PT5520 Series 1.5-A 5-V/3.3-V Input Adjustable Integrated Switching Regulator SLTS147A (Revised 10/5/2001) Features • • • • • • • • • Single-Device: 5V/3.3V Input DSP Compatible 89% Efficiency Small Footprint Space-Saving package Adjustable Output Voltage Output Inhibit Function Short Circuit Protection Solderable Copper Case Description Ordering Information The PT5520 Excalibur™ power modules are a series of high-performance Integrated Switching Regulators (ISRs). Rated 1.5A, these modules operate from input voltages as low as 3.1V to provide a local step-down power source. They are an ideal compliment to the industry’s latest high-performance DSPs and microprocessors. The series includes output voltage options as low as 1.0VDC. The PT5520 series is packaged in a 5-pin thermally efficient copper case. The case is solderable, has a small footprint, and can accommodate both through-hole and surface mount pin configurations. The product features external output voltage adjustment, an inhibit function, and short circuit protection. A 100µF capacitor is required for proper operation. PT5521¨ PT5522¨ PT5523¨ PT5524¨ PT5525¨ PT5526¨ PT5527¨ Pin-Out Information Pin Function =3.3 Volts =2.5 Volts =2.0 Volts =1.8 Volts =1.5 Volts =1.2 Volts =1.0 Volts PT Series Suffix (PT1234 x ) Case/Pin Configuration Order Suffix N A C Vertical Horizontal SMD 1 Inhibit * 2 3 Vin GND 4 Vo 5 Vo Adjust * For Inhibit pin: Open = output enabled Ground = output disabled Package Code (EFK) (EFL) (EFM) (Reference the applicable package code drawing for the dimensions and PC board layout) Standard Application INH V OA D J 5 1 + V IN 2 PT5520 +VO 4 + 3 C1 COM C2 COM C1 = Optional 1µF ceramic C2 = Required 100µF (See Notes) For technical support and more information, see inside back cover or visit www.ti.com PT5520 Series 1.5-A 5-V/3.3-V Input Adjustable Integrated Switching Regulator Specifications (Unless otherwise stated, Ta =25°C, Vin =5V, Cout =100µF, and Io =I omax) Characteristics Symbols Output Current Input Voltage Range Io Vin Set-Point Voltage Tolerance Temperature Variation Line Regulation Load Regulation Total Output Variation Vo tol ∆Regtemp ∆Regline ∆Regload ∆Regtot Efficiency η Vo Ripple (pk-pk) Transient Response Current Limit Switching Frequency Inhibit Control (pin1) Input High Voltage Input Low Voltage Input Low Current External Capacitance Absolute Maximum Operating Temperature Range Storage Temperature Mechanical Shock Over Vin range Over Io range Min Vo =3.3V Vo ≤2.5V –40°C <Ta <+85°C Over Vin range Over Io range Includes set-point, line, load, –40°C ≤ T a ≤ +85°C PT5521 PT5522 PT5523 PT5524 PT5525 PT5526 PT5527 Vr ttr ∆Vtr Ilim ƒo 20MHz bandwidth 1A/µs load step from 50% to 100% I omax V o over/undershoot VIH VIL IIL Cout Ta Referenced to GND (pin3) Ts — Per Mil-STD-883D, Method 2002.3 , 1 msec, Half Sine, mounted to a fixture Per Mil-STD-883D, Method 2007.2, 20-2000 Hz, Soldered in a PC board — Materials meet UL 94V-0 Mechanical Vibration Weight Flammability Conditions — — Over Vin and Io ranges Pin 1 to GND Over Vin range 0.1 (1) 4.5 3.1 — — — — PT5520 SERIES Typ Max — — Units A V — ±0.5 — — 1.5 5.5 5.5 ±2 — ±6 ±10 — — ±3 %Vo — — — — — — — — — — — — 89 86 84 83 81 79 