ZARLINK MVTX2601AG

MVTX2601
Unmanaged 24-Port 10/100 Mbps
Ethernet Switch
Data Sheet
February 2004
Features
•
•
•
•
•
•
•
•
•
•
•
•
•
Ordering Information
Ιntegrated Single-Chip 10/100 Mbps Ethernet
Switch
24 10/100 Mbps Autosensing, Fast Ethernet
Ports with RMII or Serial Interface (7WS). Each
port can independently use one of the two
interfaces
Serial interface
Supports one Frame Buffer Memory domain with
SRAM at 100 MHz
Supports SRAM domain memory size 1 MB or
2 MB
Applies centralized shared memory architecture
Up to 64 K MAC addresses
Maximum throughput is 2.4 Gbps non-blocking
High performance packet forwarding (7.143 M
packets per second) at full wire speed
Full Duplex Ethernet IEEE 802.3x Flow Control
Backpressure flow control for Half Duplex ports
Supports Ethernet multicasting and broadcasting
and flooding control
Supports per-system option to enable flow
control for best effort frames even on QoSenabled ports
Load sharing among trunked ports can be based
on source MAC and/or destination MAC
VLAN 1 MCT
•
MVTX2601AG
553 Pin HSBGA
-40°C to 85°C
•
•
•
•
•
Port Mirroring to a dedicated mirroring port or
port 23 in unmanaged mode
Full set of LED signals provided by a serial
interface
2 port trunking groups with up to 4 10/100 ports
per group
Built-In Self Test for internal and external SRAM
Traffic Classification
• 4 transmission priorities for Fast Ethernet ports with
2 dropping levels
• Classification based on:
-Port based priority
-VLAN Priority field in VLAN tagged frame
- DS/TOS field in IP packet
- UDP/TCP logical ports: 8 hard-wired and 8
programmable ports, including one programmable range
• The precedence of the above classifications is
programmable
Frame Data Buffer A
SRAM (1 M / 2 M)
FDB Interface
FCB
LED
Search
Engine
Frame Engine
24 x 10 / 100
RMII
Ports 0 - 23
Management
Module
MCT
Link
Parallel /
Serial
Figure 1 - MVTX260 1 System Block Diagram
1
Zarlink Semiconductor Inc.
Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc.
Copyright 2003-2004, Zarlink Semiconductor Inc. All Rights Reserved.
MVTX2601
•
•
QoS Support
Supports IEEE 802.1p/Q Quality of Service with 4 transmission priority queues with delay bounded, strict
priority, and WFQ service disciplines
•
•
•
•
•
•
•
Data Sheet
Provides 2 levels of dropping precedence with WRED mechanism
User controls the WRED thresholds
Buffer management: per class and per port buffer reservations
Port-based priority: VLAN priority in a tagged frame can be overwritten by the priority of Port VLAN ID
Hardware auto-negotiation through serial management interface (MDIO) for Ethernet ports
Built-in reset logic triggered by system malfunction
I2C EEPROM for configuration
Description
The MVTX2601 is a high density, low cost, high performance, non-blocking Ethernet switch chip. A single chip
provides 24 ports at 10/100 Mbps, and a CPU interface for managed and unmanaged switch applications.
The chip supports up to 64 K MAC addresses. The centralized shared memory architecture permits a very high
performance packet forwarding rate at up to 3.57 1 M packets per second at full wire speed. The chip is optimized
to provide low-cost, high-performance workgroup switching.
The Frame Buffer Memory domains utilize cost-effective, high-performance synchronous SRAM with aggregate
bandwidth of 6.4 Gbps to support full wire speed on all ports simultaneously.
With delay bounded, strict priority, and/or WFQ transmission scheduling, and WRED dropping schemes, the
MVTX2601 provides powerful QoS functions for various multimedia and mission-critical applications. The chip
provides 4 transmission priorities and two levels of dropping precedence. Each packet is assigned a transmission
priority and dropping precedence based on the VLAN priority field in a VLAN tagged frame, or the DS/TOS field, or
the UDP/TCP logical port fields in IP packets. The MVTX2601 recognizes a total of 16 UDP/TCP logical ports, 8
hard-wired and 8 programmable (including one programmable range).
The MVTX2601 supports two groups of port trunking/load sharing. Each 10/100 group can contain up to 4 ports.
Port trunking/load sharing can be used to group ports between interlinked switches to increase the effective
network bandwidth.
In half-duplex mode, all ports support backpressure flow control to minimize the risk of losing data during long
activity bursts. In full-duplex mode IEEE 802.3x flow control is provided. The MVTX2601 also supports a persystem option to enable flow control for best effort frames, even on QoS-enabled ports.
The MVTX2601 is fabricated using 0.25 micron technology. Inputs, however, are 3.3 V tolerant, and the outputs are
capable of directly interfacing to LVTTL levels. The MVTX2601 is packaged in a 553-pin Ball Grid Array package.
2
Zarlink Semiconductor Inc.
MVTX2601
Data Sheet
Table of Contents
1.0 Block Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1 Frame Data Buffer (FDB) Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 10/100 MAC Module (RMAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 Configuration Interface Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Frame Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 Search Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.6 LED Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.7 Internal Memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.0 System Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1 Configuration Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 I2C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.1 Start Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.3 Data Direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.4 Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.5 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.6 Stop Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Synchronous Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.1 Write Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.2 Read Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.0 MVTX2601 Data Forwarding Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1 Unicast Data Frame Forwarding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Multicast Data Frame Forwarding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.0 Memory Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Detailed Memory Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3 Memory Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.0 Search Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.1 Search Engine Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.2 Basic Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.3 Search, Learning and Aging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.3.1 MAC Search. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.3.2 Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.3.3 Aging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.4 Quality of Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.5 Priority Classification Rule. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.6 Port Based VLAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.7 Memory Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.0 Frame Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.1 Data Forwarding Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.2 Frame Engine Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.2.1 FCB Manager. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.2.2 Rx Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.2.3 RxDMA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.2.4 TxQ Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.3 Port Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.4 TxDMA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
7.0 Quality of Service and Flow Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
7.1 Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
7.2 Four QoS Configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
7.3 Delay Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3
Zarlink Semiconductor Inc.
MVTX2601
Data Sheet
Table of Contents
7.4 Strict Priority and Best Effort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7.5 Weighted Fair Queuing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7.6 WRED Drop Threshold Management Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7.7 Buffer Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.7.1 Dropping When Buffers Are Scarce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.8 MVTX2601 Flow Control Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.8.1 Unicast Flow Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.8.2 Multicast Flow Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.9 Mapping to IETF Diffserv Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
8.0 Port Trunking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
8.1 Features and Restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
8.2 Unicast Packet Forwarding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
8.3 Multicast Packet Forwarding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
8.4 Trunking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
9.0 Port Mirroring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
9.1 Port Mirroring Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
9.2 Setting Registers for Port Mirroring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
10.0 GPSI (7WS) Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
10.1 GPSI connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
10.2 SCAN LINK and SCAN COL interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
11.0 LED Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
11.1 LED Interface Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
11.2 Port Status. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
11.3 LED Interface Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
12.0 Register Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
12.1 MVTX2601 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
12.2 Group 0 Address MAC Ports Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
12.2.1 ECR1Pn: Port N Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
12.2.2 ECR2Pn: Port N Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
12.3 Group 1 Address VLAN Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
12.3.1 AVTCL – VLAN Type Code Register Low . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
12.3.2 AVTCH – VLAN Type Code Register High . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
12.3.3 PVMAP00_0 – Port 00 Configuration Register 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
12.3.4 PVMAP00_1 – Port 00 Configuration Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
12.3.5 PVMAP00_2 – Port 00 Configuration Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
12.3.6 PVMAP00_3 – Port 00 Configuration Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
12.4 Port Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
12.4.1 PVMODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
12.5 Group 2 Address Port Trunking Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
12.5.1 TRUNK0_MODE– Trunk group 0 mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
12.5.2 TRUNK1_MODE – Trunk group 1 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
12.6 Group 4 Address Search Engine Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
12.6.1 TX_AGE – Tx Queue Aging timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
12.6.2 AGETIME_LOW – MAC address aging time Low . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
12.6.3 AGETIME_HIGH –MAC address aging time High . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
12.6.4 SE_OPMODE – Search Engine Operation Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
12.7 Group 5 Address Buffer Control/QOS Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
12.7.1 FCBAT – FCB Aging Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
12.7.2 QOSC – QOS Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
12.7.3 FCR – Flooding Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
12.7.4 AVPML – VLAN Priority Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4
Zarlink Semiconductor Inc.
MVTX2601
Data Sheet
Table of Contents
12.7.5 AVPMM – VLAN Priority Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
12.7.6 AVPMH – VLAN Priority Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
12.7.7 TOSPML – TOS Priority Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
12.7.8 TOSPMM – TOS Priority Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
12.7.9 TOSPMH – TOS Priority Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
12.7.10 AVDM – VLAN Discard Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
12.7.11 TOSDML – TOS Discard Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
12.7.12 BMRC - Broadcast/Multicast Rate Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
12.7.13 UCC – Unicast Congestion Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
12.7.14 MCC – Multicast Congestion Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
12.7.15 PR100 – Port Reservation for 10/100 ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
12.7.16 SFCB – Share FCB Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
12.7.17 C2RS – Class 2 Reserve Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
12.7.18 C3RS – Class 3 Reserve Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
12.7.19 C4RS – Class 4 Reserve Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
12.7.20 C5RS – Class 5 Reserve Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
12.7.21 C6RS – Class 6 Reserve Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
12.7.22 C7RS – Class 7 Reserve Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
12.7.23 Classes Byte Limit Set 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
12.7.24 Classes Byte Limit Set 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
12.7.25 Classes Byte Limit Set 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
12.7.26 Classes Byte Limit Set 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
12.7.27 Classes WFQ Credit Set 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
12.7.28 Classes WFQ Credit Set 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
12.7.29 Classes WFQ Credit Set 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
12.7.30 Classes WFQ Credit Set 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
12.7.31 RDRC0 – WRED Rate Control 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
12.7.32 RDRC1 – WRED Rate Control 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
12.7.33 User Defined Logical Ports and Well Known Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
12.7.33.1 USER_PORT0_(0~7) – User Define Logical Port (0~7). . . . . . . . . . . . . . . . . . . . . . . . . . . 54
12.7.33.2 USER_PORT_[1:0]_PRIORITY - User Define Logic Port 1 and 0 Priority . . . . . . . . . . . . . 54
12.7.33.3 USER_PORT_[3:2]_PRIORITY - User Define Logic Port 3 and 2 Priority . . . . . . . . . . . . . 55
12.7.33.4 USER_PORT_[5:4]_PRIORITY - User Define Logic Port 5 and 4 Priority . . . . . . . . . . . . . 55
12.7.33.5 USER_PORT_[7:6]_PRIORITY - User Define Logic Port 7 and 6 Priority . . . . . . . . . . . . . 55
12.7.33.6 USER_PORT_ENABLE [7:0] – User Define Logic 7 to 0 Port Enables . . . . . . . . . . . . . . . 55
12.7.33.7 WELL_KNOWN_PORT [1:0] PRIORITY- Well Known Logic Port 1 and 0 Priority . . . . . . 55
12.7.33.8 WELL_KNOWN_PORT [3:2] PRIORITY- Well Known Logic Port 3 and 2 Priority . . . . . . 56
12.7.33.9 WELL_KNOWN_PORT [5:4] PRIORITY- Well Known Logic Port 5 and 4 Priority . . . . . . 56
12.7.33.10 WELL_KNOWN_PORT [7:6] PRIORITY- Well Known Logic Port 7 and 6 Priority . . . . . 56
12.7.33.11 WELL KNOWN_PORT_ENABLE [7:0] – Well Known Logic 7 to 0 Port Enables. . . . . . . 56
12.7.33.12 RLOWL – User Define Range Low Bit 7:0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
12.7.33.13 RLOWH – User Define Range Low Bit 15:8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
12.7.33.14 RHIGHL – User Define Range High Bit 7:0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
12.7.33.15 RHIGHH – User Define Range High Bit 15:8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
12.7.33.16 RPRIORITY – User Define Range Priority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
12.8 Group 6 Address MISC Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
12.8.1 MII_OP0 – MII Register Option 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
12.8.2 MII_OP1 – MII Register Option 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
12.8.3 FEN – Feature Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
12.8.4 MIIC0 – MII Command Register 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
12.8.5 MIIC1 – MII Command Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
12.8.6 MIIC2 – MII Command Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5
Zarlink Semiconductor Inc.
MVTX2601
Data Sheet
Table of Contents
12.8.7 MIIC3 – MII Command Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
12.8.8 MIID0 – MII Data Register 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
12.8.9 MIID1 – MII Data Register 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
12.8.10 LED Mode – LED Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
12.8.11 CHECKSUM - EEPROM Checksum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
12.9 Group 7 Address Port Mirroring Group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
12.9.1 MIRROR1_SRC – Port Mirror source port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
12.9.2 MIRROR1_DEST – Port Mirror destination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
12.9.3 MIRROR2_SRC – Port Mirror source port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
12.9.4 MIRROR2_DEST – Port Mirror destination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
12.10 Group F Address CPU Access Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
12.10.1 GCR-Global Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
12.10.2 DCR-Device Status and Signature Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
12.10.3 DCR1-Chip status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
12.10.4 DPST – Device Port Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
12.10.5 DTST – Data read back register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
12.10.6 PLLCR - PLL Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
12.10.7 LCLK - LA_CLK delay from internal OE_CLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
12.10.8 OECLK - Internal OE_CLK delay from SCLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
12.10.9 DA – DA Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
13.0 BGA and Ball Signal Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
13.1 BGA Views (Top-View) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
13.1.1 Encapsulated View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
13.2 Ball – Signal Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
13.2.1 Ball Signal Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
13.3 Ball – Signal Name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
13.4 AC/DC Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
13.4.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
13.4.2 DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
13.4.3 Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
13.4.4 Typical Reset & Bootstrap Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
13.5 Local Frame Buffer SBRAM Memory Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
13.5.1 Local SBRAM Memory Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
13.6 AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
13.6.1 Reduced Media Independent Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
13.6.2 LED Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
13.6.3 SCANLINK SCANCOL Output Delay Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
13.6.4 MDIO Input Setup and Hold Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
13.6.5 I2C Input Setup Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
13.6.6 Serial Interface Setup Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6
Zarlink Semiconductor Inc.
MVTX2601
Data Sheet
List of Figures
Figure 1 - MVTX260 1 System Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Figure 2 - Data Transfer Format for I2C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 3 - MVTX2601 SRAM Interface Block Diagram (DMAs for 10/1000 Ports Only) . . . . . . . . . . . . . . . . . . . . 13
Figure 4 - Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 5 - Priority Classification Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 6 - Memory Configuration for 1 Bank, 1 Layer, 1 MB Total . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 7 - Memory Configuration for 1 Bank, 2 Layers, 2 MB Total . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 8 - Memory Configuration for 1 Bank, 1 Layer, 2 MB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 9 - Buffer Partition Scheme Used to Implement MVTX2601 Buffer Management . . . . . . . . . . . . . . . . . . . 26
Figure 10 - GPSI (7WS) Mode Connection Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 11 - SCAN LINK and SCAN COLLISON Status Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 12 - Timing Diagram of LED Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 13 - Typical Reset & Bootstrap Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Figure 14 - Local Memory Interface – Input Setup and Hold Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Figure 15 - Local Memory Interface - Output Valid Delay Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Figure 16 - AC Characteristics – Reduced Media Independent Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Figure 17 - AC Characteristics – Reduced Media Independent Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Figure 18 - AC Characteristics – LED Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Figure 19 - SCANLINK SCANCOL Output Delay Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Figure 20 - SCANLINK, SCANCOL Setup Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Figure 21 - MDIO Input Setup and Hold Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Figure 22 - MDIO Output Delay Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Figure 23 - I2C Input Setup Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Figure 24 - I2C Output Delay Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Figure 25 - Serial Interface Setup Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Figure 26 - Serial Interface Output Delay Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7
Zarlink Semiconductor Inc.
MVTX2601
Data Sheet
List of Tables
Table 1 - Memory Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 2 - PVMAP Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 3 - Supported Memory Configurations (SBRAM Mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 4 - Options for Memory Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 5 - Two Dimensional World Traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 6 - Four QoS Configurations for a 10/100Mbps Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 7 - WRED Drop Thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 8 - Mapping between MVTX2601 and IETF Diffserv Classes for 10/100 Ports . . . . . . . . . . . . . . . . . . . . . . 27
Table 9 - MVTX2601 Features Enabling IETF Diffserv Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 10 - Reset & Bootstrap Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Table 11 - AC Characteristics – Reduced Media Independent Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Table 12 - AC Characteristics – LED Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Table 13 - SCANLINK, SCANCOL Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Table 14 - MDIO Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Table 15 - I2C Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Table 16 - Serial Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
8
Zarlink Semiconductor Inc.
MVTX2601
1.0
Block Functionality
1.1
Frame Data Buffer (FDB) Interfaces
Data Sheet
The FDB interface supports pipelined synchronous burst SRAM (SBRAM) memory at 100 MHz. To ensure a nonblocking switch, one memory domain with a 64 bit wide memory bus is required. At 100 MHz, the aggregate
memory bandwidth is 6.4 Gbps, which is enough to support 24 10/100 Mbps.
The Switching Database is also located in the external SBRAM; it is used for storing MAC addresses and their
physical port number.
1.2
10/100 MAC Module (RMAC)
The 10/100 Media Access Control module provides the necessary buffers and control interface between the Frame
Engine (FE) and the external physical device (PHY). The MVTX2601 has two interfaces, RMII or Serial (only for
10 M). The 10/100 MAC of the MVTX2601 device meets the IEEE 802.3 specification. It is able to operate in either
Half or Full Duplex mode with a back pressure/flow control mechanism. In addition, it will automatically retransmit
upon collision for up to 16 total transmissions. The PHY addresses for 24 10/100 MAC are from 08h to 1Fh.
1.3
Configuration Interface Module
The MVTX2601 supports a serial and an I2C interface, which provides an easy way to configure the system. Once
configured, the resulting configuration can be stored in an I2C EEPROM.
1.4
Frame Engine
The main function of the frame engine is to forward a frame to its proper destination port or ports. When a frame
arrives, the frame engine parses the frame header (64 bytes) and formulates a switching request, sent to the
search engine to resolve the destination port. The arriving frame is moved to the FDB. After receiving a switch
response from the search engine, the frame engine performs transmission scheduling based on the frame’s priority.
The frame engine forwards the frame to the MAC module when the frame is ready to be sent.
1.5
Search Engine
The Search Engine resolves the frame’s destination port or ports according to the destination MAC address (L2). It
also performs MAC learning, priority assignment and trunking functions.
1.6
LED Interface
The LED interface provides a serial interface for carrying 24 port status signals.
1.7
Internal Memory
Several internal tables are required and are described as follows:
•
•
Frame Control Block (FCB) - Each FCB entry contains the control information of the associated frame
stored in the FDB, e.g., frame size, read/write pointer, transmission priority, etc.
MCT Link Table - The MCT Link Table stores the linked list of MCT entries that have collisions in the
external MAC Table. The external MAC table is located in the FDB Memory.
Note: the external MAC table is located in the external SBRAM Memory.
9
Zarlink Semiconductor Inc.
MVTX2601
2.0
System Configuration
2.1
Configuration Mode
Data Sheet
The MVTX2601 can be configured by EEPROM (24C02 or compatible) via an I2C interface at boot time or via a
synchronous serial interface during operation.
2.2
I2C Interface
The I2C interface uses two bus lines, a serial data line (SDA) and a serial clock line (SCL). The SCL line carries the
control signals that facilitate the transfer of information from EEPROM to the switch. Data transfer is 8-bit serial and
bidirectional, at 50 Kbps. Data transfer is performed between master and slave IC using a request /
acknowledgment style of protocol. The master IC generates the timing signals and terminates data transfer.
Figure 2 depicts the data transfer format.
START
SLAVE ADDRESS
R/W
ACK
DATA 1 (8 bits)
ACK
DATA 2
ACK
DATA M
ACK
STOP
Figure 2 - Data Transfer Format for I 2C Interface
2.2.1
Start Condition
Generated by the master (in our case, the MVTX2601). The bus is considered to be busy after the Start condition is
generated. The Start condition occurs if while the SCL line is High, there is a High-to-Low transition of the SDA line.
Other than in the Start condition (and Stop condition), the data on the SDA line must be stable during the High
period of SCL. The High or Low state of SDA can only change when SCL is Low. In addition, when the I2C bus is
free, both lines are High.
2.2.2
Address
The first byte after the Start condition determines which slave the master will select. The slave in our case is the
EEPROM. The first seven bits of the first data byte make up the slave address.
2.2.3
Data Direction
The eighth bit in the first byte after the Start condition determines the direction (R/W) of the message. A master
transmitter sets this bit to W; a master receiver sets this bit to R.
2.2.4
Acknowledgment
Like all clock pulses, the acknowledgment-related clock pulse is generated by the master. However, the transmitter
releases the SDA line (High) during the acknowledgment clock pulse. Furthermore, the receiver must pull down the
SDA line during the acknowledge pulse so that it remains stable Low during the High period of this clock pulse. An
acknowledgment pulse follows every byte transfer.
If a slave receiver does not acknowledge after any byte, then the master generates a Stop condition and aborts the
transfer.
If a master receiver does not acknowledge after any byte, then the slave transmitter must release the SDA line to let
the master generate the Stop condition.
2.2.5
Data
After the first byte containing the address, all bytes that follow are data bytes. Each byte must be followed by an
acknowledge bit. Data is transferred MSB first.
10
Zarlink Semiconductor Inc.
MVTX2601
2.2.6
Data Sheet
Stop Condition
Generated by the master. The bus is considered to be free after the Stop condition is generated. The Stop condition
occurs if while the SCL line is High, there is a Low-to-High transition of the SDA line.
The I2C interface serves the function of configuring the MVTX2601 at boot time. The master is the MVTX2601 and
the slave is the EEPROM memory.
2.3
Synchronous Serial Interface
The synchronous serial interface serves the function of configuring the MVTX2601 not at boot time but via a PC.
The PC serves as master and the MVTX2601 serves as slave. The protocol for the synchronous serial interface is
nearly identical to the I2C protocol. The main difference is that there is no acknowledgment bit after each byte of
data transferred.
The unmanaged MVTX2601 uses a synchronous serial interface to program the internal registers. To reduce the
number of signals required, the register address, command and data are shifted in serially through the D0 pin.
STROBE- pin is used as the shift clock. AUTOFD- pin is used as data return path.
Each command consists of four parts.
START pulse
Register Address
Read or Write command
Data to be written or read back
Any command can be aborted in the middle by sending a ABORT pulse to the MVTX2601.
