such as volume and filter by serial data from the microcomputer. (1) Pin Configuration The four external pins indicated in the table below are assigned to the microcomputer interface. Symbol Function I/O RVDT I Serial data input from microcomputer. SCK I Shift clock for serial data. Input data from RVDT is taken according to the SCK rise. XLAT I Interprets the 8 bits of RVDT before this signal rises as transfer mode data, and the bits before that as address data. REDY O Transfer prohibited while at Low level. Transfer enabled at High. This pin is an open drain, and must be pulled up externally. Table 5-1. Microcomputer Interface External Pins (2) Description of Communication Formats The internal data transfer timing from the microcomputer interface to the coefficient RAM and setup register is called the SV cycle, and is generated once per 1 LRCK. The SV cycle is generated immediately preceding the signal processing program, so it has absolutely no effect on signal processing, and there is no risk of the sound being cut. Address section + Mode section + Data section act as one package of data to transfer data from the microcomputer to the CXD2728Q. Address section (8 bits) Mode section (8 bits) RVDT A0 A7 M0 M7 Data section (16 bits) D0 SCK XLAT REDY Fig. 5-1. Example of Communication – 16 – D15 CXD2728Q (3) Data Structure The data structure is classified into three types, as shown in the table below. All data communication is done with LSB first. Symbol Bit length Contents A0 to A7 8 Address section M0 to M7 8 Transfer mode section D0 to D15/SQ00 to SQ15 16 Data section Remarks Coefficient RAM and setup register are both 16 bits Table 5-2. Data Structure (3)-1. Transfer Mode Section The transfer mode section is 8 bits and has the following functions. Bit Function Symbol Reserve M7 M6 SU1 M5 SU0 M4 VS1 M3 VS0 Setup Reg. type Data type Normally fixed to "0" SU1 0 0 1 1 VS1 0 1 SU0 0 1 0 1 VS0 0 0 Field A Field B (Not used) Field C Field D Setup register Coefficient RAM M2 M1 Reserve Normally fixed to "0" M0 Table 5-3. Transfer Mode Section (3)-2. Address Section The coefficient RAM has a 256-word structure, so the address section is 8 bits. The setup register has a 4word structure and the field (address) is specified by the mode section, so the address section data may be optional. (3)-3. Data Section The coefficient RAM and setup register both have a 16-bit structure, so 16 SCK are required. – 17 – CXD2728Q (4) Details of Communication Methods The definitions of signal timing required for control from the microcomputer are given below. (4)-1. Signal Timing First, address section data and mode section data are sent from the microcomputer, synchronized to SCK, to the RVDT pin. The address section data is 8 bits for both the coefficient RAM and setup register, and the setup register has a length of one word, so optional data can be transferred. Address section data is sent with LSB first. Mode section data is fixed at 8 bits regardless of the transfer contents. The phase relationship between SCK and RV data (data applied to the RVDT pin) has the following restrictions: • RV data must be established before SCK rises (tDS ≥ 20ns). • RV data must be held for 1t + 20ns or more after SCK rises (tDH). SCK itself has the following restrictions: • SCK Low level must be 1t + 20ns or more (tSWL). • SCK High level must be 1t + 20ns or more (tSWH). After the SCK rise which corresponds to the mode section final data, XLAT rises (tSLP ≥ 20ns). The XLAT Low level width must be maintained at 1t + 20ns or more (tLWL). The fall timing is restricted in that even if REDY falls due to SCK during the preceding transfer, 3t + 20ns or more (tSLD) is required from the SCK rise which corresponds to the data section final data. Further, if preceding transfers have been performed and REDY = Low, XLAT must rise after REDY = High. RVDT A0 tDS A7 M0 D0/SQ00 SQ00 M7 D15/SQ15 SQ15 tDH A0 M7 tSS SCK tSWL tSWH tSLP tLSD tBSP tSLP XLAT tSLD or tLWH tLWL tSLD tRLP tSBD REDY tLDR Fig. 5-2. Write Timing ∗ t is the cycle of 2/3 the clock frequency applied to the XTLI pin. (512fs) – 18 – tLDR tRLP CXD2728Q Data section write begins after XLAT rises, and here also transfer must be performed with LSB first, with tDS and tDH restrictions. In addition, after XLAT rises at the starting point for sending the data section, wait for 3t + 20ns or more for the first SCK rise (tLSD). When 16 bits of this write is repeated, REDY goes Low within 4t + 50ns, and the microcomputer is informed of waiting status for the SV cycle, which is the dedicated data rewrite cycle, by the microcomputer interface (tSBD). When REDY goes High again, the corresponding data is written. The next communication can be restarted by using the REDY signal as follows. • When REDY = Low, the SCK for the next transfer can rise (tBSP ≥ 20ns). • In the same way, when REDY = Low, the XLAT for the next transfer can fall (tLDR ≥ 20ns). REDY will fall due to this communication, but it is prohibited for XLAT to rise for the next transfer before REDY rises. Make sure that the next XLAT rises after REDY rises (tRLP ≥ 20ns). In order to restart the next transfer without using the REDY signal, the following conditions must be observed: • There should be 2t + 40ns or more left between the SCK rise for the final data section and the SCK rise for the next transfer (tSS). • In the same way, the XLAT for the next transfer can fall after waiting for 3t + 20ns or more after the final data section SCK rise (tSLD). The tSS and tSLD here are shorter times than tSBD ≤ 4t + 50ns, so these are rather loose restrictions. However, even in this case the XLAT rise for the next transfer must come after REDY rises (tRLP ≥ 20ns). Further, the restriction for the XLAT fall at the starting point of this transfer from tSLD can be: tSLD ≥ 3t + 20ns – 19 – CXD2728Q 6. Setup Register When the setup register is selected in microcomputer interface transfer mode, the following settings are possible for hardware such as the serial audio interface and DAC, and for software such as the Dolby Pro Logic Surround decoder. The setup register has a total of four fields, and 16 bits of setup information can be stored per field. However, when this LSI is reset, the setup register contents are also reset to the settings shown in the "When reset" column in Tables 6-1 to 6-3 below. (1) Field A Data section bit SQA15 SQA14 SQA13 SQA12 SQA11, SQA10 SQA09, SQA08 SQA07, SQA06 SQA05, SQA04 SQA03 to SQA00 Control contents When reset Reserve bit Be sure to set this bit Low when changing the setup register Field A settings. "L" Noise sequencer 0: OFF 1: ON OFF Virtualizer 0: OFF 1: ON OFF Compensation filter 0: OFF 1: ON OFF Decimation ratio setting SQA11 SQA10 (SFC mode only) 0 0 : 1/1 (No decimation) Be sure to also set 0 1 : 1/2 decimation SQC07 and SQC06. 1 0 : 1/3 decimation Dolby 3 Stereo 1/1 (No decimation) SQA09 SQA08 0 0 : OFF 0 1 : ON OFF Reserve bit Be sure to set both bits Low when changing the setup register Field A settings. all "L" SFC mode SQA05 SQA04 0 0 : OFF 0 1 : ON OFF Be sure to set all of these bits Low when changing the setup register Field A settings. all "L" Reserve bit Table 6-1. Setup Register Field A ∗ Bit names are indicated by the field name and the bit number. The bit names for Field A are SQA00 to SQA15, and the first three letters of the bit names for Fields B, C and D are SQB, SQC and SQD, respectively. (2) Field B Field B is not used. The Field B data is not necessary to be transferred after reset. – 20 – CXD2728Q (3) Field C Data section bit Control contents 0: normal 1: IIS normal SQC14 LRCK polarity selection 0: Lch "H" 1: Lch "L" Lch "H" SQC13 BCK polarity selection relative to LRCK edge Note) Falling edge SQC15 SQC12, SQC11 SQC10 SQC09, SQC08 SQC07, SQC06 SQC05, SQC04 LRCK format When reset Serial audio interface setting 0: Falling edge 1: Rising edge SQC12 SQC11 0 0 : MSB first/Frontward truncation/24 bits 0 1 : MSB first/Rearward truncation/16 bits 1 0 : MSB first/Rearward truncation/18 bits 1 1 : MSB first/Rearward truncation/20 bits MSB first/Frontward truncation/24 bits DAC forced mute 0: ON 1: OFF ON Reserve bit Be sure to set both bits Low when changing the setup register Field C settings. all "L" Decimation ratio setting SQC07 SQC06 (SFC mode only) 0 0 : 1/1 (No decimation) Be sure to also set 0 1 : 1/2 decimation ∗ SQA11 and SQA10. 