TI 74ABT16823DGGRE4

SN54ABT16823, SN74ABT16823
18-BIT BUS-INTERFACE FLIP-FLOPS
WITH 3-STATE OUTPUTS
SCBS217C – JUNE 1992 – REVISED JANUARY 1997
D
D
D
D
D
D
D
D
D
SN54ABT16823 . . . WD PACKAGE
SN74ABT16823 . . . DGG OR DL PACKAGE
(TOP VIEW)
Members of the Texas Instruments
Widebus  Family
State-of-the-Art EPIC-ΙΙB  BiCMOS Design
Significantly Reduces Power Dissipation
High-Impedance State During Power Up
and Power Down
ESD Protection Exceeds 2000 V Per
MIL-STD-883, Method 3015; Exceeds 200 V
Using Machine Model (C = 200 pF, R = 0)
Typical VOLP (Output Ground Bounce) < 1 V
at VCC = 5 V, TA = 25°C
Distributed VCC and GND Pin Configuration
Minimizes High-Speed Switching Noise
Flow-Through Architecture Optimizes
PCB Layout
High-Drive Outputs (–32-mA IOH,
64-mA IOL )
Package Options Include Plastic 300-mil
Shrink Small-Outline (DL), Thin Shrink
Small-Outline (DGG) Packages and 380-mil
Fine-Pitch Ceramic Flat (WD) Package
Using 25-mil Center-to-Center Spacings
1CLR
1OE
1Q1
GND
1Q2
1Q3
VCC
1Q4
1Q5
1Q6
GND
1Q7
1Q8
1Q9
2Q1
2Q2
2Q3
GND
2Q4
2Q5
2Q6
VCC
2Q7
2Q8
GND
2Q9
2OE
2CLR
description
These 18-bit flip-flops feature 3-state outputs
designed specifically for driving highly capacitive
or relatively low-impedance loads. They are
particularly suitable for implementing wider buffer
registers, I/O ports, bidirectional bus drivers with
parity, and working registers.
1
56
2
55
3
54
4
53
5
52
6
51
7
50
8
49
9
48
10
47
11
46
12
45
13
44
14
43
15
42
16
41
17
40
18
39
19
38
20
37
21
36
22
35
23
34
24
33
25
32
26
31
27
30
28
29
1CLK
1CLKEN
1D1
GND
1D2
1D3
VCC
1D4
1D5
1D6
GND
1D7
1D8
1D9
2D1
2D2
2D3
GND
2D4
2D5
2D6
VCC
2D7
2D8
GND
2D9
2CLKEN
2CLK
The ’ABT16823 can be used as two 9-bit flip-flops
or one 18-bit flip-flop. With the clock-enable
(CLKEN) input low, the D-type flip-flops enter data
on the low-to-high transitions of the clock. Taking
CLKEN high disables the clock buffer, latching the
outputs. Taking the clear (CLR) input low causes
the Q outputs to go low independently of the clock.
A buffered output-enable (OE) input can be used to place the nine outputs in either a normal logic state (high
or low logic level) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive
the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines
without need for interface or pullup components.
OE does not affect the internal operation of the flip-flops. Old data can be retained or new data can be entered
while the outputs are in the high-impedance state.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Widebus and EPIC-ΙΙB are trademarks of Texas Instruments Incorporated.
Copyright  1997, Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
SN54ABT16823, SN74ABT16823
18-BIT BUS-INTERFACE FLIP-FLOPS
WITH 3-STATE OUTPUTS
SCBS217C – JUNE 1992 – REVISED JANUARY 1997
description (continued)
When VCC is between 0 and 2.1 V, the device is in the high-impedance state during power up or power down.
However, to ensure the high-impedance state above 2.1 V, OE should be tied to VCC through a pullup resistor;
the minimum value of the resistor is determined by the current-sinking/current-sourcing capability of the driver.
The SN54ABT16823 is characterized for operation over the full military temperature range of –55°C to 125°C.
The SN74ABT16823 is characterized for operation from –40°C to 85°C.