A START command is detected when D0 is sampled high when STROBE- rise and D0 is sampled low when
STROBE- fall.
An ABORT command is detected when D0 is sampled low when STROBE- rise and D0 is sampled high when
STROBE- fall.
2.3.1
Write Command
STROBE2 extra clock cycles after
last transfer
D0
A0
START
A1
A2
...
A9 A10 A11 W
ADDRESS
D0
D1
D2
COMMAND
11
Zarlink Semiconductor Inc.
D3 D4 D5
DATA
D6
D7
MVTX2601
2.3.2
Data Sheet
Read Command
STROBE-
A0 A1
A1 A2
A2
A0
A2
D0
START
R
A10 A11
A11
A9 A10
... A9
ADDRESS
COMMAND
DATA
D4 D5 D6 D7
D0
D1 D2
D7
D2 D3
D3 D4
D0 D1
AUTOFD-
All registers in MVTX2601 can be modified through this synchronous serial interface.
3.0
MVTX2601 Data Forwarding Protocol
3.1
Unicast Data Frame Forwarding
When a frame arrives, it is assigned a handle in memory by the Frame Control Buffer Manager (FCB Manager). An
FCB handle will always be available because of advance buffer reservations.
The memory (SRAM) interface consists of a 64-bit bus connected to SRAM bank. The Receive DMA (RxDMA) is
responsible for multiplexing the data and the address. On a port’s “turn,” the RxDMA will move 8 bytes (or up to the
end-of-frame) from the port’s associated RxFIFO into memory (Frame Data Buffer, or FDB).
Once an entire frame has been moved to the FDB and a good end-of-frame (EOF) has been received, the Rx
interface makes a switch request. The RxDMA arbitrates among multiple switch requests.
The switch request consists of the first 64 bytes of a frame, containing among other things, the source and
destination MAC addresses of the frame. The search engine places a switch response in the switch response
queue of the frame engine when done. Among other information, the search engine will have resolved the
destination port of the frame and will have determined that the frame is unicast.
After processing the switch response, the Transmission Queue Manager (TxQ manager) of the frame engine is
responsible for notifying the destination port that it has a frame to forward to it. But first, the TxQ manager has to
decide whether or not to drop the frame, based on global FDB reservations and usage, as well as TxQ occupancy
at the destination. If the frame is not dropped, then the TxQ manager links the frame’s FCB to the correct per-portper-class TxQ. Unicast TxQ’s are linked lists of transmission jobs, represented by their associated frames’ FCB’s.
There is one linked list for each transmission class for each port. There are 4 transmission classes for each of the
24 10/ 100 ports
The TxQ manager is responsible for scheduling transmission among the queues representing different classes for a
port. When the port control module determines that there is room in the MAC Transmission FIFO (TxFIFO) for
another frame, it requests the handle of a new frame from the TxQ manager. The TxQ manager chooses among
the head-of-line (HOL) frames from the per-class queues for that port, using a Zarlink Semiconductor scheduling
algorithm.
The Transmission DMA (TxDMA) is responsible for multiplexing the data and the address. On a port’s turn, the
TxDMA will move 8 bytes (or up to the EOF) from memory into the port’s associated TxFIFO. After reading the EOF,
the port control requests a FCB release for that frame. The TxDMA arbitrates among multiple buffer release
requests.
The frame is transmitted from the TxFIFO to the line.
12
Zarlink Semiconductor Inc.
MVTX2601
3.2
Data Sheet
Multicast Data Frame Forwarding
After receiving the switch response, the TxQ manager has to make the dropping decision. A global decision to drop
can be made, based on global FDB utilization and reservations. If so, then the FCB is released and the frame is
dropped. In addition, a selective decision to drop can be made, based on the TxQ occupancy at some subset of the
multicast packet’s destinations. If so, then the frame is dropped at some destinations but not others and the FCB is
not released.
If the frame is not dropped at a particular destination port, then the TxQ manager formats an entry in the multicast
queue for that port and class. Multicast queues are physical queues (unlike the linked lists for unicast frames).
There are 2 multicast queues for each of the 24 10/100 ports. The queue with higher priority has room for 32 entries
and the queue with lower priority has room for 64 entries. There is one multicast queue for every two priority
classes. For the 10/100 ports to map the 8 transmit priorities into 2 multicast queues, the 2 LSB are discarded.
During scheduling, the TxQ manager treats the unicast queue and the multicast queue of the same class as one
logical queue. The older head of line of the two queues is forwarded first.
The port control requests a FCB release only after the EOF for the multicast frame has been read by all ports to
which the frame is destined.
4.0
Memory Interface
4.1
Overview
The MVTX2601 provides a 64-bit wide SRAM bank. Each DMA can read and write from the SRAM bank. The
following figure provides an overview of the MVTX2601 SRAM bank.
SRAM
TX DMA
0-7
TX DMA
8-15
TX DMA
16-23
RX DMA
0-7
RX DMA
8-15
RX DMA
16-23
Figure 3 - MVTX2601 SRAM Interface Block Diagram (DMAs for 10/1000 Ports Only)
4.2
Detailed Memory Information
Because the bus for each bank is 64 bits wide, frames are broken into 8-byte granules, written to and read from
memory.
4.3
Memory Requirements
To support 64 K MAC address, 2 MB memory is required. When VLAN support is enabled, 512 entries of the MAC
address table are used for storing the VLAN ID at VLAN Index Mapping Table.
13
Zarlink Semiconductor Inc.
MVTX2601
Data Sheet
Up to 1 K Ethernet frame buffers are supported and they will use 1.5 MB of memory. Each frame uses 1536 bytes.
The maximum system memory requirement is 2 MB. If less memory is desired, the configuration can scale down.
Memory Bank
Frame Buffer
Max MAC Address
1M
1K
32 K
2M
2K
64 K
Table 1 - Memory Configuration
1 M Bank
2 M Bank
0.75 M
1.5 M
0.25 M
0.5 M
Frame Data Buffer (FDR) Area
MAC Address Control Table (MCT) Area
Figure 4 - Memory Map
5.0
Search Engine
5.1
Search Engine Overview
The MVTX2601 search engine is optimized for high throughput searching, with enhanced features to support:
•
•
•
•
•
•
5.2
Up to 64 K MAC addresses
2 groups of port trunking
Traffic classification into 4 transmission priorities, and 2 drop precedence levels
Flooding, Broadcast, Multicast Storm Control
MAC address learning and aging
Port based VLAN
Basic Flow
Shortly after a frame enters the MVTX2601 and is written to the Frame Data Buffer (FDB), the frame engine
generates a Switch Request, which is sent to the search engine. The switch request consists of the first 64 bytes of
the frame, which contain all the necessary information for the search engine to perform its task. When the search
engine is done, it writes to the Switch Response Queue and the frame engine uses the information provided in that
queue for scheduling and forwarding.
In performing its task, the search engine extracts and compresses the useful information from the 64-byte switch
request. Among the information extracted are the source and destination MAC addresses, the transmission and
discard priorities, whether the frame is unicast or multicast. Requests are sent to the external SRAM to locate the
associated entries in the external hash table.
14
Zarlink Semiconductor Inc.
MVTX2601
Data Sheet
When all the information has been collected from external SRAM, the search engine has to compare the MAC
address on the current entry with the MAC address for which it is searching. If it is not a match, the process is
repeated on the internal MCT Table. All MCT entries other than the first of each linked list are maintained internal to
the chip. If the desired MAC address is still not found, then the result is either learning (source MAC address
unknown) or flooding (destination MAC address unknown).
In addition, port based VLAN information is used to select the correct set of destination ports for the frame (for
multicast) or to verify that the frame’s destination port is associated with the VLAN (for unicast).
If the destination MAC address belongs to a port trunk, then the trunk number is retrieved instead of the port
number. But on which port of the trunk will the frame be transmitted? This is easily computed using a hash of the
source and destination MAC addresses.
As stated earlier, when all the information is compiled the switch response is generated. The search engine also
interacts with the CPU with regard to learning and aging.
5.3
5.3.1
Search, Learning and Aging
MAC Search
The search block performs source MAC address and destination MAC address searching. As we indicated earlier,
if a match is not found, then the next entry in the linked list must be examined and so on until a match is found or
the end of the list is reached.
The port based VLAN bitmap is used to determine whether the frame should be forwarded to the outgoing port.
When the egress port is not included in the ingress port VLAN bitmap, the packet is discarded.
The MAC search block is also responsible for updating the source MAC address timestamp and the VLAN port
association timestamp, used for aging.
5.3.2
Learning
The learning module learns new MAC addresses and performs port change operations on the MCT database. The
goal of learning is to update this database as the networking environment changes over time. Learning and port
change will be performed based on memory slot availability only.
5.3.3
Aging
Aging time is controlled by register 400h and 401h.
The aging module scans and ages MCT entries based on a programmable “age out” time interval. As we indicated
earlier, the search module updates the source MAC address timestamps for each frame it processes. When an
entry is ready to be aged, the entry is removed from the table.
5.4
Quality of Service
Quality of Service (QoS) refers to the ability of a network to provide better service to selected network traffic over
various technologies. Primary goals of QoS include dedicated bandwidth, controlled jitter and latency (required by
some real-time and interactive traffic) and improved loss characteristics.
Traditional Ethernet networks have had no prioritization of traffic. Without a protocol to prioritize or differentiate
traffic, a service level known as “best effort” attempts to get all the packets to their intended destinations with
minimum delay; however, there are no guarantees. In a congested network or when a low-performance
switch/router is overloaded, “best effort” becomes unsuitable for delay-sensitive traffic and mission-critical data
transmission.
15
Zarlink Semiconductor Inc.
MVTX2601
Data Sheet
The advent of QoS for packet-based systems accommodates the integration of delay-sensitive video and
multimedia traffic onto any existing Ethernet network. It also alleviates the congestion issues that have previously
plagued such “best effort” networking systems. QoS provides Ethernet networks with the breakthrough technology
to prioritize traffic and ensure that a certain transmission will have a guaranteed minimum amount of bandwidth.
Extensive core QoS mechanisms are built into the MVTX2601 architecture to ensure policy enforcement and
buffering of the ingress port, as well as weighted fair-queue (WFQ) scheduling at the egress port.
In the MVTX2601, QoS-based policies sort traffic into a small number of classes and mark the packets accordingly.
The QoS identifier provides specific treatment to traffic in different classes, so that different quality of service is
provided to each class. Frame and packet scheduling and discarding policies are determined by the class to which
the frames and packets belong. For example, the overall service given to frames and packets in the premium class
will be better than that given to the standard class; the premium class is expected to experience lower loss rate or
delay.
The MVTX2601 supports the following QoS techniques:
•
•
•
•
5.5
In a port-based setup, any station connected to the same physical port of the switch will have the same
transmit priority
In a tag-based setup, a 3-bit field in the VLAN tag provides the priority of the packet. This priority can be
mapped to different queues in the switch to provide QoS.
In a TOS/DS-based set up, TOS stands for “Type of Service” that may include “minimize delay,” “maximize
throughput” or “maximize reliability.” Network nodes may select routing paths or forwarding behaviours that
are suitably engineered to satisfy the service request.
In a logical port-based set up, a logical port provides the application information of the packet. Certain
applications are more sensitive to delays than others; using logical ports to classify packets can help speed
up delay sensitive applications such as VoIP.
Priority Classification Rule
Figure 5 shows the MVTX2601 priority classification rule.
Yes
Use Default Port Settings
Fix Port Priority ?
No
Use Default Port Settings
No
Yes
Yes
No
No
IP
TOS Precedence over LAN?
(FCR Regiser, Bit 7)
VLAN Tag ?
Yes
No
IP Frame ?
Yes
No
Yes
Use VLAN Priority
Use Logical Port
Figure 5 - Priority Classification Rule
16
Zarlink Semiconductor Inc.
Use TOS
MVTX2601
5.6
Data Sheet
Port Based VLAN
An administrator can use the PVMAP Registers to configure the MVTX2601 for port-based VLAN. For example,
ports 1-3 might be assigned to the Marketing VLAN, ports 4-6 to the Engineering VLAN, and ports 7-9 to the
Administrative VLAN. The MVTX2601 determines the VLAN membership of each packet by noting the port on
which it arrives. From there, the MVTX2601 determines which outgoing port(s) is/are eligible to transmit each
packet, or whether the packet should be discarded.
Destination Port Numbers Bit Map
Port Registers
23
Register for Port #0
PVMAP00_0[7:0] to PVMAP00_2[7:0]
…
2
1
0
0
1
1
0
Register for Port #1
PVMAP01_0[7:0] to PVMAP01_2[7:0]
0
1
0
1
Register for Port #2
PVMAP02_0[7:0] to PVMAP02_2[7:0]
0
0
0
0
0
0
0
0
…
Register for Port #23
PVMAP23_0[7:0] to PVMAP23_2[7:0]
Table 2 - PVMAP Register
For example, in the above table, a "1" denotes that an outgoing port is eligible to receive a packet from an incoming
port. A 0 (zero) denotes that an outgoing port is not eligible to receive a packet from an incoming port.
In this example:
•
•
•
Data packets received at port #0 are eligible to be sent to outgoing ports 1 and 2
Data packets received at port #1 are eligible to be sent to outgoing ports 0, and 2
Data packets received at port #2 are not eligible to be sent to ports 0 and 1
5.7
Memory Configurations
The MVTX2601 supports the following memory configurations. It supports 1 M and 2 M configurations.
Configuration
Single Layer
(Bootstrap pin
TSTOUT13 = open)
1M
(Bootstrap pin
TSTOUT7 = open)
2M
(Bootstrap pin
TSTOUT7 = pull down)
Two 128 K x 32
SRAM/bank
Two 256 K x 32
SRAM/bank
Connect 0E# and WE#
Four 128 K x 32
SRAM/bank
Connect 0E0# and WE0#
Connect 0E1# and WE1#
Connections
or
One 128 K x 64 SRAM/bank
Double Layer
(Bootstrap pin
TSTOUT13 = pull down)
NA
or
Two 128 K x 64 SRAM/bank
Table 3 - Supported Memory Configurations (SBRAM Mode)
17
Zarlink Semiconductor Inc.
MVTX2601
Data Sheet
Frame data Buffer
Only Bank A
1M
(SRAM)
2M
(SRAM)
MVTX2601
X
X
MVTX2602
X
X
Bank A and Bank B
1 M/bank
(SRAM)
2 M/bank
(SRAM)
X
X
MVTX2603
MVTX2603
(Gigabit ports in 2 giga
mode)
MVTX2604
X
Bank A and Bank B
1 M/bank
(ZBT SRAM)
2 M/bank
(ZBT SRAM)
X (125 Mhz)
X (125 Mhz)
X (125 Mhz)
X (125 Mhz)
X
MVTX2604 (Gigabit ports in
2 giga mode)
Table 4 - Options for Memory Configuration
Bank A (1 M One Layer)
Data LA_D[63:32]
Data LA_D[31:0]
SRAM
Memory
128 K
32 bits
Memory
128 K
32 bits
Address LA_A[19:3]
Bootstraps: TSTOUT7 = Open, TSTOUT13 = Open, TSTOUT4 = Open
Figure 6 - Memory Configuration for 1 Bank, 1 Layer, 1 MB Total
18
Zarlink Semiconductor Inc.
MVTX2601
Data Sheet
Bank A (2 M Two Layers)
Data LA_D[63:32]
Data LA_D[31:0]
SRAM
Memory
128 K
32 bits
SRAM
Memory
128 K
32 bits
SRAM
Memory
128 K
32 bits
SRAM
Memory
128 K
32 bits
Address LA_A[19:3]
Bootstraps: TSTOUT7 = Pull Down, TSTOUT13 = Pull Down, TSTOUT4 = Open
Figure 7 - Memory Configuration for 1 Bank, 2 Layers, 2 MB Total
19
Zarlink Semiconductor Inc.
MVTX2601
Data Sheet
Bank A (2 M One Layer)
Data LA_D[63:32]
Data LA_D[31:0]
SRAM
Memory
256 K
32 bits
Memory
256 K
32 bits
Address LA_A[20:3]
Bootstraps: TSTOUT7 = Pull Down, TSTOUT13 = Open, TSTOUT4 = Open
Figure 8 - Memory Configuration for 1 Bank, 1 Layer, 2 MB
6.0
Frame Engine
6.1
Data Forwarding Summary
When a frame enters the device at the RxMAC, the RxDMA will move the data from the MAC RxFIFO to the FDB.
Data is moved in 8-byte granules in conjunction with the scheme for the SRAM interface.
A switch request is sent to the Search Engine. The Search Engine processes the switch request.
A switch response is sent back to the Frame Engine and indicates whether the frame is unicast or multicast and its
destination port or ports.
A Transmission Scheduling Request is sent in the form of a signal notifying the TxQ manager. Upon receiving a
Transmission Scheduling Request, the device will format an entry in the appropriate Transmission Scheduling
Queue (TxSch Q) or Queues. There are four TxSch Q for each 10/100, one for each priority. Creation of a queue
entry either involves linking a new job to the appropriate linked list if unicast or adding an entry to a physical queue
if multicast.
When the port is ready to accept the next frame, the TxQ manager will get the head-of-line (HOL) entry of one of
the TxSch Qs, according to the transmission scheduling algorithm (so as to ensure per-class quality of service).
The unicast linked list and the multicast queue for the same port-class pair are treated as one logical queue. The
older HOL between the two queues goes first. For 10/100 ports multicast queue 0 is associated with unicast queue
0 and multicast queue 1 is associated with unicast queue 2.
The TxDMA will pull frame data from the memory and forward it granule-by-granule to the MAC TxFIFO of the
destination port.
20
Zarlink Semiconductor Inc.
MVTX2601
6.2
Data Sheet
Frame Engine Details
This section briefly describes the functions of each of the modules of the MVTX2601 frame engine.
6.2.1
FCB Manager
The FCB manager allocates FCB handles to incoming frames and releases FCB handles upon frame departure.
The FCB manager is also responsible for enforcing buffer reservations and limits. The default values can be
determined by referring to Chapter 8. In addition, the FCB manager is responsible for buffer aging and for linking
unicast forwarding jobs to their correct TxSch Q. The buffer aging can be enabled or disabled by the bootstrap pin
and the aging time is defined in register FCBAT.
6.2.2
Rx Interface
The Rx interface is mainly responsible for communicating with the RxMAC. It keeps track of the start and end of
frame and frame status (good or bad). Upon receiving an end of frame that is good, the Rx interface makes a switch
request.
6.2.3
RxDMA
The RxDMA arbitrates among switch requests from each Rx interface. It also buffers the first 64 bytes of each
frame for use by the search engine when the switch request has been made.
6.2.4
TxQ Manager
First, the TxQ manager checks the per-class queue status and global reserved resource situation and using this
information, makes the frame dropping decision after receiving a switch response. If the decision is not to drop, the
TxQ manager requests that the FCB manager link the unicast frame’s FCB to the correct per-port-per-class TxQ. If
multicast, the TxQ manager writes to the multicast queue for that port and class. The TxQ manager can also trigger
source port flow control for the incoming frame’s source if that port is flow control enabled. Second, the TxQ
manager handles transmission scheduling; it schedules transmission among the queues representing different
classes for a port. Once a frame has been scheduled, the TxQ manager reads the FCB information and writes to
the correct port control module.
6.3
Port Control
The port control module calculates the SRAM read address for the frame currently being transmitted. It also writes
start of frame information and an end of frame flag to the MAC TxFIFO. When transmission is done, the port control
module requests that the buffer be released.
6.4
TxDMA
The TxDMA multiplexes data and address from port control and arbitrates among buffer release requests from the
port control modules.
7.0
Quality of Service and Flow Control
7.1
Model
Quality of service is an all-encompassing term for which different people have different interpretations. In general,
the approach to quality of service described here assumes that we do not know the offered traffic pattern. We also
assume that the incoming traffic is not policed or shaped. Furthermore, we assume that the network manager
knows his applications, such as voice, file transfer or web browsing and their relative importance. The manager can
then subdivide the applications into classes and set up a service contract with each. The contract may consist of
21
Zarlink Semiconductor Inc.
MVTX2601
Data Sheet
bandwidth or latency assurances per class. Sometimes it may even reflect an estimate of the traffic mix offered to
the switch. As an added bonus, although we do not assume anything about the arrival pattern, if the incoming traffic
is policed or shaped, we may be able to provide additional assurances about our switch’s performance.
Table 5 shows examples of QoS applications with three transmission priorities, but best effort (P0) traffic may form
a fourth class with no bandwidth or latency assurances.
Total
Goals
Assured Bandwidth
(user defined)
Highest transmission
priority, P3
50 Mbps
Middle transmission
priority, P2
Low Drop Probability
(low-drop)
High Drop Probability
(high-drop)
Apps: phone calls, circuit
emulation.
Latency: < 1 ms.
Drop: No drop if P3 not
oversubscribed.
Apps: training video.
Latency: < 1 ms.
Drop: No drop if P3 not
oversubscribed; first P3 to
drop otherwise.
37.5 Mbps
Apps: interactive apps, Web
business.
Latency: < 4-5 ms.
Drop: No drop if P2 not
oversubscribed.
Apps: non-critical interactive
apps.
Latency: < 4-5 ms.
Drop: No drop if P2 not
oversubscribed; firstP2 to
drop otherwise.
Low transmission
priority, P1
12.5 Mbps
Apps: emails, file backups.
Latency: < 16 ms desired,
but not critical.
Drop: No drop if P1 not
oversubscribed.
Apps: casual web browsing.
Latency: < 16 ms desired,
but not critical.
Drop: No drop if P1 not
oversubscribed; first to drop
otherwise.
Total
100 Mbps
Table 5 - Two Dimensional World Traffic
A class is capable of offering traffic that exceeds the contracted bandwidth. A well-behaved class offers traffic at a
rate no greater than the agreed-upon rate. By contrast, a misbehaving class offers traffic that exceeds the agreedupon rate. A misbehaving class is formed from an aggregation of misbehaving microflows. To achieve high link
utilization, a misbehaving class is allowed to use any idle bandwidth. However, such leniency must not degrade the
quality of service (QoS) received by well-behaved classes.
As Table 6 illustrates, the six traffic types may each have their own distinct properties and applications. As shown,
classes may receive bandwidth assurances or latency bounds. In the table, P3, the highest transmission class,
requires that all frames be transmitted within 1 ms, and receives 50% of the 100 Mbps of bandwidth at that port.
