SN54ABT16823, SN74ABT16823 18-BIT BUS-INTERFACE FLIP-FLOPS WITH 3-STATE OUTPUTS SCBS217C – JUNE 1992 – REVISED JANUARY 1997 D D D D D D D D D SN54ABT16823 . . . WD PACKAGE SN74ABT16823 . . . DGG OR DL PACKAGE (TOP VIEW) Members of the Texas Instruments Widebus Family State-of-the-Art EPIC-ΙΙB BiCMOS Design Significantly Reduces Power Dissipation High-Impedance State During Power Up and Power Down ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0) Typical VOLP (Output Ground Bounce) < 1 V at VCC = 5 V, TA = 25°C Distributed VCC and GND Pin Configuration Minimizes High-Speed Switching Noise Flow-Through Architecture Optimizes PCB Layout High-Drive Outputs (–32-mA IOH, 64-mA IOL ) Package Options Include Plastic 300-mil Shrink Small-Outline (DL), Thin Shrink Small-Outline (DGG) Packages and 380-mil Fine-Pitch Ceramic Flat (WD) Package Using 25-mil Center-to-Center Spacings 1CLR 1OE 1Q1 GND 1Q2 1Q3 VCC 1Q4 1Q5 1Q6 GND 1Q7 1Q8 1Q9 2Q1 2Q2 2Q3 GND 2Q4 2Q5 2Q6 VCC 2Q7 2Q8 GND 2Q9 2OE 2CLR description These 18-bit flip-flops feature 3-state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. They are particularly suitable for implementing wider buffer registers, I/O ports, bidirectional bus drivers with parity, and working registers. 1 56 2 55 3 54 4 53 5 52 6 51 7 50 8 49 9 48 10 47 11 46 12 45 13 44 14 43 15 42 16 41 17 40 18 39 19 38 20 37 21 36 22 35 23 34 24 33 25 32 26 31 27 30 28 29 1CLK 1CLKEN 1D1 GND 1D2 1D3 VCC 1D4 1D5 1D6 GND 1D7 1D8 1D9 2D1 2D2 2D3 GND 2D4 2D5 2D6 VCC 2D7 2D8 GND 2D9 2CLKEN 2CLK The ’ABT16823 can be used as two 9-bit flip-flops or one 18-bit flip-flop. With the clock-enable (CLKEN) input low, the D-type flip-flops enter data on the low-to-high transitions of the clock. Taking CLKEN high disables the clock buffer, latching the outputs. Taking the clear (CLR) input low causes the Q outputs to go low independently of the clock. A buffered output-enable (OE) input can be used to place the nine outputs in either a normal logic state (high or low logic level) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without need for interface or pullup components. OE does not affect the internal operation of the flip-flops. Old data can be retained or new data can be entered while the outputs are in the high-impedance state. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Widebus and EPIC-ΙΙB are trademarks of Texas Instruments Incorporated. Copyright 1997, Texas Instruments Incorporated PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 SN54ABT16823, SN74ABT16823 18-BIT BUS-INTERFACE FLIP-FLOPS WITH 3-STATE OUTPUTS SCBS217C – JUNE 1992 – REVISED JANUARY 1997 description (continued) When VCC is between 0 and 2.1 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 2.1 V, OE should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking/current-sourcing capability of the driver. The SN54ABT16823 is characterized for operation over the full military temperature range of –55°C to 125°C. The SN74ABT16823 is characterized for operation from –40°C to 85°C. FUNCTION TABLE (each 9-bit flip-flop) INPUTS 2 CLR CLKEN CLK L L X X X L L H L ↑ H H L H L ↑ L L L H L L X Q0 L H H X X Q0 H X X X X Z POST OFFICE BOX 655303 D OUTPUT Q OE • DALLAS, TEXAS 