CX11656 HomePlug 1.0 PHY Home Networking Physical Layer Device with Integrated Analog Front End Circuitry Data Sheet (Preliminary) Conexant Proprietary Information Conexant Confidential Information Dissemination, disclosure, or use of this information is not permitted without the written permission of Conexant Systems, Inc. Doc. No. 102069A August 19, 2002 CX11656 HomePlug 1.0 PHY Data Sheet Revision Notice Revision A Date 8/19/2002 Comments Initial release. © 2002 Conexant Systems, Inc. All Rights Reserved. Information in this document is provided in connection with Conexant Systems, Inc. (“Conexant”) products. These materials are provided by Conexant as a service to its customers and may be used for informational purposes only. Conexant assumes no responsibility for errors or omissions in these materials. Conexant may make changes to specifications and product descriptions at any time, without notice. Conexant makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Conexant’s Terms and Conditions of Sale for such products, Conexant assumes no liability whatsoever. THESE MATERIALS ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF CONEXANT PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. CONEXANT FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. CONEXANT SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS. Conexant products are not intended for use in medical, lifesaving or life sustaining applications. Conexant customers using or selling Conexant products for use in such applications do so at their own risk and agree to fully indemnify Conexant for any damages resulting from such improper use or sale. The following are trademarks of Conexant Systems, Inc.: Conexant™, the Conexant C symbol, and “What’s Next in Communications Technologies”™. Product names or services listed in this publication are for identification purposes only, and may be trademarks of third parties. Third-party brands and names are the property of their respective owners. For additional disclaimer information, please consult Conexant’s Legal Information posted at www.conexant.com, which is incorporated by reference. Reader Response: Conexant strives to produce quality documentation and welcomes your feedback. Please send comments and suggestions to [email protected]. For technical questions, contact your local Conexant sales office or field applications engineer. ii Conexant Proprietary and Confidential Information 102069A CX11656 HomePlug 1.0 PHY Data Sheet Contents 1. Introduction ......................................................................................................................................... 1-1 1.1 1.2 1.3 Overview .....................................................................................................................................................................1-1 Features ......................................................................................................................................................................1-3 Applications ................................................................................................................................................................1-3 2. Hardware Interface .............................................................................................................................. 2-1 2.1 2.2 CX11656 PHY Hardware Interface Signals...................................................................................................................2-1 CX11656 PHY Electrical and Environmental Specifications..........................................................................................2-9 3. CX11656 Functional Description.......................................................................................................... 3-1 3.1 3.2 MII Data Interface with MDI Control ............................................................................................................................3-2 3.1.1 MII Interface................................................................................................................................................3-3 MII Timing Diagram .................................................................................................................3-3 3.1.1.2 MII Signal Descriptions............................................................................................................3-6 3.1.2 3.1.1.3 MII Frame Structure.................................................................................................................3-8 MDI Control Interface ..................................................................................................................................3-9 3.1.3 3.1.2.1 MDI Signal Descriptions ........................................................................................................3-10 MII Management Register Set ...................................................................................................................3-10 3.1.3.1 PRE (Preamble) .....................................................................................................................3-10 3.1.3.2 ST (Start of Frame) ................................................................................................................3-10 3.1.3.3 OP (Operation Code) ..............................................................................................................3-11 3.1.3.4 PHYAD (PHY Address)...........................................................................................................3-11 3.1.3.5 REGAD (Register Address).....................................................................................................3-11 3.1.3.6 TA (Turnaround) ....................................................................................................................3-11 3.1.3.7 Data .......................................................................................................................................3-11 GPSI Interface with SPI Control.................................................................................................................................3-12 3.2.1 GSPI Interface ...........................................................................................................................................3-12 3.2.2 102069A 3.1.1.1 3.2.1.1 GPSI Timing Diagrams...........................................................................................................3-12 3.2.1.2 GPSI DC Characteristics.........................................................................................................3-14 3.2.1.3 GPSI Signal Descriptions .......................................................................................................3-14 SPI Slave Port Interface.............................................................................................................................3-15 3.2.2.1 SPI Slave Port Signal Timing .................................................................................................3-15 3.2.2.2 SPI Slave Port DC Characteristics ..........................................................................................3-16 Conexant Proprietary and Confidential Information iii CX11656 HomePlug 1.0 PHY Data Sheet 3.3 3.4 Clocks .......................................................................................................................................................................3-16 AFE Interface .............................................................................................................................................................3-17 3.4.1 ADC/DAC Interface ....................................................................................................................................3-17 3.4.2 3.5 3.6 3.4.1.1 ADC/DAC Timing Diagrams....................................................................................................3-17 3.4.1.2 DAC DC Characteristics..........................................................................................................3-19 3.4.1.3 ADC DC Characteristics..........................................................................................................3-19 AGC Circuitry.............................................................................................................................................3-20 3.4.2.1 AGC DC Characteristics..........................................................................................................3-20 SPI Master Interface..................................................................................................................................................3-21 3.5.1 SPI Master Interface Timing ......................................................................................................................3-21 3.5.2 SPI Master Interface DC Characteristics ....................................................................................................3-21 LED Interface.............................................................................................................................................................3-22 4. Package Dimensions............................................................................................................................ 