Best-effort (P0) traffic forms a fourth class that only receives bandwidth when none of the other classes have any
traffic to offer. It is also possible to add a fourth class that has strict priority over the other three; if this class has
even one frame to transmit, then it goes first. In the MVTX2601, each 10/100 Mbps port will support four total
classes, and each 1000 Mbps port will support eight classes. We will discuss the various modes of scheduling
these classes in the next section.
In addition, each transmission class has two subclasses, high-drop and low-drop. Well-behaved users should rarely
lose packets. But poorly behaved users – users who send frames at too high a rate – will encounter frame loss and
the first to be discarded will be high-drop. Of course, if this is insufficient to resolve the congestion, eventually some
low-drop frames are dropped and then all frames in the worst case.
22
Zarlink Semiconductor Inc.
MVTX2601
Data Sheet
Table 6 shows that different types of applications may be placed in different boxes in the traffic table. For example,
casual web browsing fits into the category of high-loss, high-latency-tolerant traffic, whereas VoIP fits into the
category of low-loss, low-latency traffic.
7.2
Four QoS Configurations
There are four basic pieces to QoS scheduling in the MVTX2601: strict priority (SP), delay bound, weighted fair
queuing (WFQ), and best effort (BE). Using these four pieces, there are four different modes of operation, as shown
in Tables 4 and 5. For 10/100 Mbps ports, these modes are selected by the following registers:
QOSC24 [7:6]
CREDIT_C00
QOSC28 [7:6]
CREDIT_C10
QOSC32 [7:6]
CREDIT_C20
QOSC36 [7:6]
CREDIT_C30
P3
Op1 (default)
P2
Delay Bound
P0
BE
Op2
SP
Delay Bound
Op3
SP
WFQ
Op4
P1
BE
WFQ
Table 6 - Four QoS Configurations for a 10/100Mbps Port
The default configuration for a 10/100 Mbps port is three delay-bounded queues and one best-effort queue. The
delay bounds per class are 0.8 ms for P3, 2 ms for P2, and 12.8 ms for P1. Best effort traffic is only served when
there is no delay-bounded traffic to be served.
We have a second configuration for a 10/100 Mbps port in which there is one strict priority queue, two delay
bounded queues and one best effort queue. The delay bounds per class are 3.2 ms for P2 and 12.8 ms for P1. If
the user is to choose this configuration, it is important that P3 (SP) traffic be either policed or implicitly bounded
(e.g., if the incoming P3 traffic is very light and predictably patterned). Strict priority traffic, if not admissioncontrolled at a prior stage to the MVTX2601 can have an adverse effect on all other classes’ performance.
The third configuration for a 10/100 Mbps port contains one strict priority queue and three queues receiving a
bandwidth partition via WFQ. As in the second configuration, strict priority traffic needs to be carefully controlled. In
the fourth configuration, all queues are served using a WFQ service discipline.
7.3
Delay Bound
In the absence of a sophisticated QoS server and signaling protocol, the MVTX2601 may not know the mix of
incoming traffic ahead of time. To cope with this uncertainty, our delay assurance algorithm dynamically adjusts its
scheduling and dropping criteria, guided by the queue occupancies and the due dates of their head-of-line (HOL)
frames. As a result, we assure latency bounds for all admitted frames with high confidence, even in the presence of
system-wide congestion. Our algorithm identifies misbehaving classes and intelligently discards frames at no
detriment to well-behaved classes. Our algorithm also differentiates between high-drop and low-drop traffic with a
weighted random early drop (WRED) approach. Random early dropping prevents congestion by randomly dropping
a percentage of high-drop frames even before the chip’s buffers are completely full, while still largely sparing lowdrop frames. This allows high-drop frames to be discarded early, as a sacrifice for future low-drop frames. Finally,
the delay bound algorithm also achieves bandwidth partitioning among classes.
23
Zarlink Semiconductor Inc.
MVTX2601
7.4
Data Sheet
Strict Priority and Best Effort
When strict priority is part of the scheduling algorithm, if a queue has even one frame to transmit, it goes first. Two
of our four QoS configurations include strict priority queues. The goal is for strict priority classes to be used for IETF
expedited forwarding (EF), where performance guarantees are required. As we have indicated, it is important that
strict priority traffic be either policed or implicitly bounded, so as to keep from harming other traffic classes.
When best effort is part of the scheduling algorithm, a queue only receives bandwidth when none of the other
classes have any traffic to offer. Two of our four QoS configurations include best effort queues. The goal is for best
effort classes to be used for non-essential traffic, because we provide no assurances about best effort performance.
However, in a typical network setting, much best effort traffic will indeed be transmitted and with an adequate
degree of expediency.
Because we do not provide any delay assurances for best effort traffic, we do not enforce latency by dropping best
effort traffic. Furthermore, because we assume that strict priority traffic is carefully controlled before entering the
MVTX2601, we do not enforce a fair bandwidth partition by dropping strict priority traffic. To summarize, dropping to
enforce bandwidth or delay does not apply to strict priority or best effort queues. We only drop frames from best
effort and strict priority queues when global buffer resources become scarce.
7.5
Weighted Fair Queuing
In some environments – for example, in an environment in which delay assurances are not required, but precise
bandwidth partitioning on small time scales is essential, WFQ may be preferable to a delay-bounded scheduling
discipline. The MVTX2601 provides the user with a WFQ option with the understanding that delay assurances can
not be provided if the incoming traffic pattern is uncontrolled. The user sets four WFQ “weights” such that all
weights are whole numbers and sum to 64. This provides per-class bandwidth partitioning with error within 2%.
In WFQ mode, though we do not assure frame latency, the MVTX2601 still retains a set of dropping rules that helps
to prevent congestion and trigger higher level protocol end-to-end flow control.
As before, when strict priority is combined with WFQ, we do not have special dropping rules for the strict priority
queues, because the input traffic pattern is assumed to be carefully controlled at a prior stage. However, we do
indeed drop frames from SP queues for global buffer management purposes. In addition, queue P0 for a 10/100
port are treated as best effort from a dropping perspective, though they still are assured a percentage of bandwidth
from a WFQ scheduling perspective. What this means is that these particular queues are only affected by dropping
when the global buffer count becomes low.
7.6
WRED Drop Threshold Management Support
To avoid congestion, the Weighted Random Early Detection (WRED) logic drops packets according to specified
parameters. The following table summarizes the behavior of the WRED logic.
In KB (kilobytes)
Level 1
N ≥ 120
Level 2
N ≥ 140
P3
P3 ≥ AKB
P2
P1
P2 ≥ AKB
P1 ≥ AKB
Level 3
N ≥ 160
High Drop
Low Drop
X%
0%
Y%
Z%
100%
100%
Table 7 - WRED Drop Thresholds
Px is the total byte count, in the priority queue x. The WRED logic has three drop levels, depending on the value of
N, which is based on the number of bytes in the priority queues. If delay bound scheduling is used, N equals
P3*16+P2*4+P1. If using WFQ scheduling, N equals P3+P2+P1. Each drop level from one to three has defined
24
Zarlink Semiconductor Inc.
MVTX2601
Data Sheet
high-drop and low-drop percentages, which indicate the minimum and maximum percentages of the data that can
be discarded. The X, Y Z percent can be programmed by the register RDRC0, RDRC1. In Level 3, all packets are
dropped if the bytes in each priority queue exceed the threshold. Parameters A, B, C are the byte count thresholds
for each priority queue. They can be programmed by the QOS control register (refer to the register group 5). See
Programming Qos Registers Application Note for more information.
7.7
Buffer Management
Because the number of FDB slots is a scarce resource and because we want to ensure that one misbehaving
source port or class cannot harm the performance of a well-behaved source port or class, we introduce the concept
of buffer management into the MVTX2601. Our buffer management scheme is designed to divide the total buffer
space into numerous reserved regions and one shared pool as shown in Figure 9 on page 26.
As shown in the figure, the FDB pool is divided into several parts. A reserved region for temporary frames stores
frames prior to receiving a switch response. Such a temporary region is necessary, because when the frame first
enters the MVTX2601, its destination port and class are as yet unknown and so the decision to drop or not needs to
be temporarily postponed. This ensures that every frame can be received first before subjecting them to the frame
drop discipline after classifying.
Six reserved sections, one for each of the first six priority classes, ensure a programmable number of FDB slots per
class. The lowest two classes do not receive any buffer reservation. Furthermore, even for 10/100 Mbps ports, a
frame is stored in the region of the FDB corresponding to its class. As we have indicated, the eight classes use only
four transmission scheduling queues for 10/100 Mbps ports, but as far as buffer usage is concerned, there are still
eight distinguishable classes.
Another segment of the FDB reserves space for each of the 24 ports. One parameter can be set for the source port
reservation for 10/100 Mbps. These 24 reserved regions make sure that no well-behaved source port can be
blocked by another misbehaving source port.
In addition, there is a shared pool which can store any type of frame. The frame engine allocates the frames first in
the six priority sections. When the priority section is full or the packet has priority 1 or 0, the frame is allocated in the
shared poll. Once the shared poll is full the frames are allocated in the section reserved for the source port.
The following registers define the size of each section of the frame data buffer:
PR100 - Port Reservation for 10/100 Ports
SFCB - Share FCB Size
C2RS - Class 2 Reserve Size
C3RS - Class 3 Reserve Size
C4RS - Class 4 Reserve Size
C5RS - Class 5 Reserve Size
C6RS - Class 6 Reserve Size
C7RS- Class 7 Reserve Size
25
Zarlink Semiconductor Inc.
MVTX2601
Data Sheet
temporary
reservation
shared pool
S
per-class
reservation
per-source
reservations
(24 10/100 M, CPU)
Figure 9 - Buffer Partition Scheme Used to Implement MVTX2601 Buffer Management
7.7.1
Dropping When Buffers Are Scarce
Summarizing the two examples of local dropping discussed earlier in this chapter:
•
•
If a queue is a delay-bounded queue, we have a multi level WRED drop scheme, designed to control delay
and partition bandwidth in case of congestion
If a queue is a WFQ-scheduled queue, we have a multi level WRED drop scheme, designed to prevent
congestion
In addition to these reasons for dropping, we also drop frames when global buffer space becomes scarce. The
function of buffer management is to make sure that such dropping causes as little blocking as possible.
7.8
MVTX2601 Flow Control Basics
Because frame loss is unacceptable for some applications, the MVTX2601 provides a flow control option. When
flow control is enabled, scarcity of buffer space in the switch may trigger a flow control signal; this signal tells a
source port that is sending a packet to this switch to temporarily hold off.
While flow control offers the clear benefit of no packet loss, it also introduces a problem for quality of service. When
a source port receives an Ethernet flow control signal, all microflows originating at that port, well-behaved or not are
halted. A single packet destined for a congested output can block other packets destined for uncongested outputs.
The resulting head-of-line blocking phenomenon means that quality of service cannot be assured with high
confidence when flow control is enabled.
In the MVTX2601, each source port can independently have flow control enabled or disabled. For flow control
enabled ports, by default all frames are treated as lowest priority during transmission scheduling. This is done so
that those frames are not exposed to the WRED Dropping scheme. Frames from flow control enabled ports feed to
only one queue at the destination, the queue of lowest priority. What this means is that if flow control is enabled for
a given source port, then we can guarantee that no packets originating from that port will be lost, but at the possible
26
Zarlink Semiconductor Inc.
MVTX2601
Data Sheet
expense of minimum bandwidth or maximum delay assurances. In addition, these “downgraded” frames may only
use the shared pool or the per-source reserved pool in the FDB; frames from flow control enabled sources may not
use reserved FDB slots for the highest six classes (P2-P7).
The MVTX2601 does provide a system-wide option of permitting normal QoS scheduling (and buffer use) for
frames originating from flow control enabled ports. When this programmable option is active, it is possible that
some packets may be dropped even though flow control is on. The reason is that intelligent packet dropping is a
major component of the MVTX2601’s approach to ensuring bounded delay and minimum bandwidth for high priority
flows.
7.8.1
Unicast Flow Control
For unicast frames, flow control is triggered by source port resource availability. Recall that the MVTX2601’s buffer
management scheme allocates a reserved number of FDB slots for each source port. If a programmed number of a
source port’s reserved FDB slots have been used then flow control Xoff is triggered.
Xon is triggered when a port is currently being flow controlled and all of that port’s reserved FDB slots have been
released.
Note that the MVTX2601’s per-source-port FDB reservations assure that a source port that sends a single frame to
a congested destination will not be flow controlled.
7.8.2
Multicast Flow Control
In unmanaged mode, flow control for multicast frames is triggered by a global buffer counter. When the system
exceeds a programmable threshold of multicast packets, Xoff is triggered. Xon is triggered when the system returns
below this threshold.
In addition, each source port has a 23-bit port map recording which port or ports of the multicast frame’s fanout
were congested at the time Xoff was triggered. All ports are continuously monitored for congestion and a port is
identified as uncongested when its queue occupancy falls below a fixed threshold. When all those ports that were
originally marked as congested in the port map have become uncongested, then Xon is triggered and the 23-bit
vector is reset to zero.
7.9
Mapping to IETF Diffserv Classes
For 10/100 Mbps ports, the classes of Table 6 are merged in pairs—one class corresponding to NM+EF, two AF
classes and a single BE class.
VTX
P3
P2
P1
P0
IETF
NM+EF
AF0
AF1
BE0
Table 8 - Mapping between MVTX2601 and IETF Diffserv Classes for 10/100 Ports
27
Zarlink Semiconductor Inc.
MVTX2601
Data Sheet
Features of the MVTX2601 that correspond to the requirements of their associated IETF classes are summarized in
the table below.
Network management
(NM) and Expedited
forwarding (EF)
•
•
•
Global buffer reservation for NM and EF
Option of strict priority scheduling
No dropping if admission controlled
Assured forwarding
(AF)
•
•
•
•
Programmable bandwidth partition, with option of WFQ service
Option of delay-bounded service keeps delay under fixed levels even if not
admission-controlled
Random early discard, with programmable levels
Global buffer reservation for each AF class
•
•
•
Service only when other queues are idle means that QoS not adversely affected
Random early discard, with programmable levels
Traffic from flow control enabled ports automatically classified as BE
Best effort (BE)
Table 9 - MVTX2601 Features Enabling IETF Diffserv Standards
8.0
Port Trunking
8.1
Features and Restrictions
A port group (i.e., trunk) can include up to 4 physical ports but all of the ports in a group must be in the same
MVTX2601.
Load distribution among the ports in a trunk for unicast is performed using hashing based on source MAC address
and destination MAC address. Three other options include source MAC address only, destination MAC address
only and source port (in bidirectional ring mode only). Load distribution for multicast is performed similarly.
The MVTX2601 also provides a safe fail-over mode for port trunking automatically. If one of the ports in the trunking
group goes down, the MVTX2601 will automatically redistribute the traffic over to the remaining ports in the trunk.
8.2
Unicast Packet Forwarding
The search engine finds the destination MCT entry and if the status field says that the destination port found
belongs to a trunk then the group number is retrieved instead of the port number. In addition, if the source address
belongs to a trunk then the source port’s trunk membership register is checked.
A hash key, based on some combination of the source and destination MAC addresses for the current packet,
selects the appropriate forwarding port.
8.3
Multicast Packet Forwarding
For multicast packet forwarding, the device must determine the proper set of ports from which to transmit the
packet based on the VLAN index and hash key.
Two functions are required in order to distribute multicast packets to the appropriate destination ports in a port
trunking environment.
Determining one forwarding port per group. For multicast packets, all but one port per group, the forwarding port,
must be excluded.
Preventing the multicast packet from looping back to the source trunk.
28
Zarlink Semiconductor Inc.
MVTX2601
Data Sheet
The search engine needs to prevent a multicast packet from sending to a port that is in the same trunk group with
the source port. This is because when we select the primary forwarding port for each group, we do not take the
source port into account. To prevent this, we simply apply one additional filter, so as to block that forwarding port for
this multicast packet.
8.4
Trunking
2 trunk groups are supported. Groups 0 and 1 can trunk up to 4 10/100 ports. The supported combinations are
shown in the following table.
Group 0
Port 0
Port 1
Port 2
Port 3
9
9
9
9
9
9
9
9
9
Port 4
Port 5
Port 6
Port 7
9
9
9
9
9
9
Select via trunk0_mode register
Group 1
Select via trunk1_mode register
The trunks are individually enabled/disabled by controlling pin trunk 0,1.
9.0
Port Mirroring
9.1
Port Mirroring Features
The received or transmitted data of any 10/100 port in the MVTX2601 chip can be “mirrored” to any other port. We
support two such mirrored source-destination pairs. A mirror port cannot also serve as a data port. Please refer to
the Port Mirroring Application Note for further details.
9.2
•
•
•
•
Setting Registers for Port Mirroring
MIRROR1_SRC: Sets the source port for the first port mirroring pair. Bits [4:0] select the source port to be
mirrored. An illegal port number is used to disable mirroring (which is the default setting). Bit [5] is used to
select between ingress (Rx) or egress (Tx) data.
MIRROR1_DEST: Sets the destination port for the first port mirroring pair. Bits [4:0] select the destination
port to be mirrored. The default is port 23.
MIRROR2_SRC: Sets the source port for the second port mirroring pair. Bits [4:0] select the source port to
be mirrored. An illegal port number is used to disable mirroring (which is the default setting). Bit [5] is used
to select between ingress (Rx) or egress (Tx) data.
MIRROR2_DEST: Sets the destination port for the second port mirroring pair. Bits [4:0] select the
destination port to be mirrored. The default is port 0.
29
Zarlink Semiconductor Inc.
MVTX2601
10.0
GPSI (7WS) Interface
10.1
GPSI connection
Data Sheet
The 10/100 RMII ethernet port can function in GPSI (7WS) mode when the corresponding TXEN pin is strapped
low with a 1 K pull down resistor. In this mode, the TXD[0], TXD[1], RXD[0] and RXD[1] serve as TX data, TX clock,
RX data and RX clock respectively. The link status and collision from the PHY are multiplexed and shifted into the
switch device through external glue logic. The duplex of the port can be controlled by programming the ECR
register.
The GPSI interface can be operated in port based VLAN mode only.
CRS_DV
RXD[0]
RXD[1]
TXD[1]
TXD[0]
TXEN
crs
rxd
rx_clk
tx_clk
link0
Port 0
Ethernet
PHY
col0
txd
txen
link1
260X
link2
col1
col2
SCAN_LINK
SCAN_CLK
SCAN_COL
link23
col23
Port 23
Ethernet
PHY
Link
Serializer
(CPLD)
Collision
Serializer
(CPLD)
Figure 10 - GPSI (7WS) Mode Connection Diagram
30
Zarlink Semiconductor Inc.
MVTX2601
10.2
Data Sheet
SCAN LINK and SCAN COL interface
An external CPLD logic is required to take the link signals and collision signals from the GPSI PHYs and shift them
into the switch device. The switch device will drive out a signature to indicate the start of the sequence. After that,
the CPLD should shift in the link and collision status of the PHYS as shown in the figure. The extra link status
indicates the polarity of the link signal. One indicates the polarity of the link signal is active high.
scan_clk
scan_link/
scan_col
25 cycles for link /
Drived by VTX260x
24 cycles for col
Drived by CPLD
Total 32 cycles period
Figure 11 - SCAN LINK and SCAN COLLISON Status Diagram
11.0
LED Interface
11.1
LED Interface Introduction
A serial output channel provides port status information from the MVTX2601 chips. It requires three additional pins.
•
•
•
LED_CLK at 12.5 MHz
LED_SYN a sync pulse that defines the boundary between status frames
LED_DATA a continuous serial stream of data for all status LEDs that repeats once every frame time
A low cost external device (44 pin PAL) is used to decode the serial data and to drive an LED array for display. This
device can be customized for different needs.
11.2
Port Status
In the MVTX2601, each port has 8 status indicators, each represented by a single bit. The 8 LED status indicators
are:
•
•
•
•
•
•
•
•
Bit 0: Flow control
Bit 1:Transmit data
Bit 2: Receive data
Bit 3: Activity (where activity includes either transmission or reception of data)
Bit 4: Link up
Bit 5: Speed (1= 100 Mb/s; 0= 10 Mb/s)
Bit 6: Full-duplex
Bit 7: Collision
Eight clocks are required to cycle through the eight status bits for each port.
When the LED_SYN pulse is asserted, the LED interface will present 256 LED clock cycles with the clock cycles
providing information for the following ports.
31
Zarlink Semiconductor Inc.
MVTX2601
Port 0 (10/100): cycles #0 to cycle #7
Port 1 (10/100): cycles#8 to cycle #15
Port 2 (10/100): cycle #16 to cycle #23
...
Port 22 (10/100): cycle #176 to cycle #183
Port 23 (10/100): cycle #184 to cycle #191
Reserved: cycle #192 to cycle #199
Reserved: cycle #200 to cycle #207
Byte 26 (additional status): cycle #208 to cycle #215
Byte 27 (additional status): cycle #216 to cycle #223
Cycles #224 to 256 present data with a value of zero.
Byte 26 and byte 27 provides bist status
•
•
•
•
•
•
•
•
•
•
26[0]: Reserved
26[1]: Reserved
26[2]: initialization done
26[3]: initialization start
26[4]: checksum ok
26[5]: link_init_complete
26[6]: bist_fail
26[7]: ram_error
27[0]: bist_in_process
27[1]: bist_done
11.3
LED Interface Timing Diagram
The signal from the MVTX2601 to the LED decoder is shown in Figure 12.
Figure 12 - Timing Diagram of LED Interface
32
Zarlink Semiconductor Inc.
