ZARLINK ZL60301MJD

ZL60301
Parallel Fiber Optic Transceiver
(4 + 4) x 2.7 Gbps
Data Sheet
June 2004
Ordering Information
ZL60301/MJD
Parallel Fiber Transceiver
Heat sink and EMI shield options
are available upon request
0°C to +80°C
Features
•
Industry standard MPO/MTP ribbon fiber
connector interface
4 Transmit channels and 4 Receive channels
•
Pluggable MegArray® ball grid array connector
•
Data rate up to 2.7 Gbps per channel
•
Optionally available with EMI shield and external
heat sink
•
850 nm VCSEL array
•
Laser class 1M IEC 60825-1:2001 compliant
•
Data I/O is CML compatible with DC blocking
capacitors
•
Low power consumption, max 1 W
•
Link reach 300 m with 50/125 µm 500 MHz.km
fiber at 2.5 Gbps
•
Power supply 3.3 V
•
Channel BER better than 10-12
•
Complies with POP4 MSA specification
•
Rx_EN Rx_SD SQ_EN
VCCA Rx
0RX0
TransImpedance
and
Limiting
Amplifier
DOUT0+
DOUT0DOUT3+
DOUT3DIN3+
DIN3-
VCCB Rx VEE Rx
PIN Array
1RX1
2RX2
3RX3
VCSEL
Driver
VCSEL
Array
DIN0+
DIN0-
3TX3
2TX2
1TX1
0TX0
VCSEL Driver Controller
Tx_EN
Tx_DIS
RESET
FAULT
VCC Tx
VEE TX
Figure 1 - Transceiver Block Diagram
1
Zarlink Semiconductor Inc.
Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc.
Copyright 2004, Zarlink Semiconductor Inc. All Rights Reserved.
ZL60301
Data Sheet
Applications
•
High-speed interconnects within and between switches, routers and transport equipment
•
Proprietary backplanes
•
Interconnects rack-to-rack, shelf-to-shelf, board-to-board, board-to-optical backplane
Description
The ZL60301 is a very high-speed transceiver for parallel fiber applications. This transceiver performs E/O and O/E
conversions for data transmission over multimode fiber ribbon.
The transmit section converts parallel electrical input signals via a laser driver and a VCSEL array into parallel
optical output signals at a wavelength of 850 nm.
The receive section converts parallel optical input signals via a PIN photodiode array and a transimpedance and
limiting amplifier, into electrical output signals.
The module is fitted with a pluggable industry-standard MegArray® BGA connector. This provides ease of assembly
on the host board and enables provisioning of bandwidth on demand.
2
Zarlink Semiconductor Inc.
ZL60301
Data Sheet
Table of Contents
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Transmitter Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Transmitter Control and Status Signal Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Transmitter Control and Status Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Receiver Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Receiver Control and Status Signal Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Receiver Control and Status Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Transceiver Module Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Transceiver Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Regulatory Compliance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Eye safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Electrostatic discharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Electrostatic discharge immunity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Electromagnetic Interference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Emission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Immunity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Handling instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Cleaning the Optical Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
ESD handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Link Reach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Link Model Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Electrical Interface - Application Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3
Zarlink Semiconductor Inc.
ZL60301
Data Sheet
Absolute Maximum Ratings
Not necessarily applied together. Exceeding these values may cause permanent damage. Functional operation
under these conditions is not implied.
Parameter
Supply voltage
Differential input voltage amplitude
Symbol
Min.
Max.
Unit
VCC
-0.3
4.0
V
1.2
V
∆V
1
Voltage on any pin
VPIN
-0.3
VCC + 0.3
V
Relative humidity (non-condensing)
MOS
5
95
%
Storage temperature
TSTG
-40
100
°C
ESD resistance
VESD
±1
kV
1. Differential input voltage amplitude is defined as ∆V = DIN+ − DIN-.
Recommended Operating Conditions
Parameter
Symbol
Min.
Max.