1 : 1/3 decimation BFOT output clock frequency division ratio setting SQC03 to Reserve bit SQC00 1/1 (No decimation) SQC05 SQC04 0 0 : 384Fs 0 1 : 256Fs 1 0 : 512Fs 1 1 : 768Fs 384Fs Be sure to set all of these bits Low when changing the setup register Field C settings. all "L" Table 6-2. Setup Register Field C Note) BCK polarity selection (SQC13) is valid only in slave mode. Fix to "0" in master mode. – 21 – CXD2728Q (4) Field D Data section bit SQD15 to SQD03 Control contents Reserve bit Be sure to set all of these bits Low when changing the setup register Field D settings. Coefficient memory SQD02 type setting 0 0 SQD02 to SQD00 01 0 0 00 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 ROM only (ROM = 00 to ffH) ROM/RAM mixed (ROM = 00 to dfH/RAM = E0 to ffH) ROM/RAM mixed (ROM = 00 to bfH/RAM = C0 to ffH) ROM/RAM mixed (ROM = 00 to 9fH/RAM = A0 to ffH) ROM/RAM mixed (ROM = 00 to 7fH/RAM = 80 to ffH) ROM/RAM mixed (ROM = 00 to 3fH/RAM = 40 to ffH) ROM/RAM mixed (ROM = 00 to 1fH/RAM = 20 to ffH) RAM only (RAM = 00 to ffH) Table 6-3. Setup Register Field D – 22 – When reset all "L" ROM only CXD2728Q 7. Coefficient RAM/ROM When the coefficient RAM is selected in microcomputer interface transfer mode, the various application functions can be turned on and off, and the coefficient parameters such as each section's volume and delay time can be set. Coefficient RAM addresses other than those given in these specifications are "don't care". However, the RAM is not cleared entirely when this LSI is reset, so there are no initial values as for the setup register. Be sure to set all of the necessary data; otherwise misoperation may result. (1) Configuration The coefficient RAM and ROM have a capacity of 256 words × 16 bits each. However, the address space for the coefficient data is from 00H to ffH (256 words), so it is not possible to access all of the coefficient RAM and ROM data at the same time. That is to say, of the total 512 words in both the coefficient RAM and ROM, only the specified 256 words can be handled. The coefficient RAM and ROM areas are allocated by setting SQD02 to SQD00 of setup register Field D. Coefficient data transferred via the microcomputer interface is stored only in the coefficient RAM area specified by these bits. (Even if a ROM area address is specified and transfer is performed, the transfer is ignored.) AAA AAA AAA + AAA AAA 00H bfH c0H ffH 00H ROM = bfH c0H RAM ffH ROM RAM Coefficient address space Fig. 7-1. Coefficient Data ROM/RAM Allocation when SQD02 to SQD00 are Set to "010" (Setting Example) The contents of the data transferred to the coefficient RAM area differ for each mode. (See "8. Applications" for the detailed contents.) The RAM area may also differ, so SQD02 to SQD00 must be sent when switching the mode. Mode Setting item SQD02 to SQD00 Remarks Pro Logic + simple SFC mode 111 00 to ff = Coefficient RAM area Virtual Dolby Surround mode 100 80 to ff = Coefficient RAM area SFC mode 111 00 to ff = Coefficient RAM area Table 7-1. Coefficient RAM Area – 23 – CXD2728Q 8. Applications The CXD2728Q is equipped with various applications such as Dolby Pro Logic Surround mode (Pro Logic mode), Virtual Dolby Surround mode (Virtual mode), Dolby 3 Stereo mode, noise sequencer mode and SFC mode. The methods of setting each mode and of changing the mode are described below. Note) The filter and other parameter values for each application assume a sampling frequency (fs) of 44.1 [kHz]. Consult your Sony representative with regard to use at other fs. 8-1. Dolby Pro Logic Surround Mode (Pro Logic Mode) Pro Logic mode is realized using the adaptive matrix, passive decoder including BNR, auto input balance, center channel mode control, simple SFC and other functions. (1) Setting Pro Logic Mode Pro Logic mode must be set by the following procedures in order to achieve stable adaptive matrix operation. Setting Pro Logic mode by procedures other than those given below may aggravate the decoder characteristics. • Immediately after power-on reset i) Transfer the following setup data. SQA = 0030H (Field A) SQD = 7ee7H (Field D) ∗ Field C is "All 0", so the DAC forced mute is applied. ii) Transfer the Pro Logic mode coefficient data. iii) Transfer the setup data set in Pro Logic mode. • Changing to Pro Logic mode from Virtual mode Note) The coefficients for the Pro Logic mode soft mute∗1 status must be set in coefficient RAM addresses 00H to 7fH before shifting to Virtual mode. i) Apply the soft mute in Virtual mode. ii) Transfer the setup data set in Pro Logic mode. iii) Cancel the Pro Logic mode soft mute. • Changing to Pro Logic mode from a different mode (other than Virtual mode) i) Apply the soft mute in the current mode. ii) Set the coefficients at the following addresses to "0000H". Addresses: 6eH to 7fH iii) Transfer the following setup data. SQA = 0030H (Field A) SQD = 7ee7H (Field D) ∗ The DAC forced mute is not applied by Field C. iv) Transfer the Pro Logic mode coefficients for the soft mute status. v) Transfer the setup data set in Pro Logic mode. vi) Cancel the Pro Logic mode soft mute. ∗1 Soft mute: See "Appendix 1. Soft Mute". – 24 – CXD2728Q (2) Setting Data (2)-1. Setup Data Table 8-1-1 lists the registers most closely related to Pro Logic mode. Setup data not listed in Table 8-1-1 may be set as desired, with due consideration given to the contents of Fields A to D noted in "6. Setup Register". Register name Setting value Remarks SQA14 "0" 1: Noise sequencer mode SQA13 "0" 1: Virtual mode SQA09, 08 "00" 01: Dolby 3 Stereo mode SQA05, 04 "00" 01: SFC mode SQD02 to 00 "111" Coefficient RAM area setting (111: Other than Virtual mode, 100: Virtual mode) Table 8-1-1. Pro Logic Mode Setup Register Settings – 25 – CXD2728Q (2)-2. Coefficient Data The coefficient RAM area for Pro Logic mode is from addresses 00H to ffH (all areas). The coefficient data consists of "fixed values" shown in Table 8-1-2 and "setting values" shown in Table 8-1-3 which can be set by the user. All coefficient values must be sent to the coefficient RAM via the microcomputer interface. Note that once data has been transferred to the coefficient RAM, the coefficient RAM data (00H to 7fH) is saved unless the power is turned off, even if the RAM area is changed by setting SQD02 to SQD00 (even if the mode is changed to Virtual mode). • Fixed values during Pro Logic mode initialization The following fixed values must be set in the coefficient RAM to ensure proper internal operation. Address Fixed value Address Fixed value Address Fixed value Address Fixed value 27H 6dH 6eH 6fH 70H 71H 72H 73H 74H 75H 76H 77H 78H 79H 7aH 7bH 7cH 7dH 7eH 7fH 80H 81H 82H 83H 84H 85H 86H 87H 88H 89H 8aH 8bH 8cH 8dH 8eH 8fH 0000H 051eH ff86H 02a0H f6c0H 2715H 4000H 5149H e571H 0f4eH f5b8H 075cH fa97H 0402H fd0bH 0225H fe7cH 01d3H f312H 4b85H 850fH 7d6bH 7d72H 22b6H 3a94H 0074H 7f18H a000H 8000H febfH 04f9H eb83H 7b01H cae0H 0400H 0074H 90H 91H 92H 93H 94H 95H 96H 97H 98H 99H 9aH 9bH 9cH 9dH 9eH 9fH a0H a1H a2H a3H a4H a5H a6H a7H a8H a9H aaH abH acH adH aeH b3H b4H b6H b8H b9H 7f18H 0400H 001eH 7fc5H 0002H 7ffdH 8000H dd1eH da82H 109cH 2641H 3441H dd1eH 109cH da82H 2641H 3441H 0bbfH e755H 4000H f619H e57eH 36dcH 5a82H 10c9H 2641H 7f18H 7e30H 4cbaH c216H 0aa4H 27b4H 7e14H 7ff9H 0063H 0000H baH bbH bcH bdH beH bfH c0H c1H c2H c3H c4H c5H c6H c7H c8H c9H caH cbH ccH cdH ceH cfH d0H d1H d2H d3H d5H d7H d8H daH dbH deH dfH e3H e4H e5H 43b9H 0400H 401eH ec00H 8000H a000H 0024H ff92H 010aH fce2H 097bH e38dH 1555H 0400H 1400H 2000H c000H ffe4H febcH f520H c144H a57eH 0757H 0012H 7f00H 7fffH fc00H 68a9H 5121H 7ff4H 7fe8H 8000H c400H 0000H 0000H 0000H e6H e7H e8H e9H eaH ebH ecH edH eeH efH f0H f9H feH ffH 0000H 0000H 0000H 0000H 0000H 0000H 0000H 0000H 0000H 0000H 7fffH 8000H b800H 0001H Table 8-1-2. Pro Logic Mode Fixed Value Coefficients – 26 – CXD2728Q • Pro Logic mode user setting coefficients The relationships between the coefficient RAM and each function during Pro Logic mode operation are as follows. Address 00H 01H 02H 03H 04H 05H 06H 07H 08H 09H 0aH 0bH 0cH 0dH 0eH 0fH 10H 11H 12H 13H 14H 15H 16H 17H 18H 19H 1aH 1bH 1cH 1dH 1eH 1fH 20H 21H 22H 23H 24H Symbol KLV KRV KCV KSV KLm1 KRm1 a0 a1 b KLm2 KRm2 a0 a1 b KLd KRd KCd KSd Kfb a0 a1 b a0 a1 b KDin TP1 TP2 TP3 TP4 TP5 TP6 KDout KDV1 KDV2 KDV3 KLRm1 Function Simple SFC: L-ch dry → L-ch mix volume Simple SFC: R-ch dry → R-ch mix volume Simple SFC: C-ch → C-ch volume Simple SFC: S + L/R (HPF1) → S-ch mix volume Simple SFC: L-ch → LPF1 mix volume Simple SFC: R-ch → LPF1 mix volume Simple SFC: LPF1 coefficient Simple SFC: LPF1 coefficient Simple SFC: LPF1 coefficient Simple SFC: L-ch → HPF1 mix volume Simple SFC: R-ch → HPF1 mix volume Simple SFC: HPF1 coefficient Simple SFC: HPF1 coefficient Simple SFC: HPF1 coefficient Simple SFC: L-ch → Delay RAM mix volume Simple SFC: R-ch → Delay RAM mix volume Simple SFC: C-ch → Delay RAM mix volume Simple SFC: S-ch → Delay RAM mix volume Simple SFC: Delay RAM feedback volume Simple SFC: HPF2 coefficient Simple SFC: HPF2 coefficient Simple SFC: HPF2 coefficient Simple SFC: LPF2 coefficient Simple SFC: LPF2 coefficient Simple SFC: LPF2 coefficient Simple SFC: Delay RAM write address Simple SFC: Delay RAM read Tap1 address Simple SFC: Delay RAM read Tap2 address Simple SFC: Delay RAM read Tap3 address Simple SFC: Delay RAM read Tap4 address Simple SFC: Delay RAM read Tap5 address Simple SFC: Delay RAM read Tap6 address Simple SFC: Delay RAM feedback Tap address Simple SFC: Delay RAM → S-ch mix volume Simple SFC: Delay RAM → R-ch mix volume Simple SFC: Delay RAM → L-ch mix volume Simple SFC: LPF1 → L-ch mix volume Table 8-1-3 (1). Pro Logic Mode Setting Value Coefficients – 27 – Setting value See Table 8-1-13. See Table 8-1-13. See Table 8-1-13. See Table 8-1-13. See Table 8-1-13. See Table 8-1-13. See Table 8-1-16. See Table 8-1-16. See Table 8-1-16. See Table 8-1-13. See Table 8-1-13. See Table 8-1-16. See Table 8-1-16. See Table 8-1-16. See Table 8-1-13. See Table 8-1-13. See Table 8-1-13. See Table 8-1-13. See Table 8-1-13. See Table 8-1-16. See Table 8-1-16. See Table 8-1-16. See Table 8-1-16. See Table 8-1-16. See Table 8-1-16. See Table 8-1-15. See Table 8-1-15. See Table 8-1-15. See Table 8-1-15. See Table 8-1-15. See Table 8-1-15. See Table 8-1-15. See Table 8-1-15. See Table 8-1-13. See Table 8-1-13. See Table 8-1-13. See Table 8-1-13. CXD2728Q Address 25H 26H 28H 29H 2aH 2bH 2cH 2dH afH b0H b1H b2H b5H b7H d4H d6H d9H dcH ddH f2H f3H f4H f5H f6H f7H f8H faH fbH Symbol KLRm2 KLRm3 KTP1 KTP2 KTP3 KTP4 KTP5 KTP6 b2 b1 a –a aslw 2D Kx KiA Ke Kia Kis KL KR KH KP KCH KCP KS Kdlb Dly Function Simple SFC: LPF1 → R-ch mix volume Simple SFC: HPF1 → S-ch mix volume Simple SFC: Tap1 volume Simple SFC: Tap2 volume Simple SFC: Tap3 volume Simple SFC: Tap4 volume Simple SFC: Tap5 volume Simple SFC: Tap6 volume 7K LPF parameter 7K LPF parameter 7K LPF parameter 7K LPF parameter Passive decoder M-BNR Passive decoder M-BNR Auto input balance ON/OFF Serial audio interface input volume De-emphasis ON/OFF Analog input mix volume Digital input mix volume Center mode control volume Center mode control volume Center mode control volume Center mode control volume Center mode control volume Center mode control volume Passive decoder volume Passive decoder M-BNR ON/OFF Passive decoder delay time adjustment Table 8-1-3 (2). Pro Logic Mode Setting Value Coefficients – 28 – Setting value See Table 8-1-13. See Table 8-1-13. See Table 8-1-13. See Table 8-1-13. See Table 8-1-13. See Table 8-1-13. See Table 8-1-13. See Table 8-1-13. 0000 = OFF, df66 = ON 0000 = OFF, 5723 = ON 0000 = OFF, 125e = ON 8000 = OFF, eda2 = ON See Table 8-1-12. See Table 8-1-12. 0000 = OFF, 00ff = ON See Table 8-1-5. 0000 = OFF, ac19 = ON See Table 8-1-4. See Table 8-1-5. See Tables 8-1-7, 8. See Tables 8-1-7, 8. See Tables 8-1-7, 8. See Tables 8-1-7, 8. See Tables 8-1-7, 8. See Tables 8-1-7, 8. See Table 8-1-8. 0000 = OFF, 2000 = ON See Table 8-1-9. SIA2 SIA1 RIN LIN –KiA (d6H) –KiA (d6H) ADC ADC DeEmphasis DeEmphasis Decimation Decimation DC Cut DC Cut (2)-3. Signal Flow for Dolby Pro Logic Mode – 29 – –Kis (ddH) –Kia (dcH) –Kis (ddH) –Kia (dcH) Fig. 8-1-1 Rt Pro Logic Decoder Lt S C R L R L S C S C Simple SFC R L Over Sampling Over Sampling Over Sampling Over Sampling DAC DAC DAC DAC XSOUT XCOUT ROUT LOUT CXD2728Q CXD2728Q (3) Volume Coefficient Settings [Relevant data] Coefficients: KiA (d6H), Kia (dcH), Kis (ddH) The I/O levels and volumes are 2's complement format with a decimal point between D15 and D14, and hexadecimal notation with D15 as MSB and D0 as LSB. The coefficient and level relationships are as follows. ∗ D15 to D0 are negative values, but the DSP calculation is (–1) × (D15 to D0). (3)-1. Kia (dcH): 0dB = c000H The I/O levels for 8000H to ffffH are obtained by the following formulas. D15 to D0 Level [dB] 8000H a599H c000H d2b2H e000H eff6H ffffH 0000H +6.02 +3.00 0.00 –3.00 –6.02 –12.00 –84.29 –∞ 14 (Coefficient value) = [(–1) × D15 + ∑ (Dn × 2n – 15)] × (–2) n=0 I/O level = 20 log [coefficient value] dB Table 8-1-4. Kia (dcH) Setting Value Examples (3)-2. KiA (d6H), Kis (ddH): 0dB = 8000H The I/O levels for 8000H to ffffH are obtained by the following formulas. 14 (Coefficient value) = [(–1) × D15 + ∑ (Dn × 2n – 15)] × (–1) n=0 I/O level = 20 log [coefficient value] dB D15 to D0 Level [dB] 8000H a563H c000H e000H ffffH 0000H 0.00 –3.00 –6.02 –12.04 –90.31 –∞ Table 8-1-5. KiA (d6H), Kis (ddH) Setting Value Examples ∗ Unless otherwise specified, subsequent setting examples (Pro Logic mode) in these specifications assume either: Kia = d2b2H, KiA = 0000H, Kis = 0000H or: Kia = 0000H, KiA = 8000H, Kis = a563H (4) Auto Input Balance Control [Relevant data] Coefficient: Kx (d4H) The auto input balance function is turned on and off by coefficient Kx (d4H). Coefficient Kx (d4H) ON = 00ffH OFF = 0000H Table 8-1-6. Auto Input Balance ON/OFF – 30 – CXD2728Q (5) Center Mode Control [Relevant data] Coefficients: KP (f5H), KH (f4h), KL (f2H), KR (f3H), KCP (f7H), KCH (f6H) The center channel output mode can be set to Normal, Wide or Phantom mode as shown in Table 8-1-7 below. Mode KP (f5H) KH (f4H) KL (f2H) KR (f3H) KCP (f7H) KCH (f6H) e000H e000H d2cdH d2cdH 0000H e000H Wide 0000H 0000H d2cdH d2cdH e000H 0000H Phantom e000H 0000H d2cdH d2cdH 0000H 0000H Coefficient Normal Table 8-1-7. Center Mode Control Setting Value Examples –KL (f2H) LP LO –KR (f3H) RP RO –KH (f4H), –KP (f5H) LPF CP –KCH (f6H) HPF –KCP (f7H) CO Note) If KH is set to 0000H in Phantom center channel mode, the LPF is set to data through status and the data added to the L and R channels is CP × KP. Fig. 8-1-2. Signal Flow for Center Mode Control (L, R, C-ch) Note) In Phantom center channel mode, the center channel information is divided equally between the left and right speakers. The level of each channel can be adjusted by changing the KP, KH, KL, KR, KCP and KCH setting values. In these cases, be sure to change only the shaded portions for each mode in Table 8-1-7. However, make sure that KP = KH in Normal mode. In Phantom mode, set KH to 0000H and adjust the mix level to the left and right channels using KP. The I/O levels for 8000H to ffffH are obtained by the following formulas. 14 (Coefficient value) = [(–1) × D15 + ∑ (Dn × 2n – 15)] × (–4) n=0 I/O level = 20 log [coefficient value] dB D15 to D0 Level [dB] 8000H c000H d2cdH e000H e959H eff6H f7f6H ffffH 0000H +12.04 +6.02 +3.00 0 –3.00 –6.00 –12.00 –78.27 –∞ Table 8-1-8. KP, KH, KL, KR, KCP, KCH and KS Setting Value Examples ∗ In Table 8-1-7, lowering the input level by 3dB using Kia (dcH) or Kis (ddH) raises the output level of the L and R channels by 3dB. In this case, attaching external parts as shown in the Application Circuit is recommended to increase the C and S channel gains. – 31 – CXD2728Q (6) Passive Decoder (Surround Channel) The surround channel is processed according to the flow shown in Fig. 8-1-3. The setting method for each section is described below. –KS (f8H) 7kHz LPF SP M-BNR Delay SO Fig. 8-1-3. Passive Decoder Signal Flow (S-ch) (6)-1. Delay Time Setting Setting value Dly (fbH) Delay (fs = 44.1kHz) 0020H 0040H · · 52b0H · 6e40H · 89d0H · a560H · · ff80H ffa0H 0.022ms 0.045ms · · 15.000ms · 20.000ms · 25.000ms · 30.000ms · · 46.349ms 46.372ms [Relevant data] Coefficient: Dly (fbH) The surround channel delay time can be varied by setting the coefficient Dly value. (Dly is the delay line read address.) Only the upper 11 of the 16 coefficient bits are used. The lower 5 bits are not used, and are ignored even if set. That is to say, Dly can be set in 0020H increments, and the delay time can be set in approximately 0.022 ms increments. The following condition also applies. • 0020H ≤ Dly ≤ ffa0H Table 8-1-9. Surround Channel (S-ch) Delay Time Setting Value Examples The coefficient value is calculated as follows. (Dly) Decimal = (Delay [s]) × fs [Hz] × 32 Example) For 20ms (fs = 44100 [Hz]) 0.02 × 44100 × 32 = 28224 Hexadecimal conversion 6e40H (6)-2. 