75265 SN54ABT16823, SN74ABT16823 18-BIT BUS-INTERFACE FLIP-FLOPS WITH 3-STATE OUTPUTS SCBS217C – JUNE 1992 – REVISED JANUARY 1997 logic symbol† 2 1OE 1CLR 1 55 1CLKEN 1CLK 2OE 56 27 28 2CLR 2CLKEN 2CLK 1D1 1D2 1D3 1D4 1D5 1D6 1D7 1D8 1D9 2D1 2D2 2D3 2D4 2D5 2D6 2D7 2D8 2D9 30 29 54 EN1 R2 G3 3C4 EN5 R6 G7 7C8 4D 52 1, 2 3 5 51 6 49 8 48 9 47 10 45 12 44 13 43 14 42 8D 41 5, 6 15 16 40 17 38 19 37 20 36 21 34 23 33 24 31 26 1Q1 1Q2 1Q3 1Q4 1Q5 1Q6 1Q7 1Q8 1Q9 2Q1 2Q2 2Q3 2Q4 2Q5 2Q6 2Q7 2Q8 2Q9 † This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 3 SN54ABT16823, SN74ABT16823 18-BIT BUS-INTERFACE FLIP-FLOPS WITH 3-STATE OUTPUTS SCBS217C – JUNE 1992 – REVISED JANUARY 1997 logic diagram (positive logic) 1OE 1CLR 2 1 55 1CLKEN CE R 1CLK 56 C1 1D1 3 1Q1 54 1D To Eight Other Channels 2OE 2CLR 2CLKEN 27 28 30 CE R 2CLK 29 C1 2D1 42 1D To Eight Other Channels 4 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 15 2Q1 SN54ABT16823, SN74ABT16823 18-BIT BUS-INTERFACE FLIP-FLOPS WITH 3-STATE OUTPUTS SCBS217C – JUNE 1992 – REVISED JANUARY 1997 absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† Supply voltage range, VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 7 V Input voltage range, VI (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 7 V Voltage range applied to any output in the high or power-off state, VO . . . . . . . . . . . . . . . . . . . –0.5 V to 5.5 V Current into any output in the low state, IO: SN54ABT16823 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 mA SN74ABT16823 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 mA Input clamp current, IIK (VI < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –18 mA Output clamp current, IOK (VO < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –50 mA Package thermal impedance, θJA (see Note 2): DGG package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81°C/W DL package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74°C/W Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to 150°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed. 2. The package thermal impedance is calculated in accordance with EIA/JEDEC Std JESD51. recommended operating conditions (see Note 3) SN54ABT16823 MAX MIN MAX 4.5 5.5 4.5 5.5 VCC VIH Supply voltage VIL VI Low-level input voltage IOH IOL High-level output current ∆t /∆v Input transition rise or fall rate ∆t/∆VCC TA Power-up ramp rate 200 Operating free-air temperature –55 High-level input voltage SN74ABT16823 MIN 2 2 0.8 Input voltage 0 Low-level output current Outputs enabled VCC –24 V V 0.8 0 UNIT VCC –32 V V mA 48 64 mA 10 10 ns/V µs/V 200 125 –40 85 °C NOTE 3: Unused inputs must be held high or low to prevent them from floating. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5 SN54ABT16823, SN74ABT16823 18-BIT BUS-INTERFACE FLIP-FLOPS WITH 3-STATE OUTPUTS SCBS217C – JUNE 1992 – REVISED JANUARY 1997 electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) PARAMETER VIK VOH TEST CONDITIONS VCC = 4.5 V, VCC = 4.5 V, II = –18 mA IOH = –3 mA VCC = 5 V, VCC = 4 4.5 5V VOL VCC = 4 4.5 5V MIN TA = 25°C TYP† MAX SN54ABT16823 MIN –1.2 MAX SN74ABT16823 MIN –1.2 –1.2 2.5 2.5 2.5 IOH = –3 mA IOH = –24 mA 3 3 3 2 2 IOH = –32 mA IOL = 