Unit
VCC
3.135
3.465
V
Operating case temperature
TCASE
0
80
°C
Signalling rate (per channel)1
fD
1.0
2.7
Gbps
LD
2
m
CBLK
100
nF
Power supply voltage
2
Link distance
Data I/O DC blocking capacitors
3
Power supply noise4
VNPS
200
mVp-p
1. Data patterns are to have maximum run lengths and DC balance shifts no worse than that of a Pseudo Random Bit Sequence of
length 223-1 (PRBS-23). Information on lower bit rates and longer run lengths are available on request.
2. For maximum distance, see Table 4.
3. For AC-coupling, DC blocking capacitors external to the module with a minimum value of 100 nF is recommended.
4. Power supply noise is defined at the supply side of the recommended filter for all VCC supplies over the frequency range of 500 Hz
to 2700 MHz with the recommended power supply filter in place.
L1 1 µH
L2 6.8 nH
R1 100 Ω
R2 1.0 kΩ
Host
Vcc
Module
Vcc
C1
10 µF
C2
10 µF
C3
0.1 µF
C4
0.1 µF
Figure 2 - Recommended Power Supply Filter
4
Zarlink Semiconductor Inc.
ZL60301
Data Sheet
Transmitter Specifications
All parameters below require operating conditions according to “Recommended Operating Conditions” on page 4.
Parameter
Symbol
Min.
Max.
Unit
Launch power (50/125 µm MMF)1
POUT
-8
-2
dBm
Extinguished output power
POFF
-30
dBm
Optical Parameters
2
ER
6
dB
Optical modulation amplitude3
OMA
0.30
mW
λC
830
Extinction ratio
860
nm
∆λ
0.85
nmrms
RIN12OMA
-116
dB/Hz
tRO
150
ps
tFO
150
ps
Total jitter contributed (peak to peak)
TJ
120
ps
Deterministic jitter contributed (peak to peak)
DJ
50
ps
Channel to channel skew7
tSK
100
ps
PD
500
mW
ICC
150
mA
Center wavelength
4
Relative intensity noise OMA5
Spectral width
Optical output rise time (20 - 80%)
Optical output fall time (20 - 80%)
6
Electrical Parameters
Power dissipation
Supply current
∆VIN
200
800
mVp-p
Differential input impedance9
ZIN
80
120
Ω
Electrical input rise time (20 - 80%)
tRE
160
ps
Electrical input fall time (20 - 80%)
tFE
160
ps
8
Differential input voltage amplitude (peak to peak)
1. The output optical power is compliant with IEC 60825-1 Amendment 2, Class 1M Accessible Emission Limits.
2. The extinction ratio is measured at 622 Mbps.
3. Informative. Corresponds to POUT = -8 dBm and ER = 6 dBm.
4. Spectral width is measured as defined in EIA/TIA-455-127 Spectral Characterization of Multimode Laser Diodes.
5. Corresponds to a Relative Intensity Noise (RIN) of -120 dB/Hz.
6. Total jitter equals TP1 to TP2 as defined in IEEE 802.3 clauses 38.2 and 38.6 (Gigabit Ethernet).
7. Channel skew is defined for the condition of equal amplitude, zero ps skew signals applied to the transmitter inputs.
8. Differential input voltage is defined as the peak to peak value of the differential voltage between DIN+ and DIN-. Data inputs are CML
compatible.
9. Differential input impedance is measured between DIN+ and DIN-.
5
Zarlink Semiconductor Inc.
ZL60301
Classified in accordance with IEC 60825-1/A2:2001, IEC 60825-2 : 2000
Class 1M Laser Product
Emited wavelength: 840 nm
DIN+
50Ω
50Ω
DIN-
VCC
13kΩ
11kΩ
VEE
Figure 3 - Differential CML Input Equivalent Circuit
6
Zarlink Semiconductor Inc.
Data Sheet
ZL60301
Data Sheet
Transmitter Control and Status Signal Requirements
The following table shows the timing relationships of the status and control signals of the transmit section.
Parameter
Symbol
Min.
Control input voltage high1
VIH
2.1
Control input voltage low
VIL
Control pull-up resistor2
Control pull-down resistor
3
Typ.
Max.