4-1 5. Application Designs ............................................................................................................................. 5-1 5.1 5.2 5.3 5.4 iv Ethernet Router Application.........................................................................................................................................5-1 USB Application ..........................................................................................................................................................5-2 Embedded Application.................................................................................................................................................5-3 ADI-Related Components ............................................................................................................................................5-3 Conexant Proprietary and Confidential Information 102069A CX11656 HomePlug 1.0 PHY Data Sheet Figures Figure 1-1. CX11656 HomePlug 1.0 PHY Simplified Hardware Interface..........................................................................1-1 Figure 1-2. CX11656 HomePlug 1.0 PHY Functional Block Diagram................................................................................1-2 Figure 2-1. CX11656 PHY Hardware Interface Signals - 144-Pin LQFP ............................................................................2-2 Figure 2-2. CX11656 PHY Pin Signals - 144-Pin LQFP ....................................................................................................2-3 Figure 3-1. CX11656 PHY Block Diagram ........................................................................................................................3-1 Figure 3-2. MII Data Interface with MDI Control ..............................................................................................................3-2 Figure 3-3. MII TX Waveform ..........................................................................................................................................3-3 Figure 3-4. MII RX Waveform..........................................................................................................................................3-4 Figure 3-5. MII TX with Collision Based on RX Activity ....................................................................................................3-4 Figure 3-6. MII Receive Timing........................................................................................................................................3-5 Figure 3-7. MII Transmit Timing ......................................................................................................................................3-5 Figure 3-8. MII Flow Control Overview, Part 1 .................................................................................................................3-7 Figure 3-9. MII Flow Control Overview, Part 2 .................................................................................................................3-7 Figure 3-10. Partition of Serial Bit Stream to Nibble Stream ............................................................................................3-8 Figure 3-11. MDI Receive Timing ....................................................................................................................................3-9 Figure 3-12. MDI Transmit Timing...................................................................................................................................3-9 Figure 3-13. MDI Frame Structure .................................................................................................................................3-10 Figure 3-14. GPSI Data Interface with SPI Control.........................................................................................................3-12 Figure 3-15. GPSI Flow Control .....................................................................................................................................3-13 Figure 3-16. GPSI Transmit Timing ...............................................................................................................................3-13 Figure 3-17. GPSI Receive Timing .................................................................................................................................3-13 Figure 3-18. SPI Slave Port Timing................................................................................................................................3-16 Figure 3-19. AFE TX and RX Activity ..............................................................................................................................3-17 Figure 3-20. AFE Clock Waveforms................................................................................................................................3-17 Figure 3-21. AFE Transmit Timing Diagram ...................................................................................................................3-18 Figure 3-22. AFE Receive Timing Diagram .....................................................................................................................3-18 Figure 3-23. SPI Master Interface Signal Timing Diagram .............................................................................................3-21 Figure 4-1. Package Dimensions - 144-Pin LQFP.............................................................................................................4-1 Figure 5-1. Ethernet Router Application Block Diagram ...................................................................................................5-1 Figure 5-2. USB Application Block Diagram .....................................................................................................................5-2 Figure 5-3. Embedded Application Block Diagram ...........................................................................................................5-3 102069A Conexant Proprietary and Confidential Information v CX11656 HomePlug 1.0 PHY Data Sheet Tables Table 1-1. CX11656 HomePlug 1.0 PHY and CX82100-41 Ordering Information.............................................................1-2 Table 2-1. CX11656 PHY Pin Signals - 144-Pin LQFP......................................................................................................2-4 Table 2-2. CX11656 PHY Hardware Signal Definitions.....................................................................................................2-5 Table 2-3. CX11656 PHY DC Electrical Characteristics ....................................................................................................2-9 Table 2-4. CX11656 PHY Operating Conditions ...............................................................................................................2-9 Table 2-5. CX11656 PHY Absolute Maximum Ratings .....................................................................................................2-9 Table 2-6. CX11656 PHY Power Consumption ................................................................................................................2-9 Table 3-1. MII DC Characteristics ....................................................................................................................................3-5 Table 3-2. MI DC Characteristics .....................................................................................................................................3-9 Table 3-3. Powerline Control and Status Register (PLCSR) Summary ...........................................................................3-10 Table 3-4. GPSI DC Characteristics................................................................................................................................3-14 Table 3-5. SPI Slave Command Summary .....................................................................................................................3-15 Table 3-6. SPI Slave Port DC Characteristics .................................................................................................................3-16 Table 3-7. DAC DC Characteristics.................................................................................................................................3-19 Table 3-8. ADC DC Characteristics.................................................................................................................................3-19 Table 3-9. RX Gain Control Values.................................................................................................................................3-20 Table 3-10. AGC DC Characteristics...............................................................................................................................3-20 Table 3-11. SPI Master Interface DC Characteristics......................................................................................................3-21 Table 3-12. LED Interface Signal Description.................................................................................................................3-22 vi Conexant Proprietary and Confidential Information 102069A CX11656 HomePlug 1.0 PHY