76 15 50 50 4 600 (2) — — — — — — — 30 — 100 — — mV µSec mV A kHz Vin –0.5 –0.2 — 100 (4) –40 (5) — — –0.5 — — Open (3) 0.5 — — +85 (6) mA µF °C -40 — — 500 +125 — °C G’s — — 15 (7) 6.5 — — G’s grams %Vo %Vo mV mV % V Notes: (1) The ISR will operate down to no load with reduced specifications. (2) This is a typical value only. The switching frequency will vary with input voltage. (3) The Inhibit control (pin 1) has an internal pull-up, and if left open-circuit the module will operate when input power is applied. A small low-leakage (<100nA) MOSFET is recommended to control this input. Ensure an On/Off transition time of ≤ 10µs. See application notes for more information. (4) The PT5520 Series requires a 100µF electrolytic or tantalum output capacitor for proper operation in all applications. (5) For operation below 0°C, the output capacitor C2 must have stable characteristics. Use either a low ESR tantalum or Oscon® capacitor. (6) See SOA curves or consult factory for the appropriate derating. (7) The case pins on the through-hole package types (suffixes N & A) must be soldered. For more information see the applicable package outline drawing. For technical support and more information, see inside back cover or visit www.ti.com Typical Characteristics PT5520 Series 1.5-A 5-V/3.3-V Input Adjustable Integrated Switching Regulator Performance Data; Vin =5.0V (See Note A) Performance Data; Vin =3.3V (See Note A) Efficiency vs Output Current Efficiency vs Output Current 100 100 90 90 Efficiency - % 80 70 60 PT5522 PT5523 PT5524 PT5525 PT5526 PT5527 80 Efficiency - % PT5521 PT5522 PT5523 PT5524 PT5525 PT5526 PT5527 70 60 50 50 40 40 0 0.3 0.6 0.9 1.2 0 1.5 0.3 0.6 Ripple vs Output Current 15 PT5522 PT5523 PT5524 PT5521 PT5525 PT5526 PT5527 10 5 Ripple - mV Ripple - mV 1.5 20 15 PT5522 PT5523 PT5524 PT5525 PT5526 PT5527 10 5 0 0 0 0.3 0.6 0.9 1.2 1.5 0 0.3 0.6 Iout (A) 0.9 1.2 1.5 Iout (A) Power Dissipation vs Output Current Power Dissipation vs Output Current 0.75 1 0.6 PT5521 PT5522 PT5523 PT5524 PT5525 PT5526 PT5527 0.6 0.4 Pd - Watts 0.8 Pd - Watts 1.2 Ripple vs Output Current 20 0.2 PT5522 PT5523 PT5524 PT5525 PT5526 PT5527 0.45 0.3 0.15 0 0 0 0.3 0.6 0.9 1.2 0 1.5 0.3 0.6 Iout (A) 0.9 1.2 1.5 Iout (A) Safe Operating Area; Vin =5.0V (See Note B) Safe Operating Area; Vin =3.3V (See Note B) 90.0 90.0 80.0 80.0 70.0 Airflow 200LFM 120LFM 60LFM Nat conv 60.0 50.0 40.0 30.0 Ambient Temperature (°C) Ambient Temperature (°C) 0.9 Iout (A) Iout (A) 70.0 200LFM 120LFM 60LFM Nat conv 60.0 50.0 40.0 30.0 20.0 20.0 0.0 0.3 0.6 0.9 1.2 1.5 0.0 Iout (A) 0.3 0.6 0.9 1.2 1.5 Iout (A) Note A: Characteristic data has been developed from actual products tested at 25°C. This data is considered typical data for the ISR. Note B: SOA curves represent operating conditions at which internal components are at or below manufacturer’s maximum rated operating temperatures. For technical support and more information, see inside back cover or visit www.ti.com Application Notes PT5500/5520 Series Adjusting the Output Voltage of the PT5500/20 Series of Excalibur Step-Down ISRs The output voltage of both the PT5500 and PT5520 series ISRs may be adjusted higher or lower than the factory trimmed