Unit
V
0.62
V
RPU
10
kΩ
RPD1
10
kΩ
Status output voltage low4, 5
VOL
Status pull-down resistor4
RPD2
0.4
10
V
kΩ
FAULT assert time
TFA
100
µs
FAULT lasers off
TFD
100
µs
RESET duration
TTDD
RESET assert time
TOFF
RESET de-assert time
µs
10
10
µs
TON
100
ms
Tx_EN assert time
TTEN
1
ms
Tx_EN de-assert time
TTD
5
10
µs
Tx_DIS assert time
TTD
5
10
µs
Tx_DIS de-assert time
TTEN
1
ms
1. Applies to control signals RESET, Tx_DIS and Tx_EN.
2. Applies to control signals RESET and Tx_EN. Internal pull-up resistor.
3. Applies to control signal Tx_DIS. Internal pull-down resistor.
4. Applies to status signal FAULT. Internal pull-down to VEE.
5. With status output sink current max. 2 mA.
7
Zarlink Semiconductor Inc.
5
ZL60301
Data Sheet
Transmitter Control and Status Timing Diagrams
The following figures show the timing relationships of the status and control signals of the transmit section.
VCC
TTEN
Tx Output [0:3]
Data [0:3]
Transmitter Not Ready
Normal operation
RESET: floating or high
Figure 4 - Transmitter Power-up Sequence
FAULT
TFA
TFD
Data [0:3]
Tx Output [0:3]
No Fault
Fault
Figure 5 - Transmitter Fault Signal Timing Diagram
8
Zarlink Semiconductor Inc.
ZL60301
Data Sheet
RESET
FAULT
TTDD
TON
Data [0:3]
Tx Output [0:3]
Transmitter Not Ready
Normal operation
Figure 6 - Transmitter Reset Signal Timing Diagram
Tx_DIS
Tx_EN
TTD
TTD
Lasers
off
Data [0:3]
Normal operation
Lasers
off
Data [0:3]
Tx Off
Normal operation
Tx Off
Tx_EN
TTEN
Data [0:3]
Transmitter Not Ready
Normal operation
Figure 7 - Transmitter Enable and Disable Timing Diagram
Tx_DIS High
Tx_DIS Low
Tx_EN High
Transmitter disabled
Normal operation
Tx_EN Low
Transmitter disabled
Transmitter disabled
Table 1 - TruthTable for Transmitter Operation (Pre-condition: RESET floating or HIGH)
9
Zarlink Semiconductor Inc.
ZL60301
Data Sheet
Receiver Specifications
All parameters below require operating conditions according to “Recommended Operating Conditions” on page 4
and a termination load of 100 Ω differential at the electrical output.
Parameter
Symbol
Min.
Max.
Unit
Input optical power
PIN
-16
-2
dBm
Center wavelength
λC
830
860
nm
RL
12
Optical Parameters
1
2
Return loss
3
dB
Stressed receiver sensitivity
PSS
-11.7
dBm
Channel to channel skew4
tSK
100
ps
Signal detect assert
PSA
-17
dBm
Signal detect de-assert
PSD
-31
dBm
Electrical Parameters
Power dissipation
Supply current
PD
500
mW
ICC
150
mA
∆VOUT
500
800
mVp-p
ZL
80
120
Ω
Stressed receiver eye opening
PSE
0.3
Electrical output rise time (20 - 80%)
tRE
160
ps
tFE
160
ps
5
Differential output voltage amplitude (peak to peak)
Output differential load impedance6
7
Electrical output fall time (20 - 80%)
-12
UI
1. Receive power for a channel is measured for a BER of 10
and worst case extinction ratio. PIN (Min) is measured using a fast
rise/fall time source with low RIN and adjacent channel(s) operating with incident power of 6 dB above PIN (Min).
2. Return loss is measured as defined in TIA/EIA-455-107A Determination of Component Reflectance or Link/System Return Loss Using a Loss Test Set.