7kHz Low-Pass Filter [Relevant data] Coefficients: b2 (afH), b1 (b0H), a (b1H), –a (b2H) The 7kHz LPF of the passive decoder can be turned on and off by setting the coefficients in Table 8-1-10. ON OFF b2 b1 a –a df66 0000 5723 0000 125e 0000 eda2 8000 Table 8-1-10. Passive Decoder 7kHz LPF ON/OFF Setting – 32 – CXD2728Q (6)-3. Modified Dolby B-type NR [Relevant data] Coefficients: aslw (b5H), 2D (b7H), KiA (d6H), Kia (dcH), Kis (ddH), Kdlb (faH) The aslw and 2D coefficients and the ON/OFF coefficient Kdlb must be set for Modified Dolby B-type NR. This function is turned on and off by setting Kdlb as shown in Table 8-1-11. The aslw and 2D coefficient values differ according to the Dolby level, prefilter and coefficient Kia/Kis (KiA) conditions. Table 8-1-12 shows typical setting value examples based on these three conditions. The prefilter gain is the value when using the Application Circuit given in these specifications. Consult your Sony representative with regard to use under conditions other than those noted in Table 8-1-12. Coefficient Kdlb (faH) ON = 2000H OFF = 0000H Table 8-1-11. Modified Dolby B-type NR ON/OFF Setting Prefilter Dolby level Kia (dcH) Kis (ddH) aslw (b5H) 2D (b7H) –3.52dB 300mVrms c53cH 0000H 00caH 0033H –3.52dB 200mVrms c53cH 0000H 00caH 0023H (Digital input) –20dBFS 0000H a563H 00caH 0023H Table 8-1-12. Modified Dolby B-type NR Coefficient Value Examples for Different Input Level Conditions (during digital input: KiA (d6H) = 8000H) (6)-4. Volume [Relevant data] Coefficient: KS (f8H) The KS (f8H) volume values are as shown in Table 8-1-8. See "5. Center Mode Control" for the calculation method. – 33 – CXD2728Q (7) Simple SFC Simple SFC effects can be added after Dolby Pro Logic Surround decoder processing. (See Fig. 8-1-1.) Fig. 8-1-4 shows the signal flow for the simple SFC block. When not using simple SFC, set the coefficients as follows to set the simple SFC block to through status. KLV (00H), KRV (01H), KCV (02H), KSV (03H) = 8000H KDV1 (21H), KDV2 (22H), KDV3 (23H), KLRm1 (24H), KLRm2 (25H), KLRm3 (26H) = 0000H –KCV (02H) C C –KLV (00H) L L –KRV (01H) R R –KCd (10H) –Kfb (12H) –KRd (0fH) Delay KDin KDout TP1 TP2 TP3 TP4 TP5 TP6 HPF2 + LPF2 13H to 18H –KDV3 (23H) –KLd (0eH) 1 –KSd (11H) 2 3 4 5 –KTP1 to –KTP6 (28H to 2dH) –KRm1 (05H) 6 –KDV2 (22H) –KLRm1 (24H) –KLRm2 (25H) –KDV1 (21H) LPF1 06H to 08H –KLm1 (04H) –KRm2 (0aH) HPF1 0bH to 0dH –KLm2 (09H) –KLRm3 (26H) –KSV (03H) S S Fig. 8-1-4. Simple SFC Signal Flow – 34 – CXD2728Q (7)-1. Volume Settings for Each Section [Relevant data] Coefficients: KLV (00H), KRV (01H), KCV (02H), KSV (03H), KLm1 (04H), KRm1 (05H), KLm2 (09H), KRm2 (0aH), KLd (0eH), KRd (0fH), KCd (10H), KSd (11H), Kfb (12H), KDV1 (21H), KDV2 (22H), KDV3 (23H), KLRm1 (24H), KLRm2 (25H), KLRm3 (26H), KTP1 (28H), KTP2 (29H), KTP3 (2aH), KTP4 (2bH), KTP5 (2cH), KTP6 (2dH) The format is the same as that described in "(3) Volume Coefficient Settings". The levels are as follows when 0dB = 8000H. The I/O levels for 8000H to ffffH are obtained by the following formulas. 14 (Coefficient value) = [(–1) × D15 + ∑ (Dn × 2n – 15)] × (–1) n=0 I/O level = 20 log [coefficient value] dB D15 to D0 Level [dB] 8000H a563H c000H d2b2H e000H f000H ffffH 0000H 0.00 –3.00 –6.02 –9.02 –12.04 –18.06 –90.31 –∞ Table 8-1-13. Setting Value Examples for Each Volume (Negative Values) The above coefficients are normally applied as negative values, but positive values should be applied when intentionally inverting the phase with TP1 to TP6, etc. In this case, the levels are as follows when 0dB = 7fffH. The I/O levels for 7fffH to 0001H are obtained by the following formulas. 14 (Coefficient value) = [D15 + ∑ (Dn × 2n – 15)] n=0 I/O level = 20 log [coefficient value] dB D15 to D0 Level [dB] 7fffH 5a9dH 4000H 2d4eH 2000H 1000H 0001H 0000H 0.00 –3.00 –6.02 –9.02 –12.04 –18.06 –90.31 –∞ Table 8-1-14. Setting Value Examples for Each Volume (Positive Values) – 35 – CXD2728Q (7)-2. Delay Line Settings [Relevant data] Coefficients: KDin (19H), TP1 (1aH), TP2 (1bH), TP3 (1cH), TP4 (1dH), TP5 (1eH), TP6 (1fH), KDout (20H) The Pro Logic mode delay lines are used for both the passive decoder short delay and the simple SFC reverberation, and are thus subject to the following restrictions: • Dly + 0020H ≤ KDin (0020H ≤ Dly ≤ KDin – 0020H) • 0020H ≤ TP∗ ≤ KDout • KDin + KDout ≤ bfe0H Dly (fbH): Pro Logic delay line read address KDin (19H): Simple SFC delay line write address TP1 to TP6 (1aH to 1fH): Simple SFC tap read addresses (determine the delay time for each tap) KDout (20H): Simple SFC feedback loop read address (determines the maximum delay time) Note) The minimum unit for all the above coefficients is "0020H". Values smaller than this are ignored. The TP1 to TP6 and KDout addresses are specified in a different manner than Dly and KDin. These addresses are specified by the address value assuming KDin as the reference (= 0000H). That is to say, the actual address is KDin + KDout, etc. The coefficient values are calculated as follows. Delay Setting value KDout, TP1 to TP6 (fs = 44.1kHz) 0020H 0040H · · 1a60H · 35f0H · 5180H · 6d10H · · ff80H ffa0H (Dly) Decimal = (Delay [s]) × fs [Hz] × 32 Example) When using 20ms for the passive decoder, and all remaining delay lines as reverberation 20ms → Dly = 6e40H KDin = 6e40H + 0020H = 6e60H KDout = ffe0H – 6e60H = 9180H 0020H ≤ TP1 to 6 ≤ 9180H 0.022ms 0.045ms · · 4.784ms · 9.784ms · 14.784ms · 19.784ms · · 46.349ms 46.372ms Table 8-1-15. Simple SFC Delay Time Setting Value Examples Passive decoder 0000H 20.0ms Dly 6e40H KDin 6e60H Simple SFC KDout 26.4ms 9180H 46.4ms (0000H to ffe0H) Fig. 8-1-5. Pro Logic Mode Delay Line Setting Example – 36 – CXD2728Q (7)-3. Filters [Relevant data] Coefficients: a0 (06H, 0bH, 13H, 16H), a1 (07H, 0cH, 14H, 17H), b (08H, 0dH, 15H, 18H) LPF1, HPF1, LPF2 and HPF2 are comprised of primary IIR filters, and the coefficient setting and cut-off frequency relationship are as shown in Table 8-1-16. LPF1, 2 HPF1, 2 Cut-off frequency [Hz] a0 a1 b a0 a1 b 100 200 300 400 500 600 700 800 900 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000 4200 4400 4600 4800 5000 FF19 FE34 FD53 FC74 FB99 FAC1 F9EB F918 F848 F77A F5E6 F45C F2DB F162 EFF2 EE89 ED28 EBCE EA7A E92D E7E6 E6A5 E569 E432 E301 E1D4 E0AB DF87 DE67 DD4B 00E7 01CC 02AD 038C 0467 053F 0615 06E8 07B8 0886 0A1A 0BA4 0D25 0E9E 100E 1177 12D8 1432 1586 16D3 181A 195B 1A97 1BCE 1CFF 1E2C 1F55 2079 2199 22B5 7E30 7C67 7AA4 78E7 7731 7580 73D4 722E 708E 6EF2 6BCB 68B6 65B4 62C3 5FE2 5D11 5A4E 579A 54F3 5259 4FCB 4D48 4AD0 4863 4600 43A6 4155 3F0D 3CCD 3A94 80E8 81CD 82AE 838D 8468 8540 8616 86E9 87B9 8887 8A1B 8BA5 8D26 8E9F 900F 9178 92D9 9433 9587 96D4 981B 995C 9A98 9BCF 9D00 9E2D 9F56 A07A A19A A2B6 7F18 7E33 7D52 7C73 7B98 7AC0 79EA 7917 7847 7779 75E5 745B 72DA 7161 6FF1 6E88 6D27 6BCD 6A79 692C 67E5 66A4 6568 6431 6300 61D3 60AA 5F86 5E66 5D4A 7E30 7C67 7AA4 78E7 7731 7580 73D4 722E 708E 6EF2 6BCB 68B6 65B4 62C3 5FE2 5D11 5A4E 579A 54F3 5259 4FCB 4D48 4AD0 4863 4600 43A6 4155 3F0D 3CCD 3A94 LPF1, 2 HPF1, 2 Cut-off frequency [Hz] a0 a1 b a0 a1 b 5200 5400 5600 5800 6000 6200 6400 6600 6800 7000 7200 7400 7600 7800 8000 8200 8400 8600 8800 9000 9200 9400 9600 9800 10000 10200 10400 10600 10800 11000 OFF DC32 DB1D DA0C D8FD D7F2 D6E9 D5E3 D4DF D3DE D2DF D1E3 D0E8 CFEF CEF8 CE03 CD0F CC1D CB2B CA3B C94D C85F C772 C685 C59A C4AF C3C5 C2DA C1F1 C107 C01E 8000 23CE 24E3 25F4 2703 280E 2917 2A1D 2B21 2C22 2D21 2E1D 2F18 3011 3108 31FD 32F1 33E3 34D5 35C5 36B3 37A1 388E 397B 3A66 3B51 3C3B 3D26 3E0F 3EF9 3FE2 0000 3863 3639 3416 31F9 2FE2 2DD0 2BC4 29BD 27BB 25BD 23C4 21CF 1FDD 1DEF 1C04 1A1C 1838 1655 1475 1298 10BC 0EE2 0D09 0B32 095C 0788 05B3 03E0 020D 003A 0000 A3CF A4E4 A5F5 A704 A80F A918 AA1E AB22 AC23 AD22 AE1E AF19 B012 B109 B1FE B2F2 B3E4 B4D6 B5C6 B6B4 B7A2 B88F B97C BA67 BB52 BC3C BD27 BE10 BEFA BFE3 8000 5C31 5B1C 5A0B 58FC 57F1 56E8 55E2 54DE 53DD 52DE 51E2 50E7 4FEE 4EF7 4E02 4D0E 4C1C 4B2A 4A3A 494C 485E 4771 4684 4599 44AE 43C4 42D9 41F0 4106 401D 0000 3863 3639 3416 31F9 2FE2 2DD0 2BC4 29BD 27BB 25BD 23C4 21CF 1FDD 1DEF 1C04 1A1C 1838 1655 1475 1298 10BC 0EE2 0D09 0B32 095C 0788 05B3 03E0 020D 003A 0000 Table 8-1-16. Simple SFC HPF and LPF Setting Coefficients – 37 – CXD2728Q 8-2. Virtual Dolby Surround Mode (Virtual Mode) Virtual mode is comprised of the Dolby Pro Logic Surround decoder and the Virtualizer as shown in Fig. 8-2-1. Virtual Dolby Surround is realized by the Virtualizer block. (1) Setting Virtual Mode Virtual mode must be set by the following procedures in order to achieve stable adaptive matrix operation. Setting Virtual mode by procedures other than those given below may aggravate the decoder characteristics. • Immediately after power-on reset i) Transfer the following setup data. SQA = 0030H (Field A) SQD = 7ee7H (Field D) ∗ Field C is "All 0", so the DAC forced mute is applied. ii) Transfer the Virtual mode coefficient data. iii) Transfer the setup data set in Virtual mode. • Changing to