Data Sheet
MVTX2601
12.0
Register Definition
12.1
MVTX2601 Register Description
Register
CPU Addr
(Hex)
Description
Data Sheet
R/W
I2C Addr
(Hex)
Default
ETHERNET Port Control Registers Substitute [N] with Port number (0..17h)
ECR1P”N”
Port Control Register 1 for Port N
000 + 2 x N
R/W
000-018
020
ECR2P”N”
Port Control Register 2 for Port N
001 + 2 x N
R/W
01B-033
000
VLAN Control Registers Substitute [N] with Port number (0..17h)
AVTCL
VLAN Type Code Register Low
100
R/W
036
000
AVTCH
VLAN Type Code Register High
101
R/W
037
081
PVMAP”N”_0
Port “N” Configuration Register 0
102 + 4N
R/W
038-050
0FF
PVMAP”N”_1
Port “N” Configuration Register 1
103 + 4N
R/W
053-06B
0FF
PVMAP”N”_2
Port “N” Configuration Register 2
104 + 4N
R/W
06E-086
0FF
PVMAP”N”_3
Port “N” Configuration Register 3
105 + 4N
R/W
089-0A1
007
PVMODE
VLAN Operating Mode
170
R/W
0A4
000
TRUNK Control Registers
TRUNK0_MODE
Trunk Group 0 Mode
203
R/W
0A5
003
TRUNK1_ MODE
Trunk Group 1 Mode
20B
R/W
0A6
003
Search Engine Configurations
TX_AGE
Transmission Queue Aging Time
325
R/W
0A7
008
AGETIME_LOW
MAC Address Aging Time Low
400
R/W
0A8
2M:05C
/
4M:02E
AGETIME_ HIGH
MAC Address Aging Time High
401
R/W
0A9
000
SE_OPMODE
Search Engine Operating Mode
403
R/W
NA
000
Buffer Control and QOS Control
FCBAT
FCB Aging Timer
500
R/W
0AA
0FF
QOSC
QOS Control
501
R/W
0AB
000
FCR
Flooding Control Register
502
R/W
0AC
008
AVPML
VLAN Priority Map Low
503
R/W
0AD
000
AVPMM
VLAN Priority Map Middle
504
R/W
0AE
000
AVPMH
VLAN Priority Map High
505
R/W
0AF
000
TOSPML
TOS Priority Map Low
506
R/W
0B0
000
33
Zarlink Semiconductor Inc.
Notes
MVTX2601
Register
Description
Data Sheet
CPU Addr
(Hex)
R/W
I2C Addr
(Hex)
Default
TOSPMM
TOS Priority Map Middle
507
R/W
0B1
000
TOSPMH
TOS Priority Map High
508
R/W
0B2
000
AVDM
VLAN Discard Map
509
R/W
0B3
000
TOSDML
TOS Discard Map
50A
R/W
0B4
000
BMRC
Broadcast/Multicast Rate Control
50B
R/W
0B5
000
UCC
Unicast Congestion Control
50C
R/W
0B6
1M:008
/
2M:010
MCC
Multicast Congestion Control
50D
R/W
0B7
050
PR100
Port Reservation for 10/100 Ports
50E
R/W
0B8
1M:035
/
2M:058
SFCB
Share FCB Size
510
R/W
0BA
1M:046
/
2M:0E6
C2RS
Class 2 Reserve Size
511
R/W
0BB
000
C3RS
Class 3 Reserve Size
512
R/W
0BC
000
C4RS
Class 4 Reserve Size
513
R/W
0BD
000
C5RS
Class 5 Reserve Size
514
R/W
0BE
000
C6RS
Class 6 Reserve Size
515
R/W
0BF
000
C7RS
Class 7 Reserve Size
516
R/W
0C0
000
QOSC”N”
QOS Control (N=0 39)
517-53E
R/W
0C1-0D2
000
RDRC0
WRED Drop Rate Control 0
553
R/W
0FB
08F
RDRC1
WRED Drop Rate Control 1
554
R/W
0FC
088
USER_
PORT”N”_LOW
User Define Logical Port “N” Low
(N=0-7)
580 + 2N
R/W
0D6-0DD
000
USER_
PORT”N”_HIGH
User Define Logical Port “N” High
581 + 2N
R/W
0DE-0E5
000
USER_ PORT1:0_
PRIORITY
User Define Logic Port 1 and 0
Priority
590
R/W
0E6
000
USER_ PORT3:2_
PRIORITY
User Define Logic Port 3 and 2
Priority
591
R/W
0E7
000
USER_ PORT5:4_
PRIORITY
User Define Logic Port 5 and 4
Priority
592
R/W
0E8
000
34
Zarlink Semiconductor Inc.
Notes
MVTX2601
Register
Description
Data Sheet
CPU Addr
(Hex)
R/W
I2C Addr
(Hex)
Default
USER_
PORT7:6_PRIORIT
Y
User Define Logic Port 7 and 6
Priority
593
R/W
0E9
000
USER_PORT_
ENABLE
User Define Logic Port Enable
594
R/W
0EA
000
WLPP10
Well known Logic Port Priority for
1 and 0
595
R/W
0EB
000
WLPP32
Well known Logic Port Priority for
3 and 2
596
R/W
0EC
000
WLPP54
Well known Logic Port Priority for
5 and 4
597
R/W
0ED
000
WLPP76
Well-known Logic Port Priority for
7&6
598
R/W
0EE
000
WLPE
Well known Logic Port Enable
599
R/W
0EF
000
RLOWL
User Define Range Low Bit7:0
59A
R/W
0F4
000
RLOWH
User Define Range Low Bit 15:8
59B
R/W
0F5
000
RHIGHL
User Define Range High Bit 7:0
59C
R/W
0D3
000
RHIGHH
User Define Range High Bit 15:8
59D
R/W
0D4
000
RPRIORITY
User Define Range Priority
59E
R/W
0D5
000
MISC Configuration Registers
MII_OP0
MII Register Option 0
600
R/W
0F0
000
MII_OP1
MII Register Option 1
601
R/W
0F1
000
FEN
Feature Registers
602
R/W
0F2
010
MIIC0
MII Command Register 0
603
R/W
N/A
000
MIIC1
MII Command Register 1
604
R/W
N/A
000
MIIC2
MII Command Register 2
605
R/W
N/A
000
MIIC3
MII Command Register 3
606
R/W
N/A
000
MIID0
MII Data Register 0
607
RO
N/A
N/A
MIID1
MII Data Register 1
608
RO
N/A
N/A
LED
LED Control Register
609
R/W
0F3
000
SUM
EEPROM Checksum Register
60B
R/W
0FF
000
700
R/W
N/A
07F
Port Mirroring Controls
MIRROR1_SRC
Port Mirror 1 Source Port
35
Zarlink Semiconductor Inc.
Notes
MVTX2601
Register
Description
Data Sheet
CPU Addr
(Hex)
R/W
I2C Addr
(Hex)
Default
MIRROR1_ DEST
Port Mirror 1 Destination Port
701
R/W
N/A
017
MIRROR2_SRC
Port Mirror 2 Source Port
702
R/W
N/A
0FF
MIRROR2_ DEST
Port Mirror 2 Destination Port
703
R/W
N/A
000
Notes
Device Configuration Register
GCR
Global Control Register
F00
R/W
N/A
000
DCR
Device Status and Signature
Register
F01
RO
N/A
N/A
DCR1
Chip status
F02
RO
N/A
N/A
DPST
Device Port Status Register
F03
R/W
N/A
000
DTST
Data read back register
F04
RO
N/A
N/A
DA
DA Register
FFF
RO
N/A
DA
12.2
Group 0 Address MAC Ports Group
12.2.1
•
•
ECR1Pn: Port N Control Register
I2C Address 000-018; CPU Address:0000+2xN (N = port number)
Accessed by serial interface and I2C (R/W)
7
6
5
Sp State
Bit [0]
4
2
3
A-FC
1
0
Port Mode
1 - Flow Control Off
0 - Flow Control On
•
•
When Flow Control On:
In half duplex mode, the MAC transmitter applies back pressure for flow
control
In full duplex mode, the MAC transmitter sends Flow Control frames when
necessary. The MAC receiver interprets and processes incoming flow control
frames. The Flow Control Frame Received counter is incremented whenever a
flow control is received.
• When Flow Control off:
In half duplex mode, the MAC Transmitter does not assert flow control by sending
flow control frames or jamming collision.
In full duplex mode, the Mac transmitter does not send flow control frames. The
MAC receiver does not interpret or process the flow control frames. The Flow
Control Frame Received counter is not incremented.
Bit [1]
1 - Half Duplex - Only 10/100 mode
0 - Full Duplex
36
Zarlink Semiconductor Inc.
MVTX2601
Bit [2]
1 - 10 Mbps
0 - 100 Mbps
Bit [4:3]
•
•
•
•
12.2.2
•
•
Data Sheet
00 - Automatic Enable Auto Neg. This enables hardware state machine for
auto-negotiation.
01 - Limited Disable auto Neg. This disables hardware for speed autonegotiation. Poll MII for link status.
10 - Link Down. Disable auto Neg. state machine and force link down
(disable the port)
11 - Link Up. User ERC1 [2:0] for config.
Bit [5]
•
•
•
•
Asymmetric Flow Control Enable
0 - Disable asymmetric flow control
1 - Enable asymmetric flow control
Asymmetric Flow Control Enable. When this bit is set and flow control is on
(bit [0] = 0, don't send out a flow control frame. But MAC receiver interprets
and process flow control frames. Default is 0
Bit [7:6]
SS - Spanning tree state Default is 11
00 – Blocking: Frame is dropped
01 - Listening:
Frame is dropped
10 - Learning:
Frame is dropped. Source MAC address is learned.
11 - Forwarding: Frame is forwarded. Source MAC address is learned.
ECR2Pn: Port N Control Register
I2C Address: 01B-035; CPU Address:0001+2xN
Accessed by and serial interface and I2C (R/W)
7
6
5
4
QoS Sel
Bit [0]:
•
3
2
1
0
Reserve
DisL
Ftf
Futf
Filter untagged frame (Default 0)
• 0: Disable
• 1: All untagged frames from this port are discarded
Bit [1]:
•
Filter Tag frame (Default 0)
• 0: Disable
• 1: All tagged frames from this port are discarded
Bit [2]:
•
Learning Disable (Default 0)
• 1 Learning is disabled on this port
• 0 Learning is enabled on this port
Bit [3]:
•
Must be set to ‘1’
37
Zarlink Semiconductor Inc.
MVTX2601
Bit [5:4:]
•
•
•
QOS mode selection (Default 00)
Determines which of the 4 sets of QoS settings is used for 10/100 ports.
Note that there are 4 sets of per-queue byte thresholds, and 4 sets of WFQ
ratios programmed. These bits select among the 4 choices for each 10/100
port. Refer to QoS Application Note.
00: select class byte limit set 0 and classes WFQ credit set 0
01: select class byte limit set 1 and classes WFQ credit set 1
10: select class byte limit set 2 and classes WFQ credit set 2
11: select class byte limit set 3 and classes WFQ credit set 3
•
•
•
•
Bit [7:6]
12.3
12.3.1
•
•
AVTCL – VLAN Type Code Register Low
I2C Address 036; CPU Address:h100
Accessed by serial interface and I2C (R/W)
12.3.2
•
LANType_LOW: Lower 8 bits of the VLAN type code (Default 00)
AVTCH – VLAN Type Code Register High
I 2C Address 037; CPU Address:h101
Accessed by serial interface and I2C (R/W)
Bit [7:0]:
12.3.3
•
•
Reserved
Group 1 Address VLAN Group
Bit [7:0]:
•
•
Data Sheet
•
VLANType_HIGH: Upper 8 bits of the VLAN type code (Default is 81)
PVMAP00_0 – Port 00 Configuration Register 0
I2C Address 038, CPU Address:h102)
Accessed by serial interface and I2C (R/W)
Bit [7:0]:
•
VLAN Mask for ports 7 to 0 (Default FF)
This register indicates the legal egress ports. A “1” on bit 7 means that the packet can be sent to port 7. A “0” on
bit 7 means that any packet destined to port 7 will be discarded. This register works with registers 1 and 2 to form
a 24-bit mask to all egress ports.
12.3.4
•
•
PVMAP00_1 – Port 00 Configuration Register 1
I2C Address h53, CPU Address:h103
Accessed by serial interface and I2C (R/W)
Bit [7:0]:
•
VLAN Mask for ports 15 to 8 (Default is FF)
38
Zarlink Semiconductor Inc.
MVTX2601
12.3.5
•
•
PVMAP00_2 – Port 00 Configuration Register 2
I2C Address h6E, CPU Address:h104
Accessed by serial interface and I2C (R/W)
Bit [7:0]:
12.3.6
•
•
•
VLAN Mask for ports 23 to 16 (Default FF)
PVMAP00_3 – Port 00 Configuration Register 3
I2C Address h89, CPU Address:h105)
Accessed by serial interface and I2C (R/W)
12.4
•
•
•
•
•
•
•
•
•
•
•
•
Data Sheet
7
6
FP en
Drop
5
3
2
0
Default tx priority
Bit [2:0]:
Reserved (Default 7)
Bit [5:3]:
Default Transmit priority. Used when Bit [7] = 1 (Default 0)
• 000 Transmit Priority Level 0 (Lowest)
• 001 Transmit Priority Level 1
• 010 Transmit Priority Level 2
• 011 Transmit Priority Level 3
• 100 Transmit Priority Level 4
• 101 Transmit Priority Level 5
• 110 Transmit Priority Level 6
• 111 Transmit Priority Level 7 (Highest)
Bit [6]:
Default Discard priority (Default 0)
• 0 – Discard Priority Level 0 (Lowest)
• 1 – Discard Priority Level 7(Highest)
Bit [7]:
Enable Fix Priority (Default 0)
• 0 Disable fix priority. All frames are analyzed. Transmit Priority and
Discard Priority are based on VLAN Tag, TOS field or Logical Port.
• 1 Transmit Priority and Discard Priority are based on values programmed
in bit [6:3]
Port Configuration Register
PVMAP01_0,1,2,3 I2C Address h39,54,6F,8A; CPU Address:h106,107,108,109)
PVMAP02_0,1,2,3 I2C Address h3A,55,70,8B; CPU Address:h10A, 10B, 10C, 10D)
PVMAP03_0,1,2,3 I2C Address h3B,56,71,8C; CPU Address:h10E, 10F, 110, 111)
PVMAP04_0,1,2,3 I2C Address h3C,57,72,8D; CPU Address:h112, 113, 114, 115)
PVMAP05_0,1,2,3 I2C Address h3D,58,73,8E; CPU Address:h116, 117, 118, 119)
PVMAP06_0,1,2,3 I2C Address h3E,59,74,8F; CPU Address:h11A, 11B, 11C, 11D)
PVMAP07_0,1,2,3 I2C Address h3F,5A,75,90; CPU Address:h11E, 11F, 120, 121)
PVMAP08_0,1,2,3 I2C Address h40,5B,76,91; CPU Address:h122, 123, 124, 125)
PVMAP09_0,1,2,3 I2C Address h41,5C,77,92; CPU Address:h126, 127, 128, 129)
PVMAP10_0,1,2,3 I2C Address h42,5D,78,93; CPU Address:h12A, 12B, 12C, 12D)
PVMAP11_0,1,2,3 I2C Address h43,5E,79,94; CPU Address:h12E, 12F, 130, 131)
PVMAP12_0,1,2,3 I2C Address h44,5F,7A,95; CPU Address:h132, 133, 134, 135)
39
Zarlink Semiconductor Inc.
MVTX2601
•
•
•
•
•
•
•
•
•
•
•
PVMAP13_0,1,2,3
PVMAP14_0,1,2,3
PVMAP15_0,1,2,3
PVMAP16_0,1,2,3
PVMAP17_0,1,2,3
PVMAP18_0,1,2,3
PVMAP19_0,1,2,3
PVMAP20_0,1,2,3
PVMAP21_0,1,2,3
PVMAP22_0,1,2,3
PVMAP23_0,1,2,3
12.4.1
•
•
I 2C
I 2C
I 2C
I 2C
I 2C
I 2C
I 2C
I 2C
I 2C
I 2C
I 2C
Address
Address
Address
Address
Address
Address
Address
Address
Address
Address
Address
Data Sheet
h45,60,7B,96; CPU Address:h136, 137, 138, 139)
h46,61,7C,97; CPU Address:h13A, h13B, 13C, 13D)
h47,62,7D,98; CPU Address:h13E, 13F, 140, 141)
h48,63,7E,99; CPU Address:h142, 143, 144, 145)
h49,64,7F,9A; CPU Address:h146, 147, 148, 149)
h4A,65,80,9B; CPU Address:h14A, 14B, 14C, 14D)
h4B,66,81,9C; CPU Address:h14E, 14F, 150, 151)
h4C,67,82,9D; CPU Address:h152, 153, 154, 155)
h4D,68,83,9E; CPU Address:h156, 157, 158, 159)
h4E,69,84,9F; CPU Address:h15A, 15B, 15C, 15D)
h4F,6A,85,A0; CPU Address:h15E, 15F, 160, 161)
PVMODE
I2C Address: h0A4, CPU Address:h170
Accessed by serial interface, and I2C (R/W)
7
5
4
3
SM0
Bit [0]:
•
•
Reserved
Must be ‘0’
Bit [1]:
•
Slow learning
2
1
DF
SL
0
• Same function as SE_OP MODE bit 7. Either bit can enable the function; both
need to be turned off to disable the feature.
Bit [2]:
•
Disable dropping of frames with destination MAC addresses
0180C2000001 to 0180C200000F (Default = 0)
• 0: Drop all frames in this range
• 1: Disable dropping of frames in this range
Bit [3]:
•
Reserved
Bit [4]:
•
Support MAC address 0
• 0: MAC address 0 is not learned.
• 1: MAC address 0 is learned.
Bit [7:5]:
12.5
12.5.1
•
•
•
Reserved
Group 2 Address Port Trunking Group
TRUNK0_MODE– Trunk group 0 mode
I2C Address h0A5; CPU Address:203
Accessed by serial interface and I2C (R/W)
7
4
3
2
Hash Select
1
0
Port Select
40
Zarlink Semiconductor Inc.
MVTX2601
Bit [1:0]:
•
Port selection in unmanaged mode. Input pin TRUNK0 enable/disable
trunk group 0.
•
•
•
•
Bit [3:2]
•
•
•
00
01
10
11
Reserved
Port 0 and 1 are used for trunk0
Port 0,1 and 2 are used for trunk0
Port 0,1,2 and 3 are used for trunk0
Hash Select. The Hash selected is valid for Trunk 0, 1 and 2.
(Default 00)
•
•
•
•
12.5.2
Data Sheet
00
01
10
11
for
Use Source and Destination Mac Address for hashing
Use Source Mac Address for hashing
Use Destination Mac Address for hashing
Use source destination MAC address and ingress physical port number
hashing
TRUNK1_MODE – Trunk group 1 mode
I2C Address h0A6; CPU Address:20B
Accessed by serial interface and I2C (R/W)
7
2
1
0
Port Select
Bit [1:0]:
•
Port selection in unmanaged mode. Input pin TRUNK1
enable/disable trunk group 1.
•
•
•
•
12.6
12.6.1
•
•
00
01
10
11
Reserved
Port 4 and 5 are used for trunk1
Reserved
Port 4, 5, 6 and 7 are used for trunk1
Group 4 Address Search Engine Group
TX_AGE – Tx Queue Aging timer
I2C Address: h07;CPU Address:h325
Accessed by serial interface (RW)
7
6
5
0
Tx Queue Agent
•
•
•
Bit [5:0]: Unit of 100 ms (Default 8)
Disable transmission queue aging if value is zero. Aging timer for all ports and queues.
For no packet loss flow control, this register must be set to 0
12.6.2
•
•
•
•
AGETIME_LOW – MAC address aging time Low
I2C Address h0A8; CPU Address:h400
Accessed by serial interface and I2C (R/W)
Bit [7:0] Low byte of the MAC address aging timer
MAC address aging is enable/disable by boot strap TSTOUT9
41
Zarlink Semiconductor Inc.
MVTX2601
12.6.3
•
•
•
•
•
AGETIME_HIGH –MAC address aging time High
I2C Address h0A9; CPU Address h401
Accessed by serial interface and I2C (R/W)
Bit [7:0]: High byte of the MAC address aging timer
The default setting provide 300 seconds aging time. Aging time is based on the following equation:
{AGETIME_TIME,AGETIME_LOW} X (# of MAC address entries in the memory x 100 µsec). Number of
MAC entries = 32 K when 1 MB is used. Number of MAC entries = 64 K when 2 MB is used.
12.6.4
•
•
•
Data Sheet
SE_OPMODE – Search Engine Operation Mode
CPU Address:h403
Accessed by serial interface (R/W)
{SE_OPMODE} X(# of entries 100 usec)
7
6
SL
5
0
DMS
Bit [5:0]:
•
Reserved
Bit [6]:
•
Disable MCT speedup aging
• 1 – Disable speedup aging when MCT resource is low
• 0 – Enable speedup aging when MCT resource is low
Bit [7]:
•
Slow Learning
• 1– Enable slow learning. Learning is temporary disabled when search
demand is high
• 0 – Learning is performed independent of search demand
42
Zarlink Semiconductor Inc.
MVTX2601
12.7
12.7.1
•
Data Sheet
Group 5 Address Buffer Control/QOS Group
FCBAT – FCB Aging Timer
I2C Address h0AA; CPU Address:h500
7
0
FCBAT
Bit [7:0]:
12.7.2
•
•
FCB Aging time. Unit of 1ms. (Default FF)
This function is for buffer aging control. It is used to configure the aging
time, and can be enabled/ disabled through bootstrap pin. It is not
recommended to use this function for normal operation.
QOSC – QOS Control
I²C Address h0AB; CPU Address:h501
Accessed by serial interface and I2C (R/W)
12.7.3
•
•
•
•
7
6
5
Tos-d
Tos-p
4
3
1
0
VF1c
L
Bit [0]:
•
QoS frame lost is OK. Priority will be available for flow control enabled
source only when this bit is set (Default 0)
Bit [4]:
•
•
•
Per VLAN Multicast Flow Control (Default 0)
0 – Disable
1 – Enable
Bit [5]:
•
Reserved
Bit [6]:
•
•
•
Select TOS bits for Priority (Default 0)
0 - Use TOS [4:2] bits to map the transmit priority
1 - Use TOS [7:5] bits to map the transmit priority
Bit [7]:
•
•
•
Select TOS bits for Drop Priority (Default 0)
0 - Use TOS[4:2] bits to map the drop priority
1 - Use TOS[7:5] bits to map the drop priority
FCR – Flooding Control Register
I2C Address h0AC; CPU Address:h502
Accessed by serial interface and I2C (R/W)
7
6
Tos
TimeBase
4
3
0
U2MR
43
Zarlink Semiconductor Inc.
MVTX2601
Data Sheet
Bit [3:0]:
•
U2MR: Unicast to Multicast Rate. Units in terms of time base defined in
bits [6:4]. This is used to limit the amount of flooding traffic. The value
in U2MR specifies how many packets are allowed to flood within the
time specified by bit [6:4]. To disable this function, program U2MR to
0. (Default = 8)
Bit [6:4]:
•
TimeBase:
000 = 100 us
001 = 200 us
010 = 400 us
011 = 800 us
100 = 1.6 ms
101 = 3.2 ms
110 = 6.4 ms
111 = 100 us (same as 000)
Bit [7]:
•
(Default = 000)
•
Select VLAN tag or TOS (IP packets) to be preferentially picked to map
transmit priority and drop priority (Default = 0).