FUNCTION TABLE
(each 9-bit flip-flop)
INPUTS
2
CLR
CLKEN
CLK
L
L
X
X
X
L
L
H
L
↑
H
H
L
H
L
↑
L
L
L
H
L
L
X
Q0
L
H
H
X
X
Q0
H
X
X
X
X
Z
POST OFFICE BOX 655303
D
OUTPUT
Q
OE
• DALLAS, TEXAS 75265
SN54ABT16823, SN74ABT16823
18-BIT BUS-INTERFACE FLIP-FLOPS
WITH 3-STATE OUTPUTS
SCBS217C – JUNE 1992 – REVISED JANUARY 1997
logic symbol†
2
1OE
1CLR
1
55
1CLKEN
1CLK
2OE
56
27
28
2CLR
2CLKEN
2CLK
1D1
1D2
1D3
1D4
1D5
1D6
1D7
1D8
1D9
2D1
2D2
2D3
2D4
2D5
2D6
2D7
2D8
2D9
30
29
54
EN1
R2
G3
3C4
EN5
R6
G7
7C8
4D
52
1, 2
3
5
51
6
49
8
48
9
47
10
45
12
44
13
43
14
42
8D
41
5, 6
15
16
40
17
38
19
37
20
36
21
34
23
33
24
31
26
1Q1
1Q2
1Q3
1Q4
1Q5
1Q6
1Q7
1Q8
1Q9
2Q1
2Q2
2Q3
2Q4
2Q5
2Q6
2Q7
2Q8
2Q9
† This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
3
SN54ABT16823, SN74ABT16823
18-BIT BUS-INTERFACE FLIP-FLOPS
WITH 3-STATE OUTPUTS
SCBS217C – JUNE 1992 – REVISED JANUARY 1997
logic diagram (positive logic)
1OE
1CLR
2
1
55
1CLKEN
CE
R
1CLK
56
C1
1D1
3
1Q1
54
1D
To Eight Other Channels
2OE
2CLR
2CLKEN
27
28
30
CE
R
2CLK
29
C1
2D1
42
1D
To Eight Other Channels
4
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
15
2Q1
SN54ABT16823, SN74ABT16823
18-BIT BUS-INTERFACE FLIP-FLOPS
WITH 3-STATE OUTPUTS
SCBS217C – JUNE 1992 – REVISED JANUARY 1997
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Supply voltage range, VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 7 V
Input voltage range, VI (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 7 V
Voltage range applied to any output in the high or power-off state, VO . . . . . . . . . . . . . . . . . . . –0.5 V to 5.5 V
Current into any output in the low state, IO: SN54ABT16823 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 mA
SN74ABT16823 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 mA
Input clamp current, IIK (VI < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –18 mA
Output clamp current, IOK (VO < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –50 mA
Package thermal impedance, θJA (see Note 2): DGG package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81°C/W
DL package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74°C/W
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to 150°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. The package thermal impedance is calculated in accordance with EIA/JEDEC Std JESD51.
recommended operating conditions (see Note 3)
SN54ABT16823
MAX
MIN
MAX
4.5
5.5
4.5
5.5
VCC
VIH
Supply voltage
VIL
VI
Low-level input voltage
IOH
IOL
High-level output current
∆t /∆v
Input transition rise or fall rate
∆t/∆VCC
TA
Power-up ramp rate
200
Operating free-air temperature
–55
High-level input voltage
SN74ABT16823
MIN
2
2
0.8
Input voltage
0
Low-level output current
Outputs enabled
VCC
–24
V
V
0.8
0
UNIT
VCC
–32
V
V
mA
48
64
mA
10
10
ns/V
µs/V
200
125
–40
85
°C
NOTE 3: Unused inputs must be held high or low to prevent them from floating.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
5
SN54ABT16823, SN74ABT16823
18-BIT BUS-INTERFACE FLIP-FLOPS
WITH 3-STATE OUTPUTS
SCBS217C – JUNE 1992 – REVISED JANUARY 1997
electrical characteristics over recommended operating free-air temperature range (unless
otherwise noted)
PARAMETER
VIK
VOH
TEST CONDITIONS
VCC = 4.5 V,
VCC = 4.5 V,
II = –18 mA
IOH = –3 mA
VCC = 5 V,
VCC = 4
4.5
5V
VOL
VCC = 4
4.5
5V
MIN
TA = 25°C
TYP†
MAX
SN54ABT16823
MIN
–1.2
MAX
SN74ABT16823
MIN
–1.2
–1.2
2.5
2.5
2.5
IOH = –3 mA
IOH = –24 mA
3
3
3
2
2
IOH = –32 mA
IOL = 48 mA
2*
IOL = 64 mA
II
IOZPU
0.55
0.55*
0.55
V
mV
±1
±1
±1
µA
VCC = 0 to 2.1 V,
VO = 0.5 V to 2.7 V, OE = X
±50
±50
±50
µA
IOZPD
VCC = 2.1 V to 0,
VO = 0.5 V to 2.7 V, OE = X
±50
±50
±50
µA
IOZH
VCC = 2.1 V to 5.5 V,
VO = 2.7 V, OE ≥ 2 V
10**
50
10
µA
IOZL
VCC = 2.1 V to 5.5 V,
VO = 0.5 V, OE ≥ 2 V
–10**
–50
–10
µA
±100
µA
Ioff
ICEX
IO‡
Outputs high
VCC = 0,
VCC = 5.5 V,
VI or VO ≤ 4.5 V
VO = 5.5 V
VCC = 5.5 V,
VO = 2.5 V
±100
50
–50
–100
Outputs high
ICC
Outputs low
Outputs disabled
5 5 V,
V IO = 0,
0
VCC = 5.5
VI = VCC or GND
∆ICC§
VCC = 5.5 V, One input at 3.4 V,
Other inputs at VCC or GND
Ci
VI = 2.5 V or 0.5 V
VO = 2.5 V or 0.5 V
Co
–200
50
–50
–200
–50
POST OFFICE BOX 655303
50
µA
–200
mA
0.5
0.5
80
80
80
0.5
0.5
0.5
1.5
1.5
1.5
0.5
mA
mA
3.5
pF
7.5
pF
* On products compliant to MIL-PRF-38535, this parameter does not apply.