Virtual mode from a different mode i) Apply the soft mute in the current mode. ii) Set the coefficients at the following addresses to "0000H". Addresses: 6eH to 7fH iii) Transfer the following setup data. SQA = 0030H (Field A) SQD = 7ee7H (Field D) ∗ The DAC forced mute is not applied by Field C. iv) Transfer the Virtual mode coefficients for the soft mute status. v) Transfer the setup data set in Virtual mode. vi) Cancel the Virtual mode soft mute. (2) Setting Data (2)-1. Setup Data Table 8-2-1 lists the registers most closely related to Virtual mode. Setup data not listed in Table 8-2-1 may be set as desired, with due consideration given to the contents of Fields A to D noted in "6. Setup Register". Register name Setting value Remarks SQA14 "0" 1: Noise sequencer mode SQA13 "1" 1: Virtual mode SQA09, 08 "00" 01: Dolby 3 Stereo mode SQA05, 04 "00" 01: SFC mode SQD02 to 00 "100" Coefficient RAM area setting (111: Other than Virtual mode, 100: Virtual mode) Table 8-2-1. Virtual Mode Setup Register Settings – 38 – CXD2728Q (2)-2. Coefficient Data The coefficient RAM area for Virtual mode is from addresses 80H to ffH. Addresses 00 to 7fH use the ROM data. (The ROM contents are mainly the coefficients used by the Virtualizer.) Like Pro Logic mode, the coefficient data consists of fixed values and setting values, with all fixed values exactly the same as for Pro Logic mode. Use the area from address 80H in Table 8-1-2. The setting values are as shown in Table 8-2-2, and consist of adding the Virtualizer attenuation coefficient attV (f1H) setting to the Wide center mode settings of Pro Logic mode. Address afH b0H b1H b2H b5H b7H d4H d6H d9H dcH ddH f1H f2H f3H f4H f5H f6H f7H f8H faH fbH Symbol b2 b1 a –a aslw 2D Kx KiA Ke Kia Kis attV KL KR KH KP KCH KCP KS Kdlb Dly Function 7K LPF parameter 7K LPF parameter 7K LPF parameter 7K LPF parameter Passive decoder M-BNR Passive decoder M-BNR Auto input balance ON/OFF Serial audio interface input volume De-emphasis ON/OFF Analog input mix switch Digital input mix switch Virtual Dolby Surround attenuator Center mode control volume Center mode control volume Center mode control volume Center mode control volume Center mode control volume Center mode control volume Passive decoder volume Passive decoder M-BNR ON/OFF Passive decoder delay time setting Table 8-2-2. Virtual Mode Setting Value Coefficients – 39 – Setting value 0000 = OFF, df66 = ON 0000 = OFF, 5723 = ON 0000 = OFF, 125e = ON 8000 = OFF, eda2 = ON See Table 8-1-12. See Table 8-1-12 0000 = OFF, 00ff = ON See Table 8-1-5. 0000 = OFF, ac19 = ON See Table 8-1-4. See Table 8-1-5. See Table 8-2-3. See Tables 8-1-7, 8. See Tables 8-1-7, 8. See Tables 8-1-7, 8. See Tables 8-1-7, 8. See Tables 8-1-7, 8. See Tables 8-1-7, 8. See Table 8-1-8. 0000 = OFF, 2000 = ON See Table 8-1-9. – 40 – SIA2 SIA1 RIN LIN –KiA (d6H) –KiA (d6H) ADC ADC DeEmphasis DeEmphasis Decimation Decimation DC Cut DC Cut –Kis (ddH) –Kia (dcH) –Kis (ddH) –Kia (dcH) (2)-3. Signal Flow for Dolby Virtual Surround Mode Rt S C R L Fig. 8-2-1 Pro Logic Decoder Lt Virtual Surround Process VR VL C R L Virtualizer Mixing Over Sampling Over Sampling DAC DAC ROUT LOUT CXD2728Q CXD2728Q (3) Volume Coefficient Settings [Relevant data] Coefficients: attV (f1H), KL (f2H), KR (f3H), KCP (f7H), KS (f8H) Adjust the levels of the two Virtual mode channels by the amount of the four Pro Logic decoder output channels using KL (f2H), KR (f3H), KCP (f7H) and KS (f8H). (See Table 8-1-7.) The mixing level of the surround channel can be adjusted with coefficient attV (f1H). attV can be set in the range of 7fffH to 0000H as shown in Table 8-2-3. Coefficient value Level [dB] 7fffH 5a67H 3fffH 2d4eH 2000H 1000H 0001H 0000H The I/O levels for 7fffH to 0001H are obtained by the following formulas. +6.02 +3.00 0.00 –3.00 –6.02 –12.04 –84.29 –∞ ∗ Sony recommended value: 5333H (+2.28dB) 14 (Coefficient value) = [D15 + ∑ (Dn × 2n – 15)] × 2 Table 8-2-3. attV (f1H) Setting Value Examples n=0 I/O level = 20 log [coefficient value] dB Also, the most effective listening area is shown in Fig. 8-2-3. Lch L Lt Lt L L L R –KR (f3H) R Rout Mixing C 1.2 to 2.0m 44° C attV (f1H) –KCP (f7H) Rt R Phantom center R Rt C Lout –KL (f2H) Pro Logic Decoder Rch S –KS (f8H) VL Virtual Surround Process VR Virtual surround Virtual surround S S attV (f1H) Listening center Fig. 8-2-2. Volume Setting Coefficients Fig. 8-2-3. Listening Area – 41 – CXD2728Q 8-3. Dolby 3 Stereo Mode This mode is a part of the Pro Logic adaptive matrix functions. Specifically, surround output is muted and surround signal directionality is not harmonized. (1) Setting Dolby 3 Stereo Mode Dolby 3 Stereo mode must be set by the following procedures in order to achieve stable adaptive matrix operation. Setting Dolby 3 Stereo mode by procedures other than those given below may aggravate the decoder characteristics. • Immediately after power-on reset i) Transfer the following setup data. SQA = 0030H (Field A) SQD = 7ee7H (Field D) ∗ Field C is "All 0", so the DAC forced mute is applied. ii) Transfer the Dolby 3 Stereo mode coefficient data. iii) Transfer the setup data set in Dolby 3 Stereo mode. • Changing to Dolby 3 Stereo mode from Virtual mode Note) The coefficients for the Dolby 3 Stereo mode or Pro Logic mode soft mute status must be set in coefficient RAM addresses 00H to 7fH when shifting to Virtual mode. i) Apply the soft mute in Virtual mode. ii) Transfer the setup data set in Dolby 3 Stereo mode. iii) Cancel the Dolby 3 Stereo mode soft mute. • Changing to Dolby 3 Stereo mode from a different mode i) Apply the soft mute in the current mode. ii) Set the coefficients at the following addresses to "0000H". Addresses: 6eH to 7fH iii) Transfer the following setup data. SQA = 0030H (Field A) SQD = 7ee7H (Field D) ∗ The DAC forced mute is not applied by Field C. iv) Transfer the Dolby 3 Stereo mode coefficients for the soft mute status. v) Transfer the setup data set in Dolby 3 Stereo mode. vi) Cancel the Dolby 3 Stereo mode soft mute. – 42 – CXD2728Q (2) Setting Data (2)-1. Setup Data Table 8-3-1 lists the registers most closely related to Dolby 3 Stereo mode. Setup data not listed in Table 8-3-1 may be set as desired, with due consideration given to the contents of Fields A to D noted in "6. Setup Register". Register name Setting value Remarks SQA14 "0" 1: Noise sequencer mode SQA13 "0" 1: Virtual mode SQA09, 08 "01" 01: Dolby 3 Stereo mode SQA05, 04 "00" 01: SFC mode SQD02 to 00 "111" Coefficient RAM area setting (111: Other than Virtual mode, 100: Virtual mode) Table 8-3-1. Dolby 3 Stereo Mode Setup Register Settings (2)-2. Coefficient Data The coefficient data used in Dolby 3 Stereo mode is entirely the same as that for Pro Logic mode. See "8-1. Dolby Pro Logic Surround Mode". – 43 – CXD2728Q 8-4. Noise Sequencer Mode (1) Setting Noise Sequencer Mode Set noise sequencer mode by the following procedures. • Immediately after power-on reset i) Transfer the setup data set in noise sequencer mode. ii) Transfer the noise sequencer mode coefficient data. • Changing to noise sequencer mode from a different mode i) Apply the soft mute in the current mode. ii) Transfer the setup data set in noise sequencer mode. iii) Transfer the noise sequencer mode coefficient data. (2) Setting Data (2)-1. Setup Data Table 8-4-1 lists the registers most closely related to noise sequencer mode. Setup data not listed in Table 8-4-1 may be set as desired, with due consideration given to the contents of Fields A to D noted in "6. Setup Register". Register name Setting value Remarks SQA14 "1" 1: Noise sequencer mode SQA13 "0" 1: Virtual mode SQA09, 08 "00" 01: Dolby 3 Stereo mode SQA05, 04 "00" 01: SFC mode SQD02 to 00 "111" Coefficient RAM area setting (111: Other than Virtual mode, 100: Virtual mode) Table 8-4-1. Noise Sequencer Mode Setup Register Settings – 44 – CXD2728Q (2)-2. Coefficient Data Noise sequencer mode allows both Pro Logic and Virtual processing. Of the coefficients for these two types of processing, change the coefficients from addresses d0H to e2H as shown in the tables below. The other coefficients may be left as the Pro Logic mode or Virtual mode coefficient settings. Then, set the 7kHz low-pass filter (page 32) of the surround (S) channel to off. L-ch C-ch R-ch S-ch L→C→R→S L→C→R T1 (d0H) T2 (d1H) T3 (d2H) T4 (d3H) Address Fixed value 2000 0000 0000 0000 2000 2000 2000 3000 0000 0000 3000 3000 2000 3000 4000 0000 4000 4000 2000 3000 4000 5000 5000 4000 d4H d5H d6H d7H d8H d9H daH dbH dcH ddH deH dfH e0H e1H e2H 1000H 0040H c000H d2b1H 0000H 2d4fH 0000H d2b1H c000H d2b1H 8000H 7789H 6f12H 0876H 6f14H Table 8-4-2. Noise Sequencer Mode Coefficient Setting Values Table 8-4-3. Noise Sequencer Mode Coefficient Fixed Values (3) Output Level Adjustment [Relevant data] Coefficients: KL (f2H), KR (f3H), KH (f4H), KP (f5H), KCH (f6H), KCP (f7H), KS (f8H) The noise output level in noise sequencer mode is adjusted by the center mode control coefficients (f2H to f7H) and the passive decoder volume coefficient (f8H) See (5) and (6)-4 of "8-1. Pro Logic Mode". 