• 0 – Select VLAN Tag priority field over TOS
• 1 – Select TOS over VLAN tag priority field
12.7.4
•
•
AVPML – VLAN Priority Map
I2C Address h0AD; CPU Address:h503
Accessed by serial interface and I2C (R/W)
7
6
5
VP2
3
2
0
VP1
VP0
Registers AVPML, AVPMM, and AVPMH allow the eight VLAN priorities to map into eight internal level transmit
priorities. Under the internal transmit priority, seven is highest priority where as zero is the lowest. This feature
allows the user the flexibility of redefining the VLAN priority field. For example, programming a value of 7 into bit 2:0
of the AVPML register would map VLAN priority 0 into internal transmit priority 7. The new priority is used inside the
2601. When the packet goes out it carries the original priority.
Bit [2:0]:
•
Priority when the VLAN tag priority field is 0 (Default 0)
Bit [5:3]:
•
Priority when the VLAN tag priority field is 1 (Default 0)
Bit [7:6]:
•
Priority when the VLAN tag priority field is 2 (Default 0)
44
Zarlink Semiconductor Inc.
MVTX2601
12.7.5
•
•
Data Sheet
AVPMM – VLAN Priority Map
I2C Address h0AE, CPU Address:h504
Accessed by serial interface and I2C (R/W)
7
6
4
VP5
3
1
VP4
0
VP3
VP2
Map VLAN priority into eight level transmit priorities:
12.7.6
•
•
Bit [0]:
•
Priority when the VLAN tag priority field is 2 (Default 0)
Bit [3:1]:
•
Priority when the VLAN tag priority field is 3 (Default 0)
Bit [6:4]:
•
Priority when the VLAN tag priority field is 4 (Default 0)
Bit [7]:
•
Priority when the VLAN tag priority field is 5 (Default 0)
AVPMH – VLAN Priority Map
I2C Address h0AF, CPU Address:h505
Accessed by serial interface and I2C (R/W)
7
5
4
VP7
2
1
VP6
0
VP5
Map VLAN priority into eight level transmit priorities:
12.7.7
•
•
Bit [1:0]:
•
Priority when the VLAN tag priority field is 5 (Default 0)
Bit [4:2]:
•
Priority when the VLAN tag priority field is 6 (Default 0)
Bit [7:5]:
•
Priority when the VLAN tag priority field is 7 (Default 0)
TOSPML – TOS Priority Map
I2C Address h0B0, CPU Address:h506
Accessed by serial interface and I2C (R/W)
7
6
TP2
5
3
2
0
TP1
TP0
Map TOS field in IP packet into eight level transmit priorities
Bit [2:0]:
•
Priority when the TOS field is 0 (Default 0)
Bit [5:3]:
•
Priority when the TOS field is 1 (Default 0)
Bit [7:6]:
•
Priority when the TOS field is 2 (Default 0)
45
Zarlink Semiconductor Inc.
MVTX2601
12.7.8
•
•
Data Sheet
TOSPMM – TOS Priority Map
I2C Address h0B1, CPU Address:h507
Accessed by serial interface and I2C (R/W)
7
6
4
TP5
3
TP4
1
TP3
0
TP2
Map TOS field in IP packet into four level transmit priorities
12.7.9
•
•
Bit [0]:
•
Priority when the TOS field is 2 (Default 0)
Bit [3:1]:
•
Priority when the TOS field is 3 (Default 0)
Bit [6:4]:
•
Priority when the TOS field is 4 (Default 0)
Bit [7]:
•
Priority when the TOS field is 5 (Default 0)
TOSPMH – TOS Priority Map
I2C Address h0B2, CPU Address:h508
Accessed by serial interface and I2C (R/W)
7
5
4
TP7
2
1
TP6
0
TP5
Map TOS field in IP packet into four level transmit priorities:
12.7.10
•
•
Bit [1:0]:
•
Priority when the TOS field is 5 (Default 0)
Bit [4:2]:
•
Priority when the TOS field is 6 (Default 0)
Bit [7:5]:
•
Priority when the TOS field is 7 (Default 0)
AVDM – VLAN Discard Map
I2C Address h0B3, CPU Address:h509
Accessed by serial interface and I2C (R/W)
7
6
5
4
3
2
1
0
FDV7
FDV6
FDV5
FDV4
FDV3
FDV2
FDV1
FDV0
Map VLAN priority into frame discard when low priority buffer usage is above threshold
Bit [0]:
•
Frame drop priority when VLAN tag priority field is 0 (Default 0)
Bit [1]:
•
Frame drop priority when VLAN tag priority field is 1 (Default 0)
Bit [2]:
•
Frame drop priority when VLAN tag priority field is 2 (Default 0)
Bit [3]:
•
Frame drop priority when VLAN tag priority field is 3 (Default 0)
Bit [4]:
•
Frame drop priority when VLAN tag priority field is 4 (Default 0)
Bit [5]:
•
Frame drop priority when VLAN tag priority field is 5 (Default 0)
46
Zarlink Semiconductor Inc.
MVTX2601
12.7.11
•
•
Data Sheet
Bit [6]:
•
Frame drop priority when VLAN tag priority field is 6 (Default 0)
Bit [7]:
•
Frame drop priority when VLAN tag priority field is 7 (Default 0)
TOSDML – TOS Discard Map
I2C Address h0B4, CPU Address:h50A
Accessed by serial interface and I2C (R/W)
7
6
5
4
3
2
1
0
FDT7
FDT6
FDT5
FDT4
FDT3
FDT2
FDT1
FDT0
Map TOS into frame discard when low priority buffer usage is above threshold
12.7.12
•
•
Bit [0]:
•
Frame drop priority when TOS field is 0 (Default 0)
Bit [1]:
•
Frame drop priority when TOS field is 1 (Default 0)
Bit [2]:
•
Frame drop priority when TOS field is 2 (Default 0)
Bit [3]:
•
Frame drop priority when TOS field is 3 (Default 0)
Bit [4]:
•
Frame drop priority when TOS field is 4 (Default 0)
Bit [5]:
•
Frame drop priority when TOS field is 5 (Default 0)
Bit [6]:
•
Frame drop priority when TOS field is 6 (Default 0)
Bit [7]:
•
Frame drop priority when TOS field is 7 (Default 0)
BMRC - Broadcast/Multicast Rate Control
I2C Address h0B5, CPU Address:h50B)
Accessed by serial interface and I2C (R/W)
7
4
Broadcast Rate
•
3
0
Multicast Rate
This broadcast and multicast rate defines for each port the number of packet allowed to be forwarded within
a specified time. Once the packet rate is reached, packets will be dropped. To turn off the rate limit,
program the field to 0. Timebase is based on register 502 [6:4].
Bit [3:0] :
•
Multicast Rate Control Number of multicast packets allowed within the
time defined in bits 6 to 4 of the Flooding Control Register (FCR).
(Default 0).
Bit [7:4] :
•
Broadcast Rate Control Number of broadcast packets allowed within
the time defined in bits 6 to 4 of the Flooding Control Register (FCR).
(Default 0)
47
Zarlink Semiconductor Inc.
MVTX2601
12.7.13
•
•
Data Sheet
UCC – Unicast Congestion Control
I2C Address h0B6, CPU Address: 50C
Accessed by serial interface and I2C (R/W)
7
0
Unicast congest threshold
Bit [7:0] :
12.7.14
•
•
•
Number of frame count. Used for best effort dropping at B% when
destination port’s best effort queue reaches UCC threshold and shared
pool is all in use. Granularity 1 frame. (Default: h10 for 2 MB or h08 for
1 MB)
MCC – Multicast Congestion Control
I2C Address h0B7, CPU Address: 50D
Accessed by serial interface and I2C (R/W)
7
5
FC reaction prd
12.7.15
•
•
4
0
Multicast congest threshold
Bit [4:0]:
•
In multiples of two. Used for triggering MC flow control when
destination multicast port’s best effort queue reaches MCC threshold.
(Default 0x10)
Bit [7:5]:
•
Flow control reaction period (Default 2) Granularity 4 uSec.
PR100 – Port Reservation for 10/100 ports
I2C Address h0B8, CPU Address 50E
Accessed by serial interface and I2C (R/W)
7
4
Buffer low thd
3
0
SP Buffer reservation
Bit [3:0]:
•
•
Per port buffer reservation.
Define the space in the FDB reserved for each 10/100 port. Expressed
in multiples of 4 packets. For each packet 1536 bytes are reserved in
the memory.
Bits [7:4]:
•
Expressed in multiples of 4 packets. Threshold for dropping all best
effort frames when destination port best efforts queues reach UCC
threshold and shared pool all used and source port reservation is at or
below the PR100[7:4] level. Also the threshold for initiating UC flow
control.
Default:
•
• h58 for configuration with 2 MB;
• h35 for configuration with 1 MB;
48
Zarlink Semiconductor Inc.
MVTX2601
12.7.16
•
•
Data Sheet
SFCB – Share FCB Size
I2C Address h0BA), CPU Address 510
Accessed by serial interface and I2C (R/W)
7
0
Shared buffer size
Bits [7:0]:
•
•
Expressed in multiples of 4 packets. Buffer reservation for shared pool.
Default:
• hE6 for configuration with memory of 2 MB;
• h46 for configuration with memory of 1 MB;
12.7.17
•
•
C2RS – Class 2 Reserve Size
I2C Address h0BB, CPU Address 511
Accessed by serial interface and I2C (R/W)
7
0
Class 2 FCB Reservation
•
Buffer reservation for class 2 (third lowest priority). Granularity 1. (Default 0)
12.7.18
C3RS – Class 3 Reserve Size
ƒ
I2C Address h0BC, CPU Address 512
ƒ
Accessed by serial interface and I2C (R/W)
7
0
Class 3 FCB Reservation
•
Buffer reservation for class 3. Granularity 1. (Default 0)
12.7.19
•
•
C4RS – Class 4 Reserve Size
I2C Address h0BD, CPU Address 513
Accessed by serial interface and I2C (R/W)
7
0
Class 4 FCB Reservation
•
Buffer reservation for class 4. Granularity 1. (Default 0)
49
Zarlink Semiconductor Inc.
MVTX2601
12.7.20
•
•
Data Sheet
C5RS – Class 5 Reserve Size
I2C Address h0BE; CPU Address 514
Accessed by serial interface and I2C (R/W)
7
0
Class 5 FCB Reservation
•
Buffer reservation for class 5. Granularity 1. (Default 0)
12.7.21
•
•
C6RS – Class 6 Reserve Size
I2C Address h0BF; CPU Address 515
Accessed by serial interface and I2C (R/W)
7
0
Class 6 FCB Reservation
•
Buffer reservation for class 6 (second highest priority). Granularity 1. (Default 0)
12.7.22
•
•
C7RS – Class 7 Reserve Size
I2C Address h0C0; CPU Address 516
Accessed by serial interface and I2C (R/W)
7
0
Class 7 FCB Reservation
•
Buffer reservation for class 7 (highest priority). Granularity 1. (Default 0)
12.7.23
•
Classes Byte Limit Set 0
Accessed by serial interface and I2C (R/W):
C — QOSC00 – BYTE_C01 (I2C Address h0C1, CPU Address 517)
B — QOSC01 – BYTE_C02 (I2C Address h0C2, CPU Address 518)
A — QOSC02 – BYTE_C03 (I2C Address h0C3, CPU Address 519)
QOSC00 through QOSC02 represents one set of values A-C for a 10/100 port when using the Weighted Random
Early Drop (WRED) Scheme described in Chapter 7.7. There are four such sets of values A-C specified in Classes
Byte Limit Set 0, 1, 2 and 3.
Each 10/ 100 port can choose one of the four Byte Limit Sets as specified by the QoS Select field located in bits 5
to 4 of the ECR2n register. The values A-C are per-queue byte thresholds for random early drop. QOSC02
represents A and QOSC00 represents C.
Granularity when Delay bound is used: QOSC02: 128 bytes, QOSC01: 256 bytes. QOSC00: 512 bytes.
Granularity when WFQ is used: QOSC02: 512 bytes, QOSC01: 512 bytes, QOSC00: 512 bytes.
50
Zarlink Semiconductor Inc.
MVTX2601
12.7.24
•
Data Sheet
Classes Byte Limit Set 1
Accessed by serial interface and I2C (R/W):
C - QOSC03 – BYTE_C11 (I2C Address h0C4, CPU Address 51a)
B - QOSC04 – BYTE_C12 (I2C Address h0C5, CPU Address 51b)
A - QOSC05 – BYTE_C13 (I2C Address h0C6, CPU Address 51c)
QOSC03 through QOSC05 represents one set of values A-C for a 10/100 port when using the Weighted Random
Early Detect (WRED) Scheme.
Granularity when Delay bound is used: QOSC05: 128 bytes, QOSC04: 256 bytes. QOSC03: 512 bytes.
Granularity when WFQ is used: QOSC05: 512 bytes, QOSC04: 512 bytes, QOSC03: 512 bytes.
12.7.25
•
Classes Byte Limit Set 2
Accessed by serial interface and I2C (R/W):
C - QOSC06 – BYTE_C21 (CPU Address 51d)
B - QOSC07 – BYTE_C22 (CPU Address 51e)
A - QOSC08 – BYTE_C23 (CPU Address 51f)
QOSC06 through QOSC08 represents one set of values A-C for a 10/100 port when using the Weighted Random
Early Detect (WRED) Scheme.
Granularity when Delay bound is used: QOSC08: 128 bytes, QOSC07: 256 bytes. QOSC06: 512 bytes.
Granularity when WFQ is used: QOSC08: 512 bytes, QOSC07: 512 bytes, QOSC06: 512 bytes.
12.7.26
•
Classes Byte Limit Set 3
Accessed by serial interface and I2C (R/W):
C - QOSC09 – BYTE_C31 (CPU Address 520)
B - QOSC10 – BYTE_C32 (CPU Address 521)
A - QOSC11 – BYTE_C33 (CPU Address 522)
QOSC09 through QOSC011 represents one set of values A-C for a 10/100 port when using the Weighted Random
Early Detect (WRED) Scheme.
Granularity when Delay bound is used: QOSC11: 128 bytes, QOSC10: 256 bytes. QOSC09: 512 bytes.
Granularity when WFQ is used: QOSC11: 512 bytes, QOSC10: 512 bytes, QOSC09: 512 bytes.
12.7.27
•
Classes WFQ Credit Set 0
Accessed by serial interface (R/W)
W0 - QOSC24[5:0] – CREDIT_C00 (CPU Address 52f)
W1 - QOSC25[5:0] – CREDIT_C01 (CPU Address 530)
W2 - QOSC26[5:0] – CREDIT_C02 (CPU Address 531)
W3 - QOSC27[5:0] – CREDIT_C03 (CPU Address 532)
QOSC24 through QOSC27 represents one set of WFQ parameters for a 10/100 port. There are four such sets of
values. The granularity of the numbers is 1 and their sum must be 64. QOSC27 corresponds to W3 and QOSC24
corresponds to W0.
QOSC24[7:6]: Priority service type for the ports select this parameter set. Option 1 to 4.
51
Zarlink Semiconductor Inc.
MVTX2601
Data Sheet
QOSC25[7]: Priority service allow flow control for the ports select this parameter set.
QOSC25[6]: Flow control pause best effort traffic only
Both flow control allow and flow control best effort only can take effect only the priority type is WFQ.
12.7.28
•
Classes WFQ Credit Set 1
Accessed by serial interface (R/W)
W0 - QOSC28[5:0] – CREDIT_C10 (CPU Address 533)
W1 - QOSC29[5:0] – CREDIT_C11 (CPU Address 534)
W2 - QOSC30[5:0] – CREDIT_C12 (CPU Address 535)
W3 - QOSC31[5:0] – CREDIT_C13 (CPU Address 536)
QOSC28 through QOSC31 represents one set of WFQ parameters for a 10/100 port. There are four such sets of
values. The granularity of the numbers is 1 and their sum must be 64. QOSC31 corresponds to W3 and QOSC28
corresponds to W0.
QOSC28[7:6]: Priority service type for the ports select this parameter set. Option 1 to 4.
QOSC29[7]: Priority service allow flow control for the ports select this parameter set.
QOSC29[6]: Flow control pause best effort traffic only
12.7.29
•
Classes WFQ Credit Set 2
Accessed by serial interface (R/W)
W0 - QOSC32[5:0] – CREDIT_C20 (CPU Address 537)
W1 - QOSC33[5:0] – CREDIT_C21 (CPU Address 538)
W2 - QOSC34[5:0] – CREDIT_C22 (CPU Address 539)
W3 - QOSC35[5:0] – CREDIT_C23 (CPU Address 53a)
QOSC35 through QOSC32 represents one set of WFQ parameters for a 10/100 port. There are four such sets of
values. The granularity of the numbers is 1 and their sum must be 64. QOSC35 corresponds to W3 and QOSC32
corresponds to W0.
QOSC32[7:6]: Priority service type for the ports select this parameter set. Option 1 to option 4.
QOSC33[7]: Priority service allow flow control for the ports select this parameter set.
QOSC33[6]: Flow Control pause best effort traffic only
12.7.30
•
Classes WFQ Credit Set 3
Accessed by serial interface (R/W)
W0 - QOSC36[5;0] – CREDIT_C30 (CPU Address 53b)
W1 - QOSC37[5:0] – CREDIT_C31 (CPU Address 53c)
W2 - QOSC38[5:0] – CREDIT_C32 (CPU Address 53d)
W3 - QOSC39[5:0] – CREDIT_C33 (CPU Address 53e)
QOSC39 through QOSC36 represents one set of WFQ parameters for a 10/100 port. There are four such sets of
values. The granularity of the numbers is 1 and their sum must be 64. QOSC39 corresponds to W3 and QOSC36
corresponds to W0.
QOSC36[7:6]: Priority service type for the ports select this parameter set. Option 1 to option 4.
52
Zarlink Semiconductor Inc.
MVTX2601
Data Sheet
QOSC37[7]: Priority service allow flow control for the ports select this parameter set.
QOSC37[6]: Flow Control pause best effort traffic only
12.7.31
•
•
RDRC0 – WRED Rate Control 0
I2C Address 0FB, CPU Address 553
Accessed by serial Interface and IcC (R/W)
7
4
X Rate
3
0
Y Rate
Bits [7:4]:
•
Corresponds to the frame drop percentage X% for WRED. Granularity
6.25%.
Bits [3:0]:
•
Corresponds to the frame drop percentage Y% for WRED. Granularity
6.25%.
See Programming QoS Registers application note for more information.
12.7.32
•
•
RDRC1 – WRED Rate Control 1
I2C Address 0FC, CPU Address 554
Accessed by serial Interface and I2C (R/W)
7
4
Z Rate
3
0
B Rate
Bits [7:4]:
•
Corresponds to the frame drop percentage Z% for WRED. Granularity
6.25%.
Bits [3:0]:
•
Corresponds to the best effort frame drop percentage B%, when
shared pool is all in use and destination port best effort queue reaches
UCC. Granularity 6.25%.
See Programming QoS Register Application Note for more information.
12.7.33
User Defined Logical Ports and Well Known Ports
The MVTX2601 supports classifying packet priority through layer 4 logical port information. It can be setup by 8
Well Known Ports, 8 User Defined Logical Ports and 1 User Defined Range. The 8 Well Known Ports supported
are:
•
•
•
•
•
•
•
•
0:23
1:512
2:6000
3:443
4:111
5:22555
6:22
7:554
53
Zarlink Semiconductor Inc.
MVTX2601
Their respective priority can be programmed via Well_Known_Port [7:0] priority register.
Enable can individually turn on/off each Well Known Port if desired.
Data Sheet
Well_Known_Port_
Similarly, the User Defined Logical Port provides the user programmability to the priority, plus the flexibility to select
specific logical ports to fit the applications. The 8 User Logical Ports can be programmed via User_Port 0-7
registers. Two registers are required to be programmed for the logical port number. The respective priority can be
programmed to the User_Port [7:0] priority register. The port priority can be individually enabled/disabled via
User_Port_Enable register.
The User Defined Range provides a range of logical port numbers with the same priority level. Programming is
similar to the User Defined Logical Port. Instead of programming a fixed port number, an upper and lower limit need
to be programmed, they are: {RHIGHH, RHIGHL} and {RLOWH, RLOWL} respectively. If the value in the upper
limit is smaller or equal to the lower limit, the function is disabled. Any IP packet with a logical port that is less than
the upper limit and more than the lower limit will use the priority specified in RPRIORITY.
12.7.33.1
•
•
•
•
•
•
•
•
•
USER_PORT0_(0~7) – User Define Logical Port (0~7)
USER_PORT_0 - I2C Address h0D6 + 0DE; CPU Address 580(Low) + 581(High)
USER_PORT_1 - I2C Address h0D7 + 0DF; CPU Address 582 + 583
USER_PORT_2 - I2C Address h0D8 + 0E0; CPU Address 584 + 585
USER_PORT_3 - I2C Address h0D9 + 0E1; CPU Address 586 + 587
USER_PORT_4 - I2C Address h0DA + 0E2; CPU Address 588 + 589
USER_PORT_5 - I2C Address h0DB + 0E3; CPU Address 58a + 58b
USER_PORT_6 - I2C Address h0DC + 0E4; CPU Address 58c + 58d
USER_PORT_7 - I2C Address h0DD + 0E5; CPU Address 58e + 58f
Accessed by serial interface and I2C (R/W)
7
0
TCP/UDP Logic Port Low
7
0
TCP/UDP Logic Port High
•
(Default 00) This register is duplicated eight times from PORT 0 through PORT 7 and allows the definition of
eight separate ports.
12.7.33.2
•
•
USER_PORT_[1:0]_PRIORITY - User Define Logic Port 1 and 0 Priority
I2C Address h0E6, CPU Address 590
Accessed by serial interface and I2C (R/W)
7
5
Priority 1
•
4
3
1
Drop
Priority 0
0
Drop
The chip allows the definition of the priority
Bits [3:0]:
•
Priority setting, transmission + dropping, for logic port 0
Bits [7:4]:
•
Priority setting, transmission + dropping, for logic port 1 (Default 00)
54
Zarlink Semiconductor Inc.