** These limits apply only to the SN74ABT16823.
† All typical values are at VCC = 5 V.
‡ Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
§ This is the increase in supply current for each input that is at the specified TTL voltage level rather than VCC or GND.
6
V
V
100
VCC = 0 to 5.5 V,
VI = VCC or GND
UNIT
2
0.55
Vhys
MAX
• DALLAS, TEXAS 75265
SN54ABT16823, SN74ABT16823
18-BIT BUS-INTERFACE FLIP-FLOPS
WITH 3-STATE OUTPUTS
SCBS217C – JUNE 1992 – REVISED JANUARY 1997
timing requirements over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted) (see Figure 1)
VCC = 5 V,
TA = 25°C
fclock
Clock frequency
tw
Pulse duration
tsu
th
Setup time before CLK↑
↑
Hold time after CLK↑
SN54ABT16823
SN74ABT16823
MIN
MAX
MIN
MAX
MIN
MAX
0
150
0
150
0
150
CLR low
3.3
3.3
3.3
CLK high or low
3.3
3.3
3.3
CLR inactive
1.6
2
1.6
Data
1.7
1.7
1.7
CLKEN low
2.8
2.8
2.8
Data
1.2
1.2
1.2
CLKEN low
0.6
0.6
0.6
UNIT
MHz
ns
ns
ns
switching characteristics over recommended ranges of supply voltage and operating free-air
temperature, CL = 50 pF (unless otherwise noted) (see Figure 1)
SN54ABT16823
PARAMETER
FROM
(INPUT)
TO
(OUTPUT)
VCC = 5 V,
TA = 25°C
MIN
fmax
tPLH
tPHL
tPHL
tPZH
tPZL
tPHZ
tPLZ
TYP
MIN
Q
CLR
Q
OE
Q
OE
Q
UNIT
MAX
150
CLK
MAX
150
MHz
1.6
3.9
5.5
1.6
7.7
2.1
3.9
5.4
2.1
6.4
1.9
4.1
5.3
1.9
6.3
1
3.1
4.2
1
5.1
1.5
3.5
4.6
1.5
5.7
2.2
4.3
6
2.2
6.8
1.6
4.3
6.4
1.6
9.9
ns
ns
ns
ns
switching characteristics over recommended ranges of supply voltage and operating free-air
temperature, CL = 50 pF (unless otherwise noted) (see Figure 1)
SN74ABT16823
PARAMETER
FROM
(INPUT)
TO
(OUTPUT)
VCC = 5 V,
TA = 25°C
MIN
fmax
tPLH
tPHL
tPHL
MIN
TYP
MAX
1.6
3.9
5.5
1.6
6.8
2.1
3.9
5.4
2.1
6
1.9
4.1
5.3
1.9
6.1
1
3.1
4.2
1
4.9
1.5
3.5
4.6
1.5
5.5
2.2
4.3
5.6
2.2
6.1
1.6
4.3
6.4
1.6
8.7
150
CLK
Q
CLR
Q
tPZH
tPZL
OE
Q
tPHZ
tPLZ
OE
Q
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MAX
150
UNIT
MHz
ns
ns
ns
ns
7
SN54ABT16823, SN74ABT16823
18-BIT BUS-INTERFACE FLIP-FLOPS
WITH 3-STATE OUTPUTS
SCBS217C – JUNE 1992 – REVISED JANUARY 1997
PARAMETER MEASUREMENT INFORMATION
7V
S1
500 Ω
From Output
Under Test
Open
GND
CL = 50 pF
(see Note A)
500 Ω
TEST
S1
tPLH/tPHL
tPLZ/tPZL
tPHZ/tPZH
Open
7V
Open
LOAD CIRCUIT
3V
Timing Input
1.5 V
0V
tw
tsu
3V
Input
1.5 V
1.5 V
th
3V
Data Input
1.5 V
1.5 V
0V
0V
VOLTAGE WAVEFORMS
PULSE DURATION
VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES
3V
1.5 V
Input
1.5 V
0V
VOH
1.5 V
Output
1.5 V
VOL
VOH
Output
1.5 V
1.5 V
VOL
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
INVERTING AND NONINVERTING OUTPUTS
1.5 V
0V
tPLZ
Output
Waveform 1
S1 at 7 V
(see Note B)
tPLH
tPHL
1.5 V
tPZL
tPHL
tPLH
3V
Output
Control
Output
Waveform 2
S1 at Open
(see Note B)
1.5 V
tPZH
3.5 V
VOL + 0.3 V
VOL
tPHZ
1.5 V
VOH – 0.3 V
VOH
≈0V
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
LOW- AND HIGH-LEVEL ENABLING
NOTES: A. CL includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω, tr ≤ 2.5 ns, tf ≤ 2.5 ns.