3. The stressed receiver sensitivity is measured using PRBS 223-1 pattern, 2.6 dB inter-symbol interference, ISI (Min), 30 ps duty cycle
dependent deterministic jitter, DCD DJ (Min), and 6 dB extinction ratio, ER (Min) (ER penalty = 2.2 dB). All channels not under test
are receiving signals with an average input power of 6 dB above PIN (Min).
4. Channel skew is defined for the condition of equal amplitude, zero ps skew signals applied to the receiver inputs.
5. Differential output voltage is defined as the peak to peak value of the differential voltage between DOUT+ and DOUT- and measured
with a 100 Ω differential load connected between DOUT+ and DOUT-. Data outputs are CML compatible.
6. See Figure 13.
7. The stressed receiver eye opening represents the eye at TP4 as defined in IEEE 802.3 clauses 38.2 and 38.6 (Gigabit Ethernet).
The stressed receiver eye opening is measured using PRBS 223-1 pattern, 2.6 dB ISI min, 30 ps DCD DJ min, 6 dB ER min and an
average input power of -11.2 dBm (0.5 dB above minimum stressed receiver sensitivity as defined in IEEE 802.3 clause 38.6). All
channels not under test are receiving signals with an average input power of 6 dB above PIN (Min).
10
Zarlink Semiconductor Inc.
ZL60301
Data Sheet
Receiver Control and Status Signal Requirements
The following table shows the timing relationships of the status and control signals of the receive section.
Parameter
Symbol
Min.
VIH
2.0
Control input voltage high1
Control input voltage low
1
Typ.
IIN
2, 3
Unit
V
VIL
Control input pull-up current1
Max.
10
0.9
V
100
µA
0.4
V
Status output voltage low
VOL
Status output pull-up resistor2
RPU
3.25
Receiver signal detect assert time
TSD
50
200
µs
Receiver signal detect de-assert time
TLOS
50
200
µs
Receiver enable assert time
TRXEN
33
ms
Receiver enable de-assert time
TRXD
5
µs
kΩ
1. Applies to control signals Rx_EN, SQ_EN.
2. Applies to status signal Rx_SD. Internal pull-up to VCC.
3. With status output sink current max 2 mA.
Receiver Control and Status Timing Diagrams
The following figures show the timing relationships of the status and control signals of the receive section.
Rx_EN
TRXD
ICC
Normal Operation
Rx Off
Figure 8 - Receiver Enable Signal Timing Diagram
11
Zarlink Semiconductor Inc.
ZL60301
Data Sheet
Rx_SD
TLOS
Signal
No Signal
Figure 9 - Receiver Signal Detect Timing Diagram
Transceiver Module Signals
The pluggable parallel optical transceiver uses a 100 position FCI MegArray electrical connector
(FCI PN: 84513-101), and an industry standard MTP(MPO) optical receptacle compliant with
IEC 61754-7.
K
J
H
G
F
E
D
C
B
A
1
DOUT00-
VEE Rx
DOUT03+
VEE Rx
VEE Rx
VEE Tx
VEE Tx
DIN03-
VEE Tx
DIN00+
2
DOUT00+
VEE Rx
DOUT03-
VEE Rx
VEE Rx
VEE Tx
VEE Tx
DIN03+
VEE Tx
DIN00-
3
VEE Rx
VEE Rx
VEE Rx
VEE Rx
VEE Rx
VEE Tx
VEE Tx
VEE Tx
VEE Tx
VEE Tx
4
DOUT01+
VEE Rx
DOUT02-
NIC
NIC
NIC
NIC
DIN02+
VEE Tx
DIN01-
5
DOUT01-
VEE Rx
DOUT02+
NIC
NIC
NIC
NIC
DIN02-
VEE Tx
DIN01+
6
VEE Rx
VEE Rx
VEE Rx
NIC
NIC
NIC
NIC
VEE Tx
VEE Tx
VEE Tx
7
VCCB Rx
VCCB Rx
VCCB Rx
NIC
NIC
NIC
NIC
VCC Tx
VCC Tx
VCC Tx
8
NIC
DNC
DNC
DNC
RX_EN
TX_DIS
TX_EN
DNC
DNC
DNC
9
NIC
DNC
DNC
SD
SQ_EN
RESET
FAULT
DNC
DNC
DNC
10
VCCA Rx
VCCA Rx
VEE Rx
NIC
NIC
NIC
NIC
VEE Tx
VCC Tx
VCC Tx
Table 2 - Transceiver Pinout Assignments (Top view, toward MPO/MTP connector end)
(10x10 array, 1.27 mm pitch)
Module front view - MTP key up
Tx0
Tx1
Tx2
Tx3
−
−
−
−
Rx3
Host printed circuit board
Table 3 - Transceiver Optical Channel Assignment
12
Zarlink Semiconductor Inc.