MVTX2601
12.7.33.3
•
•
USER_PORT_[3:2]_PRIORITY - User Define Logic Port 3 and 2 Priority
I2C Address h0E7, CPU Address 591
Accessed by serial interface and I2C (R/W)
7
5
Priority 3
12.7.33.4
•
•
5
4
3
1
Drop
Priority 4
0
Drop
AND
6 PRIORITY
5
4
3
1
Drop
Priority 6
0
Drop
USER_PORT_ENABLE [7:0] – User Define Logic 7 to 0 Port Enables
I2C Address h0EA, CPU Address 594
Accessed by serial interface and I2C (R/W)
7
6
5
4
3
2
1
0
P7
P6
P5
P4
P3
P2
P1
P0
(Default 00)
12.7.33.7
WELL_KNOWN_PORT [1:0] PRIORITY- Well Known Logic Port 1 and 0 Priority
I2C Address h0EB, CPU Address 595
Accessed by serial interface and I2C (R/W)
7
Priority 1
•
•
•
Drop
(Default 00)
12.7.33.6
•
•
Priority 2
I2C Address h0E9, CPU Address 593
Accessed by serial interface and I2C (R/W)
Priority 7
•
Drop
0
USER_PORT_[7:6]_PRIORITY - USER DEFINE LOGIC PORT 7
7
•
•
1
(Default 00)
12.7.33.5
•
3
I2C Address h0E8, CPU Address 592
Accessed by serial interface and I2C (R/W)
Priority 5
•
•
4
USER_PORT_[5:4]_PRIORITY - User Define Logic Port 5 and 4 Priority
7
•
Data Sheet
5
4
3
1
Drop
Priority 0
0
Drop
Priority 0 - Well known port 23 for telnet applications.
Priority 1 - Well known port 512 for TCP/UDP
(Default 00)
55
Zarlink Semiconductor Inc.
MVTX2601
12.7.33.8
•
•
WELL_KNOWN_PORT [3:2] PRIORITY- Well Known Logic Port 3 and 2 Priority
I2C Address h0EC, CPU Address 596
Accessed by serial interface and I2C (R/W)
7
5
Priority 3
•
•
•
5
Priority 2
Drop
4
3
1
Drop
Priority 4
0
Drop
WELL_KNOWN_PORT [7:6] PRIORITY- Well Known Logic Port 7 and 6 Priority
I2C Address h0EE, CPU Address 598
Accessed by serial interface and I2C (R/W)
7
5
Priority 7
4
3
1
Drop
Priority 6
0
Drop
Priority 6 - Well known port 22 for ssh.
Priority 7 - Well known port 554 for rtsp.
(Default 00)
12.7.33.11
•
•
Drop
0
Priority 4 - Well known port 111 for sun rpe.
Priority 5 - Well known port 22555 for IP Phone call setup.
(Default 00)
12.7.33.10
•
•
•
1
I2C Address h0ED, CPU Address 597
Accessed by serial interface and I2C (R/W)
Priority 5
•
•
3
WELL_KNOWN_PORT [5:4] PRIORITY- Well Known Logic Port 5 and 4 Priority
7
•
•
•
4
Priority 2 - Well known port 6000 for XWIN.
Priority 3 - Well known port 443 for http. sec
(Default 00)
12.7.33.9
•
•
WELL KNOWN_PORT_ENABLE [7:0] – Well Known Logic 7 to 0 Port Enables
I2C Address h0EF, CPU Address 599
Accessed by serial interface and I2C (R/W)
7
6
5
4
3
2
1
0
P7
P6
P5
P4
P3
P2
P1
P0
• 1 - Enable
• 0 - Disable
•
Data Sheet
Default 00)
56
Zarlink Semiconductor Inc.
MVTX2601
12.7.33.12
•
•
•
RHIGHH – User Define Range High Bit 15:8
I2C Address h0D4, CPU Address: 59d
Accessed by serial interface and I2C (R/W)
(Default 00)
12.7.33.16
•
•
RHIGHL – User Define Range High Bit 7:0
I2C Address h0D3, CPU Address: 59c
Accessed by serial interface and I2C (R/W)
(Default 00)
12.7.33.15
•
•
•
RLOWH – User Define Range Low Bit 15:8
I2C Address h0F5, CPU Address: 59b
Accessed by serial interface and I2C (R/W)
(Default 00)
12.7.33.14
•
•
•
RLOWL – User Define Range Low Bit 7:0
I2C Address h0F4, CPU Address: 59a
Accessed by serial interface and I2C (R/W)
(Default 00)
12.7.33.13
•
•
•
RPRIORITY – User Define Range Priority
I2C Address h0D5, CPU Address: 59e
Accessed by serial interface and I2C (R/W)
7
•
4
3
0
Range Transmit Priority
Drop
RLOW and RHIGH form a range for logical ports to be classified with priority specified in RPRIORITY.
12.8
12.8.1
•
•
Data Sheet
Bit [3:1]
•
Transmit Priority
Bits [0]:
•
Drop Priority
Group 6 Address MISC Group
MII_OP0 – MII Register Option 0
I2C Address F0, CPU Address:h600
Accessed by serial interface and I2C (R/W)
7
6
5
4
0
hfc
1prst
DisJ
Vendor Spc. Reg Addr
57
Zarlink Semiconductor Inc.
MVTX2601
Bits [7]:
•
Data Sheet
Half duplex flow control feature
• 0 = Half duplex flow control always enable
• 1 = Half duplex flow control by negotiation
Bits [6]:
•
Link partner reset auto-negotiate disable
Bits [5]:
•
Disable jabber detection. This is for HomePNA application or any serial
operation slower than 10 Mbps.
• 1 = disable
• 0 = enable
Bit [4:0]:
12.8.2
•
•
•
Vendor specified link status register address (null value means don’t
use it) (Default 00); used when the Linkup bit position in the PHY is
non-standard.
MII_OP1 – MII Register Option 1
I2C Address F1, CPU Address:h601
Accessed by serial interface and I2C (R/W)
7
4
Speed bit location
12.8.3
•
•
3
0
Duplex bit location
Bits [3:0]:
•
Duplex bit location in vendor specified register
Bits [7:4]:
•
Speed bit location in vendor specified register
(Default 00)
FEN – Feature Register
I2C Address F2, CPU Address:h602)
Accessed by serial interface and I2C (R/W)
7
6
5
3
2
1
0
DML
MII
Bits [1:0]:
•
Reserved (Default 0)
Bit [2]:
•
•
Support DS EF Code. (Default 0)
When 101110 is detected in DS field (TOS [7:2]), the frame priority is
set for 110 and drop is set for 0.
Bit [5:3]:
•
Reserved (Default 010)
Bit [6]:
•
Disable MII Management State Machine
DS
• 0: Enable MII Management State Machine (Default 0)
• 1: Disable MII Management State Machine
Bit [7]:
•
Disable using MCT link list structure
• 0: Enable using MCT Link List structure (Default 0)
• 1: Disable using MCT Link List structure
58
Zarlink Semiconductor Inc.
MVTX2601
12.8.4
•
•
•
Data Sheet
MIIC0 – MII Command Register 0
CPU Address:h603
Accessed by serial interface only (R/W)
Bit [7:0] MII Data [7:0]
Note: Before programming MII command: set FEN[6], check MIIC3, making sure no RDY, and no VALID; then
program MII command.
12.8.5
•
•
•
MIIC1 – MII Command Register 1
CPU Address:h604
Accessed by serial interface only (R/W)
Bit [7:0] MII Data [15:8]
Note: Before programming MII command: set FEN[6], check MIIC3, making sure no RDY and no VALID; then
program MII command.
12.8.6
•
•
MIIC2 – MII Command Register 2
CPU Address:h605
Accessed by serial interface only (R/W)
7
6
5
Mii OP
4
0
Register address
Bits [4:0]:
• REG_AD – Register PHY Address
Bit [6:5]
• OP – Operation code “10” for read command and “01” for write command
Note: Before programming MII command: set FEN[6], check MIIC3, making sure no RDY and no VALID; then
program MII command. Writing to this register will initiate a serial management cycle to the MII management
interface. For detail information, please refer to the PHY Control Application Note.
12.8.7
•
•
MIIC3 – MII Command Register 3
CPU Address:h606
Accessed by serial interface only (R/W)
7
Rdy
6
5
Valid
4
0
PHY address
Bits [4:0]:
•
PHY_AD – 5 Bit PHY Address
Bit [6]
•
VALID – Data Valid from PHY (Read Only)
Bit [7]
•
RDY – Data is returned from PHY (Ready Only)
Note: Before programming MII command: set FEN[6], check MIIC3, making sure no RDY and no VALID; then
program MII command.
59
Zarlink Semiconductor Inc.
MVTX2601
12.8.8
•
•
•
MIID0 – MII Data Register 0
CPU Address:h607
Accessed by serial interface only (RO)
Bit [7:0] MII Data [7:0]
12.8.9
•
•
•
MIID1 – MII Data Register 1
CPU Address:h608
Accessed by serial interface only (RO)
Bit [7:0] MII Data [15:8]
12.8.10
•
•
Data Sheet
LED Mode – LED Control
CPU Address:h609
Accessed by serial interface and I2C (R/W)
7
5
4
3
Clock rate
2
1
0
Hold Time
Bit [0]
•
Reserved (Default 0)
Bit [2:1]:
•
Hold time for LED signal (Default= 00)
00 = 8 msec
01 = 16 msec
10 = 32 msec
11 = 64 msec
Bit [4:3]:
•
LED clock frequency (Default 0)
For 100 MHz SCLK,
00 = 100 M/8 = 12.5 MHz
01 = 100 M/16 = 6.25 MHz
10 = 100 M/32 = 3.125 MHz 11 = 100 M/64 = 1.5625 MHz
For 125 MHz SCLK
00 = 125 M/64 = 1953 KHz
10 = 125 M/512 = 244 KHz
Bit [7:6]:
12.8.11
•
•
•
01 = 125 M/128 = 977 KHz
11 = 125 M/1024 = 122 KHz
Reserved. Must be 0. (Default 0)
CHECKSUM - EEPROM Checksum
I2C Address FF, CPU Address:h60b
Accessed by serial interface and I2C (R/W)
Bit [7:0]:
•
(Default 0)
Before requesting that the MVTX2601 updates the EEPROM device, the correct checksum needs to be calculated
and written into this checksum register. When the MVTX2601 boots from the EEPROM the checksum is calculated
and the value must be zero. If the checksum is not zeroed the MVTX2601 does not start and pin CHECKSUM_OK
is set to zero.
The checksum formula is:
Σ
FF
I2C register = 0
I=0
60
Zarlink Semiconductor Inc.
MVTX2601
12.9
12.9.1
•
•
Group 7 Address Port Mirroring Group
MIRROR1_SRC – Port Mirror source port
CPU Address 700
Accessed by serial interface (R/W) (Default 7F)
7
6
5
I/O
12.9.2
•
•
Data Sheet
4
0
Src Port Select
Bit [4:0]:
•
Source port to be mirrored. Use illegal port number to disable mirroring.
Bit [5]:
•
•
1 – select ingress data
0 – select egress data
Bit [7]:
•
Must be ‘1’
MIRROR1_DEST – Port Mirror destination
CPU Address 701
Accessed by serial interface (R/W) (Default 17)
7
5
4
0
Dest Port Select
Bit [4:0]:
12.9.3
•
•
•
Port Mirror Destination
MIRROR2_SRC – Port Mirror source port
CPU Address 702
Accessed by serial interface (R/W) (Default FF)
7
6
5
I/O
4
0
Src Port Select
Bit [4:0]:
•
Source port to be mirrored. Use illegal port number to disable mirroring.
Bit [5]:
•
•
1 – select ingress data
0 – select egress data
Bit [7]
•
Must be 1
61
Zarlink Semiconductor Inc.
MVTX2601
12.9.4
•
•
Data Sheet
MIRROR2_DEST – Port Mirror destination
CPU Address 703
Accessed by serial interface (R/W) (Default 00)
7
5
4
0
Dest Port Select
Bit [4:0]:
12.10
12.10.1
•
•
•
Port Mirror Destination
Group F Address CPU Access Group
GCR-Global Control Register
CPU Address: hF00
Accessed by serial interface. (R/W)
7
4
3
2
1
Reset
Bist
SR
0
SC
Bit [0]:
•
•
Store configuration (Default = 0)
Write ‘1’ followed by ‘0’ to store configuration into external EEPROM
Bit [1]:
•
•
Store configuration and reset (Default = 0)
Write ‘1’ to store configuration into external EEPROM and reset chip
Bit [2]:
•
•
Start BIST (Default = 0)
Write ‘1’ followed by ‘0’ to start the device’s built-in self-test. The result
is found in the DCR register.
Bit [3]:
•
•
Soft Reset (Default = 0)
Write ‘1’ to reset chip
Bit [7:4]:
•
Reserved
62
Zarlink Semiconductor Inc.
MVTX2601
12.10.2
•
•
DCR-Device Status and Signature Register
CPU Address: hF01
Accessed by serial interface. (RO)
7
6
5
Revision
12.10.3
•
•
Data Sheet
4
Signature
3
RE
2
BinP
1
0
BR
BW
Bit [0]:
•
•
1: Busy writing configuration to I2C
0: Not busy writing configuration to I2C
Bit [1]:
•
•
1: Busy reading configuration from I2C
0: Not busy reading configuration from I2C
Bit [2]:
•
•
1: BIST in progress
0: BIST not running
Bit [3]:
•
•
1: RAM Error
0: RAM OK
Bit [5:4]:
•
•
Device Signature
01: MVTX2601 device
Bit [7:6]:
•
•
•
Revision
00: Initial Silicon
01: XA1 Silicon
DCR1-Chip status
CPU Address: hF02
Accessed by serial interface (RO)
7
6
0
CIC
Bit [7]
•
Chip initialization completed
63
Zarlink Semiconductor Inc.
MVTX2601
12.10.4
•
•
Data Sheet
DPST – Device Port Status Register
CPU Address:hF03
Accessed by serial interface (R/W)
Bit [4:0]:
•
Read back index register. This is used for selecting what to read back
from DTST. (Default 00)
- 5’b00000 - Port 0 Operating mode and Negotiation status
- 5’b00001 - Port 1 Operating mode/Neg status
- 5’b00010 - Port 2 Operating mode/Neg status
- 5’b00011 - Port 3 Operating mode/Neg status
- 5’b00100 - Port 4 Operating mode/Neg status
- 5’b00101 - Port 5 Operating mode/Neg status
- 5’b00110 - Port 6 Operating mode/Neg status
- 5’b00111 - Port 7 Operating mode/Neg status
- 5’b01000 - Port 8 Operating mode/Neg status
- 5’b01001 - Port 9 Operating mode/Neg status
- 5’b01010 - Port 10 Operating mode/Neg status
- 5’b01011 - Port 11 Operating mode/Neg status
- 5’b01100 - Port 12 Operating mode/Neg status
- 5’b01101 - Port 13 Operating mode/Neg status
- 5’b01110 - Port 14 Operating mode/Neg status
- 5’b01111 - Port 15 Operating mode/Neg status
- 5’b10000 - Port 16 Operating mode/Neg status
- 5’b10001 - Port 17 Operating mode/Neg status
- 5’b10010 - Port 18 Operating mode/Neg status
- 5’b00011 - Port 19 Operating mode/Neg status
- 5’b10100 - Port 20 Operating mode/Neg status
- 5’b10101 - Port 21 Operating mode/Neg status
- 5’b10110 - Port 22 Operating mode/Neg status
- 5’b10111 - Port 23 Operating mode/Neg status
64
Zarlink Semiconductor Inc.
MVTX2601
12.10.5
•
•
•
Data Sheet
DTST – Data read back register
CPU Address: hF04
Accessed by serial interface (RO)
This register provides various internal information as selected in DPST bit [4:0]. Refer to the PHY Control
Application Note.
7
4
3
Inkdn
2
FE
1
0
Fdpx
FcEn
When bit is 1:
• Bit [0] – Flow control enable
• Bit [1] – Full duplex port
• Bit [2] – Fast Ethernet port
• Bit [3] – Link is down
• Bit [7:4] – Reserved
12.10.6
•
•
PLLCR - PLL Control Register
CPU Address: hF05
Accessed by serial interface (RW)
Bit [3]
Bit [7]
12.10.7
•
•
Must be '1'
Selects strap option or LCLK/OECLK registers
0 - Strap option (default)
1 - LCLK/OECLK registers
LCLK - LA_CLK delay from internal OE_CLK
CPU Address: hF06
Accessed by serial interface (RW)
PD[12:10]
000b
001b
010b
011b
100b
101b
110b
111b
LCLK
80h
40h
20h
10h
08h
04h
02h
01h
Delay
8 Buffers Delay
7 Buffers Delay
6 Buffers Delay
5 Buffers Delay (Recommend)
4 Buffers Delay
3 Buffers Delay
2 Buffers Delay
1 Buffers Delay
The LCLK delay from SCLK is the sum of the delay programmed in here and the delay in OECLK register.
65
Zarlink Semiconductor Inc.
MVTX2601
12.10.8
•
•
OECLK - Internal OE_CLK delay from SCLK
CPU Address: hF07
Accessed by serial interface (RW)
The OE_CLK is used for generating the OE0 and OE1 signals.
PD[15:13]
000b
001b
010b
011b
100b
101b
110b
111b
12.10.9
•
•
•
OECLK
80h
40h
20h
10h
08h
04h
02h
01h
Delay
8 Buffers Delay
7 Buffers Delay (Recommend)
6 Buffers Delay
5 Buffers Delay
4 Buffers Delay
3 Buffers Delay
2 Buffers Delay
1 Buffers Delay
DA – DA Register
CPU Address: hFFF
Accessed by CPU and serial interface (RO)
Always return 8’h DA. Indicate the serial port connection is good.
66
Zarlink Semiconductor Inc.
Data Sheet
MVTX2601
13.0
BGA and Ball Signal Descriptions
13.1
BGA Views (Top-View)
13.1.1
1
Data Sheet
Encapsulated View
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
A
LA_D LA_D LA_D LA_D LA_D LA_A LA_O LA_A LA_A LA_A LA_A LA_D LA_D LA_D LA_D LA_D OE_C LA_C TRUN MIRR MIRR SCL
4
7
10
13
15
4
E0_
8
13
16
19
33
36
39
42
45
LK0 LK0
K1
OR4 OR1
B
LA_D LA_D LA_D LA_D LA_D LA_D LA_A LA_O LA_A LA_A LA_A LA_A LA_D LA_D LA_D LA_D LA_D OE_C LA_C LA_D MIRR MIRR RESE RESE
1
3
6
9
12
14 DSC_ E1_
7
12
15
18
32
35
38
41
44
LK1 LK1
62
OR5 OR2 RVED RVED
26
27
28
29
RO TSTO
SDA ST
BE
UT7
D0
TSTO TSTO
UT8 UT3
C LA_C LA_D LA_D LA_D LA_D LA_D LA_A LA_O LA_W T_MO LA_A LA_A LA_A LA_A LA_D LA_D LA_D LA_D OE_C LA_C P_D TRUN MIRR MIRR AUTO TSTO TSTO TSTO TSTO
LK
0
2
5
8
11
3
E_
E_
DE1
11
14
17
20
34
37
40
43
LK2 LK2
K0
OR3 OR0
FD UT11 UT9 UT4 UT0
D
AGN LA_D LA_D LA_D LA_D LA_D LA_D LA_D LA_D LA_A LA_A LA_W LA_D LA_D LA_D LA_D LA_D LA_D LA_D LA_D LA_D SCAN SCAN TSTO TSTO TSTO TSTO TSTO TSTO
D
17
19
21
23
25
27
29
31
6
10
E0_
49
51
53
55
57
59
61
63
47
COL CLK UT14 UT13 UT12 UT10 UT5 UT1
S C A N T S T O R E S E R E S E SMCOADN T S T O T S T O
LINK UT15 RVED RVED
UT6 UT2
E
_D LA_D LA_D LA_D LA_D LA_D LA_D LA_D LA_A LA_A LA_W LA_D LA_D LA_D LA_D LA_D LA_D LA_D RESE LA_D
E SCLK LA
16
18
20
22
24
26
28
30
5
9
E1_
48
50
52
54
56
58
60 RVED 46
F
AVC
C
RESI SCAN RESE RESE
N_
EN RVED RVED
VCC
VCC
VCC
VCC
RESE RESE RESE RESE RESE
RVED RVED RVED RVED RVED
VCC
ESE RESE RESE RESE
R E S E TRO
G R
UT RVED RVED RVED
VED
_
RESE RESE RESE RESE RESE
RVED RVED RVED RVED RVED
RESE RESE RESE RESE RESE
H RVED RVED RVED RVED RVED
RESE RESE RESE RESE RESE
RVED RVED RVED RVED RVED
RESE RESE RESE RESE RESE
J R
VED RVED RVED RVED RVED
RESE RESE RESE RESE RESE
RVED RVED RVED RVED RVED
RESE RESE RESE RESE RESE
K R
VED RVED RVED RVED RVED
VDD VDD
RESE RESE RESE RESE RESE
RVED RVED RVED RVED RVED
VDD VDD
L RESE RESE RESE RESE RESE
RVED RVED RVED RVED RVED
RESE RESE RESE RESE RESE
RVED RVED RVED RVED RVED
RESE RESE RESE RESE RESE
M RVED RVED RVED RVED RVED
RESE RESE RESE RESE RESE
N RVED RVED RVED RVED RVE VCC
D
RESE RESE RESE RESE RESE
P RVED RVED RVED RVED RVE VCC
D
R E S E R E S E R E S E R E S E RREVSEE
R R
VCC
VED RVED RVED RVED
D
VDD
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VDD
VDD
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VDD
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
R E S E R E S E R E S E R E S E RREVSEE
T R
VCC
VED RVED RVED RVED
D
RESE RESE T_MO RESE RESE
U RVED RVED DE0 RVED RVE
D
VCC
RESE RESE RESE RESE RESE
V RVED RVED RVED RVED RVED
RESE RESE RESE RESE RESE
RVED RVED RVED RVED RVED
RESE
RVE
D
RESE
VCC RVE
D
RESE
VCC RVE
D
RESE
VCC RVE
D
VCC
RESE
RVED
RESE
RVED
RESE
RVED
MDIO RESE
RVED
RESE
RVED
MDC
M_CL
K
RESE RESE RESE RESE
RVED RVED RVED RVED
VDD
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VDD
RESE
VCC RVE RESE RESE RESE RESE
RVED RVED RVED RVED
D
VDD
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VDD
RESE RESE RESE RESE RESE
RVED RVED RVED RVED RVED
RESE RESE RESE RESE RESE
W RVED RVED RVED RVED RVED
RESE RESE RESE RESE RESE
RVED RVED RVED RVED RVED
RESE RESE RESE RESE RESE
Y RVED RVED RVED RVED RVED
VDD VDD
RESE RESE RESE RESE RESE
RVED RVED RVED RVED RVED
VDD VDD
A RESE RESE RESE RESE RESE
A RVED RVED RVED RVED RVED
RESE RESE RESE RESE RESE
RVED RVED RVED RVED RVED
A RESE RESE RESE RESE RESE
B RVED RVED RVED RVED RVED
RESE RESE RESE RESE RESE
RVED RVED RVED RVED RVED
A RESE RESE RESE RESE RESE
C RVED RVED RVED RVED RVED
RESE RESE M23_ M23_ M23_
RVED RVED CRS RXD0 RXD1
A RESE RESE RESE RESE RESE
D RVED RVED RVED RVED RVED
VCC
VCC
VCC
VCC
RESE RESE M23_ M23_ M23_
RVED RVED TXD1 TXD0 TXEN
VCC
A M0_T M0_T M0_T M3_T M3_T M3_R M5_T M5_T M5_R M8_T M8_T M8_R M10_ M10_ M10_ M13_ M16_ M15_ M16_ M15_ M15_ M18_ M18_ M18_ M20_ M20_ M20_ M22_
E XEN XD0 XD1 XD1 XEN XD0 XD1 XEN XD0 XD1 XEN XD0 TXD1 TXEN RXD0 TXD1 TXD0 TXD1 RXD1 TXEN RXD0 TXD1 TXEN RXD0 TXD1 TXEN RXD0 RXD1
0_R M0_R M0_C M3_T M3_C M3_R M5_T M5_C M5_R M8_T M8_C M8_R M10_ M10_ M10_ M13_ M13_ M13_ M14_ M16R M15_ M17_ M17_ M18_ M20_ M20_ M20_ M22_ M22_
AF M
XD1 XD0
RS
XD0
RS
XD1 XD0
RS
XD1 XD0
RS
XD1 TXD0 CRS RXD1 TXD0 CRS RXD1 CRS XD0 RXD1 RXD0 CRS RXD1 TXD0 CRS RXD1 RXD0 CRS
A M1_T M1_T M1_T M2_T M2_C M4_T M4_C M6_T M6_C M7_T M7_C M9_T M9_C M11_ M11_ M12_ M12_ M14_ M15_ M16_ M16_ M18_ M18_ M19_ M19_ M21_ M21_ M22_ M22_
RS
XD1
RS
XD1
RS
XD1
RS
XD1
RS TXD1 CRS TXD1 CRS TXD1 TXD0 TXD1 CRS TXD0 CRS TXD1 CRS TXD1 CRS TXEN TXD0
G XEN XD0 XD1 XD1
M1_R M1_C M2_T M2_R M4_T M4_R M6_T M6_R M7_T M7_R M9_T M9_R M11_ M11_ M12_ M12_ M14_ M14_ M13_ M15_ M17_ M17_ M19_ M19_ M21_ M21_ M22_
XD0
RS
XD0 XD0 XD0 XD0 XD0 XD0 XD0 XD0 XD0 XD0 TXD0 RXD0 TXD0 RXD0 TXD0 RXD0 RXD0 CRS TXD0 RXD1 TXD0 RXD0 TXD0 RXD0 TXD1
A
H
M1_R M2_T M2_R M4_T M4_R M6_T M6_R M7_T M7_R M9_T M9_R M11_ M11_ M12_ M12_ M14_ M14_ M16_ M13_ M17_ M17_ M19_ M19_ M21_ M21_
XD1 XEN XD1 XEN XD1 XEN XD1 XEN XD1 XEN XD1 TXEN RXD1 TXEN RXD1 TXEN RXD1 TXEN TXEN TXEN TXD1 TXEN RXD1 TXEN RXD1
AJ
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
67
Zarlink Semiconductor Inc.