Data Sheet 1. Introduction 1.1 Overview The Conexantä CX11656 device is an integrated physical layer transceiver or PHY (Figure 1-1). It is designed to use existing ac electrical wiring within the home as a networking physical medium. The PHY’s robust performance in the electrically noisy power line channel is due to the use of Orthogonal Frequency Division Multiplexing (OFDM). This multi-carrier modulation scheme allows the PHY to dynamically “learn the channel”— data can be shifted from one carrier to another as real time noise and attenuation conditions change. This overcomes the flaw inherent in previous power line networking technologies—as electrical appliances were turned on and off, changing line conditions caused signal quality to become degraded to such an extent that data transmission became impossible. The CX11656’s OFDM technology finds the low noise, low attenuation portions of the spectrum available to it and continues data transmission. The CX11656 is compliant with the HomePlug Powerline Alliance Industry Specification V1.0. This ensures interoperability with other HomePlug PHYs. Quality-of-service (QoS) is built into the PHY to ensure low-latency, high reliability channels for streaming audio, streaming video, voice, and gaming, and video. The PHY utilizes the IEEE 802.3u standard Media Independent Interface (MII). This standard interface can also be configured as a seven-wire General Purpose Serial Interface (GPSI). These standard interfaces allow the CX11656 to be paired almost any embedded media access controller (MAC) for use in a variety of information appliances. The CX11656 operates on both +1.8 V and +3.3 V supplies and is packaged in a 144-pin Low Quad Flat Pack (LQFP). The CX11656 ordering information is listed in Table 1-1. A functional block diagram of the CX11656 is shown in Figure 1-2. Please contact Conexant marketing for information concerning the AFE. Figure 1-1. CX11656 HomePlug 1.0 PHY Simplified Hardware Interface Ethernet Interface 802.3 EMAC (e.g., Conexant CX82100) MII/GPSI Interface Conexant CX11656 HomePlug 1.0 PHY 144-Pin LQFP Parallel Interface Analog Front End* Coupler Powerline * See Section 5.4. 102069_001 102069A Conexant Proprietary and Confidential Information 1-1 CX11656 HomePlug 1.0 PHY Data Sheet Table 1-1. CX11656 HomePlug 1.0 PHY and CX82100-41 Ordering Information Marketing Order No. HomePlug 1.0 PHY [144-Pin LQFP] Part No. Home Network Processor (HNP) [196-Pin FPBGA] Part No. DSHP-L100-001 CX11656-11 CX82100-41 Figure 1-2. CX11656 HomePlug 1.0 PHY Functional Block Diagram CX11656 RESET MAC Interface Block MDIO Control MDCLK/MDIO - or SPI Control SDI, SDO, SCLK, CS MII RX[3:0], RXCLK, RXDV, RX_ER, TX[3:0], TXCLK, TXEN, TX_ER, COL, CRS - or GPSI RXD, RXCLK, RXEN, TXD, TXCLK, TXEN, COL, TXBSY Configuration Registers ROM CLK IN ROM PHY Gain Control RISC uProcessor Core MII/GPSI Interface Arbiter MII/GPSI Select Configuration EEPROM Control Power & GND EEPROM Control DMA & Link Sequencer PHY Core AFE Interface ADC DAC Interface MDIO Address Slect Buffer RAM LED Control LEDS 102069_002 1-2 Conexant Proprietary and Confidential Information 102069A CX11656 HomePlug 1.0 PHY Data Sheet 1.2 Features • • • • • • • • • • • • • 1.3 Applications • • • • • • • 102069A Single-chip powerline networking controller with IEEE802.3u MII interface Implements the HomePlug Powerline Alliance Industry Specification V1.0 General purpose 7-wire serial PHY data interface Selectable MDI/SPI PHY management interface Up to 14 Mbps data rate on the powerline Orthogonal Frequency Division Multiplexing (OFDM) with patented signal processing techniques for high data reliability in noisy media conditions Intelligent channel adaptation maximizes throughput under harsh channel conditions Integrated quality-of-service (QoS) features such as prioritized random access, contention-free access, and segment bursting 56-bit DES Link Encryption with key management for secure powerline communications EEPROM interface for fast access to configuration parameters allows system designs to leverage standard Ethernet drivers 3.3 V signaling, 5 V tolerant interface Support for three status LEDs 144-pin LQFP package Residential gateways and home routers Network home or small office PCs Enable no wire installation networking for information appliances LAN gaming Share DSL or cable modem access MDU/MTU applications Embedded applications Conexant Proprietary and Confidential Information 1-3 CX11656 HomePlug 1.0 PHY Data Sheet This page is intentionally blank 1-4 Conexant Proprietary and Confidential Information 102069A CX11656 HomePlug 1.0 PHY Data Sheet 2. Hardware Interface 2.1 CX11656 PHY Hardware Interface Signals The CX11656 PHY hardware interface signals are shown in Figure 2-1. CX11656 PHY pin signals are shown in Figure 2-2 and are listed in Table 2-1. CX11656 PHY hardware interface signals are defined in Table 2-2. 102069A Conexant Proprietary and Confidential Information 2-1 CX11656 HomePlug 1.0 PHY Data Sheet Figure 2-1. CX11656 PHY Hardware Interface Signals - 144-Pin LQFP 49 100 MHz Clock Input 48 100 MHz Clock Output 44 111 112 Reset Control NC Shared MMII/GSPI/SPI Interface SPI Master Port Interface JTAG Test Interface (Reserved) +1.8 V Core Power +3.3 V I/O and Quiet Power 131 27 29 31 33 22 25 18 4 6 8 11 14 12 16 42 40 135 133 141 137 139 126 59 57 54 52 114 120 124 116 129 1 2 7 13 17 23 24 28 32 37 38 43 50 53 60 68 73 78 99 104 109 115 121 122 123 125 132 140 3 39 64 79 95 110 136 15 51 91 ADC_CLK DAC_CLK TX_EN RX_EN ADC_CAL AGCENC_N CLKIN CLKOUT RESET_N TEST1 TEST2 NC MII_RX3 MII_RX2 MII_RX1 MII_RX0 MII_RXCLK/GPSI_RXCLK MII_RXDV/GPSI_TXBSY MII_RX_ER/GPSI_RXD MII_TX3 MII_TX2 MII_TX1 MII_TX0/GPSI_TXD MII_TXCLK/GPSI_TXCLK MII_TXEN/GPSI_TXEN MII_TX_ER MII_CRS/GPSI_RXEN MII_COL/GPSI_COL MII_MDIO/SPIS_SDO MII_MDCLK/SPIS_SCLK MII_GPSI_N MDI_ADRSEL[1]/SPIS_SDI MDI_ADRSEL[0]/SPIS_CS_N MDI_SPIS_N SPI_DO SPI_DI SPI_CLK SPI_CS TCK TDI TMS TDO TRST_N VDD_C VDD_C VDD_C VDD_C VDD_C VDD_C VDD_C VDD_C VDD_C VDD_C VDD_C VDD_C VDD_C VDD_C VDD_C VDD_C VDD_C VDD_C VDD_C VDD_C VDD_C VDD_C VDD_C VDD_C VDD_C VDD_C VDD_C VDD_C CX11656 HomePlug 1.0 PHY 144-PIN LQFP ADIO9 ADIO8 ADIO7 ADIO6 ADIO5 ADIO4 ADIO3 ADIO2 ADIO1 ADIO0 AGC7 AGC6 AGC5 AGC4 AGC3 AGC2 AGC1 AGC0 LED0_N LED1_N LED2_N VSS_C VSS_C VSS_C VSS_C VSS_C VSS_C VSS_C VSS_C VSS_C VSS_C VSS_C VSS_C VSS_C VSS_C VSS_C VSS_C VSS_C VSS_C VSS_C VSS_C VSS_C VSS_C VSS_C VSS_C VSS_C VSS_C VSS_C VSS_C VSS_C VSS_C VSS_C VSS_C VSS_IO VSS_IO VSS_IO VSS_IO VSS_IO VSS_IO VSS_IO VSS_Q VSS_Q VSS_Q 71 74 76 77 67 69 94 93 92 90 87 86 84 82 81 80 AFE Interface 106 105 103 102 100 98 97 96 AGC IC Interface 61 63 65 LED Interface 5 10 19 20 26 30 34 36 41 46 47 55 56 58 62 66 72 75 85 88 101 108 113 117 118 119 127 128 134 138 143 144 9 35 45 70 83 107 142 21 89 130 VDD_IO VDD_IO VDD_IO VDD_IO VDD_IO VDD_IO VDD_IO VDD_Q VDD_Q VDD_Q 102069_003 2-2 Conexant Proprietary and Confidential Information 102069A CX11656 HomePlug 1.0 PHY Data Sheet VDD_IO VDD_C 109 VSS_C TEST2 TEST1 112 111 110 TDO VDD_C TCK VDD_C TDI VSS_C 121 120 115 114 113 TMS VDD_C VDD_C 124 123 122 VSS_C VSS_C VSS_C MDI_SPIS_N VDD_C 127 126 125 118 117 116 VSS_Q TRST_N VSS_C 130 129 128 119 MII_MDCLK/SPIS_SCLK VDD_C NC 132 131 VDD_IO MII_MDIO/SPIS_SDO VSS_C 135 134 133 MDI_ADRSEL[0]/SPIS_CS_N VSS_C MDI_ADRSEL[1]/SPIS_SDI 138 137 136 VSS_IO MII_GPSI_N VDD_C 141 140 139 144 143 142 VSS_C VSS_C Figure 2-2. CX11656 PHY Pin Signals - 144-Pin LQFP VDD_C 1 108 VSS_C VDD_C VDD_IO 2 3 107 106 VSS_IO AGC7 AGC6 MII_TX3 VSS_C 4 5 105 104 VDD_C MII_TX2 VDD_C 6 7 103 102 AGC5 AGC4 MII_TX1 VSS_IO 8 9 101 100 VSS_C AGC3 VSS_C MII_TX0/GPSI_TXD MII_TXEN/GPSI_TXEN VDD_C MII_TXCLK/GPSI_TXCLK 10 11 99 98 VDD_C AGC2 12 13 97 96 AGC1 AGC0 VDD_Q 14 15 95 94 VDD_IO ADIO9 MII_TX_ER VDD_C 16 17 93 92 ADIO8 ADIO7 MII_RX_ER/GPSI_RXD 18 91 VDD_Q VSS_C VSS_C 19 20 90 89 ADIO6 VSS_Q VSS_Q MII_RXCLK/GPSI_RXCLK 21 22 VDD_C VDD_C 23 24 CX11656 88 87 VSS_C ADIO5 86 85 ADIO4 VSS_C MII_RXDV/GPSI_TXBSY VSS_C 25 26 84 83 ADIO3 VSS_IO MII_RX3 VDD_C 27 28 82 81 ADIO2 ADIO1 MII_RX2 VSS_C 29 30 80 79 ADIO0 VDD_IO MII_RX1 VDD_C 31 32 78 77 VDD_C RX_EN MII_RX0 VSS_C 33 34 76 75 TX_EN VSS_C 66 67 68 69 70 71 VSS_C ADC_CAL VDD_C AGCENC_N VSS_IO 72 63 64 65 LED1_N VDD_IO LED2_N ADC_CLK VSS_C 61 62 58 59 60 VDD_C LED0_N VSS_C SPI_CLK VSS_C VSS_C SPI_DI VSS_C SPI_DO 51 VDD_Q SPI_CS VDD_C 55 56 57 49 50 CLKIN VDD_C 52 53 54 46 47 48 VSS_C VSS_C CLKOUT VDD_C VDD_C VDD_IO MII_COL/GPSI_COL 43 44 45 VDD_C VDD_C RESET_N VSS_IO DAC_CLK 73 VSS_C MII_CRS/GPSI_RXEN 74 36 40 41 42 35 VSS_C 37 38 39 VSS_IO 102069_004 102069A Conexant Proprietary and Confidential Information 2-3 CX11656 HomePlug 1.0 PHY Data Sheet Table 2-1. CX11656 PHY Pin Signals - 144-Pin LQFP Pin No. Signal Pin No. 37 38 Signal VDD_C VDD_C Pin No. 73 74 Signal VDD_C DAC_CLK Pin No. 109 110 Signal 1 2 VDD_C VDD_C VDD_C VDD_IO 3 VDD_IO 39 VDD_IO 75 VSS_C 111 TEST1 4 MII_TX3 40 MII_COL/GPSI_COL 76 TX_EN 112 TEST2 5 VSS_C 41 VSS_C 77 RX_EN 113 VSS_C 6 MII_TX2 42 MII_CRS/GPSI_RXEN 78 VDD_C 114 TCK 7 VDD_C 43 VDD_C 79 VDD_IO 115 VDD_C 8 MII_TX1 44 RESET_N 80 ADIO0 116 TDO 9 VSS_IO 45 VSS_IO 81 ADIO1 117 VSS_C 10 VSS_C 46 VSS_C 82 ADIO2 118 VSS_C 11 MII_TX0/GPSI_TXD 47 VSS_C 83 VSS_IO 119 VSS_C 12 13 MII_TXEN/GPSI_TXEN