Rx2
Rx1
Rx0
ZL60301
Data Sheet
Transceiver Pin Description
The transceiver module case is electrically isolated from Transmitter signal common and Receiver signal common.
Connection through mounting screw holes or frontplate whichever is applicable. Make the appropriate electrical
connection for EMI shield integrity.
Signal Name
Type
DIN[0:3] +/-
Data input
Description
Transmitter data in, channel 0 to 3
Comments
Internal differential
termination at 100 Ω.
VCC Tx
Transmitter power supply rail
VEE Tx
Transmitter signal common. All transmitter
voltages are referenced to this potential unless
otherwise stated.
Directly connect these pads
to the PC board transmitter
signal ground plane.
TX_EN
Control
input
Transmitter enable.
HIGH: normal operation
LOW: disable transmitter
Active high, internal pull-up.
See Table 1.
TX_DIS
Control
input
Transmitter disable.
HIGH: disable transmitter
LOW: normal operation
Active high, internal pulldown. See Table 1.
FAULT
Status
output
Transmitter fault.
HIGH: normal operation
LOW: laser fault detected on at least one channel
When active, all channels
are disabled. Clear by reset
signal. Internal pull-up.
RESET
Control
input
Transmitter reset.
HIGH: normal operation
LOW:reset to clear fault signal
Internal pull-up.
DOUT[0:3] +/-
Data
output
Receiver data out, channel 0 to 3.
VCCA Rx
PIN preamplifier power supply rail.
VCCB Rx
Receiver quantizer power supply rail.
VEE Rx
Receiver signal common. All receiver voltages
are referenced to this potential unless otherwise
stated.
Directly connect these pads
to the PC board receiver
signal ground plane.
RX_EN
Control
input
Receiver enable.
HIGH: normal operation
LOW: disable receiver
Internal pull-up.
RX_SD
Status
output
Receiver signal detect.
HIGH: valid optical input on all channels
LOW: loss of signal on at least one channel
Internal pull-up.
SQ_EN
Control
input
Squelch enable.
HIGH: squelch function enabled. Data OUT is
squelched on any channels that have loss of
signal
LOW: squelch function disabled
Internal pull-up.
DNC
Do not connect to any potential, including ground.
NIC
No internal connection.
13
Zarlink Semiconductor Inc.
ZL60301
Data Sheet
VCCA and VCCB Rx can be connected to the same power supply. However, to insure maximum receiver sensitivity
and minimize the impact of noise from the power supply, it is recommended to keep the power supplies separate
and to use the recommended power supply filtering network on VCCA Rx, see Figure 2.
Thermal Characteristics
There are three options for heat sinks depending on the cooling needs. They are:
1. Direct application without any attached external heat sink
2. Use a generic external heat sink specified by Zarlink
3. Use a customer designed external heat sink
In Figure 10 and Figure 11, the temperature rise and thermal resistance as a function of air velocity (free air velocity
at the top of the module) is shown for option 1 and 2. The thermal resistance is defined as the temperature
difference between the case temperature and ambient flowing air divided by the total heat dissipation of the
module.
Improved thermal properties can be achieved by using a larger heat sink especially if more height is available
(option 3). For this option, a more detailed discussion with Zarlink is recommended regarding heat sink design
attachment materials.