18
19
20
21
22
23
24
25
26
27
28
29
MVTX2601
13.2
Data Sheet
Ball – Signal Descriptions
All pins are CMOS type; all Input Pins are 5 Volt tolerance; and all Output Pins are 3.3 CMOS drive.
13.2.1
Ball Signal Descriptions
Ball No(s)
Symbol
I/O
Description
I2C Interface Note: Use I2C and Serial control interface to configure the system
A24
SCL
Output
I2C Data Clock
A25
SDA
I/O-TS with pull up
I2C Data I/O
A26
STROBE
Input with weak
internal pull up
Serial Strobe Pin
B26
D0
Input
Serial Data Input
C25
AUTOFD
Output with pull up
Serial Data Output (AutoFD)
D20, B21, D19, E19,D18,
E18, D17, E17, D16, E16,
D15, E15, D14, E14, D13,
E13, D21, E21, A18, B18,
C18, A17, B17, C17, A16,
B16, C16, A15, B15, C15,
A14, B14, D9, E9, D8,
E8, D7, E7, D6, E6, D5,
E5, D4, E4, D3, E3, D2,
E2, A7, B7, A6, B6, C6,
A5, B5, C5, A4, B4, C4,
A3, B3, C3, B2, C2
LA_D[63:0]
I/O-TS with pull up
Frame Bank A– Data Bit [63:0]
C14, A13, B13, C13, A12,
B12, C12, A11, B11, C11,
D11, E11, A10, B10, D10,
E10, A8, C7
LA_A[20:3]
Output
Frame Bank A – Address Bit
[20:3]
B8
LA_ADSC#
Output with pull up
Frame Bank A Address Status
Control
C1
LA_CLK
Output
Frame Bank A Clock Input
C9
LA_WE#
Output with pull up
Frame Bank A Write Chip Select
for one layer SRAM application
D12
LA_WE0#
Output with pull up
Frame Bank A Write Chip Select
for lower layer of two layers
SRAM application
E12
LA_WE1#
Output with pull up
Frame Bank A Write Chip Select
for upper layer of two layers
SRAM application
Serial Control Interface
Frame Buffer Interface
68
Zarlink Semiconductor Inc.
MVTX2601
Ball No(s)
Symbol
Data Sheet
I/O
Description
C8
LA_OE#
Output with pull up
Frame Bank A Read Chip
Select for one layer SRAM
application
A9
LA_OE0#
Output with pull up
Frame Bank A Read Chip
Select for lower layer of two
layers SRAM application
B9
LA_OE1#
Output with pull up
Frame Bank A Read Chip
Select for upper layer of two
layers SRAM application
Fast Ethernet Access Ports [23:0] RMII
R28
M_MDC
Output
MII Management Data Clock –
(Common for all MII Ports
[23:0])
P28
M_MDIO
I/O-TS with pull up
MII Management Data I/O –
(Common for all MII Ports –
[23:0]))
R29
M_CLKI
Input
Reference Input Clock
AC29, AE28, AJ27,
AF27, AJ25, AF24, AH23,
AE19, AF21, AJ19, AF18,
AJ17, AJ15, AF15, AJ13,
AF12, AJ11, AJ9, AF9,
AJ7, AF6, AJ5, AJ3, AF1
M[23:0]_RXD[1]
Input with weak
internal pull up
resistors.
Ports [23:0] – Receive Data Bit
[1]
AC28, AF28, AH27,
AE27, AH25, AE24,
AF22, AF20, AE21,
AH19, AH20, AH17,
AH15, AE15, AH13,
AE12, AH11, AH9, AE9,
AH7, AE6, AH5, AH2,
AF2
M[23:0]_RXD[0]
Input with weak
internal pull up
resistors
Ports [23:0] – Receive Data Bit
[0]
AC27, AF29, AG27,
AF26, AG25, AG23,
AF23, AG21, AH21,
AF19, AF17, AG17,
AG15, AF14, AG13,
AF11, AG11, AG9, AF8,
AG7, AF5, AG5, AH3,
AF3
M[23:0]_CRS_DV
Input with weak
internal pull down
resistors.
Ports [23:0] – Carrier Sense and
Receive Data Valid
AD29, AG28, AJ26,
AE26, AJ24, AE23, AJ22,
AJ20, AE20, AJ18, AJ21,
AJ16, AJ14, AE14, AJ12,
AE11, AJ10, AJ8, AE8,
AJ6, AE5, AJ4, AG1, AE1
M[23:0]_TXEN
I/O- TS with pull up,
slew
Ports [23:0] – Transmit Enable
Strap option for RMII/GPSI
69
Zarlink Semiconductor Inc.
MVTX2601
Ball No(s)
Data Sheet
Symbol
I/O
Description
AD27, AH28, AG26,
AE25, AG24, AE22,
AJ23, AG20, AE18,
AG18, AE16, AG16,
AG14, AE13, AG12,
AE10, AG10, AG8, AE7,
AG6, AE4, AG4, AG3,
AE3
M[23:0]_TXD[1]
Output, slew
Ports [23:0] – Transmit Data Bit
[1]
AD28, AG29, AH26,
AF25, AH24, AG22,
AH22, AE17, AG19,
AH18, AF16, AH16,
AH14, AF13, AH12,
AF10, AH10, AH8, AF7,
AH6, AF4, AH4, AG2,
AE2
M[23:0]_TXD[0]
Output, slew
Ports [23:0] – Transmit Data Bit
[0]
C29
LED_CLK/TSTOUT0
I/O- TS with pull up
LED Serial Interface Output
Clock
D29
LED_SYN/TSTOUT1
I/O- TS with pull up
LED Output Data Stream
Envelope
E29
LED_BIT/TSTOUT2
I/O- TS with pull up
LED Serial Data Output Stream
B27, A27, E28, D28, C28,
B28
TSTOUT[8:3]
I/O- TS with pull up
(Reserved)
C27
INIT_DONE/TSTOUT
9
I/O- TS with pull up
System start operation
D27
INIT_START/TSTOU
T10
I/O- TS with pull up
Start initialization
C26
CHECKSUM_OK/TS
TOUT11
I/O- TS with pull up
EEPROM read OK
D26
FCB_ERR/TSTOUT1
2
I/O- TS with pull up
FCB memory self test fail
D25
MCT_ERR/TSTOUT1
3
I/O- TS with pull up
MCT memory self test fail
D24
BIST_IN_PRC/TSTO
UT14
I/O- TS with pull up
Processing memory self test
E24
BIST_DONE/TSTOU
T15
I/O- TS with pull up
Memory self test done
TRUNK0
Input w/ weak internal
pull down resistors
Trunk Port Enable
LED Interface
Trunk Enable
C22
70
Zarlink Semiconductor Inc.
MVTX2601
Ball No(s)
A21
Symbol
Data Sheet
I/O
Description
TRUNK1
Input w/ weak internal
pull down resistors
Trunk Port Enable
U3
T_MODE0
I/O-TS
Test Pin – Set Mode upon
Reset, and provides NAND Tree
test output during test mode
(Pull Up)
C10
T_MODE1
I/O-TS
Test Pin – Set Mode upon
Reset, and provides NAND Tree
test output during test mode
(Pull Up)
T_MODE1 T_MODE0
0
0
NandTree
0
1
Reserved
1
0
reserved
1
1
Regular
operation
T_MODE0 and T_MODE1 are
used for manufacturing tests.
The signals should both be set
to 1 for regular operation.
F3
SCAN_EN
Input with pull down
Scan Enable
0 - Normal mode (unconnected)
E27
SCANMODE
Input with pull down
1 - Enables Test mode
0 - Normal mode (unconnected)
Test Facility
System Clock, Power and Ground Pins
E1
SCLK
Input
System Clock at 100 MHz
K12, K13, K17,K18 M10,
N10, M20, N20, U10,
V10, U20, V20, Y12, Y13,
Y17, Y18
VDD
Power
+2.5 Volt DC Supply
F13, F14, F15, F16, F17,
N6, P6, R6, T6, U6, N24,
P24, R24, T24, U24,
AD13, AD14, AD15,
AD16, AD17
VCC
Power
+3.3 Volt DC Supply
71
Zarlink Semiconductor Inc.
MVTX2601
Ball No(s)
Symbol
Data Sheet
I/O
Description
M12, M13, M14, M15,
M16, M17, M18, N12,
N13, N14, N15, N16,
N17, N18, P12, P13, P14,
P15, P16, P17, P18, R12,
R13, R14, R15, R16,
R17, R18, T12, T13, T14,
T15, T16, T17, T18, U12,
U13, U14, U15, U16,
U17, U18, V12, V13, V14,
V15, V16, V17, V18,
VSS
Power Ground
Ground
F1
AVCC
Analog Power
Analog +2.5 Volt DC Supply
D1
AGND
Analog Ground
Analog Ground
D22
SCANCOL
Input
Scans the Collision signal of
Home PHY
D23
SCANCLK
Input/ output
Clock for scanning Home PHY
collision and link
E23
SCANLINK
Input
Link up signal from Home PHY
F2
RESIN#
Input
Reset Input
G2
RESETOUT#
Output
Reset PHY
MISC
72
Zarlink Semiconductor Inc.
MVTX2601
Ball No(s)
B22, F4, F5, G4, G5, H4,
H5, J4, J5, K4, K5, L4,
L5, M4, M5, N4, N5, G3,
H1, H2, H3, J1, J2, J3,
K1, K2, K3, L1, L2, L3,
M1, M2, M3, U4, U5, V4,
V5, W4, W5, Y4, Y5,
AA4, AA5, AB4, AB5,
AC4, AC5, AD4, AD5,
W1, Y1, Y2, Y3, AA1,
AA2, AA3, AB1, AB2,
AB3, AC1, AC2, AC3,
AD1, AD2, AD3, N3, N2,
N1, P3, P2, P1, R5, R4,
R3, R2, R1, T5, T4, T3,
T2, T1, W3, W2, V1, G1,
V3, P4, P5, V2, U1, U2,
U26, U25, V26, V25,
W26, W25, Y27, Y26,
AA26, AA25, AB26,
AB25, AC26, AC25,
AD26, AD25, T28, U28,
R25, U29, T29, U27, V29,
V28, V27, W29, W28,
W27, Y29, Y28, Y25,
AA29, AA28, AA27,
AB29, AB28, AB27, T26,
R26, T27, T25, P29, G26,
G25, H26, H25, J26, J25,
K25, K26, M25, L26,
M26, L25, N26, N25, P26,
P25, F28, G28, E25, G29,
F29, G27,H29, H28, H27,
J29, J28, J27, K29, K28,
K27, L29, L28, L27, M29,
M28, M27, F26, E26,
F27, F25, N29,B24, E20,
B25
Symbol
Reserved
Data Sheet
I/O
I/O-TS
Description
Reserved Pins. Leave
unconnected.
Bootstrap Pins (Default= pull up, 1= pull up 0= pull down)
After reset TSTOUT0 to TSTOUT15 are used by the LED interface.
C29
TSTOUT0
D29
TSTOUT1
C28, B28, E29
TSTOUT[4:2]
D28
TSTOUT5
Reserved
Default: Enable (1)
RMII MAC Power Saving
Enable
0 - No power saving
1 - Power saving
Reserved
Default: SCLK (1)
73
Zarlink Semiconductor Inc.
Scan Speed
0 - ¼ SCLK(HPNA)
1 - SCLK
MVTX2601
Ball No(s)
Symbol
Data Sheet
I/O
Description
E28
TSTOUT6
Reserved
A27
TSTOUT7
Default: 128 K x 32 or
128 K x 64 (1)
Memory Size
0 - 256 K x 32 or 256 K x 64
(4 M total)
1 - 128 K x 32 or 128 K x 64
(2 M total)
B27
TSTOUT8
Default: Not Installed
(1)
EEPROM Installed
0 - EEPROM installed
1 - EEPROM not installed
C27
TSTOUT9
Default: MCT aging
enable (1)
MCT Aging
0 - MCT aging disable
1 - MCT aging enable
D27
TSTOUT10
Default: FCB aging
enable (1)
FCB Aging
0 - FCB aging disable
1 - FCB aging enable
C26
TSTOUT11
Default: Timeout reset
enable (1)
Timeout Reset
0 - Time out reset disable
1 - Time out reset enable. Issue
reset if any state machine did
not go back to idle for 5 Sec.
D26
TSTOUT12
D25
TSTOUT13
D24
TSTOUT14
E24
TSTOUT15
Default: Normal
operation
SRAM Test Mode
0 - Enable test mode
1 - Normal operation
AD29, AG28, AJ26,
AE26, AJ24, AE23, AJ22,
AJ20, AE20, AJ18, AJ21,
AJ16, AJ14, AE14, AJ12,
AE11, AJ10, AJ8, AE8,
AJ6, AE5, AJ4, AG1,
AE1,
M[23:0]_TXEN
Default: RMII
0 – GPSI
1 - RMII
C21
P_D
Must be pulled-down
Reserved - Must be pulleddown.
C19, B19, A19
OE_CLK[2:0]
Default: 111
Programmable delay for internal
OE_CLK from SCLK input. The
OE_CLK is used for generating
the OE0 and OE1 signals
Suggested value is 001.
Reserved
Default: Single depth
(1)
FDB RAM depth (1 or 2 layers)
0 - Two layers
1 - One layer
Reserved
74
Zarlink Semiconductor Inc.
MVTX2601
Ball No(s)
Symbol
Data Sheet
I/O
Description
C20, B20, A20
LA_CLK[2:0]
Default: 111
Programmable delay for
LA_CLK from internal OE_CLK.
The LA_CLK delay from SCLK
is the sum of the delay
programmed in here and the
delay in P_D[15:13].
Suggested value is 011.
B22, A22, C23, B23,
A23, C24
MIRROR[5:0]
Default: 111111
Dedicated Port Mirror Mode.
The first 5 bits select the port to
be mirrored. The last bit selects
either ingress or egress data.
Note:
# = Active low signal
Input = Input signal
In-ST = Input signal with Schmitt-Trigger
Output = Output signal (Tri-State driver)
Out-OD = Output signal with Open-Drain driver
I/O-TS = Input & Output signal with Tri-State driver
I/O-OD = Input & Output signal with Open-Drain driver
75
Zarlink Semiconductor Inc.
MVTX2601
13.3
Data Sheet
Ball – Signal Name
Ball No.
Signal Name
Ball No.
Signal Name
Ball No.
Signal Name
D20
LA_D[63]
D3
LA_D[19]
A9
LA_OE0#
B21
LA_D[62]
E3
LA_D[18]
B9
LA_OE1#
D19
LA_D[61]
D2
LA_D[17]
F4
RESERVED
E19
LA_D[60]
E2
LA_D[16]
F5
RESERVED
D18
LA_D[59]
A7
LA_D[15]
G4
RESERVED
E18
LA_D[58]
B7
LA_D[14]
G5
RESERVED
D17
LA_D[57]
A6
LA_D[13]
H4
RESERVED
E17
LA_D[56]
B6
LA_D[12]
H5
RESERVED
D16
LA_D[55]
C6
LA_D[11]
J4
RESERVED
E16
LA_D[54]
A5
LA_D[10]
J5
RESERVED
D15
LA_D[53]
B5
LA_D[9]
K4
RESERVED
E15
LA_D[52]
C5
LA_D[8]
K5
RESERVED
D14
LA_D[51]
A4
LA_D[7]
L4
RESERVED
E14
LA_D[50]
B4
LA_D[6]
L5
RESERVED
D13
LA_D[49]
C4
LA_D[5]
M4
RESERVED
E13
LA_D[48]
A3
LA_D[4]
M5
RESERVED
D21
LA_D[47]
B3
LA_D[3]
N4
RESERVED
E21
LA_D[46]
C3
LA_D[2]
N5
RESERVED
A18
LA_D[45]
B2
LA_D[1]
G3
RESERVED
B18
LA_D[44]
C2
LA_D[0]
H1
RESERVED
C18
LA_D[43]
C14
LA_A[20]
H2
RESERVED
A17
LA_D[42]
A13
LA_A[19]
H3
RESERVED
B17
LA_D[41]
B13
LA_A[18]
J1
RESERVED
C17
LA_D[40]
C13
LA_A[17]
J2
RESERVED
A16
LA_D[39]
A12
LA_A[16]
J3
RESERVED
B16
LA_D[38]
B12
LA_A[15]
K1
RESERVED
C16
LA_D[37]
C12
LA_A[14]
K2
RESERVED
A15
LA_D[36]
A11
LA_A[13]
K3
RESERVED
B15
LA_D[35]
B11
LA_A[12]
L1
RESERVED
C15
LA_D[34]
C11
LA_A[11]
L2
RESERVED
A14
LA_D[33]
D11
LA_A[10]
L3
RESERVED
B14
LA_D[32]
E11
LA_A[9]
M1
RESERVED
D9
LA_D[31]
A10
LA_A[8]
M2
RESERVED
76
Zarlink Semiconductor Inc.
MVTX2601
Data Sheet
Ball No.
Signal Name
Ball No.
Signal Name
Ball No.
Signal Name
E9
LA_D[30]
B10
LA_A[7]
M3
RESERVED
D8
LA_D[29]
D10
LA_A[6]
U4
RESERVED
E8
LA_D[28]
E10
LA_A[5]
U5
RESERVED
D7
LA_D[27]
A8
LA_A[4]
V4
RESERVED
E7
LA_D[26]
C7
LA_A[3]
V5
RESERVED
D6
LA_D[25]
B8
LA_DSC#
W4
RESERVED
E6
LA_D[24]
C1
LA_CLK
W5
RESERVED
D5
LA_D[23]
C9
LA_WE#
Y4
RESERVED
E5
LA_D[22]
D12
LA_WE0#
Y5
RESERVED
D4
LA_D[21]
E12
LA_WE1#
AA4
RESERVED
E4
LA_D[20]
C8
LA_OE#
AA5
RESERVED
AB4
RESERVED
U2
RESERVED
AH7
M[4]_RXD[0]
AB5
RESERVED
R28
MDC
AE6
M[3]_RXD[0]
AC4
RESERVED
P28
MDIO
AH5
M[2]_RXD[0]
AC5
RESERVED
R29
M_CLK
AH2
M[1]_RXD[0]
AD4
RESERVED
AC29
M[23]_RXD[1]
AF2
M[0]_RXD[0]
AD5
RESERVED
AE28
M[22]_RXD[1]
AC27
M[23]_CRS_DV
W1
RESERVED
AJ27
M[21]_RXD[1]
AF29
M[22]_CRS_DV
Y1
RESERVED
AF27
M[20]_RXD[1]
AG27
M[21]_CRS_DV
Y2
RESERVED
AJ25
M[19]_RXD[1]
AF26
M[20]_CRS_DV
Y3
RESERVED
AF24
M[18]_RXD[1]
AG25
M[19]_CRS_DV
AA1
RESERVED
AH23
M[17]_RXD[1]
AG23
M[18]_CRS_DV
AA2
RESERVED
AE19
M[16]_RXD[1]
AF23
M[17]_CRS_DV
AA3
RESERVED
AF21
M[15]_RXD[1]
AG21
M[16]_CRS_DV
AB1
RESERVED
AJ19
M[14]_RXD[1]
AH21
M[15]_CRS_DV
AB2
RESERVED
AF18
M[13]_RXD[1]
AF19
M[14]_CRS_DV
AB3
RESERVED
AJ17
M[12]_RXD[1]
AF17
M[13]_CRS_DV
AC1
RESERVED
AJ15
M[11]_RXD[1]
AG17
M[12]_CRS_DV
AC2
RESERVED
AF15
M[10]_RXD[1]
AG15
M[11]_CRS_DV
AC3
RESERVED
AJ13
M[9]_RXD[1]
AF14
M[10]_CRS_DV
AD1
RESERVED
AF12
M[8]_RXD[1]
AG13
M[9]_CRS_DV
AD2
RESERVED
AJ11
M[7]_RXD[1]
AF11
M[8]_CRS_DV
AD3
RESERVED
AJ9
M[6]_RXD[1]
AG11
M[7]_CRS_DV
N3
RESERVED
AF9
M[5]_RXD[1]
AG9
M[6]_CRS_DV
N2
RESERVED
AJ7
M[4]_RXD[1]
AF8
M[5]_CRS_DV
77
Zarlink Semiconductor Inc.