VDD_C 48 49 CLKOUT CLKIN 84 85 ADIO3 VSS_C 120 121 TDI VDD_C 14 MII_TXCLK/GPSI_TXCLK 50 VDD_C 86 ADIO4 122 VDD_C 15 VDD_Q 51 VDD_Q 87 ADIO5 123 VDD_C 16 MII_TX_ER 52 SPI_CS 88 VSS_C 124 TMS 17 VDD_C 53 VDD_C 89 VSS_Q 125 VDD_C 18 MII_RX_ER/GPSI_RXD 54 SPI_CLK 90 ADIO6 126 MDI_SPIS_N 19 VSS_C 55 VSS_C 91 VDD_Q 127 VSS_C 20 VSS_C 56 VSS_C 92 ADIO7 128 VSS_C 21 VSS_Q 57 SPI_DI 93 ADIO8 129 TRST_N 22 MII_RXCLK/GPSI_RXCLK 58 VSS_C 94 ADIO9 130 VSS_Q 23 24 VDD_C VDD_C 59 60 SPI_DO VDD_C 95 96 VDD_IO AGC0 131 132 NC VDD_C 25 MII_RXDV/GPSI_TXBSY 61 LED0_N 97 AGC1 133 MII_MDCLK/SPIS_SCLK 26 VSS_C 62 VSS_C 98 AGC2 134 VSS_C 27 MII_RX3 63 LED1_N 99 VDD_C 135 MII_MDIO/SPIS_SDO 28 VDD_C 64 VDD_IO 100 AGC3 136 VDD_IO 29 MII_RX2 65 LED2_N 101 VSS_C 137 MDI_ADRSEL[1]/ SPIS_SDI 30 VSS_C 66 VSS_C 102 AGC4 138 VSS_C 31 MII_RX1 67 ADC_CAL 103 AGC5 139 MDI_ADRSEL[0]/ SPIS_CS_N 32 VDD_C 68 VDD_C 104 VDD_C 140 VDD_C 33 MII_RX0 69 AGCENC_N 105 AGC6 141 MII_GPSI_N VSS_IO 34 VSS_C 70 VSS_IO 106 AGC7 142 35 VSS_IO 71 ADC_CLK 107 VSS_IO 143 VSS_C 36 VSS_C 72 VSS_C 108 VSS_C 144 VSS_C 2-4 Conexant Proprietary and Confidential Information 102069A CX11656 HomePlug 1.0 PHY Data Sheet Table 2-2. CX11656 PHY Hardware Signal Definitions Signal Name I/O Type Signal Name/Description Media Independent Interface (MII) These pins are multiplexed with the GPSI pins and are selected when MII_GSPI_N signal is at VDD. MII Receive Data. Data is transferred from the CX11656 to the O Ot1 MII_RX[3:0] 27, 29, 31, external MAC across these four lines, MII_RX[3:0], one nibble at a 33 time. MII Receive Clock. MII_RXCLK outputs a continuous 25 MHz clock to MII_RXCLK/ 22 O Ot1 GPSI_RXCLK the external MAC. MII Receive Data Valid. When asserted high, MII_RXDV indicates MII_RXDV/ 25 O Ot1 GPSI_TXBSY that the incoming data on the MII_RX[3:0] pins are valid. MII Receive Error. When asserted high, MII_RX_ER indicates to the MII_RX_ER/ 18 O Ot1 GPSI_RXD external MAC that an error has occurred during the frame reception. MII Transmit Data. Data is transferred to the CX11656 from the 4, 6, 8 MII_TX[3:1] I It external MAC across these four lines (MII_TX[3:0]) one nibble at a MII_TX0/GPSI_TXD 11 time. MII Transmit Clock. MII_TXCLK outputs a continuous 25MHz clock to MII_TXCLK/ 14 O Ot1 GPSI_TXCLK the external MAC. MII Transmit Enable. This signal indicates to the CX11656 that valid MII_TXEN/ 12 I It GPSI_TXEN data is present on the MII_TX[3:0] pins. MII Transmit Error. MII_TX_ER is activated by the external host MII_TX_ER 16 I It controller when an error condition is detected during packet transmission. The CX11656 will ignore any MII transmission within which MII_TX_ER is asserted. MII_TX_ER is ignored if MII_TXEN is not asserted. MII Carrier Sense. When asserted high, MII_CRS indicates to the MII_CRS/ 42 O Ot1 GPSI_RXEN external host that traffic is present on the powerline and the host should wait until the signal goes invalid before sending additional data. This signal is an asynchronous output signal. MII Collision Detect. This signal indicates to the external host that a MII_COL/ 40 O Ot1 GPSI_COL collision has occurred on the MII interface. This signal is an asynchronous output signal. MII Management Data Interface (MDI) These pins are multiplexed with the SPIS_SDO and SPIS_SCLK signals and are selected when MDI_SPIS_N is at VDD. MII Management Data Output. MII_MDIO is the bidirectional signal MII_MDIO/ 135 I/O It/Ot1 SPIS_SDO that carries the data for the Management Data Interface. MII Management Data Clock. MII_MDCLK is the clock reference for MII_MDCLK/ 133 I It SPIS_SCLK the MII_MDIO signal. 102069A Pin I/O Conexant Proprietary and Confidential Information 2-5 CX11656 HomePlug 1.0 PHY Data Sheet Table 2-2. CX11656 PHY Hardware Signal Definitions (Continued) Signal Name I/O Type Signal Name/Description General Purpose Serial Interface (GPSI) These pins are multiplexed with the MII pins and are selected when MII_GSPI_N signal is at VSS. GPSI Receive Data. GPSI_RXD carries data received from the MII_RX_ER/ 18 O Ot1 GPSI_RXD powerline and delivers to the external host. Data is driven on the falling edge of the GPSI_RXCLK. GPSI Receive Clock. GPSI_RXCLK is the timing reference for the MII_RXCLK/ 22 O Ot1 serial data transfer from the CX11656 to the external host. This clock GPSI_RXCLK operates at 10 MHz. GPSI Transmit Data. GPSI_TXD carries data transmitted from the MII_TX0/GPSI_TXD 11 I It external host to the CX11656 for transmission over the powerline. GPSI_TXD Data is latched on the falling edge of the GPSI_TXCLK. GPSI Transmit Clock. This signal is the timing reference for the serial MII_TXCLK/ 14 O Ot1 GPSI_TXCLK data transfer from the external host to the CX11656. This clock operates at 10 MHz. GPSI Receive Enable. When asserted high, GPSI_RXEN indicates MII_CRS/ 42 O Ot1 GPSI_RXEN valid data is on the GPSI_RXD line. GPSI Transmit Enable. When asserted high, GPSI_TXEN indicates MII_TXEN/ 12 I It GPSI_TXEN when the external host is providing valid data on GPSI_TXD. GPSI Transmit Busy. GPSI_TXBSY is asserted within 120 GPSI MII_RXDV/ 25 O Ot1 GPSI_TXBSY clocks after GPSI_TXEN indicates a TX frame is being sent by the local host. GPSI_TXBSY stays true until the entire TX frame is loaded into an internal buffer AND a new buffer is allocated to the GPSI TX interface. This signal should be monitored by the GPSI TX host. A new GPSI TX frame should not be sent until GPSI_TXBSY returns to false to prevent TX buffer overflows. GPSI_TXBSY is an asynchronous output signal. GPSI Collision Detect. GPSI_COL is driven false in GPSI mode. MII_COL/ 40 O Ot1 GPSI_COL SPI Slave Port Selected when MDI_SPIS_N signal is at VSS. SPI Slave Data Out. SPIS_SDO is the SPI data from the CX11656 to MII_MDIO/ 135 O Ot1 SPIS_SDO the external host. SPI Slave Data In. SPIS_SDI is the SPI data from the external host MDI_ADRSEL[1]/ 137 I It SPIS_SDI to the CX11656. This pin is shared with the MDI_ADRSEL[1]. SPI Slave Clock. SPIS_SCLK is the timing reference signal for MII_MDCLK/ 133 I It SPIS_SCLK SPI_SDI and SPI_SDO. SPI Slave Chip Select. When asserted low, SPIS_CS_N enables SPI MDI_ADRSEL[0]/ 139 I It SPIS_CS_N data transfers on the CX11656. This pin is shared with the MDI_ADRSEL[0]. SPI Master Port (Configuration PROM Interface) SPI Master Data Out. SPI_DO is the CX11656 configuration data SPI_DO 59 O Ot1 from the CX11656 to the external E 2 PROM. SPI Master Data In. SPI_DI is the CX11656 configuration data from SPI_DI 57 I It the external E 2 PROM to the CX11656. SPI Master Clock. SPI_CLK is the timing reference signal for SPI_DI SPI_CLK 54 O Ot1 and SPI_DO. SPI Master Chip Select. When asserted high, SPI_CS enables data SPI_CS 52 O Ot1 transfers on the SPI Master Interface. LED Control Collision Detection. LED0_N is asserted low for 9–10 ms upon LED0_N 61 O Ot1 detection of a collision. LED1Activity Detection. LED1_N is asserted low for 9–10 ms upon LED1_N 63 O Ot1 the receipt of a properly addressed unicast or broadcast frame or the transmission of a frame. Link Detection. LED2_N is asserted low when initialization is LED2_N 65 O Ot1 complete successfully and “network” is established. 2-6 Pin I/O Conexant Proprietary and Confidential Information 102069A CX11656 HomePlug 1.0 PHY Data Sheet Table 2-2. CX11656 PHY Hardware Signal Definitions (Continued) Signal Name ADC_CLK DAC_CLK TX_EN RX_EN ADIO[9:0] Pin I/O O O O O I/O ADC_CAL 71 74 76 77 94, 93, 92, 90, 87, 86, 84, 82, 81, 80 106, 105, 103, 102, 100, 98, 97, 96 67 AGCENC_N 69 I TCK TDI TMS TDO TRST_N 114 120 124 116 129 I I I O I RESET_N 44 I CLKIN 49 I CLKOUT 48 O MDI_ADRSEL[1]/ SPIS_SDI, MDI_ADRSEL[0]/ SPIS_CS_N 137, I MDI_SPIS_N 126 I MII_GPSI_N 141 I TEST1 TEST2 NC 111 112 131 I I AGC[7:0] 102069A I/O Type Signal Name/Description Analog Front End Interface ADC Clock. ADC clock output to the Analog Conversion IC. Ot1 DAC Clock. DAC clock output to the Analog Conversion IC. Ot1 Analog Front End Transmit Enable. Transmit Enable signal Ot1 Analog Front End Receive Enable. Receive Enable signal Ot1 Analog/Digital I/O. ADC and DAC Data. Multiplexed parallel interface It/Ot12 to Analog Conversion IC. AGC Gain Select. Gain control driven by the CX11656 to set the AGC level. O Ot1 O ADC Calibrate. This pin must remain low during normal operation of the ADC. It is pulsed high to request a calibration cycle. The ADC_CAL minimum pulse width is 4 clock cycles. While this signal is high the ADC calibration registers are cleared and the calibration control circuitry is reset. The ADC_CAL pulse will go high 217 clock cycles (2.6 ms) after power on reset drops, and will remain high for the required 4 clock cycles. AGC Encode. An inactive signal (logic 1) applied to this input selects It unitary AGC format. An active signal (logic 0) applied to this input selects encoded AGC format. Test Access Port (Reserved) Test Clock. Test Clock for the IEEE 1149.1 JTAG Port. It Test Data In. Data In for the IEEE 1149.1 JTAG Port. It Test Mode Select. Test Mode Select for the IEEE 1149.1 JTAG Port. It Test Data Out. Data Out for the IEEE 1149.1 JTAG Port. Ot1 Test Reset. This pin will be used to reset the TAP controller. It should It be connected to ground when the JTAG port is not in use. System Control Reset. Resets logic circuitry, but not clock circuitry. Reset is active low It and should be held low for a minimum of 100 ns. Clock Input. 