8-5. SFC Mode SFC mode is used for 2-channel stereo input, and realizes reverberation effects using the delay lines, and dynamics processing using 1/2 and 1/3 decimation and the compressor. ∗ This is a separate application from the simple SFC of Pro Logic mode. (1) Setting SFC Mode Set SFC mode by the following procedures. • Immediately after power-on reset i) Transfer the setup data set in SFC mode. ii) Transfer the SFC mode coefficient data. • Changing to SFC mode from a different mode i) Apply the soft mute in the current mode. ii) Transfer the setup data set in SFC mode. iii) Transfer the SFC mode coefficient data. – 45 – CXD2728Q (2) Setting Data (2)-1. Setup Data Table 8-5-1 lists the registers most closely related to SFC mode. Setup data not listed in Table 8-5-1 may be set as desired, with due consideration given to the contents of Fields A to D noted in "6. Setup Register". Register name Setting value SQA11, 10 Don't care SQA05, 04 "01" SQC07, 06 Don't care SQD02 to 00 Remarks 00: No decimation, 01: 1/2, 10: 1/3 01: SFC mode 00: No decimation, 01: 1/2, 1∗: 1/3 "111" Coefficient RAM area setting (111: SFC mode) Table 8-5-1. SFC Mode Setup Register Settings (2)-2. Coefficient Data The SFC mode coefficient data uses the RAM for the entire area. Also, like other modes, the coefficient data consists of fixed values and setting values. • Fixed values during SFC mode initialization The following fixed values must be set in the coefficient RAM to ensure proper DSP internal operation. Address Fixed value Address Fixed value Address Fixed value Address Fixed value 00H 01H 38H 39H 3aH 3bH 3cH 3dH 3eH 3fH 40H 41H 42H 43H 44H 45H 7fe8H 7fd1H 0000H 0092H 0209H 02cdH 0109H fda9H fd19H 0189H 058aH 016dH f7beH f72aH 0a4eH 2706H 46H 47H 48H 49H 4aH 4bH 4cH 4dH 4eH 4fH 50H 51H 52H 53H 54H 55H 34eeH 0000H 6000H ff80H 00a1H 016eH 01f8H 0193H 0024H fe70H fdbaH fed8H 015aH 037fH 0344H ffffH 56H 57H 58H 59H 5aH 5bH 5cH 6dH 6eH 6fH 70H 71H 72H 73H 74H 75H fb5cH f8e3H fbf6H 0575H 129cH 1e0dH 2294H 051eH ff86H 02a0H f6c0H 2715H 4000H 5149H e571H 0f4eH 76H 77H 78H 79H 7aH 7bH 7cH 7dH 7eH 7fH 80H 94H d7H d8H daH dbH f5b8H 075cH fa97H 0402H fd0bH 0225H fe7cH 01d3H f312H 4b85H 0000H 7fffH 68a9H 5121H 7ff4H 7fe8H Table 8-5-2. SFC Mode Fixed Value Coefficients – 46 – CXD2728Q • SFC mode user setting coefficients The relationships between the coefficient RAM and each function during SFC mode operation are as follows. Address 02H 03H 04H 05H 06H 07H 08H 09H 0aH 0bH 0cH 0dH 0eH 0fH 10H 11H 12H 13H 14H 15H 16H 17H 18H 19H 1aH 1bH 1cH 1dH 1eH 1fH 20H 21H 22H 23H 24H 25H 26H Symbol k XthP XthM Ksd Ap Am Bp Bm Cp Cm KLsri KRsri Kfb ahd a00 a01 a02 b01 b02 KLtp0 KLtp1 KLtp2 KLtp3 KLtp4 KRtp0 KRtp1 KRtp2 KRtp3 KRtp4 KStp0 KStp1 KStp2 KStp3 b0 b1 KLdry KRdry Function Compressor gain coefficient Compressor threshold value (+) Compressor threshold value (–) Compressor ON/OFF Compressor parameter Compressor parameter Compressor parameter Compressor parameter Compressor parameter Compressor parameter Delay line L-ch input volume Delay line R-ch input volume Delay line feedback coefficient Feedback loop internal Hi-dump filter coefficient Feedback loop internal LPF0 parameter Feedback loop internal LPF0 parameter Feedback loop internal LPF0 parameter Feedback loop internal LPF0 parameter Feedback loop internal LPF0 parameter Delay line L-ch Tap0 volume Delay line L-ch Tap1 volume Delay line L-ch Tap2 volume Delay line L-ch Tap3 volume Delay line L-ch Tap4 volume Delay line R-ch Tap0 volume Delay line R-ch Tap1 volume Delay line R-ch Tap2 volume Delay line R-ch Tap3 volume Delay line R-ch Tap4 volume Delay line S-ch Tap0 volume Delay line S-ch Tap1 volume Delay line S-ch Tap2 volume Delay line S-ch Tap3 volume All pass filter 0 coefficient All pass filter 1 coefficient L-ch direct sound mix volume R-ch direct sound mix volume Table 8-5-3 (1). SFC Mode Setting Value Coefficients – 47 – Setting value See Table 8-5-7. See Table 8-5-7. See Table 8-5-7. 0000 = OFF, 8000 = ON See Table 8-5-7. See Table 8-5-7. See Table 8-5-7. See Table 8-5-7. See Table 8-5-7. See Table 8-5-7. See Table 8-5-5. See Table 8-5-5. See Tables 8-5-5, 6. See Table 8-2-8. See Tables 8-5-9, 10, 11. See Tables 8-5-9, 10, 11. See Tables 8-5-9, 10, 11. See Tables 8-5-9, 10, 11. See Tables 8-5-9, 10, 11. See Tables 8-5-5, 6. See Tables 8-5-5, 6. See Tables 8-5-5, 6. See Tables 8-5-5, 6. See Tables 8-5-5, 6. See Tables 8-5-5, 6. See Tables 8-5-5, 6. See Tables 8-5-5, 6. See Tables 8-5-5, 6. See Tables 8-5-5, 6. See Tables 8-5-5, 6. See Tables 8-5-5, 6. See Tables 8-5-5, 6. See Tables 8-5-5, 6. See Tables 8-5-5, 6. See Tables 8-5-5, 6. See Table 8-5-5. See Table 8-5-5. CXD2728Q Address 27H 28H 29H 2aH 2bH 2cH 2dH 2eH 2fH 30H 31H 32H 33H 34H 35H 36H 37H 5dH 81H 82H 83H 84H 85H 86H 87H 88H 89H 8aH 8bH 8cH 8dH 8eH 8fH 90H 91H 92H 93H d6H d9H dcH ddH Symbol KLeff KReff KLlpi KRlpi a10 a11 a12 b11 b12 KLlpo KRlpo KLod KRod KSod KLd KRd KCod Kd Ltp0 Ltp1 Ltp2 Ltp3 Ltp4 Rtp0 Rtp1 Rtp2 Rtp3 Rtp4 Stp0 Stp1 Stp2 Stp3 tp_fb ap0_in ap0_out ap1_in ap1_out KiA Ke Kia Kis Function L-ch reflected sound mix volume R-ch reflected sound mix volume LPF1 L-ch input volume LPF1 R-ch input volume LPF1 parameter LPF1 parameter LPF1 parameter LPF1 parameter LPF1 parameter LPF1 L-ch mix volume LPF1 R-ch mix volume L-ch output total volume R-ch output total volume S-ch output total volume L-ch → C-ch mix volume R-ch → C-ch mix volume C-ch output total volume Compressor input volume (both L and R) Delay line L-ch Tap0 read address Delay line L-ch Tap1 read address Delay line L-ch Tap2 read address Delay line L-ch Tap3 read address Delay line L-ch Tap4 read address Delay line R-ch Tap0 read address Delay line R-ch Tap1 read address Delay line R-ch Tap2 read address Delay line R-ch Tap3 read address Delay line R-ch Tap4 read address Delay line S-ch Tap0 read address Delay line S-ch Tap1 read address Delay line S-ch Tap2 read address Delay line S-ch Tap3 read address Delay line feedback read address All pass filter 0 delay RAM write address All pass filter 0 delay RAM read address All pass filter 1 delay RAM write address All pass filter 1 delay RAM read address Serial audio interface input volume De-emphasis ON/OFF Analog input mix switch Digital input mix switch Table 8-5-3 (2). Coefficient RAM Setting Data in SFC Mode – 48 – Setting value See Table 8-5-5. See Table 8-5-5. See Table 8-5-5. See Table 8-5-5. See Table 8-5-9. See Table 8-5-9. See Table 8-5-9. See Table 8-5-9. See Table 8-5-9. See Table 8-5-5. See Table 8-5-5. See Table 8-5-5. See Table 8-5-5. See Table 8-5-5. See Table 8-5-5. See Table 8-5-5. See Table 8-5-5. See Table 8-5-5. See Table 8-5-12. See Table 8-5-12. See Table 8-5-12. See Table 8-5-12. See Table 8-5-12. See Table 8-5-12. See Table 8-5-12. See Table 8-5-12. See Table 8-5-12. See Table 8-5-12. See Table 8-5-12. See Table 8-5-12. See Table 8-5-12. See Table 8-5-12. See Table 8-5-12. See Table 8-5-12. See Table 8-5-12. See Table 8-5-12. See Table 8-5-12. See Table 8-5-5. 0000 = OFF, ac19 = ON See Table 8-5-4. See Table 8-5-5. RIN LIN SIA2 SIA1 Decimation Decimation DeEmphasis DeEmphasis DC_Cut1 DC_Cut1 – 49 – 0 0 1 1 Delay 0 3 b1 (24H) Delay Hi-Sampling –KSod (34H) Over Sampling Over Sampling –KRlpo (31H) –KRod (33H) –KRlpi (2aH) (2bH to 2fH) Secondary LPF LPF1 Over Sampling Over Sampling –KLlpo (30H) –KLod (32H) –KCod (37H) –KLlpi (29H) –KRdry (26H) b1 (24H) –KReff (28H) 2 –KLeff (27H) 1 –KRd (36H) –KLd (35H) –KLdry (25H) (02H to 0bH) Compressor (02H to 0bH) Compressor –KStp (1fH to 22H) 4 Delay 4 Hi-Sampling 3 3 Hi-Sampling –Kd (5dH) –Kd (5dH) Fig. 8-5-1. Signal Flow for SFC Mode b0 (23H) 2 2 b0 (23H) –KRtp (1aH to 1eH) (10H to 14H) Secondary LPF LPF0 –Kia (dcH) –Kis (ddH) –Kia (dcH) –Kis (ddH) –KLtp (15H to 19H) –Kfb (0eH) ALL PASS FILTER (REVERVE) –ahd (0fH) 1, 1/2, 1/3 –KRsri (0dH) Hi Dump Down Sampling –KLsri (0cH) The settings for this section are the same as for DPL mode. (Same coefficients and addresses) ADC ADC –KiA (d6H) –KiA (d6H) (2)-3. Signal Flow DAC DAC DAC DAC S-ch R-ch L-ch C-ch CXD2728Q CXD2728Q (3) Volume Settings [Relevant data] Coefficients: KLsri (0cH), KRsri (0dH), Kfb (0eH), KLtp0 (15H), KLtp1 (16H), KLtp2 (17H), KLtp3 (18H), KLtp4 (19H), KRtp0 (1aH), KRtp1 (1bH), KRtp2 (1cH), KRtp3 (1dH), KRtp4 (1eH), KStp0 (1fH), KStp1 (20H), KStp2 (21H), KStp3 (22H), b0 (23H), b1 (24H), KLdry (25H), KRdry (26H), KLeff (27H), KReff (28H), KLlpi (29H), KRlpi (2aH), KLlpo (30H), KRlpo (31H), KLod (32H), KRod (33H), KSod (34H), KLd (35H), KRd (36H), KCod (37H), Kd (5dH), KiA (d6H), Kia (dcH), Kis (ddH) The I/O levels and volumes are 2's complement format with a decimal point between D15 and D14, and hexadecimal notation with D15 as MSB and D0 as LSB. The coefficient and level relationships are as follows. (3)-1. Kia (dcH): 0dB = c000H The I/O levels for 8000H to ffffH are obtained by the following formulas. 