D. The outputs are measured one at a time with one transition per measurement.
Figure 1. Load Circuit and Voltage Waveforms
8
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
PACKAGE OPTION ADDENDUM
www.ti.com
9-Oct-2007
PACKAGING INFORMATION
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
1
5962-9584201QXA
ACTIVE
CFP
WD
56
ACTIVE
TSSOP
DGG
56
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
74ABT16823DGGRG4
ACTIVE
TSSOP
DGG
56
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74ABT16823DGGR
ACTIVE
TSSOP
DGG
56
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74ABT16823DGVR
ACTIVE
TVSOP
DGV
56
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74ABT16823DGVRE4
ACTIVE
TVSOP
DGV
56
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74ABT16823DGVRG4
ACTIVE
TVSOP
DGV
56
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74ABT16823DL
ACTIVE
SSOP
DL
56
20
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74ABT16823DLG4
ACTIVE
SSOP
DL
56
20
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74ABT16823DLR
ACTIVE
SSOP
DL
56
1000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74ABT16823DLRG4
ACTIVE
SSOP
DL
56
1000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SNJ54ABT16823WD
ACTIVE
CFP
WD
56
TBD
A42 SNPB
MSL Peak Temp (3)
74ABT16823DGGRE4
1
TBD
Lead/Ball Finish
A42 SNPB
N / A for Pkg Type
N / A for Pkg Type
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in
a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check
http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS
compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder
temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited
information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI
Addendum-Page 1
PACKAGE OPTION ADDENDUM
www.ti.com
9-Oct-2007
to Customer on an annual basis.
Addendum-Page 2
PACKAGE MATERIALS INFORMATION
www.ti.com
4-Oct-2007
TAPE AND REEL BOX INFORMATION
Device
Package Pins
Site
Reel
Diameter
(mm)
Reel
Width
(mm)
A0 (mm)
B0 (mm)
K0 (mm)
P1
(mm)
W
Pin1
(mm) Quadrant
SN74ABT16823DGGR
DGG
56
SITE 41
330
24
8.6
15.6
1.8
12
24
Q1
SN74ABT16823DGVR
DGV
56
SITE 41
330
24
6.8
10.1
1.6
12
24
Q1
SN74ABT16823DLR
DL
56
SITE 41
330
32
11.35
18.67
3.1
16
32
Q1
Pack Materials-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com
4-Oct-2007
Device
Package
Pins
Site
Length (mm)
Width (mm)
Height (mm)
SN74ABT16823DGGR
DGG
56
SITE 41
346.0
346.0
41.0
SN74ABT16823DGVR
DGV
56
SITE 41
346.0
346.0
41.0
SN74ABT16823DLR
DL
56
SITE 41
346.0
346.0
49.0
Pack Materials-Page 2
MECHANICAL DATA
MCFP010B – JANUARY 1995 – REVISED NOVEMBER 1997
WD (R-GDFP-F**)
CERAMIC DUAL FLATPACK
48 LEADS SHOWN
0.120 (3,05)
0.075 (1,91)
0.009 (0,23)
0.004 (0,10)
1.130 (28,70)
0.870 (22,10)
0.370 (9,40)
0.250 (6,35)
0.390 (9,91)
0.370 (9,40)
0.370 (9,40)
0.250 (6,35)
48
1
0.025 (0,635)
A
0.014 (0,36)
0.008 (0,20)
25
24
NO. OF
LEADS**
48
56
A MAX
0.640
(16,26)
0.740
(18,80)
A MIN
0.610
(15,49)
0.710
(18,03)
4040176 / D 10/97
NOTES: A.