pre-set voltage with the addition of a single external resistor. Table 1 accordingly gives the allowable adjustment range for each model for either series as Va (min) and Va (max). Adjust Up: An increase in the output voltage is obtained by adding a resistor R2, between pin 5 (Vo adj) and pin 3 (GND). Adjust Down: pin 4 (Vout). Add a resistor (R1), between pin 5 (Vo adj) and Notes: 1. Use only a single 1% resistor in either the (R1) or R2 location. Place the resistor as close to the ISR as possible. 2. Never connect capacitors from Vo adj to either GND or Vout. Any capacitance added to the Vo adjust pin will affect the stability of the ISR. 3. For each model, adjustments to the output voltage may place additional limits on the minimum input voltage. The revised minimum input voltage must comply with the following requirement. Vin(min) = (Va + 0.5)V or as specified in the data sheet, whichever is greater. Figure 1 2 + V IN V in PT5500 GND 3 4 Vo +VO Vo(adj) 5 C1 1 µF C e r a m i c (Optional) (R1) Adj Down C2 1 0 0 µF (Req'd) + R2 Adjust Up COM COM The values of (R1) [adjust down], and R2 [adjust up], can also be calculated using the following formulas. Refer to Figure 1 and Table 2 for both the placement and value of the required resistor; either (R1) or R2 as appropriate. Ro (Va – 0.9) Vo – Va (R1) = R2 = Where: Vo Va Ro Rs 0.9 Ro Va – Vo – Rs kΩ – Rs kΩ = Original output voltage = Adjusted output voltage = The resistance value from Table 1 = The series resistance from Table 1 Table 1 ISR ADJUSTMENT RANGE AND FORMULA PARAMETERS 3.0 Adc Rated PT5501 PT5502 PT5503 1.5 Adc Rated PT5521 PT5522 PT5523 PT5504 PT5524 PT5505 PT5525 PT5506 PT5526 PT5507 PT5527 Vo (nom) 3.3 2.5 2.0 1.8 1.5 1.2 1.0 Va (min) 2.88 1.97 1.64 1.5 1.3 1.08 0.97 Va (max) 3.5 Ω) Ro (kΩ 10.0 10.0 2.95 10.0 2.45 10.0 2.25 10.0 1.95 10.0 10.2 Rs (kΩ) 49.9 20.0 20.0 20.0 20.0 20.0 20.0 For technical support and more information, see inside back cover or visit www.ti.com 1.65 1.45 Application Notes continued PT5500/5520 Series Table 2 ISR ADJUSTMENT RESISTOR VALUES 3.0 Adc Rated PT5501 PT5502 1.5 Adc Rated PT5521 PT5522 Vo (nom) 3.3 2.5 Va (req.d) PT5503 PT5523 2.0 PT5504 PT5524 1.8 PT5505 PT5525 1.5 PT5506 PT5526 1.2 0.97 PT5507 PT5527 1.0 (0.0)kΩ 1.0 1.05 164.0kΩ 1.1 (0.0)kΩ 1.15 (30.0)kΩ 1.2 72.8kΩ 41.2kΩ 25.9kΩ 1.25 160.0kΩ 16.7kΩ 1.3 (0.0)kΩ 70.0kΩ 10.6kΩ 1.35 (10.0)kΩ 40.0kΩ 6.2kΩ 1.4 (30.0)kΩ 25.0kΩ 3.0kΩ 1.45 (90.0)kΩ 16.0kΩ 0.4kΩ 1.5 (0.0)kΩ 10.0kΩ 1.55 (6.0)kΩ 160.0kΩ 5.7kΩ 1.6 (15.0)kΩ 70.0kΩ 2.5kΩ 0.0kΩ 1.65 (1.4)kΩ (30.0)kΩ 40.0kΩ 1.7 (6.7)kΩ (60.0)kΩ 25.0kΩ 1.75 (14.0)kΩ (150.0)kΩ 1.8 (25.0)kΩ 1.85 (43.3)kΩ 160.0kΩ 5.7kΩ 1.9 (80.0)kΩ 70.0kΩ 2.5kΩ 1.95 (190.0)kΩ 40.0kΩ 0.0kΩ 2.0 (2.0)kΩ 16.0kΩ 10.0kΩ 25.0kΩ 2.05 (5.6)kΩ 160.0kΩ 16.0kΩ 2.1 (10.0)kΩ 70.0kΩ 10.0kΩ 2.15 (15.7)kΩ 0.0kΩ 5.7kΩ 2.2 (23.3)kΩ 25.0kΩ 2.5kΩ 2.25 (34.0)kΩ 16.0kΩ 0.0kΩ 2.3 (50.0)kΩ 10.0kΩ 2.35 (76.7)kΩ 5.7kΩ 2.4 (130.0)kΩ 2.5kΩ 2.45 (284.0)kΩ 0.0kΩ 2.5 2.55 160.0kΩ 2.6 70.0kΩ 2.65 40.0kΩ 2.7 25.0kΩ 2.75 16.0kΩ 2.8 10.0kΩ 2.85 2.9 5.7kΩ (0.0kΩ 2.5kΩ 2.95 (8.5)kΩ 0.0kΩ 3.0 (20.1)kΩ 3.05 (36.1)kΩ 3.1 (60.1)kΩ 3.15 (100.0)kΩ 3.2 (180.0)kΩ 3.25 (420.0)kΩ 3.3 3.35 130.0kΩ 3.4 40.1kΩ 3.45 10.1kΩ 3.48 R1 = (Blue) 0.0kΩ R2 = Black