Tem perature rise at 1.0W
(Free stream air velocity)
Option ZL60301/MLD
Option ZL60301/MJD
Temperature rise (K)
16
12
8
4
0
0
1
2
3
Air velocity (m /s)
4
5
Figure 10 - Temperature Difference Between Ambient Flowing Air and Case at a Heat Dissipation
of 1.0 W
14
Zarlink Semiconductor Inc.
ZL60301
Data Sheet
Therm al resistance to air
(Free stream air velocity)
Thermal resistance (K/W)
15
10
Option ZL60301/MLD
5
Option ZL60301/MJD
0
0
1
2
3
4
5
Air velocity (m /s)
Figure 11 - Thermal Resistance, as a Function of Air Velocity (the airflow is along the shortest
side of the module)
For any other orientation, the thermal resistance is 75-100% of the values shown above.
15
Zarlink Semiconductor Inc.
ZL60301
Data Sheet
Regulatory Compliance
Eye safety
The maximum optical output power is specified to comply with Class 1M in accordance with IEC 60825−1:2001. In
addition the transmitter complies with FDA performance standards for laser products except for deviations pursuant
to Laser Notice No.50, dated July 26, 2001. No maintenance or service of the product may be performed.
Electrostatic discharge
The module is classified as Class 1 (> 1000 Volts) according to MIL−STD−883, test method 3015.7, with regards to
the electrical pads.
Electrostatic discharge immunity
The part withstand a 15 kV (air discharge) and 8 kV (contact discharge) either indirect or directly to receptacle;
tested according to IEC 61000−4−2, while in operation without addition of bit errors.
Electromagnetic Interference
Emission
The electromagnetic emission is tested in front of the module (module fitted with EMI shield), with the module
mounted in a frontplate cutout. The part is tested with FCC Part 15, 30 − 1000 MHz and 1 GHz to 5th harmonic of
the highest fundamental frequency (6.75 GHz), and is specified to be Class B with > 6 dB margin.
Immunity
The electromagnetic immunity is tested without a front panel or enclosure. The module specification is maintained
with an applied field of 10 V/m for frequencies between 10 kHz and 10 GHz, according to IEC 61000−4−3 and GR−
1089−CORE.
Handling instructions
Cleaning the Optical Interface
A protective connector plug is supplied with each module. This plug should remain in place whenever a fiber cable
is not inserted. This will keep the optical port free from dust or other contaminants, which may potentially degrade
the optical signal. Before reattaching the connector plug to the module, visually inspect the plug and remove any
contamination. If the module’s optical port becomes contaminated, it can be cleaned with high-pressure nitrogen
(the use of fluids, or physical contact, is not advised due to potential for damage).
Before a fiber cable connector is attached to the module, it is recommended to clean the fiber cable connector
using an optical connector cleaner, or according to the cable manufacturer's instructions. It is also recommended to
clean the optical port of the module with high-pressure nitrogen.
Connectors
For optimum performance, it is recommended that the number of insertions is limited to 50 for the electrical
MegArray connector and 200 for the optical MPO/MTP connector.
ESD handling
When handling the modules, precautions for ESD sensitive devices should be taken. These include use of ESD
protected work areas with wrist straps, controlled work-benches, floors etc.
16
Zarlink Semiconductor Inc.
ZL60301
Data Sheet
Link Reach
The following table lists the minimum reach distance of the pluggable parallel fiber optic transceiver for different
multi-mode fiber (MMF) types and bandwidths assuming worst case parameters. Each case allows for a maximum
of 2 dB per channel connection loss for patch cables and other connectors.
Fiber Type
Modal Bandwidth
@ 850 nm
[MHz*km]
Reach Distance
@ 1 Gbps
[m]
Reach Distance
@ 2.5 Gbps
[m]
Reach Distance
@ 2.7 Gbps
[m]
62.5/125 MMF
200
350
135
115
62.5/125 or 50/125 MMF
400
650
260
220
50/125 MMF
500
750
300
270
[core / cladding µm]
Table 4 - Link Reach for Different Fiber Types and Data Rates
Link Model Parameters
The link reaches above have been calculated using the following link model parameters and Gigabit Ethernet link
model version 2.3.5 (filename: 5pmd047.xls).