100 MHz clock input driven by an external oscillator or Ix AFE. Note: CLKIN connects directly to the +1.8 V core of the IC and does not connect to the +3.3 V I/O ring. Therefore, this pin is not +3.3 or 5 V tolerant. Clock Output. 100 MHz clock output. This pin should be left as NO Ox CONNECT. MDI PHY Address Selection. MDI_ADRSEL[1:0] is the address It select used to compare against the upper two bits of the MDI Address. These pins share function with SPIS_SDI and SPIS_CS_N and should be pulled-up or down with external resistors to set the appropriate value which is read by the CX11656 during power up. Management Data Interface/Serial Peripheral Interface Slave It Select. When asserted low, MDI_SPIS_N selects which PHY management signals are active. Media Independent Interface/General Purpose Serial Interface It Select. When asserted low, MII_GPSI_N selects which PHY data interface signals are active. Factory Test Pin 1. Tie to I/O Ground. It Factory Test Pin 2. Tie to I/O Ground. It No Connect. 139 Ot1 Conexant Proprietary and Confidential Information 2-7 CX11656 HomePlug 1.0 PHY Data Sheet Table 2-2. CX11656 PHY Hardware Signal Definitions (Continued) Signal Name VDD_C VSS_C VDD_IO VSS_IO VDD_Q VSS_Q 2-8 Pin 1, 2, 7, 13, 17, 23, 24, 28, 32, 37, 38, 43, 50, 53, 60, 68, 73, 78, 99, 104, 109, 115, 121, 122, 123, 125, 132, 140 5, 10, 19, 20, 26, 30, 34, 36, 41, 46, 47, 55, 56, 58, 62, 66, 72, 75, 85, 88, 101, 108, 113, 117, 118, 119, 127, 128, 134, 138, 143, 144 3, 39, 64, 79, 95, 110, 136 9, 35, 45, 70, 83, 107, 142 15, 51, 91 21, 89, 130 I/O I/O Type Signal Name/Description Power Supplies +1.8 V Digital Power P PWR G GND Digital Ground P PWR +3.3 VI/O Power G GND I/O Ground P G PWR GND +3.3 V Quiet Power. Connect to +3.3 V I/O Power Quiet Ground. Connect to I/O Ground Conexant Proprietary and Confidential Information 102069A CX11656 HomePlug 1.0 PHY Data Sheet 2.2 CX11656 PHY Electrical and Environmental Specifications DC electrical characteristics are listed Table 2-3. Operating conditions are specified in Table 2-4. Absolute maximum ratings are stated in Table 2-5. Power consumption is listed in Table 2-6. Table 2-3. CX11656 PHY DC Electrical Characteristics Parameter Input Voltage High Input Voltage Low Output Voltage High Symbol VIH VIL VOH Min. 2.0 – 2.4 Typ. – – – Max. – 0.8 – Units VDC VDC VDC Test Conditions IOH = -1 mA Output Voltage Low VOL – – 0.4 VDC IOH = 1 mA Input Current II -15 – 15 µA Supply Current IDD 370 mA Supply Current ICC – 25 mA Note: Any signal applied to the CX11656 clock pin (CLKIN) should not exceed +1.8 V. Table 2-4. CX11656 PHY Operating Conditions Parameter Core Supply Voltage I/O Supply Voltage Operating Temperature Symbol VDD_C VDD_IO TA Min 1.7 3.0 0 Typ 1.8 3.3 Max 1.9 3.6 +70 Units VDC VDC °C Table 2-5. CX11656 PHY Absolute Maximum Ratings Parameter Core Supply Voltage I/O Supply Voltage Input Voltage Storage Temperature Range Analog Inputs Voltage Applied to Outputs in High Impedance (Off) State Symbol VDD_C VDD_IO VIN TSTG VIN VHZ Limits -0.35 to +1.95 -0.35 to +3.65 -0.35 to (VDD +0.35) -55 to +125 -0.35 to (VDDA + 0.35) -0.35 to (VDDA +0.35) Units VDC VDC VDC °C VDC VDC Table 2-6. CX11656 PHY Power Consumption Typ. Max. Typ. Current Current Power (mA) (mA) (mW) TBD TBD TBD TBD TBD TBD VDD_C = +1.8 VDC for typical values; +1.9 VDC for maximum values. VDD_IO = +3.3 VDC for typical values; +3.465 VDC for maximum values. Mode VDD_C VDD_IO Test conditions: 102069A Max. Power (mW) TBD TBD Conexant Proprietary and Confidential Information 2-9 CX11656 HomePlug 1.0 PHY Data Sheet This page is intentionally blank. 2-10 Conexant Proprietary and Confidential Information 102069A CX11656 HomePlug 1.0 PHY Data Sheet 3. CX11656 Functional Description The interfaces that provide data, status, and control to and from the CX11656 include: • • • • • • External host interface provided via the Media Independent Interface (MII) format (described by IEEE 802.3u, Clause 22) or a General Purpose Serial Interface (GPSI) Management control provided via the Management Data Interface (MDI) or the Serial Peripheral Interface (SPI) Analog Front End interface LEDs indicating network status Optional EEPROM interface providing a path to initialize the CX11656 The JTAG port implements the IEEE 1149.1 Standard Test Access Port and Boundary Scan Architecture. A block diagram of the CX11656 PHY is shown in Figure 3-1. Figure 3-1. CX11656 PHY Block Diagram LEDs CX11656 ROM MDI or SPI Configuration Registers ROM RISC uProcessor Core Link Sequencer PHY Seq ADIO[9:0] PHY Core MDII or GPSI TEST EEPROM MII/GPSI Interface JTAG Interface DMA Arbiter PHY DMA AFE Logic AGC [7:0] FIFOs Buffer RAM SPI Master Interface Block MAC PHY 102069_005 102069A Conexant Proprietary and Confidential Information 3-1 CX11656 HomePlug 1.0 PHY Data Sheet 3.1 MII Data Interface with MDI Control Data communication between the CX11656 and the external host controller is provided via the Media Independent Interface (MII) or a reduced General Purpose Serial Interface (GPSI). The MII_GPSI_N select pin is included on the chip interface to configure the CX11656 in either MII mode or GPSI mode. Access to the CX11656’s internal MII status and control registers is via the Management Data Interface or a SPI interface. The MDI_SPIS_N select pin is included on the chip interface to configure the CX11656 in either MDI mode or SPI mode. The information that follows describes the MII communication interface along with the MDI management interface as a typical example. The MII data interface with MDI control is illustrated in Figure 3-2. Figure 3-2. MII Data Interface with MDI Control CX11656 MII_RX(3:0) MII_RXCLK MII_RX_ER MII_RXDV MII_CRS MII_COL External Host Controller MII_TX(3:0) Interface Block PowerPacket MAC PowerPacket PHY MII_TXCLK MII_TX_ER MII_TXEN MII_MDCLK MII_MDIO 102069_006 3-2 Conexant Proprietary and Confidential Information 102069A CX11656 HomePlug 1.0 PHY Data Sheet 3.1.1 MII Interface MII is an industry standard, multi-vendor, interoperable interface between separate MAC and PHY devices. It provides a simple interconnection between the CX11656 and IEEE802.3 Ethernet MAC controllers (commonly referred to as external host controllers in this document) available from a variety of IC suppliers. The MII consists of separate 4bit data paths for transmit and receive data along with carrier sense and collision detection. Data is transferred between the MAC and PHY over each 4-bit data path synchronous with a clock signal supplied to the host by the CX11656. The MII interface also provides a 2-wire bidirectional serial management data interface (MDI). This interface provides access to the status and control registers in the CX11656. 3.1.1.1 MII Timing Diagram The transmission behavior of the MII interface is illustrated in Figure 3-3. The receive behavior of the MII interface is illustrated in Figure 3-4. An unsuccessful attempt to transmit a packet, resulting in a collision, is illustrated in Figure 3-5. The MII receive timing is illustrated in Figure 3-6. The MII transmit timing is illustrated in Figure 3-7. The MII DC characteristics are listed in Table 3-1. Note: MII_CRS is asynchronous to MII_TXCLK. Figure 3-3. MII TX Waveform MII_TXCLK MII_CRS MII_TXEN MII_TXD[3:1], MII_TX0 DATA DATA DATA DATA MII_COL 102069_007 102069A Conexant Proprietary and Confidential Information 3-3 CX11656 HomePlug 1.0 PHY Data Sheet Figure 3-4. MII RX Waveform MII_RXCLK MII_CRS MII_RXDV MII_RX[3:0] DATA DATA DATA DATA Figure 3-5. MII TX with Collision Based on RX Activity MII_CRS MII_TXEN MII_RXDV MII_COL 102069_009 3-4 Conexant Proprietary and Confidential Information 102069A CX11656 HomePlug 1.0 PHY Data Sheet Figure 3-6. MII Receive Timing MII_RXCLK tMII_RVAL MII_RXD[3:0], MII_RXVD, MII_RX_ER, MII_COL, MII_CRS DATA 102069_010 Figure 3-7. MII Transmit Timing MII_TXCLK tMII_TSU tMII_TH MII_TXD[3:1], MII_TX0, MII_TXEN, MII_TX_ER DATA 102069_011 Table 3-1. MII DC Characteristics Parameter Symbol Parameter Name tMII_RVAL MII_RX[3:0], MII_RXDV valid from ↑ MII_RXCLK tMII_TSU MII_TXEN, MII_TX0, MII_TX[3:1] setup to ↓ MII_TXCLK MII_TXEN, MII_TX0, MII_TX[3:1] hold to ↑ MII_TXCLK Test Condition Receive Timing Measured from Vilmax = 0.8V or Measured from Vihmin = 2.0V Min. Max. Unit 0 25 ns Transmit Timing tMII_TH 102069A Measured from Vilmax = 0.8V or Measured from Vihmin = 2.0V 8 ns Measured from Vilmax = 0.8V or Measured from Vihmin = 2.0V 0 ns Conexant Proprietary and Confidential Information 3-5 CX11656 HomePlug 1.0 PHY Data Sheet 3.1.1.2 MII Signal Descriptions The following description references Clause 22, Media Independent Interface specification, used in the 100 Mbps half-duplex mode. The MII is used as a data channel that transfers data back and forth with flow controlled by the carrier sense signal (MII_CRS). MII_TXCLK and MII_RXCLK. The CX11656 generates a stable, continuous 25 MHz square wave that is supplied on MII_TXCLK and MII_RXCLK. These clocks provide the timing reference for the transfer of the MII_TXEN and MII_TX signals, as well as MII_RX, MII_RX_ER, and MII_RXDV. MII_RX_ER. MII_RX_ER is activated when the CX11656 detects an error in the receive stream as a result of