B.
C.
D.
E.
All linear dimensions are in inches (millimeters).
This drawing is subject to change without notice.
This package can be hermetically sealed with a ceramic lid using glass frit.
Index point is provided on cap for terminal identification only
Falls within MIL STD 1835: GDFP1-F48 and JEDEC MO -146AA
GDFP1-F56 and JEDEC MO -146AB
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MECHANICAL DATA
MPDS006C – FEBRUARY 1996 – REVISED AUGUST 2000
DGV (R-PDSO-G**)
PLASTIC SMALL-OUTLINE
24 PINS SHOWN
0,40
0,23
0,13
24
13
0,07 M
0,16 NOM
4,50
4,30
6,60
6,20
Gage Plane
0,25
0°–8°
1
0,75
0,50
12
A
Seating Plane
0,15
0,05
1,20 MAX
PINS **
0,08
14
16
20
24
38
48
56
A MAX
3,70
3,70
5,10
5,10
7,90
9,80
11,40
A MIN
3,50
3,50
4,90
4,90
7,70
9,60
11,20
DIM
4073251/E 08/00
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.
Falls within JEDEC: 24/48 Pins – MO-153
14/16/20/56 Pins – MO-194
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MECHANICAL DATA
MSSO001C – JANUARY 1995 – REVISED DECEMBER 2001
DL (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
48 PINS SHOWN
0.025 (0,635)
0.0135 (0,343)
0.008 (0,203)
48
0.005 (0,13) M
25
0.010 (0,25)
0.005 (0,13)
0.299 (7,59)
0.291 (7,39)
0.420 (10,67)
0.395 (10,03)
Gage Plane
0.010 (0,25)
1
0°–ā8°
24
0.040 (1,02)
A
0.020 (0,51)
Seating Plane
0.110 (2,79) MAX
0.004 (0,10)
0.008 (0,20) MIN
PINS **
28
48
56
A MAX
0.380
(9,65)
0.630
(16,00)
0.730
(18,54)
A MIN
0.370
(9,40)
0.620
(15,75)
0.720
(18,29)
DIM
4040048 / E 12/01
NOTES: A.
B.
C.
D.
All linear dimensions are in inches (millimeters).
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
Falls within JEDEC MO-118
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MECHANICAL DATA
MTSS003D – JANUARY 1995 – REVISED JANUARY 1998
DGG (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
48 PINS SHOWN
0,27
0,17
0,50
48
0,08 M
25
6,20
6,00
8,30
7,90
0,15 NOM
Gage Plane
1
0,25
24
0°– 8°
A
0,75
0,50
Seating Plane
0,15
0,05
1,20 MAX
PINS **
0,10
48
56
64
A MAX
12,60
14,10
17,10
A MIN
12,40
13,90
16,90
DIM
4040078 / F 12/97
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold protrusion not to exceed 0,15.
Falls within JEDEC MO-153
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements,
improvements, and other changes to its products and services at any time and to discontinue any product or service without notice.
Customers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s
standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this
warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily
performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should
provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask
work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services
are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such
products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under
the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is
accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an
unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties
may be subject to additional restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service
voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business
practice. TI is not responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would
reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement
specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications
of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related
requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any
applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its
representatives against any damages arising out of the use of TI products in such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is
solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in
connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products
are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any
non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products
Applications
Amplifiers
amplifier.ti.com
Audio
www.ti.com/audio
Data Converters
dataconverter.ti.com
Automotive
www.ti.com/automotive
DSP
dsp.ti.com
Broadband
www.ti.com/broadband
Interface
interface.ti.com
Digital Control
www.ti.com/digitalcontrol
Logic
logic.ti.com
Military
www.ti.com/military
Power Mgmt
power.ti.com
Optical Networking
www.ti.com/opticalnetwork
Microcontrollers
microcontroller.ti.com
Security
www.ti.com/security
RFID
www.ti-rfid.com
Telephony
www.ti.com/telephony
Low Power
Wireless
www.ti.com/lpw
Video & Imaging
www.ti.com/video
Wireless
www.ti.com/wireless
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2007, Texas Instruments Incorporated