MVTX2601
Data Sheet
Ball No.
Signal Name
Ball No.
Signal Name
Ball No.
Signal Name
N1
RESERVED
AF6
M[3]_RXD[1]
AG7
M[4]_CRS_DV
P3
RESERVED
AJ5
M[2]_RXD[1]
AF5
M[3]_CRS_DV
P2
RESERVED
AJ3
M[1]_RXD[1]
AG5
M[2]_CRS_DV
P1
RESERVED
AF1
M[0]_RXD[1]
AH3
M[1]_CRS_DV
R5
RESERVED
AC28
M[23]_RXD[0]
AF3
M[0]_CRS_DV
R4
RESERVED
AF28
M[22]_RXD[0]
AD29
M[23]_TXEN
R3
RESERVED
AH27
M[21]_RXD[0]
AG28
M[22]_TXEN
R2
RESERVED
AE27
M[20]_RXD[0]
AJ26
M[21]_TXEN
R1
RESERVED
AH25
M[19]_RXD[0]
AE26
M[20]_TXEN
T5
RESERVED
AE24
M[18]_RXD[0]
AJ24
M[19]_TXEN
T4
RESERVED
AF22
M[17]_RXD[0]
AE23
M[18]_TXEN
T3
RESERVED
AF20
M[16]_RXD[0]
AJ22
M[17]_TXEN
T2
RESERVED
AE21
M[15]_RXD[0]
AJ20
M[16]_TXEN
T1
RESERVED
AH19
M[14]_RXD[0]
AE20
M[15]_TXEN
W3
RESERVED
AH20
M[13]_RXD[0]
AJ18
M[14]_TXEN
W2
RESERVED
AH17
M[12]_RXD[0]
AJ21
M[13]_TXEN
V1
RESERVED
AH15
M[11]_RXD[0]
AJ16
M[12]_TXEN
G1
RESERVED
AE15
M[10]_RXD[0]
AJ14
M[11]_TXEN
V3
RESERVED
AH13
M[9]_RXD[0]
AE14
M[10]_TXEN
P4
RESERVED
AE12
M[8]_RXD[0]
AJ12
M[9]_TXEN
P5
RESERVED
AH11
M[7]_RXD[0]
AE11
M[8]_TXEN
V2
RESERVED
AH9
M[6]_RXD[0]
AJ10
M[7]_TXEN
U1
RESERVED
AE9
M[5]_RXD[0]
AJ8
M[6]_TXEN
AE8
M[5]_TXEN
AH8
M[6]_TXD[0]
G27
RESERVED
AJ6
M[4]_TXEN
AF7
M[5]_TXD[0]
H29
RESERVED
AE5
M[3]_TXEN
AH6
M[4]_TXD[0]
H28
RESERVED
AJ4
M[2]_TXEN
AF4
M[3]_TXD[0]
H27
RESERVED
AG1
M[1]_TXEN
AH4
M[2]_TXD[0]
J29
RESERVED
AE1
M[0]_TXEN
AG2
M[1]_TXD[0]
J28
RESERVED
AD27
M[23]_TXD[1]
AE2
M[0]_TXD[0]
J27
RESERVED
AH28
M[22]_TXD[1]
U26
RESERVED
K29
RESERVED
AG26
M[21]_TXD[1]
U25
RESERVED
K28
RESERVED
AE25
M[20]_TXD[1]
V26
RESERVED
K27
RESERVED
AG24
M[19]_TXD[1]
V25
RESERVED
L29
RESERVED
AE22
M[18]_TXD[1]
W26
RESERVED
L28
RESERVED
78
Zarlink Semiconductor Inc.
MVTX2601
Data Sheet
Ball No.
Signal Name
Ball No.
Signal Name
Ball No.
Signal Name
AJ23
M[17]_TXD[1]
W25
RESERVED
L27
RESERVED
AG20
M[16]_TXD[1]
Y27
RESERVED
M29
RESERVED
AE18
M[15]_TXD[1]
Y26
RESERVED
M28
RESERVED
AG18
M[14]_TXD[1]
AA26
RESERVED
M27
RESERVED
AE16
M[13]_TXD[1]
AA25
RESERVED
G26
RESERVED
AG16
M[12]_TXD[1]
AB26
RESERVED
G25
RESERVED
AG14
M[11]_TXD[1]
AB25
RESERVED
H26
RESERVED
AE13
M[10]_TXD[1]
AC26
RESERVED
H25
RESERVED
AG12
M[9]_TXD[1]
AC25
RESERVED
J26
RESERVED
AE10
M[8]_TXD[1]
AD26
RESERVED
J25
RESERVED
AG10
M[7]_TXD[1]
AD25
RESERVED
K25
RESERVED
AG8
M[6]_TXD[1]
U27
RESERVED
K26
RESERVED
AE7
M[5]_TXD[1]
V29
RESERVED
M25
RESERVED
AG6
M[4]_TXD[1]
V28
RESERVED
L26
RESERVED
AE4
M[3]_TXD[1]
V27
RESERVED
M26
RESERVED
AG4
M[2]_TXD[1]
W29
RESERVED
L25
RESERVED
AG3
M[1]_TXD[1]
W28
RESERVED
N26
RESERVED
AE3
M[0]_TXD[1]
W27
RESERVED
N25
RESERVED
AD28
M[23]_TXD[0]
Y29
RESERVED
P26
RESERVED
AG29
M[22]_TXD[0]
Y28
RESERVED
P25
RESERVED
AH26
M[21]_TXD[0]
Y25
RESERVED
F28
RESERVED
AF25
M[20]_TXD[0]
AA29
RESERVED
G28
RESERVED
AH24
M[19]_TXD[0]
AA28
RESERVED
E25
RESERVED
AG22
M[18]_TXD[0]
AA27
RESERVED
G29
RESERVED
AH22
M[17]_TXD[0]
AB29
RESERVED
F29
RESERVED
AE17
M[16]_TXD[0]
AB28
RESERVED
F26
RESERVED
AG19
M[15]_TXD[0]
AB27
RESERVED
E26
RESERVED
AH18
M[14]_TXD[0]
R26
RESERVED
F25
RESERVED
AF16
M[13]_TXD[0]
T25
RESERVED
E24
BIST_DONE/TSTOUT[15]
AH16
M[12]_TXD[0]
T26
RESERVED
D24
BIST_IN_PRC/TST0UT[14]
AH14
M[11]_TXD[0]
T28
RESERVED
D25
MCT_ERR/TSTOUT[13]
AF13
M[10]_TXD[0]
U28
RESERVED
D26
FCB_ERR/TSTOUT[12]
AH12
M[9]_TXD[0]
R25
RESERVED
C26
CHECKSUM_OK/TSTOUT[1
1]
AF10
M[8]_TXD[0]
U29
RESERVED
D27
INIT_START/TSTOUT[10]
79
Zarlink Semiconductor Inc.
MVTX2601
Data Sheet
Ball No.
Signal Name
Ball No.
Signal Name
Ball No.
Signal Name
AH10
M[7]_TXD[0]
T29
RESERVED
C27
INIT_DONE/TSTOUT[9]
B27
TSTOUT[8]
U18
VSS
N12
VSS
A27
TSTOUT[7]
V12
VSS
N13
VSS
E28
TSTOUT[6]
V13
VSS
K17
VDD
D28
TSTOUT[5]
V14
VSS
K18
VDD
C28
TSTOUT[4]
V15
VSS
M10
VDD
B28
TSTOUT[3]
V16
VSS
N10
VDD
E29
LED_BIT/TSTOUT[2]
V17
VSS
M20
VDD
D29
LED_SYN/TSTOUT[1
]
V18
VSS
N20
VDD
C29
LED_CLK/TSTOUT[0
]
N14
VSS
U10
VDD
N29
RESERVED
N15
VSS
V10
VDD
P29
RESERVED
N16
VSS
U20
VDD
F3
SCAN_EN
N17
VSS
V20
VDD
E1
SCLK
N18
VSS
Y12
VDD
U3
T_MODE0
P12
VSS
Y13
VDD
C10
T_MODE1
P13
VSS
Y17
VDD
B24
RESERVED
P14
VSS
Y18
VDD
A21
TRUNK1
P15
VSS
K12
VDD
C22
TRUNK0
P16
VSS
K13
VDD
A26
STROBE
C19
OE_CLK2
M16
VSS
B26
D0
B19
OE_CLK1
M17
VSS
C25
AUTOFD
A19
OE_CLK0
M18
VSS
A24
SCL
R13
VSS
F16
VCC
A25
SDA
R14
VSS
F17
VCC
F1
AVCC
R15
VSS
N6
VCC
D1
AGND
R16
VSS
P6
VCC
D22
SCANCOL
R17
VSS
R6
VCC
E23
SCANLINK
R18
VSS
T6
VCC
E27
SCANMODE
T12
VSS
U6
VCC
N28
T13
VSS
N24
VCC
N27
T14
VSS
P24
VCC
F2
RESIN#
T15
VSS
R24
VCC
G2
RESETOUT#
T16
VSS
T24
VCC
80
Zarlink Semiconductor Inc.
MVTX2601
Data Sheet
Ball No.
Signal Name
Ball No.
Signal Name
Ball No.
Signal Name
B22
MIRROR5
T17
VSS
U24
VCC
A22
MIRROR4
T18
VSS
AD13
VCC
C23
MIRROR3
U12
VSS
AD14
VCC
B23
MIRROR2
U13
VSS
AD15
VCC
A23
MIRROR1
U14
VSS
AD16
VCC
C24
MIRROR0
U15
VSS
AD17
VCC
D23
SCANCLK
U16
VSS
F13
VCC
T27
RESERVED
U17
VSS
F14
VCC
F27
RESERVED
M12
VSS
F15
VCC
C20
LA_CLK2
M13
VSS
B20
LA_CLK1
M14
VSS
A20
LA_CLK0
M15
VSS
C21
P_D
P17
VSS
E20
RESERVED
P18
VSS
B25
RESERVED
R12
VSS
13.4
13.4.1
AC/DC Timing
Absolute Maximum Ratings
Storage Temperature
-65°C to +150°C
Operating Temperature
-40°C to +85°C
Maximum Junction Temperature
+125°C
Supply Voltage VCC with Respect to VSS
+3.0 V to +3.6 V
Supply Voltage VDD with Respect to VSS
+2.38 V to +2.75 V
Voltage on Input Pins
-0.5 V to (VCC + 3.3 V)
Caution: Stress above those listed may damage the device. Exposure to the Absolute Maximum Ratings for
extended periods may affect device reliability. Functionality at or above these limits is not implied.
13.4.2
DC Electrical Characteristics
VCC = 3.0 V to 3.6 V (3.3v +/- 10%)TAMBIENT = -40°C to +85°C
VDD = 2.5V +10% - 5%
81
Zarlink Semiconductor Inc.
MVTX2601
13.4.3
Data Sheet
Recommended Operating Conditions
Symbol
Parameter Description
Min.
Typ.
Max.
Unit
fosc
Frequency of Operation
ICC
Supply Current – @ 100 MHz (VCC=3.3 V)
450
mA
IDD
Supply Current – @ 100 MHz (VDD=2.5 V)
1500
mA
VOH
Output High Voltage (CMOS)
VOL
Output Low Voltage (CMOS)
VIH-TTL
Input High Voltage (TTL 5 V tolerant)
VIL-TTL
100
MHz
2.4
V
0.4
V
VCC + 2.0
V
Input Low Voltage (TTL 5 V tolerant)
0.8
V
IIL
Input Leakage Current (0.1 V < VIN < VCC)(all
pins except those with internal pull-up/pull-down
resistors)
10
µA
IOL
Output Leakage Current (0.1 V < VOUT < VCC)
10
µA
CIN
Input Capacitance
5
pF
COUT
Output Capacitance
5
pF
CI/O
I/O Capacitance
7
pF
θja
Thermal resistance with 0 air flow
11.2
C/W
θja
Thermal resistance with 1 m/s air flow
10.2
C/W
θja
Thermal resistance with 2 m/s air flow
8.9
C/W
θjc
Thermal resistance between junction and case
3.1
C/W
θjb
Thermal resistance between junction and board
6.6
C/W
13.4.4
2.0
Typical Reset & Bootstrap Timing Diagram
RESIN#
RESETOUT#
Tri-Stated
R1
R3
Bootstrap Pins
Outputs
Inputs
Outputs
R2
Figure 13 - Typical Reset & Bootstrap Timing Diagram
82
Zarlink Semiconductor Inc.
MVTX2601
Symbol
Parameter
Min.
R1
Delay until RESETOUT# is tri-stated
R2
Bootstrap stabilization
R3
RESETOUT# assertion
1 µs
Data Sheet
Typ.
Note
10ns
RESETOUT# state is then determined
by the external pull-up/down resistor
10 µs
Bootstrap pins sampled on rising edge
of RESIN#a
2 ms
Table 10 - Reset & Bootstrap Timing
a. The TSTOUT[8:0] pins will switch over to the LED interface functionality in 3 SCLK cycles after RESIN# goes high
13.5
13.5.1
Local Frame Buffer SBRAM Memory Interface
Local SBRAM Memory Interface
LA_CLK
L1
L2
LA_D[63:0]
Figure 14 - Local Memory Interface – Input Setup and Hold Timing
LA_CLK
L3-max
L3-min
LA_D[63:0]
L4-max
L4-min
LA_A[20:3]
L6-max
L6-min
LA_ADSC#]
L3-max
L3-min
LA_WE[1:0]#
####
L3-max
L3-min
LA_OE[1:0]#
L3-max
L3-min
LA_WE#
L3-max
L3-min
LA_OE#
Figure 15 - Local Memory Interface - Output Valid Delay Timing
83
Zarlink Semiconductor Inc.
MVTX2601
Data Sheet
AC Characteristics – Local frame buffer SBRAM Memory Interface
-100 MHz
Symbol
Parameter
Note
Min. (ns)
Max. (ns)
L1
LA_D[63:0] input set-up time
L2
LA_D[63:0] input hold time
1.5
L3
LA_D[63:0] output valid delay
1.5
7
CL = 25 pf
L4
LA_A[20:3] output valid delay
2
7
CL = 30 pf
L6
LA_ADSC# output valid delay
1
7
CL = 30 pf
L7
LA_WE[1:0]#output valid delay
1
7
CL = 25 pf
L8
LA_OE[1:0]# output valid delay
-1
1
CL = 25 pf
L9
LA_WE# output valid delay
1
7
CL = 25 pf
L10
LA_OE# output valid delay
1
5
CL = 25 pf
13.6
13.6.1
4
AC Characteristics
Reduced Media Independent Interface
-50 MHz
Symbol
Parameter
Note
Min. (ns)
Max. (ns)
M2
M[23:0]_RXD[1:0] Input Setup Time
4
M3
M[23:0]_RXD[1:0] Input Hold Time
1
M4
M[23:0]_CRS_DV Input Setup Time
4
M5
M[23:0]_CRS_DV Input Hold Time
1
M6
M[23:0]_TXEN Output Delay Time
2
11
CL = 20 pF
M7
M[23:0]_TXD[1:0] Output Delay Time
2
11
CL = 20 pF
Table 11 - AC Characteristics – Reduced Media Independent Interface
M_CLKI
M6-max
M6-min
M[23:0]_TXEN
M7-max
M7-min
M[23:0]_TXD[1:0]
Figure 16 - AC Characteristics – Reduced Media Independent Interface
84
Zarlink Semiconductor Inc.
MVTX2601
Data Sheet
M_CLKI
M2
M[23:0]_RXD
M4
M3
M[23:0]_CRS_DV
M5
Figure 17 - AC Characteristics – Reduced Media Independent Interface
13.6.2
LED Interface
LED_CLK
LE5-max
LE5-min
LED_SYN
LE6-max
LE6-min
LED_BIT
Figure 18 - AC Characteristics – LED Interface
Symbol
Variable FREQ.
Parameter
Min. (ns)
Max. (ns)
Note
LE5
LED_SYN Output Valid Delay
-1
7
CL = 30 pf
LE6
LED_BIT Output Valid Delay
-1
7
CL = 30 pf
Table 12 - AC Characteristics – LED Interface
13.6.3
SCANLINK SCANCOL Output Delay Timing
SCANCLK
C5-max
C5-min
SCANLINK
C7-max
C7-min
SCANCOL
Figure 19 - SCANLINK SCANCOL Output Delay Timing
85
Zarlink Semiconductor Inc.
MVTX2601
Data Sheet
SCANCLK
C1
C2
SCANLINK
C3
SCANCOL
C4
Figure 20 - SCANLINK, SCANCOL Setup Timing
-25 MHz
Symbol
Parameter
Note
Min. (ns)
Max (ns)
C1
SCANLINK input set-up time
20
C2
SCANLINK input hold time
2
C3
SCANCOL input setup time
20
C4
SCANCOL input hold time
1
C5
SCANLINK output valid delay
0
10
CL = 30 pf
C7
SCANCOL output valid delay
0
10
CL = 30 pf
Table 13 - SCANLINK, SCANCOL Timing
86
Zarlink Semiconductor Inc.
MVTX2601
13.6.4
Data Sheet
MDIO Input Setup and Hold Timing
MDC
D1
D3
MDIO
Figure 21 - MDIO Input Setup and Hold Timing
MDC
D3-max
D3-min
MDIO
Figure 22 - MDIO Output Delay Timing
1 MHz
Symbol
Parameter
Note
Min. (ns)
D1
MDIO input setup time
10
D2
MDIO input hold time
2
D3
MDIO output delay time
1
Table 14 - MDIO Timing
87
Zarlink Semiconductor Inc.
Max. (ns)
20
CL = 50 pf
MVTX2601
13.6.5
Data Sheet
I2C Input Setup Timing
SCL
S1
S2
SDA
Figure 23 - I 2C Input Setup Timing
SCL
S3-max
S3-min
SDA
Figure 24 - I2C Output Delay Timing
50 KHz
Symbol
Parameter
Note
Min. (ns)
S1
SDA input setup time
20
S2
SDA input hold time
1
S3*
SDA output delay time
4 usec
Max. (ns)
6 usec
* Open Drain Output. Low to High transistor is controlled by external pullup resistor.
Table 15 - I2C Timing
88
Zarlink Semiconductor Inc.
CL = 30 pf
MVTX2601
13.6.6
Data Sheet
Serial Interface Setup Timing
D4
STROBE
D1
D5
D2
D1
D2
D0
Figure 25 - Serial Interface Setup Timing
STROBE
D3-max
D3-min
AutoFd
Figure 26 - Serial Interface Output Delay Timing
Symbol
Parameter
Min. (ns)
D1
D0 setup time
20
D2
D0 hold time
3 µs
D3
AutoFd output delay time
D4
Strobe low time
5 µs
D5
Strobe high time
5 µs
1
Table 16 - Serial Interface Timing
89
Zarlink Semiconductor Inc.
Max. (ns)
Note
50
CL = 100 pf
E1
DIMENSION
A
A1
A2
D
D1
E
E1
b
e
MIN
MAX
2.20
2.46
0.50
0.70
1.17 REF
37.70
37.30
34.50 REF
37.70
37.30
34.50 REF
0.60
0.90
1.27
553
Conforms to JEDEC MS - 034
E
e
D
D1
A2
b
NOTE:
1. CONTROLLING DIMENSIONS ARE IN MM
2. DIMENSION "b" IS MEASURED AT THE MAXIMUM SOLDER BALL DIAMETER
3. SEATING PLANE IS DEFINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS.
4. N IS THE NUMBER OF SOLDER BALLS
5. NOT TO SCALE.
6. SUBSTRATE THICKNESS IS 0.56 MM
Package Code
ISSUE
ACN
DATE
APPRD.
Previous package codes:
For more information about all Zarlink products
visit our Web Site at
www.zarlink.com
Information relating to products and services furnished herein by Zarlink Semiconductor Inc. or its subsidiaries (collectively “Zarlink”) is believed to be reliable.
However, Zarlink assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such
information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or
use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual
property rights owned by Zarlink or licensed from third parties by Zarlink, whatsoever. Purchasers of products are also hereby notified that the use of product in
certain ways or in combination with Zarlink, or non-Zarlink furnished goods or services may infringe patents or other intellectual property rights owned by Zarlink.
This publication is issued to provide information only and (unless agreed by Zarlink in writing) may not be used, applied or reproduced for any purpose nor form part
of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other
information appearing in this publication are subject to change by Zarlink without notice. No warranty or guarantee express or implied is made regarding the
capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute
any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user’s responsibility to fully determine the performance and
suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does
not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in
significant injury or death to the user. All products and materials are sold and services provided subject to Zarlink’s conditions of sale which are available on request.
Purchase of Zarlink’s I2C components conveys a licence under the Philips I2C Patent rights to use these components in and I2C System, provided that the system
conforms to the I2C Standard Specification as defined by Philips.
Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc.
Copyright Zarlink Semiconductor Inc. All Rights Reserved.
TECHNICAL DOCUMENTATION - NOT FOR RESALE