14 (Coefficient value) = [(–1) × D15 + ∑ (Dn × 2n – 15)] × (–2) n=0 I/O level = 20 log [coefficient value] dB D15 to D0 Level [dB] 8000H c000H e000H eff6H ffffH 0000H +6.02 0.00 –6.02 –12.00 –84.29 –∞ Table 8-5-4. Kia (dcH) Setting Value Examples (3)-2. Other Coefficients Except for Kia, the coefficients listed in the [Relevant data] above are basically specified by negative values (D15 to D0) with "0dB = 8000H". When intentionally inverting the phase, however, specify positive values with "0dB = 7fffH". ∗ The DSP calculation for coefficient values other than Kfb is (–1) × (D15 to D0). The I/O levels for 8000H to ffffH are obtained by the following formulas. 14 (Coefficient value) = [(–1) × D15 + ∑ (Dn × 2n – 15)] × (–1) n=0 I/O level = 20 log [coefficient value] dB 14 n=0 I/O level = 20 log [coefficient value] dB Level [dB] 8000H a563H c000H d2b2H e000H f000H ffffH 0000H 0.00 –3.00 –6.02 –9.02 –12.04 –18.06 –90.31 –∞ Table 8-5-5. Setting Value Examples for Each Volume (Other than Kia, Negative Values) The I/O levels for 7fffH to 0001H are obtained by the following formulas. (Coefficient value) = [D15 + ∑ (Dn × 2n – 15)] D15 to D0 D15 to D0 Level [dB] 7fffH 5a9dH 4000H 2d4eH 2000H 1000H 0001H 0000H 0.00 –3.00 –6.02 –9.02 –12.04 –18.06 –90.31 –∞ Table 8-5-6. Setting Value Examples for Each Volume (Other than Kia, Positive Values) – 50 – CXD2728Q (4) Compressor [Relevant data] Coefficients: k (02H), XthP (03H), XthM (04H), Ksd (05H), Ap (06H), Am (07H), Bp (08H), Bm (09H), Cp (0aH), Cm (0bH) The parameter table is shown in Table 8-5-7, and the I/O characteristics in Fig. 8-5-2. Compressor ON: Ksd (05H) = 8000H Compressor OFF: Ksd (05H) = 0000H Threshold XthM XthP –∞ [dB] Comp_5 0 0000 0 0000 –20 [dB] Comp_4 –1/10 F334 1/10 0CCC –17 [dB] Comp_3 –1/7 EDB7 1/7 1249 –14 [dB] Comp_2 –1/5 E667 1/5 1999 –9.5 [dB] Comp_1 –1/3 D556 1/3 2AAA Gain k 6.0 [dB] 2.0 4000 5.2 [dB] 20/11 3A2E 4.4 [dB] 5/3 3555 2.9 [dB] 7/5 2CCC 1.6 [dB] 6/5 2666 Coefficient Ap Am Bp Bm Cp Cm –1.0 E000 1.0 2000 2.0 4000 2.0 4000 0 0000 0 0000 –100/99 DFAE 100/99 2052 200/99 40A5 200/99 40A5 –1/99 FEB6 1/99 014A –49/54 E2F7 49/54 1D09 52/27 3DA1 52/27 3DA1 –1/54 FDA2 1/54 025E –5/8 EC00 5/8 1400 33/20 34CC 33/20 34CC –1/40 FCCD 1/40 0333 –9/20 F19A 9/20 0E66 3/2 3000 3/2 3000 –1/20 F99A 1/99 0666 Table 8-5-7. Compressor Parameter Table – 51 – CXD2728Q Input Level [dB] 0 –30 –20 –10 Comp5 –10 Comp4 Output Level [dB] Comp3 Linear Comp2 Comp1 6.0 [dB] –20 –30 –20 Comp4 –17 Comp3 –14 Comp2 –9.5 Comp1 Threshold Level [dB] Fig. 8-5-2. Compressor I/O Characteristics – 52 – CXD2728Q (5) Hi-Dump Filter Setting [Relevant data] Coefficient: ahd (0fH) This filter is used to attenuate the high frequencies. It is mainly used in the delay line feedback loop to prevent or alleviate noise generated when high frequency components are multiplied. Table 8-5-8 shows the parameter table. To turn off this filter, set "ahd = 8000H". fc [Hz] 40 60 80 100 200 400 600 800 –ahd 1/1 1/2 1/3 EF46 FEEA FE8D FE31 FC68 F8EA F585 F23A FE8D FDD5 FD1E FC68 F8EA F23A EBEE E603 FDD5 FCC3 FBB3 FAA6 F585 EBEE E32F DB3B fc [Hz] 1k 2k 4k 6k 8k 10k 12k 14k –ahd 1/1 1/2 1/3 EF08 E073 C97A B91E AD94 A578 9FC6 9BCC E073 C97A AD94 9FC6 9912 D404 B91E 9FC6 974D Table 8-5-8. Hi-Dump Filter Parameter Table (6) Secondary LPF Settings [Relevant data] Coefficients: a00 (10H), a01 (11H), a02 (12H), b01 (13H), b02 (14H), a10 (2bH), a11 (2cH), a12 (2dH), b11 (2eH), b12 (2fH) These two LPF are comprised from the same secondary IIR filters. The parameter tables are shown in Tables 8-5-9 to 8-5-11. These tables show the parameters for no decimation, 1/2 decimation and 1/3 decimation, respectively. Use Table 8-5-9 (No decimation) for LPF1. The coefficients used for the LPF0 and LPF1 parameters are as follows. LPF0: a00 (10H), a01 (11H), a02 (12H), b01 (13H), b02 (14H) LPF1: a10 (2bH), a11 (2cH), a12 (2dH), b11 (2eH), b12 (2fH) To turn off the filters, set only a00 and a10 to "8000H" and the other four coefficient values to "0000H". – 53 – CXD2728Q a00 Cut-off frequency [Hz] a10 5200 5300 5400 5500 5600 5700 5800 5900 6000 6100 6200 6300 6400 6500 6600 6700 6800 6900 7000 7100 7200 7300 7400 7500 7600 7700 7800 7900 8000 8100 F4A5 F448 F3EB F38D F32D F2CD F26D F20B F1A8 F145 F0E0 F07B F016 EFAF EF47 EEDF EE76 EE0D EDA2 ED37 ECCB EC5E EBF0 EB82 EB13 EAA4 EA33 E9C2 E950 E8DD a01 a11 a02 a12 b01 b11 b02 b12 16B6 176F 182A 18E7 19A5 1A65 1B27 1BEA 1CB0 1D77 1E3F 1F09 1FD5 20A2 2171 2241 2313 23E7 24BC 2593 266B 2744 281F 28FC 29DA 2AB9 2B9A 2C7C 2D60 2E45 0B5B 0BB8 0C15 0C73 0CD3 0D33 0D93 0DF5 0E58 0EBB 0F20 0F85 0FEA 1051 10B9 1121 118A 11F3 125E 12C9 1335 13A2 1410 147E 14ED 155C 15CD 163E 16B0 1723 7FDF 7D90 7B43 78F7 76AD 7464 721C 6FD6 6D91 6B4D 690B 66CA 648A 624B 600D 5DD1 5B96 595C 5723 54EA 52B3 507D 4E48 4C14 49E1 47AF 457E 434D 411E 3EEF D2B4 D391 D469 D53B D609 D6D2 D796 D855 D910 D9C6 DA77 DB24 DBCD DC71 DD10 DDAC DE43 DED6 DF66 DFF0 E077 E0FA E179 E1F4 E26C E2DF E34F E3BA E422 E487 a00 Cut-off frequency [Hz] a10 8200 8300 8400 8500 8600 8700 8800 8900 9000 9100 9200 9300 9400 9500 9600 9700 9800 9900 10000 10100 10200 10300 10400 10500 10600 10700 10800 10900 11000 OFF E86A E7F6 E781 E70C E696 E61F E5A7 E52F E4B6 E43C E3C1 E346 E2CA E24D E1D0 E152 E0D3 E053 DFD3 DF52 DED0 DE4D DDCA DD45 DCC0 DC3B DBB4 DB2D DAA5 8000 a01 a11 a02 a12 b01 b11 b02 b12 2F2C 3014 30FD 31E8 32D5 33C3 34B2 35A3 3695 3788 387D 3974 3A6C 3B65 3C60 3D5C 3E5A 3F5A 405A 415D 4261 4366 446D 4575 467F 478B 4898 49A6 4AB7 0000 1796 180A 187F 18F4 196A 19E1 1A59 1AD1 1B4A 1BC4 1C3F 1CBA 1D36 1DB3 1E30 1EAE 1F2D 1FAD 202D 20AE 2130 21B3 2236 22BB 2340 23C5 244C 24D3 255B 0000 3CC1 3A93 3867 363B 3410 31E5 2FBB 2D92 2B69 2941 2719 24F2 22CB 20A5 1E7F 1C5A 1A35 1810 15EB 13C7 11A3 0F7F 0D5C 0B38 0915 06F2 04CF 02AC 0089 0000 E4E8 E545 E59E E5F4 E647 E695 E6E1 E729 E76D E7AE E7EC E826 E85D E890 E8C0 E8ED E917 E93D E960 E980 E99C E9B5 E9CB E9DD E9ED E9F9 EA02 EA07 EA0A 0000 Table 8-5-9. Secondary LPF Parameter Table (No Decimation, Q = 0.707107) – 54 – CXD2728Q Cut-off a00 frequency [Hz] 2600 2700 2800 2900 3000 3100 3200 3300 3400 3500 3600 3700 3800 3900 4000 F4A5 F3EB F32D F26D F1A8 F0E0 F016 EF47 EE76 EDA2 ECCB EBF0 EB13 EA33 E950 a01 a02 b01 b02 16B6 182A 19A5 1B27 1CB0 1E3F 1FD5 2171 2313 24BC 266B 281F 29DA 2B9A 2D60 0B5B 0C15 0CD3 0D93 0E58 0F20 0FEA 10B9 118A 125E 1335 1410 14ED 15CD 16B0 7FDF 7B43 76AD 721C 6D91 690B 648A 600D 5B96 5723 52B3 4E48 49E1 457E 411E D2B4 D469 D609 D796 D910 DA77 DBCD DD10 DE43 DF66 E077 E179 E26C E34F E422 Cut-off a00 frequency [Hz] 4100 4200 4300 4400 4500 4600 4700 4800 4900 5000 5100 5200 5300 5400 5500 OFF E86A E781 E696 E5A7 E4B6 E3C1 E2CA E1D0 E0D3 DFD3 DED0 DDCA DCC0 DBB4 DAA5 8000 a01 a02 b01 b02 2F2C 30FD 32D5 34B2 3695 387D 3A6C 3C60 3E5A 405A 4261 446D 467F 4898 4AB7 0000 1796 187F 196A 1A59 1B4A 1C3F 1D36 1E30 1F2D 202D 2130 2236 2340 244C 255B 0000 3CC1 3867 3410 2FBB 2B69 2719 22CB 1E7F 1A35 15EB 11A3 0D5C 0915 04CF 0089 0000 E4E8 E59E E647 E6E1 E76D E7EC E85D E8C0 E917 E960 E99C E9CB E9ED EA02 EA0A 0000 Table 8-5-10. Secondary LPF Parameter Table (1/2 Decimation, Q = 0.707107) Cut-off a00 frequency [Hz] 1800 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000 3100 3200 3300 3400 3500 3600 OFF F3EB F2CD F1A8 F07B EF47 EE0D ECCB EB82 EA33 E8DD E781 E61F E4B6 E346 E1D0 E053 DED0 DD45 DBB4 8000 a01 a02 b01 b02 182A 1A65 1CB0 1F09 2171 23E7 266B 28FC 2B9A 2E45 30FD 33C3 3695 3974 3C60 3F5A 4261 4575 4898 0000 0C15 0D33 0E58 0F85 10B9 11F3 1335 147E 15CD 1723 187F 19E1 1B4A 1CBA 1E30 1FAD 2130 22BB 244C 0000 7B43 7464 6D91 66CA 600D 595C 52B3 4C14 457E 3EEF 3867 31E5 2B69 24F2 1E7F 1810 11A3 0B38 04CF 0000 D469 D6D2 D910 DB24 DD10 DED6 E077 E1F4 E34F E487 E59E E695 E76D E826 E8C0 E93D E99C E9DD EA02 0000 Table 8-5-11. Secondary LPF Parameter Table (1/3 Decimation, Q = 0.707107) – 55 – CXD2728Q (7) Delay Time Settings [Relevant data] Coefficients: Ltp0 (81H), Ltp1 (82H), Ltp2 (83H), Ltp3 (84H), Ltp4 (85H), Rtp0 (86H), Rtp1 (87H), Rtp2 (88H), Rtp3 (89H), Rtp4 (8aH), Stp0 (8bH), Stp1 (8cH), Stp2 (8dH), Stp3 (8eH), tp_fb (8fH), ap0_in (90H), ap0_out (91H), ap1_in (92H), ap1_out (93H) Setup: SQA05, SQA04, SQC07, SQC06 First, select No decimation, 1/2 decimation or 1/3 decimation. 