48 mA 2* IOL = 64 mA II IOZPU 0.55 0.55* 0.55 V mV ±1 ±1 ±1 µA VCC = 0 to 2.1 V, VO = 0.5 V to 2.7 V, OE = X ±50 ±50 ±50 µA IOZPD VCC = 2.1 V to 0, VO = 0.5 V to 2.7 V, OE = X ±50 ±50 ±50 µA IOZH VCC = 2.1 V to 5.5 V, VO = 2.7 V, OE ≥ 2 V 10** 50 10 µA IOZL VCC = 2.1 V to 5.5 V, VO = 0.5 V, OE ≥ 2 V –10** –50 –10 µA ±100 µA Ioff ICEX IO‡ Outputs high VCC = 0, VCC = 5.5 V, VI or VO ≤ 4.5 V VO = 5.5 V VCC = 5.5 V, VO = 2.5 V ±100 50 –50 –100 Outputs high ICC Outputs low Outputs disabled 5 5 V, V IO = 0, 0 VCC = 5.5 VI = VCC or GND ∆ICC§ VCC = 5.5 V, One input at 3.4 V, Other inputs at VCC or GND Ci VI = 2.5 V or 0.5 V VO = 2.5 V or 0.5 V Co –200 50 –50 –200 –50 POST OFFICE BOX 655303 50 µA –200 mA 0.5 0.5 80 80 80 0.5 0.5 0.5 1.5 1.5 1.5 0.5 mA mA 3.5 pF 7.5 pF * On products compliant to MIL-PRF-38535, this parameter does not apply. ** These limits apply only to the SN74ABT16823. † All typical values are at VCC = 5 V. ‡ Not more than one output should be tested at a time, and the duration of the test should not exceed one second. § This is the increase in supply current for each input that is at the specified TTL voltage level rather than VCC or GND. 6 V V 100 VCC = 0 to 5.5 V, VI = VCC or GND UNIT 2 0.55 Vhys MAX • DALLAS, TEXAS 75265 SN54ABT16823, SN74ABT16823 18-BIT BUS-INTERFACE FLIP-FLOPS WITH 3-STATE OUTPUTS SCBS217C – JUNE 1992 – REVISED JANUARY 1997 timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1) VCC = 5 V, TA = 25°C fclock Clock frequency tw Pulse duration tsu th Setup time before CLK↑ ↑ Hold time after CLK↑ SN54ABT16823 SN74ABT16823 MIN MAX MIN MAX MIN MAX 0 150 0 150 0 150 CLR low 3.3 3.3 3.3 CLK high or low 3.3 3.3 3.3 CLR inactive 1.6 2 1.6 Data 1.7 1.7 1.7 CLKEN low 2.8 2.8 2.8 Data 1.2 1.2 1.2 CLKEN low 0.6 0.6 0.6 UNIT MHz ns ns ns switching characteristics over recommended ranges of supply voltage and operating free-air temperature, CL = 50 pF (unless otherwise noted) (see Figure 1) SN54ABT16823 PARAMETER FROM (INPUT) TO (OUTPUT) VCC = 5 V, TA = 25°C MIN fmax tPLH tPHL tPHL tPZH tPZL tPHZ tPLZ TYP MIN Q CLR Q OE Q OE Q UNIT MAX 150 CLK MAX 150 MHz 1.6 3.9 5.5 1.6 7.7 2.1 3.9 5.4 2.1 6.4 1.9 4.1 5.3 1.9 6.3 1 3.1 4.2 1 5.1 1.5 3.5 4.6 1.5 5.7 2.2 4.3 6 2.2 6.8 1.6 4.3 6.4 1.6 9.9 ns ns ns ns switching characteristics over recommended ranges of supply voltage and operating free-air temperature, CL = 50 pF (unless otherwise noted) (see Figure 1) SN74ABT16823 PARAMETER FROM (INPUT) TO (OUTPUT) VCC = 5 V, TA = 25°C MIN fmax tPLH tPHL tPHL MIN TYP MAX 1.6 3.9 5.5 1.6 6.8 2.1 3.9 5.4 2.1 6 1.9 4.1 5.3 1.9 6.1 1 3.1 4.2 1 4.9 1.5 3.5 4.6 1.5 5.5 2.2 4.3 5.6 2.2 6.1 1.6 4.3 6.4 1.6 8.7 150 CLK Q CLR Q tPZH tPZL OE Q tPHZ tPLZ OE Q POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MAX 150 UNIT MHz ns ns ns ns 7 SN54ABT16823, SN74ABT16823 18-BIT BUS-INTERFACE FLIP-FLOPS WITH 3-STATE OUTPUTS SCBS217C – JUNE 1992 – REVISED JANUARY 1997 PARAMETER MEASUREMENT INFORMATION 7V S1 500 Ω From Output Under Test Open GND CL = 50 pF (see Note A) 500 Ω TEST S1 tPLH/tPHL tPLZ/tPZL tPHZ/tPZH Open 7V Open LOAD CIRCUIT 3V Timing Input 1.5 V 0V tw tsu 3V Input 1.5 V 1.5 V th 3V Data Input 1.5 V 1.5 V 0V 0V VOLTAGE WAVEFORMS PULSE DURATION VOLTAGE WAVEFORMS SETUP