decoding. MII_TX_ER. MII_TX_ER is activated by the external host controller when an error condition is detected during packet transmission. The CX11656 will ignore any MII transmission within which MII_TX_ER is asserted. MII_TX_ER is ignored if MII_TXEN is not asserted. MII_TXEN. MII_TXEN from the external host provides the framing for the Ethernet packet. An active MII_TXEN indicates to the CX11656 that data on MII_TX[3:0] should be sampled using MII_TXCLK. MII_TX[3:0]. MII_TX[3:0] contains the data to be transmitted and transitions synchronously with respect to MII_TXCLK. MII_TX[0] is the least significant bit. It is generally assumed that the data will contain a properly formatted Ethernet frame. That is, the first bits on MII_TX[3:0] correspond to the preamble, followed by SFD and the rest of the Ethernet frame (DA, SA, length/type, data, CRC). MII_RXDV. MII_RXDV is asserted by the CX11656 to indicate that the CX11656 has decoded receive data to present to the external host. MII_RX[3:0]. MII_RX[3:0] contains the data recovered from the medium by the CX11656 and transitions synchronously with respect to MII_RXCLK. MII_RX[0] is the least-significant bit. The CX11656 formats the frame such that the external MAC will be presented with expected preamble plus SFD. MII_CRS. MII_CRS is used to tell the external host when the CX11656 is available for sending a packet. MII_CRS is asynchronous to MII_TXCLK. When a packet is being transmitted, CRS is held high. CRS will go low whenever the CX11656 is ready to accept another packet. On transmit, the CX11656 asserts MII_CRS some time after MII_TXEN becomes active, and drops MII_CRS after MII_TXEN goes inactive AND when the CX11656 is ready to receive another packet from the external host for transmission. When MII_CRS has been negated for at least 900ns, the external MAC may assert MII_TXEN again if there is another packet to send. This differs from nominal behavior of MII_CRS in that MII_CRS can extend past the end of the packet by an arbitrary amount of time, while the CX11656 is gaining access to the channel and transmitting the packet. MII_CRS does not affect the receive side of the channel. Once packets start arriving from the powerline medium and begin transmission to the external host controller over the MII interface, the external host must be ready to receive or the packet can be lost. Note that external MACs programmed to run in 100 Mbps mode do not use a jabber timeout, so there is no timing restriction on how long MII_CRS can be asserted. 3-6 Conexant Proprietary and Confidential Information 102069A CX11656 HomePlug 1.0 PHY Data Sheet Figure 3-8. MII Flow Control Overview, Part 1 32 ns (32 bit times) 32 ns (32 bit times) MII_CRS 32 ns (32 bit times) 32 ns (32 bit times) MII_TXEN MII_TXD[3:1], MII_TX0 P P Internal TX buffer available pulse MII_RX[3:0] P P P MII_RXDV External RX buffer available pulse MII_COL Case 1 Case 2 Case 3 Case 4 Case 4 TX only RX only RX while TX, delayed TX buf avail RX while no TX buf avail TX buf avail 102069_012 Figure 3-9. MII Flow Control Overview, Part 2 MII_CRS MII_TXEN MII_TXD[3:1], MII_TX0 P P MII_RX[3:0] P P MII_RXDV MII_COL Case 1 Case 7 Case 8 TX only TX overrun, frame dropped Collision 1102069_013 102069A Conexant Proprietary and Confidential Information 3-7 CX11656 HomePlug 1.0 PHY Data Sheet 3.1.1.3 MII Frame Structure The frame structure transmitted on the MII or GPSI interface is the following sequence of fields: Interframe Gap Preamble Start Frame Delimiter Data Interframe Gap A period on the MII interface during which no data activity occurs on the MII. Preamble Begins a frame transmission that consists of 7 octets with the following bit values: 10101010 10101010 10101010 10101010 10101010 10101010 10101010 The preamble is stripped by the CX11656 when transmitting (the preamble is not transmitted on the PLC medium) and pre-pended by the CX11656 when receiving. Start Frame Delimiter Indicates the start of a frame and follows the preamble. The SFD bit sequence is 10101011. The start frame delimiter is stripped by the CX11656 when transmitting (the SFD is not transmitted on the PLC medium) and pre-pended by the CX11656 when receiving Data Data sent over the MII interface consists of N bytes of data transmitted as 2N nibbles. The de-assertion of the MII_TXEN signals the End Of Frame (EOF) for data transmitted on the MII_TX[3:0] pins. Likewise, the de-assertion of the MII_RXDV signals the EOF for data transmitted on MII_RX[3:0]. Figure 3-10. Partition of Serial Bit Stream to Nibble Stream MACs Serial Bit Stream LSb First nibble LSb MII Nibble Stream MSb D0 D1 D2 D3 D4 D5 D6 D7 MSb Second nibble D0 D1 D2 D3 101409_014 3-8 Conexant Proprietary and Confidential Information 102069A CX11656 HomePlug 1.0 PHY Data Sheet 3.1.2 MDI Control Interface The Management Data Interface connects the external host to the CX11656 for purposes of controlling the CX11656 and gathering status. A specific frame format and protocol definition exists for exchanging management frames over this interface. A register definition exists as well that specifies a basic register set with an extension mechanism. The CX11656 implements the basic register set only. The MDI receive timing is illustrated in Figure 3-11. The MDI transmit timing is illustrated in Figure 3-12. The MDI DC characteristics are listed in Table 3-2. Figure 3-11. MDI Receive Timing MII_MDCLK tMII_RVAL MII_MDIO DATA 102069_015 Figure 3-12. MDI Transmit Timing MII_MDCLK tMII_TSU tMII_TH MII_MDIO DATA 102069_016 Table 3-2. MI DC Characteristics Parameter Symbol Parameter Name tMI_RVAL MII_MDIO valid from ↑ MII_MDCLK tMI_TSU MII_MDIO setup to ↑ MII_MDCLK MII_MDIO hold to ↑ MII_MDCLK tMI_TH 102069A Test Condition Min. Max. Unit Receive Timing Measured from Vilmax = 0.8V or Measured from Vihmin = 2.0V 0 300 ns Transmit Timing Measured from Vilmax = 0.8V or Measured from Vihmin = 2.0V 10 ns 10 ns Measured from Vilmax = 0.8V or Measured from Vihmin = 2.0V Conexant Proprietary and Confidential Information 3-9 CX11656 HomePlug 1.0 PHY Data Sheet 3.1.2.1 MDI Signal Descriptions Management Data Input/Output MII_MDIO is a bi-directional signal that is used to transfer status and control information between the CX11656 and the external host. Control information is driven by the external host synchronously with respect to MII_MDCLK and is sampled synchronously by the CX11656. Status information is transferred from the CX11656 to the external host in the same manner. Management Data Clock MII_MDCLK is sourced by the external host as the timing reference for transfer of information on the MII_MDIO signal. 3.1.3 MII Management Register Set The IEEE 802.3u mandated management data registers for control and status are accessible via the Management Data Interface (MDI). These registers are also accessible via the industry supported serial peripheral interface. The MDI Port will only respond to addresses 0xbXX000 when the XX field (MSbits of the MDI address) match the state of the MDI_ADRSEL[1:0] input signals. These registers can also be accessed from the SPI Slave port when the MDI_SPIS_N select line has been tied low to select the SPI Slave port. Table 3-3 summarizes the Power Line Control and Status Register. The MDI Frame Structure is shown in Figure 3-13. Table 3-3. Powerline Control and Status Register (PLCSR) Summary PLCSR 0 1 Register Name Control Register Status Register MII Mandated X X Figure 3-13. MDI Frame Structure READ WRITE 3.1.3.1 PRE 1...1 1...1 ST 01 01 OP 10 01 PHYAD AAAAA AAAAA RAGAD RRRRR RRRRR TA Z0 10 Data DDDDDDDDDDDDDDDD DDDDDDDDDDDDDDDD Idle Z Z PRE (Preamble) At the beginning of each MDI transaction, the external host shall send a sequence of 32 contiguous logic “1” bits on the MDIO signal so the CX11656 can establish synchronization. The CX11656 needs to observe this 32 bit sequence on the MII_MDIO signal before it responds to any transaction. 3.1.3.2 ST (Start of Frame) Indicated by a “01” pattern. 3-10 Conexant Proprietary and Confidential Information 102069A CX11656 HomePlug 1.0 PHY Data Sheet 3.1.3.3 OP (Operation Code) READ is indicated by “10”. WRITE is indicated by “01”. 3.1.3.4 PHYAD (PHY Address) The PHY Address is 5 bits, allowing up the 32 unique PHY addresses. The CX11656 will respond to PHY addresses indicated by 0bXX000. The “XX” bits of the PHY address are controlled by the CX11656 interface pins MDI_ADRSEL(0:1). This allows the designer to assign the CX11656 to one of 4 unique PHY addresses. 3.1.3.5 REGAD (Register Address) The Register Address is 5 bits and is used to index the maximum of 32 individual registers in the MDI address space. The CX11656 only implements the two mandated MII registers. 0b00000 will index the MII Control Register and 0b00001 will index the MII Status Register. 3.1.3.6 TA (Turnaround) The turnaround time is a 2-bit time spacing between the Register Address field and the Data field to avoid contention during a read transaction. For reads, both the external host and the CX11656 remain three-stated for the first bit time. The CX11656 will drive a “0” during the second bit time. For writes, the external host drives a “1” for the first bit time and a “0” bit for the second bit time. 3.1.3.7 Data The data field is 16 bits. The first data bit transmitted and received is bit 15 of the register being addressed. 