Parameter
Symbol
Value
k
0.3
Modal noise
MN
0.3
dB
Dispersion slope parameter
SO
0.11
ps/nm2*km
Wavelength of zero dispersion
UO
1320
nm
Attenuation coefficient at 850 nm
αdB
3.5
dB/km
Conversion factor
C1
480
ns.MHz
Q-factor [BER 10-12]
Q
7.04
Mode partition noise k-factor
TP4 eye opening
Unit
0.3
UI
DCD DJ
0.08
UI
RMS baseline wander S.D.
σBLW
0.025
RIN coefficient
kRIN
0.70
Conversion factor
c_rx
329
DCD allocation at TP3
17
Zarlink Semiconductor Inc.
ns.MHz
ZL60301
Data Sheet
Electrical Interface - Application Examples
Recommended CML output
Transmitter CML input
Host PCB
100nF
ZOUT=100Ω
Differential
ZIN=100Ω
Differential
Z0=100Ω Differential
100nF
Figure 12 - Recommended Differential CML Input Interface
Receiver CML output
Recommended CML input
Host PCB
100nF
Z0=100Ω Differential
ZTERM=100Ω
Differential
100nF
ZL
Figure 13 - Recommended Differential CML Output Interface
18
Zarlink Semiconductor Inc.
17
FRONT VIEW ( 2 : 1 )
1,5 (5x)
0,9
5,8
7,6
15,5 MAX
27
12,6
8,5
NOTES:1, All dimensions in mm.
2, Tolerancing per ASME Y14.5M-1994
Washplug Assembly
External Heatink
Module *
* For details of the module, see separate data sheet and/or package drawing.
Projection Method
Package code
© Zarlink Semiconductor 2002. All rights reserved.
ISSUE
2
ACN
104518 rev2
DATE
11-AUG-04
APPRD. MD/MA
Previous package codes
Drawing type
ML
Package Drawing,
Module Layout External Heatsink
Title
104518
NOTES:1. All dimensions in mm.
2. Tolerancing per ASME Y14.5M-1994.
Package code
© Zarlink Semiconductor 2002. All rights reserved.
ISSUE
1
ACN
JS004296R1A
DATE
12-JUN-03
APPRD. TD/BE
Previous package codes
MJ
Drawing type
Package drawing - module layout
Title
JS004296
NOTES:1. All dimensions in mm.
2. Tolerancing per ASME Y14.5M-1994.
Package code
© Zarlink Semiconductor 2002. All rights reserved.
ISSUE
1
ACN
JS004296R1A
DATE
12-JUN-03
APPRD. TD/BE
Previous package codes
MJ
Drawing type
Package Drawing,
Host circuit board footprint layout
Title
JS004296
For more information about all Zarlink products
visit our Web Site at
www.zarlink.com
Information relating to products and services furnished herein by Zarlink Semiconductor Inc. or its subsidiaries (collectively “Zarlink”) is believed to be reliable.
However, Zarlink assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such
information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or
use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual
property rights owned by Zarlink or licensed from third parties by Zarlink, whatsoever. Purchasers of products are also hereby notified that the use of product in
certain ways or in combination with Zarlink, or non-Zarlink furnished goods or services may infringe patents or other intellectual property rights owned by Zarlink.
This publication is issued to provide information only and (unless agreed by Zarlink in writing) may not be used, applied or reproduced for any purpose nor form part
of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other
information appearing in this publication are subject to change by Zarlink without notice. No warranty or guarantee express or implied is made regarding the
capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute
any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user’s responsibility to fully determine the performance and
suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does
not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in
significant injury or death to the user. All products and materials are sold and services provided subject to Zarlink’s conditions of sale which are available on request.
Purchase of Zarlink’s I2C components conveys a licence under the Philips I2C Patent rights to use these components in and I2C System, provided that the system
conforms to the I2C Standard Specification as defined by Philips.
Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc.
Copyright Zarlink Semiconductor Inc. All Rights Reserved.
TECHNICAL DOCUMENTATION - NOT FOR RESALE