For technical support and more information, see inside back cover or visit www.ti.com Application Notes PT5500/5520 Series Using the Inhibit Control on the PT5500/PT5520 Series of Excalibur Step-Down ISRs For applications requiring output voltage On/Off control, both the PT5500 and PT5520 series of power modules incorporate an inhibit function. This function can be used for power-up sequencing or wherever there is a requirement for the module to be switched off. The On/Off function is provided by the Inhibit (pin 1) control. The ISR functions normally with Pin 1 open-circuit, providing a regulated output whenever a valid source voltage is applied to Vin, (pin 2). When a low-level2 ground signal is applied to pin 1, the regulator output will be disabled. Figure 1 shows an application schematic, which details the typical use of the Inhibit function. Note the discrete transistor (Q1). The Inhibit control has its own internal pull-up to +Vin potential. An open-collector or opendrain device is required to control this pin. Turn-On Time: In the circuit of Figure 1, turning Q1 on applies a low-voltage to the Inhibit control (pin 1) and disables the regulator output. Correspondingly, turning Q1 off allows the Inhibit control pin to be pulled high by its internal pull-up resistor. The ISR produces a fully regulated output voltage within 10-msec of the release of the Inhibit control pin. The actual turn-on time will vary with input voltage, output load, and the total amount of load capacitance. Figure 2 shows the typical rise in both output voltage and input current for a PT5502 (2.5V) following the turn-off of Q1 at time t =0. The waveform was measured with a 5Vdc input voltage, and 2.5A resistive load. Figure 2 Vo (1V / Div) The Inhibit pin control thresholds are given in Table 1. Equation 1 may be used to determine the approximate current drawn from the input source, and by Q1 when the regulator is in the inhibit state. IIN (1A / Div) VINH (5V / Div) Table 1; Inhibit Control Requirements Parameter Enable (VIH) Disable (VIL) Min Max Vin – 0.5 –0.2V Open -1 0 +0.5V 1 2 3 4 5 6 7 8 t (milli-secs) Equation 1 = Vin ÷ 10kΩ Iinh ± 20% Figure 1 + V IN 2 V in INH 1 C1, 1 µF (Optional) Inhibit COM PT5502 Q1 BSS138 Vo +VO 4 GND 3 C2 1 0 0µF + COM Notes: 1. Use an open-collector device (preferably a discrete transistor) for the Inhibit input. A pull-up resistor is not necessary. To disable the output voltage, the control pin should be pulled low to less than +0.5VDC. 2. Do not control the Inhibit input with an external DC voltage. This will lead to erratic operation of the ISR and may over-stress the regulator. 5. Avoid capacitance greater than 500pF at the Inhibit control pin. Excessive capacitance at this pin will cause the ISR to produce a pulse on the output voltage bus at turn-on. 6. Keep the On/Off transition to less than 10µs. This prevents erratic operation of the ISR, which could cause a momentary high output voltage. For technical support and more information, see inside back cover or visit www.ti.com IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third–party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265 Copyright 2001, Texas Instruments Incorporated