102069A Conexant Proprietary and Confidential Information 3-11 CX11656 HomePlug 1.0 PHY Data Sheet 3.2 GPSI Interface with SPI Control The General Purpose Serial Interface (GPSI) is a flexible, bi-directional serial interface that can be utilized in place of the MII. It provides a straightforward interface to a communications controller through a synchronous serial data stream for transmit and receive data. When using the GPSI interface, the management interface can either be MDI or SPI, selected by the MDI_SPIS_N pin. The information that follows describes the GPSI communication interface along with the SPI management interface as a typical example. The GPSI interface signals are shown in Figure 3-14. Figure 3-14. GPSI Data Interface with SPI Control CX11656 GPSI_RXD GPSI_RXCLK GPSI_RXEN GPSI_COL GPSI_TXBSY GPSI_TXD External Host Controller GPSI_TXCLK Interface Block PowerPacket MAC PowerPacket PHY GPSI_TXEN SPIS_SDO SPIS_SDI SPIS_SCLK SPIS_CS_N 102069_018 3.2.1 GSPI Interface GPSI is an interoperable interface providing a simple interconnection between the CX11656 and embedded microcontrollers. Data is transferred between the host controller and the CX11656 over separate 1-bit transmit and receive data paths synchronous with clock signals supplied to the host by the CX11656. 3.2.1.1 GPSI Timing Diagrams The figures below show the transmission and reception of packets and the corresponding behavior of the GPSI interface. A packet is transferred from the host when GPSI_TXEN goes high. An unsuccessful attempt is made to transmit a packet in Case 5. The received packet is passed to the host when GPSI_RXEN is high. The GSPI flow control is illustrated in Figure 3-15. The GSPI transmit and receive timing are illustrated in Figure 3-16 and Figure 3-17, respectively. 3-12 Conexant Proprietary and Confidential Information 102069A CX11656 HomePlug 1.0 PHY Data Sheet Figure 3-15. GPSI Flow Control GPSI_TXEN P GPSI_TXD P P P GPSI_TXBSY Internal TX buffer available pulse GPSI_RXEN GPSI_RXD P P Internal RX buffer available pulse GPSI_COL Case 1 Case 2 Case 3 Case 4 Case 5 TX only RX only RX & TX TX, buf avail TX, no buf avail, frame dropped 102069_019 Figure 3-16. GPSI Transmit Timing tGPSI_THIGH tGPSI_TPER GPSI_TXCLK tGPSI_TDELAY tGPSI_TDELAY GPSI_TXD GPSI_TXEN tGPSI_TTXBSYH GPSI_TXBSY GPSI_COL 102069_020 Figure 3-17. GPSI Receive Timing tGPSI_RHIGH tGPSI_RPER GPSI_TXCLK tGPSI_RSU tGPSI_RLOW tGPSI_RRXENH GPSI_RXD tGPSI_RDH GPSI_RXEN GPSI_COL 102069_021 102069A Conexant Proprietary and Confidential Information 3-13 CX11656 HomePlug 1.0 PHY Data Sheet 3.2.1.2 GPSI DC Characteristics The GSPI DC characteristics are listed in Table 3-4. Table 3-4. GPSI DC Characteristics Parameter Symbol Parameter Name Test Condition Min Max Unit 99.99 40 40 15 100.01 60 60 ns ns ns ns Receive Timing tGPSI_RPER tGPSI_RHIGH tGPSI_RLOW tGPSI_RSU GPSI RXCLK Period GPSI RXCLK High Time GPSI RXCLK Low Time GPSI_RXD and GPSI_RXEN Setup to ↑ GPSI_RXCLK @ 1.5 V @ 1.5 V @ 1.5 V @ 1.5 V tGPSI_RDH GPSI_RXD Hold after ↑ GPSI_RXCLK @ 1.5 V 15 ns tGPSI_RRXENH GPSI_RXEN Hold after ↓ GPSI_RXCLK Transmit Timing @ 1.5 V 0 ns tGPSI_TPER tGPSI_THIGH tGPSI_TDELAY GPSI TXCLK Period GPSI TXCLK High Time GPSI_TXD and GPSI_TXEN Delay from ↑ GPSI_TXCLK @ 1.5 V @ 1.5 V @ 1.5 V 99.99 40 0 tGPSI_TRXENH GPSI_RXEN Hold after ↓ GPSI_TXEN @ 1.5 V 0 3.2.1.3 100.01 60 70 ns ns ns ns GPSI Signal Descriptions GPSI_TXCLK and GPSI_RXCLK: The CX11656 generates a stable, continuous 10 MHz square wave that is supplied on GPSI_TXCLK and GPSI_RXCLK. These clocks provide the timing reference for the transfer of the GPSI_TXEN and GPSI_TXD signal, as well as GPSI_RXEN and GPSI_RXD. GPSI_RXD: GPSI_RXD contains the data recovered from the medium by the CX11656 and transitions synchronously with respect to GPSI_RXCLK. The CX11656 properly formats the frame such that the external host controller will be presented with the expected preamble plus SFD. GPSI_RXEN: GPSI_RXEN is asserted by the CX11656 to indicate that the CX11656 has decoded receive data to present to the external host controller. GPSI_TXBSY: GPSI_TXBSY is an optionally used signal to tell the external host controller when the CX11656 is available for sending packets. When a packet is being transmitted, GPSI_TXBSY is held high. GPSI_TXBSY will go low whenever the CX11656 is ready to send another packet. If this signal is not used, the transmitting logic must pace the packet transmissions to ensure that no packets are lost due to buffer overflow. On transmit, the CX11656 asserts GPSI_TXBSY sometime after GPSI_TXEN becomes active, and drops GPSI_TXBSY after GPSI_TXEN goes inactive AND when the CX11656 is ready to accept another packet for transmission. When GPSI_TXBSY falls, the external host controller may assert GPSI_TXEN again if there is another packet to send. GPSI_TXBSY does not affect nor reflect the receive side of the channel. Once packets start arriving off of the powerline medium and begin transmission to the external host controller over the GPSI interface, the external host controller MUST be ready to receive or the packet can be lost. GPSI_TXEN: GPSI_TXEN from the external host provides the framing for the Ethernet packet. An active GPSI_TXEN indicates to the CX11656 that data on GPSI_TXD should be sampled using GPSI_TXCLK. 3-14 Conexant Proprietary and Confidential Information 102069A CX11656 HomePlug 1.0 PHY Data Sheet GPSI_TXD: GPSI_TXD contains the data to be transmitted and transitions synchronously with respect to GPSI_TXCLK. It is generally assumed that the data will contain a properly formatted Ethernet frame (see MII Frame Structure above). That is, the first bits on GPSI_TXD correspond to the preamble, followed by Start Frame Delimiter (SFD) and the rest of the Ethernet frame (DA, SA, length/type, data, CRC). 3.2.2 SPI Slave Port Interface The CX11656 implements a SPI Slave port that when connected to an external host controller containing a SPI Master, can be used to control access to the two configuration registers. The SPI Slave port uses a 16- bit control field (MSb first) consisting of a 6-bit command field, a 5-bit reserved field, and a 5-bit address field to control access to the two configuration registers detailed above (Table 3-5). Following the control field, the 16-bit register contents are written or read based on the command field. Table 3-5. SPI Slave Command Summary Register function 15 Write PLCSR0 (Control Register) Read PLCSR0 (Control Register) Write PLCSR1 (Status Register) Read PLCSR1 (Status Register) 0 L Control Field 9 87 6 5 Reserved Field 4 3 2 1 H L L L H H H L L L H L H L L H H H L 10 5 L 14 13 12 11 Command Field 4 3 2 1 H L L L L L L L L L L L L L 4 3 0 L 2 1 0 Address Field 4 3 2 1 L L L L 0 L L L L L L L L L L L L L L L H L L L L L L L H CX11656 SPECIFICATION 3.2.2.1 SPI Slave Port Signal Timing SPI Slave Port timing is illustrated in Figure 3-18. 102069A Conexant Proprietary and Confidential Information 3-15 CX11656 HomePlug 1.0 PHY Data Sheet Figure 3-18. SPI Slave Port Timing tSPIS_LOW tSPIS_HIGH SPIS_CLK tSPIS_SU SPIS_DI MSB IN BITS 6-1 LSB IN BITS 6-1 LSB OUT tSPIS_H SPIS_DO MSB OUT tSPIS_CSLAG tSPIS_SDOSV SPIS_CS_N tSPIS_CSLEAD 102069_022 3.2.2.2 SPI Slave Port DC Characteristics The SPI Slave Port DC characteristics are listed in Table 3-6. Table 3-6. SPI Slave Port DC Characteristics Parameter Symbol tSPIS_F tSPIS_HIGH tSPIS_LOW tSPIS_SDOVD tSPIS_CSLEAD tSPIS_CSLAG tSPIS_SU tSPIS_H 3.3 Parameter Name SPIS_SCLK Frequency SPIS_SCLK High Time SPIS_SCLK Low Time SPIS_SDO Valid Output Delay from SPIS_SCLK SPIS_CS Lead to SPIS_SCLK SPIS_CS Lag from SPIS_SCLK SPIS_SDI Setup Time to SPIS_SCLK SPIS_SDI Hold Time to SPIS_SCLK Test Condition Min @ 1.5 V 400 @ 1.5 V 400 @ 1.5 V 0 Max Unit 2.1 MHz ns ns 500 ns @ 1.5 V 500 @ 1.5 V 1500 ns ns @ 1.5 V 200 ns @ 1.5 V 200 ns Clocks The CX11656 runs from a single 100 MHz oscillator input and generates a 50 MHz clock to feed the ADC, a 50 MHz clock to feed the DAC, the 25 MHz MII clock, and the 10 MHz GPSI clock. The 100 MHz clock input directly feeds the clock distribution network that clocks up to 60% of the digital logic. Note: Both CLKIN and CLKOUT connect directly to the +1.8 V core of the IC and do not connect to the +3.3 V I/O ring. Therefore these pins are not +3.3 V or +5 V tolerant. The oscillator must have ± 25 PPM RMS maximum tolerance including initial accuracy, temperature/voltage range and 5 years of aging. This oscillator must have a symmetry no worse than 40/60, jitter of 75 ps and 4 ns rise and fall time. The oscillator must be rated over the desired temperature range and ± 10% voltage range. The CX11656 uses a crystal input cell to receive the clock input. 3-16 Conexant Proprietary and Confidential Information 102069A CX11656 HomePlug 1.0 PHY Data Sheet 3.4 AFE Interface The CX11656 provides a simple parallel interface to the analog front end (AFE). The analog data is clocked into or out of the CX11656 on a 10-bit bi-directional parallel data bus under control of transmit or receive enable signals and sample clock references provided to the AFE from the CX11656. The CX11656 also provides a parallel byte-wide automatic gain control interface. 