AND HOLD TIMES 3V 1.5 V Input 1.5 V 0V VOH 1.5 V Output 1.5 V VOL VOH Output 1.5 V 1.5 V VOL VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS 1.5 V 0V tPLZ Output Waveform 1 S1 at 7 V (see Note B) tPLH tPHL 1.5 V tPZL tPHL tPLH 3V Output Control Output Waveform 2 S1 at Open (see Note B) 1.5 V tPZH 3.5 V VOL + 0.3 V VOL tPHZ 1.5 V VOH – 0.3 V VOH ≈0V VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES LOW- AND HIGH-LEVEL ENABLING NOTES: A. CL includes probe and jig capacitance. B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω, tr ≤ 2.5 ns, tf ≤ 2.5 ns. D. The outputs are measured one at a time with one transition per measurement. Figure 1. Load Circuit and Voltage Waveforms 8 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 PACKAGE OPTION ADDENDUM www.ti.com 9-Oct-2007 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Drawing Pins Package Eco Plan (2) Qty 1 5962-9584201QXA ACTIVE CFP WD 56 ACTIVE TSSOP DGG 56 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 74ABT16823DGGRG4 ACTIVE TSSOP DGG 56 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74ABT16823DGGR ACTIVE TSSOP DGG 56 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74ABT16823DGVR ACTIVE TVSOP DGV 56 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74ABT16823DGVRE4 ACTIVE TVSOP DGV 56 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74ABT16823DGVRG4 ACTIVE TVSOP DGV 56 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74ABT16823DL ACTIVE SSOP DL 56 20 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74ABT16823DLG4 ACTIVE SSOP DL 56 20 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74ABT16823DLR ACTIVE SSOP DL 56 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74ABT16823DLRG4 ACTIVE SSOP DL 56 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SNJ54ABT16823WD ACTIVE CFP WD 56 TBD A42 SNPB MSL Peak Temp (3) 74ABT16823DGGRE4 1 TBD Lead/Ball Finish A42 SNPB N / A for Pkg Type N / A for Pkg Type (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI Addendum-Page 1 PACKAGE OPTION ADDENDUM www.ti.com 9-Oct-2007 to Customer on an annual basis. Addendum-Page 2 PACKAGE MATERIALS INFORMATION www.ti.com 4-Oct-2007 TAPE AND REEL BOX INFORMATION Device Package Pins Site Reel Diameter (mm) Reel Width (mm) A0 (mm) B0 (mm) K0 (mm) P1 (mm) W Pin1 (mm) Quadrant SN74ABT16823DGGR DGG 56 SITE 41 330 24 8.6 15.6 1.8 12 24 Q1 SN74ABT16823DGVR DGV 56 SITE 41 330 24 6.8 10.1 1.6 12 24 Q1 SN74ABT16823DLR DL 56 SITE 41 330 32 11.35 18.67 3.1 16 32 Q1 Pack Materials-Page 1 PACKAGE MATERIALS INFORMATION www.ti.com 4-Oct-2007 Device Package Pins Site Length (mm) Width (mm) Height (mm) SN74ABT16823DGGR DGG 56 SITE 41 346.0 346.0 41.0 SN74ABT16823DGVR DGV 56 SITE 41 346.0 346.0 41.0 SN74ABT16823DLR DL 56 SITE 41 346.0 346.0 49.0 Pack Materials-Page 2 MECHANICAL DATA MCFP010B – JANUARY 1995 – REVISED NOVEMBER 1997 WD (R-GDFP-F**) CERAMIC DUAL FLATPACK 48 LEADS SHOWN 0.120 (3,05) 0.075 (1,91) 0.009 (0,23) 0.004 (0,10) 1.130 (28,70) 0.870 (22,10) 0.370 (9,40) 0.250 (6,35) 0.390 (9,91) 0.370 (9,40) 0.370 (9,40) 0.250 (6,35) 48 1 0.025 (0,635) A 0.014 (0,36) 0.008 (0,20) 25 24 NO. OF LEADS** 48 56 A MAX 0.640 (16,26) 0.740 (18,80) A MIN 0.610 (15,49) 0.710 (18,03) 4040176 / D 10/97 NOTES: A. B. C. D. E. All linear dimensions are in inches (millimeters). This drawing is subject to change without notice. This package can be hermetically sealed with a ceramic lid using glass frit. Index point is provided on cap for terminal identification only Falls within MIL STD 1835: GDFP1-F48 and JEDEC MO -146AA GDFP1-F56 and JEDEC MO -146AB POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MECHANICAL DATA MPDS006C – FEBRUARY 1996 – REVISED AUGUST 2000 DGV (R-PDSO-G**) PLASTIC SMALL-OUTLINE 24 PINS SHOWN 0,40 0,23 0,13 24 13 0,07 M 0,16 NOM 4,50 4,30 6,60 6,20 Gage Plane 0,25 0°–8° 1 0,75 0,50 12 A Seating Plane 0,15 0,05 1,20 MAX PINS ** 0,08 14 16 20 24 38 48 56 A MAX 3,70 3,70 5,10 5,10 7,90 9,80 11,40 A MIN 3,50 3,50 4,90 4,90 7,70 9,60 11,20 DIM 4073251/E 08/00 NOTES: A. B. C. D. All linear dimensions are in millimeters. This drawing is subject to change without notice. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side. Falls within JEDEC: 24/48 Pins – MO-153 14/16/20/56 Pins – MO-194 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MECHANICAL DATA MSSO001C – JANUARY 1995 – REVISED DECEMBER 2001 DL (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE 48 PINS SHOWN 0.025 (0,635) 0.0135 (0,343) 0.008 (0,203) 48 0.005 (0,13) M 25 0.010 (0,25) 0.005 (0,13) 0.299 (7,59) 0.291 (7,39) 0.420 (10,67) 0.395 (10,03) Gage Plane 0.010 (0,25) 1 0°–ā8° 24 0.040 (1,02) A 0.020 (0,51) Seating Plane 0.110 (2,79) MAX 0.004 (0,10) 0.008 (0,20) MIN PINS ** 28 48 56 A MAX 0.380 (9,65) 0.630 (16,00) 0.730 (18,54) A MIN 0.370 (9,40) 0.620 (15,75) 0.720 (18,29) DIM 4040048 / E 12/01 NOTES: A. B. C. D. All linear dimensions are in inches (millimeters). This drawing is subject to change without notice. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15). Falls within JEDEC MO-118 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MECHANICAL DATA MTSS003D – JANUARY 1995 – REVISED JANUARY 1998 DGG (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE 48 PINS SHOWN 0,27 0,17 0,50 48 0,08 M 25 6,20 6,00 8,30 7,90 0,15 NOM Gage Plane 1 0,25 24 0°– 8° A 0,75 0,50 Seating Plane 0,15 0,05 1,20 MAX PINS ** 0,10 48 56 64 A MAX 12,60 14,10 17,10 A MIN 12,40 13,90 16,90 DIM 4040078 / F 12/97 NOTES: A. B. C. D. All linear dimensions are in millimeters. This drawing is subject to change without notice. Body dimensions do not include mold protrusion not to exceed 0,15. Falls within JEDEC MO-153 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications. TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Applications Amplifiers amplifier.ti.com Audio www.ti.com/audio Data Converters dataconverter.ti.com Automotive www.ti.com/automotive DSP dsp.ti.com Broadband www.ti.com/broadband Interface interface.ti.com Digital Control www.ti.com/digitalcontrol Logic logic.ti.com Military www.ti.com/military Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork Microcontrollers microcontroller.ti.com Security www.ti.com/security RFID www.ti-rfid.com Telephony www.ti.com/telephony Low Power Wireless www.ti.com/lpw Video & Imaging www.ti.com/video Wireless www.ti.com/wireless Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2007, Texas Instruments Incorporated