1/1 (No decimation): SQA11, 10 = "00", SQC07, 06 = "00" 1/2 decimation: SQA11, 10 = "01", SQC07, 06 = "01" 1/3 decimation: SQA11, 10 = "10", SQC07, 06 = "1∗" (∗ = Don't care) Next, set tp_fb (8fH) which determines the comb filter delay time, and ap0_in (90H), ap0_out (91H), ap1_in (92H) and ap1_out (93H) which determine the all pass filter delay times. The following conditions apply. • 0 ≤ tp_fb, tp_fb + 0020H ≤ ap0_in ≤ ap0_out, ap0_out + 0020H ≤ ap1_in ≤ ap1_out ≤ ffe0H • 0 ≤ Comb filter tap (Ltp0 to Stp3) ≤ tp_fb Note) The minimum unit for all the above coefficients is "0020H". Values smaller than this are ignored. (7)-1. Comb Filter First, set the comb filter maximum delay time tp_fb (8fH). The coefficient value is calculated as follows. (Dly) Decimal = (Delay [s]) × fs [Hz] × 32 (The delay value is multiplied by 1/2 and 1/3 during 1/2 and 1/3 decimation, respectively.) Next set the delay times for the comb filter taps, and calculate the coefficient values in the same manner as for tp_fb. (0 ≤ Tap ≤ tp_fb) Example) For a maximum delay time of 58ms (1/2 decimation, fs = 44100Hz) 0.058 × (1/2) × 44100 × 32 = 40924.8 Rounding up to 40925 and converting to hexadecimal notation: 9fddH However, the address is specified in 0020H increments, so this becomes: 9fe0H Therefore, set all (14) of the L, R and S channel taps to 9fe0H (58ms) or less. For example, the L channel settings could be: Ltp0 = 1ba0H (10ms) Ltp1 = 3720H (20ms) Ltp2 = 52c0H (30ms) Ltp3 = 6e40H (40ms) Ltp4 = 89e0H (50ms) Set the R and S channels in the same manner. – 56 – CXD2728Q Delay (fs = 44.1kHz) Setting value 1/1 (No decimation) 1/2 decimation 1/3 decimation 0020H 0040H · · 3720H · 6e40H · a560H · dc80H · ff80H · ffa0H 0.022ms 0.045ms · · 10.000ms · 20.000ms · 30.000ms · 40.000ms · 46.349ms · 46.372ms 0.045ms 0.090ms · · 20.000ms · 40.000ms · 60.000ms · 80.000ms · 92.698ms · 92.744ms 0.068ms 0.136ms · · 30.000ms · 60.000ms · 90.000ms · 120.000ms · 139.048ms · 139.116ms Table 8-5-12. SFC Mode Delay Time Setting Value Examples (7)-2. All Pass Filters (APF0, APF1) The all pass filter delay times are determined by (read address) – (write address - 0020H). Set ap∗_in and ap∗_out so that this subtraction results in the target delay time setting value. The calculation method is the same as that for tp_fb. Example) When setting a maximum comb filter delay time of 58ms and splitting the remainder evenly between APF0 and APF1. (1/2 decimation) (ffe0h – 9fe0H)/2 = 3000H 3000H is used for each. tp_fb = 9fe0H, so: ap0_in = a000H, ap0_out = 9fe0H + 3000H = cfe0H ap1_in = d000H, ap1_out = cfe0H + 3000H = ffe0H tp_fb 0000H 9fe0H 58.0ms ap0_in ap0_out a000H cfe0H 17.4ms ap1_in ap1_out d000H ffe0H 17.4ms 92.8ms (0000H to ffe0H) Fig. 8-5-3. Delay Time Setting Example (1/2 Decimation) Note) Assuming the tap read address to be 0000H, the comb filter has a delay time of "0". However, the all pass filters are delayed by one sample after reading from the delay RAM. Therefore, perfect through operation is not possible even if (write address) = (read address). – 57 – CXD2728Q Appendix 1. Soft Mute The condition where the final volume coefficient data connected to the CXD2728Q output of each mode is off (= 0000H) is called "soft mute". Table 9 shows the coefficients that should be set to 0000H in each mode during soft mute. Table 9 also includes the loop input volume coefficients and feedback volume coefficients for modes which contain a feedback loop. Mode name Coefficient name (Address [H]) Pro Logic mode KLV (00), KRV (01), KCV (02), KSV (03), KLd (0e), KRd (0f), KCd (10), KSd (11), Kfb (12), KDV1 (21), KDV2 (22), KDV3 (23), KLRm1 (24), KLRm2 (25), KLRm3 (26), KL (f2), KR (f3), KH (f4), KP (f5), KCH (f6), KCP (f7), KS (f8) Virtual mode attV (f1), KL (f2), KR (f3), KCP (f7), KS (f8) Dolby 3 Stereo mode Same as Pro Logic mode Noise sequencer mode Same as Pro Logic or Virtual mode SFC mode KLsri (0c), KRsri (0d), Kfb (0e), KLod (32), KRod (33), KSod (34), KCod (37) Table 9. Recommended Mute Coefficients RAM Initialization Although this LSI contains a number of RAM, there is no clear function and the like. Therefore, it is impossible to predict the type of data existing in the RAM after power-on. Also, the previous mode's data remains even after the mode is changed, possibly causing momentary noise. If these problems cannot be handled by the system mute, apply soft mute for a time equal to the maximum delay time of the delay RAM (varies according to the mode and coefficient settings) during power-on and when changing the mode. This clears all the RAM. Example 1) When using 20.0ms for the passive decoder and 26.4ms for the simple SFC delay line The maximum delay time is 26.4ms, so soft mute must be applied continuously for 26.4ms. Example 2) When using the delay RAM in SFC mode with 1/2 decimation Comb filter delay time = 58.0ms All pass filter delay time = 17.4ms The maximum delay time is 58.0ms, so soft mute must be applied for 58.0ms. – 58 – CXD2728Q Appendix 2. Compensation Filter This filter compensates the shoulder characteristics of the digital filters. Fig. 9 shows the frequency response measured under the following conditions. • Vin = 300mVrms (sine wave) • Output level at 1kHz = 0dB • DC cut filter cut-off = 5kHz +2 +1 0 –1 Level [dB] –2 –3 –4 –5 –6 Compensation filter [L-ch] 0dB = 300mVrms (1kHz sin) –7 –8 –9 –10 10 20 50 100 200 500 1k Frequency [Hz] 2k 5k 10k 20k Fig. 9. Compensation Filter Frequency Response (Dotted line: Without the compensation filter) Operation Turn the filter on and off in each mode except bypass mode using SQA12 of setup register Field A. See "6. Setup Register". – 59 – A G CXD2728Q AVD6 10 DGND 0.1µF DGND AGND 0.1µF 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 AVD2 2 RREF 1 AVD4 3 AO2N 4 : Digital +3.3V power supply G F E D C B A –12V IC3 –12V IC1 220p 47k AGND 47k 47k 47k AGND 220p 15k 4.3k IC3 Sch output AGND Rch input AGND AGND Rch output AGND AGND 22p 10µF 220p AGND 3.9k AGND 22p Cch output AGND AGND 15p 10µF IC2 Lch output AGND AGND 15p 10µF 15p IC2 AGND 120k 220p AGND 3.3k 18k 150k 120k 15k 120p AGND 47k 100p 15p AGND 150k 18k 100p AGND 47k 150p 18k 150k AGND Lch input 22p 10µF 22p IC1 AGND 150k 18k 100p AGND 47k 150p 15k 120k 15k 120p 120k 4.3k 220p AGND 3.9k 220p AGND AGND 47k 100p 3.9k AGND 18k 18k 10k 10k 10k 10k 18k 18k AGND 3.9k 3.3k Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same. 10µF 1.5M AGND AGND AGND AGND AGND AGND AGND 0.1µF 0.1µF AGND AO2P 5 AVS4 6 0.1µF 0.1µF AGND 0.1µF AGND AGND 0.1µF 0.1µF AGND 0.1µF 0.1µF 2.2M 10µF AGND AVS6 7 AO4N 8 AO4P 9 : +3.3V power supplies for each analog I/O and the crystal oscillator circuit 64 T.P 63 T.P 62 T.P 61 T.P 60 T.P 59 T.P 58 T.P 57 VSS3 56 T.P 55 T.P XTLO 12 AVDX 11 53 T.P 54 T.P 52 T.P XTLI 13 AVSX 14 T.P 51 VDD2 T.P AVD5 15 T.P AO3N 16 T.P 50 T.P T.P 49 T.P VDD0 AO3P 17 T.P 48 T.P T.P 47 T.P AVS5 18 T.P T.P VSS5 • Two NE5522 operational amplifiers are used in combination as shown in the figure. • Use ±12V power supplies for the operational amplifiers and connect 0.1µF by-pass capacitors. • A crystal oscillator (DAISHINKU CORP., AT-49, 33.8688MHz) is used. • Wiring specified by bold lines should be thick, short, and shielded around its periphery by GND. • Resistor deviation: ±1%, capacitor deviation: ±5% (In particular, large ADC front-end resistor deviation will adversely affect Pro Logic mode separation.) to DGND BCK AVS3 19 SI 46 VSS2 T.P AO1N 20 T.P 45 T.P BFOT AO1P 21 VDD1 44 T.P XS24 AVD3 22 RVDT 43 T.P T.P LREF 24 XLAT AVD1 23 VSS0 42 XMST SCK T.P LIN 41 LRCK AVS2 VSS1 VSS4 DGND DGND AGND AVS1 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 DGND Microcomputer REDY XRST XRST – 60 – RIN 0.1µF 0.1µF DGND DGND DGND Application circuit CXD2728Q CXD2728Q Package Outline Unit: mm 80PIN QFP (PLASTIC) 23.9 ± 0.4 + 0.1 0.15 – 0.05 + 0.4 20.0 – 0.1 64 0.15 41 65 16.3 17.9 ± 0.4 + 0.4 14.0 – 0.1 40 A + 0.2 0.1 – 0.05 25 1 24 0.8 0.2 M + 0.15 0.35 – 0.1 + 0.35 2.75 – 0.15 0° to 10° DETAIL A PACKAGE STRUCTURE PACKAGE MATERIAL EPOXY RESIN SONY CODE QFP-80P-L01 LEAD TREATMENT SOLDER PLATING EIAJ CODE QFP080-P-1420 LEAD MATERIAL 42/COPPER ALLOY PACKAGE MASS 1.6g JEDEC CODE – 61 – 0.8 ± 0.2 80