3.4.1 ADC/DAC Interface The CX11656 outputs a sequential stream of digital time samples of the OFDM waveforms for transmission. The digital transmit signal is passed on to the A/D Converter. The ADC digitizes the analog OFDM receive signal for input to the CX11656. The DAC converts digital samples into analog waveforms. 3.4.1.1 ADC/DAC Timing Diagrams AFE TX and RX activity is illustrated in Figure 3-19. AFE clock waveforms are illustrated in Figure 3-20. AFE transmit and receive timing is illustrated in Figure 3-21 and Figure 3-22, respectively. Figure 3-19. AFE TX and RX Activity DAC_CLK TX_EN ADIO[9:0] TX DATA TX DATA TX DATA RX DATA RX DATA RX DATA ADC_CLK RX_EN 102069_023 Figure 3-20. AFE Clock Waveforms tAFE_H 2.0 V DAC_CLK, ADC_CLK tAFE_L 1.5 V 0.8 V tAFE_R tAFE_FT tAFE_PW 102069_024 102069A Conexant Proprietary and Confidential Information 3-17 CX11656 HomePlug 1.0 PHY Data Sheet Figure 3-21. AFE Transmit Timing Diagram DAC_CLK tMII_RVAL ADIO[9:0], RX_EN, TX_EN DATA 102069_025 Figure 3-22. AFE Receive Timing Diagram ADC_CLK tMII_TSU ADIO[9:0] DATA tMII_TH 102069026 3-18 Conexant Proprietary and Confidential Information 102069A CX11656 HomePlug 1.0 PHY Data Sheet 3.4.1.2 DAC DC Characteristics The DAC DC characteristics are listed in Table 3-7. Table 3-7. DAC DC Characteristics Symbol Parameter Test Conditions Number of Bits Data Format Sample Rate VOH VOL tAFE_RVAL Min Typ Max 10 Straight Binary 50 High level output voltage Low level output voltage Propagation Delay Time tAFE_PW DAC Clock Pulse Width tAFE_R DAC Clock Rise Time tAFE_FT DAC Clock Fall Time tJ DAC Clock Jitter Conditions: 1. VDD = 3.3 V, CL = 15 pF, RL = 1K Ω 2. IOH = -1 mA 3. IOL = 1mA DAC Data Output 1, 2 1, 3 1 DAC Clock Output 1 1 1 1 MSPS 2.4 5.0 Unit bits 8.2 10 0.4 15.0 V V ns 15 2 2 75 ns ns ns ps rms 1647 SPECIFICATION 3.4.1.3 ADC DC Characteristics The ADC DC characteristics are listed in Table 3-8. Table 3-8. ADC DC Characteristics Symbol Parameter Test Conditions Number of Bits Data Format Sample Rate Min Typ Max 10 Straight Binary 50 Unit bits MSPS ADC Data Input VIH VIL tA tAFE_TSU tAFE_TH High level input voltage Low level input voltage Aperture Delay Time Data Setup Time Data Hold Time 1 1 1 1 1 2.0 1 1 1 1 1 1 1 2.1 0.8 2.7 3 3 V V ns ns ns ADC Clock Output VOH High level output voltage VOL Low level output voltage tAFE_H ADC/DAC Clock Pulse Width High tAFE_L ADC/DAC Clock Pulse Width Low tAFE_R ADC/DAC Clock Rise Time tAFE_FT ADC/DAC Clock Fall Time tJ ADC/DAC Clock Jitter Conditions: VDD = 3.3 V, CL = 15 pF, RL = 1K Ω 10 10 V 0.9 15 15 2 2 75 V ns ns ns ns ps rms CX11656 SPECIFICATION 102069A Conexant Proprietary and Confidential Information 3-19 CX11656 HomePlug 1.0 PHY Data Sheet 3.4.2 AGC Circuitry The CX11656 receives 10-bit digitized samples from the D/A Converter and uses them to adjust the Switched Gain Amplifier (SGA) gain to maintain optimum signal level at the input of the ADC. The AGC[7:0] control bus is used to pass a Gain Control Value (GCV) to the SGA. If the AGCENC_N input pin is low, the GCV is encoded on pins [3:0] of the AGC[7:0] control bus. If the AGCENC_N input pin is high, the GCV is decoded on pins [7:0] of the AGC[7:0] control bus with pins [7:4] selecting the gain switch setting for the first stage amplifier and pins [3:0] selecting the gain switch setting for the second stage amplifier. RX gain control values are listed in Table 3-9. Table 3-9. RX Gain Control Values GCV (AGCENC_N = 0) AGC[3:0] 0000 0001 0010 0011 0100 0101 0110 0111 3.4.2.1 GCV (AGCENC_N = 1) AGC[7:4] AGC[3:0] 000 000 1000 1000 0100 1000 0010 1000 0001 1000 0001 0100 0001 0010 0001 0001 Front End Gain (dB) OFF 0 8 16 24 32 40 48 Notes Mute RX during TX mode AGC DC Characteristics AGC DC characteristics are listed in Table 3-10. Table 3-10. AGC DC Characteristics Symbol Parameter VOH High level output voltage VOL Low level output voltage tR Rise time tF Fall time Conditions: VDD = 3.3 V, CL = 15 pF, RL = 1K Ω 3-20 Test Conditions 1 1 1 1 Min 2.1 Typ Conexant Proprietary and Confidential Information Max 0.9 5 5 Unit V V ns ns 102069A CX11656 HomePlug 1.0 PHY Data Sheet 3.5 SPI Master Interface The SPI Master interface gives the system designer the option of providing the CX11656 with the necessary configuration information from a simple, SPI-controlled EEPROM as opposed to supplying this information via MAC management frames (transmitted over the MII interface). The information stored in the EEPROM is intended to initialize the CX11656 with specific information that will not be changed throughout its normal course of operation. For specific features that require real-time control, this information must be provided via the MAC management frames and not from the EEPROM. The EEPROM must be an Atmel AT93C46, or equivalent, programmed in 8-bit mode. 3.5.1 SPI Master Interface Timing The SPI Master interface signal timing is illustrated in Figure 3-23. Figure 3-23. SPI Master Interface Signal Timing Diagram tSPI_HIGH tSPI_SU SPIS_CLK tSPI_LOW tSPI_H SPIS_DI DATA tSPI_DIVD SPIS_DO tSPI_CSDV DATA tSPI_CSL SPIS_CS_N 102069_027 3.5.2 SPI Master Interface DC Characteristics The SPI Master interface DC characteristics are listed in Table 3-11. Table 3-11. SPI Master Interface DC Characteristics Parameter Symbol tSPI_F tSPI_HIGH tSPI_LOW tSPI_DIVD tSPI_CSVD tSPI_CSL tSPI_SU tSPI_H 102069A Parameter Name SPI_SCLK Frequency SPI_SCLK High Time SPI_SCLK Low Time SPI_DI Valid Output Delay from SPI_SCLK SPI_CS Valid Output Delay from SPI_SCLK SPI_CS Low Time SPI_DO Setup Time to SPI_SCLK SPI_DO Hold Time to SPI_SCLK Test Condition Min @ 1.5 V @ 1.5 V @ 1.5 V @ 1.5 V @ 1.5 V @ 1.5 V @ 1.5 V 70 70 0 0 1000 50 0 Conexant Proprietary and Confidential Information Max Unit 6.125 90 90 15 15 MHz ns ns ns ns ns ns ns 3-21 CX11656 HomePlug 1.0 PHY Data Sheet 3.6 LED Interface LED interface signals are described in Table 3-12. Table 3-12. LED Interface Signal Description Signal LED0_N Status Collision LED1_N Activity LED2_N Link 3-22 Description LED0_N: Collision Detection. Activates for a duration of 9–10 ms upon detection of a collision. LED1_N: Activity Detection. Activates for a duration of 9–10 ms upon the receipt of a properly addressed unicast or broadcast frame or the transmission of a frame. LED2_N: Link Detection. Turns on when initialization is completed successfully and “network” is established. Conexant Proprietary and Confidential Information 102069A CX11656 HomePlug 1.0 PHY Data Sheet 4. Package Dimensions Package dimensions for the 144-pin LQFP are shown in Figure 4-1. Figure 4-1. Package Dimensions - 144-Pin LQFP D D1 D2 PIN 1 REF D D1 D1 D2 e b DETAIL A A A1 Millimeters Min. Max. 1.6 MAX 0.15 0.05 Inches* Max. Min. 0.0630 MAX 0.0020 0.0059 A2 D 21.75 1.4 REF 22.25 0.0551 REF 0.8563 0.8760 D1 D2 L 20.0 REF 17.5 REF 0.75 0.5 0.7874 REF 0.6890 REF 0.0197 0.0295 L1 e 1.0 REF 0.50 BSC 0.0394 REF 0.0197 BSC 0.0067 0.0106 Dim. D1 A b c Coplanarity A2 0.17 0.11 0.27 0.17 0.08 MAX 0.0043 0.0067 0.0031 MAX Ref: 144-PIN LQFP (GP00-D252) c A1 L * Metric values (millimeters) should be used for PCB layout. English values (inches) are converted from metric values and may include round-off errors. L1 DETAIL A PD_LQFP_144 102069A Conexant Proprietary and Confidential Information 4-1 CX11656 HomePlug 1.0 PHY Data Sheet This page is intentionally blank. 4-2 Conexant Proprietary and Confidential Information 102069A CX11656 HomePlug 1.0 PHY Data Sheet 5. Application Designs 5.1 Ethernet Router Application An Ethernet Router application design is illustrated in Figure 5-1. Refer to CX82100 Home Network Processor (HNP) Data Sheet (Doc. No. 101306) for CX82100-41 information. Figure 5-1. Ethernet Router Application Block Diagram LEDs LEDs Powerline Etherent CX82100-41 Home Network Processor (HNP) MII CX11656 HomePlug 1.0 PHY Transceiver Analog Front End Coupler 102069_030 102069A Conexant Proprietary and Confidential Information 5-1 CX11656 HomePlug 1.0 PHY Data Sheet 5.2 USB Application A USB application design is illustrated in Figure 5-2. Figure 5-2. USB Application Block Diagram LEDs Powerline USB 802.3 MAC Controller for USB MII CX11656 HomePlug 1.0 PHY Transceiver Analog Front End Coupler 102069_031 5-2 Conexant Proprietary and Confidential Information 102069A CX11656 HomePlug 1.0 PHY Data Sheet 5.3 Embedded Application An embedded application design is illustrated in Figure 5-3. Figure 5-3. Embedded Application Block Diagram LEDs Powerline USB Embedded IC with Integrated 802.3 MAC Controller MII CX11656 HomePlug 1.0 PHY Transceiver Analog Front End Coupler 102069_032 5.4 ADI-Related Components For further information regarding the ADI components used in the Analog Front End, please refer to the following ADI data sheets: AD8007/AD8008 - Low Distortion High Speed Amp AD6417 - LC2MOS Precision Mini-DIP Analog Switch AD8016 – Low Power, High Output Current xDSL Line Driver AD9975 – Broadband Modem Mixed-Signal Front End 102069A Conexant Proprietary and Confidential Information 5-3 CX11656 HomePlug 1.0 PHY Data Sheet This page is intentionally blank. 5-4 Conexant Proprietary and Confidential Information 102069A NOTES www.conexant.com General Information: U.S. and Canada: (800) 854-8099 International: (949) 483-6996 Headquarters – Newport Beach 4311 Jamboree Rd. Newport Beach, CA 92660-3007