CONEXANT CX11656-11

CX11656
HomePlug 1.0 PHY
Home Networking Physical
Layer Device with Integrated
Analog Front End Circuitry
Data Sheet (Preliminary)
Conexant Proprietary Information
Conexant Confidential Information
Dissemination, disclosure, or use of this information is not permitted
without the written permission of Conexant Systems, Inc.
Doc. No. 102069A
August 19, 2002
CX11656 HomePlug 1.0 PHY Data Sheet
Revision Notice
Revision
A
Date
8/19/2002
Comments
Initial release.
© 2002 Conexant Systems, Inc.
All Rights Reserved.
Information in this document is provided in connection with Conexant Systems, Inc. (“Conexant”) products. These materials are
provided by Conexant as a service to its customers and may be used for informational purposes only. Conexant assumes no
responsibility for errors or omissions in these materials. Conexant may make changes to specifications and product descriptions at
any time, without notice. Conexant makes no commitment to update the information and shall have no responsibility whatsoever for
conflicts or incompatibilities arising from future changes to its specifications and product descriptions.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as
provided in Conexant’s Terms and Conditions of Sale for such products, Conexant assumes no liability whatsoever.
THESE MATERIALS ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
RELATING TO SALE AND/OR USE OF CONEXANT PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO
FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR
INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. CONEXANT FURTHER
DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS
CONTAINED WITHIN THESE MATERIALS. CONEXANT SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL,
OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY
RESULT FROM THE USE OF THESE MATERIALS.
Conexant products are not intended for use in medical, lifesaving or life sustaining applications. Conexant customers using or selling
Conexant products for use in such applications do so at their own risk and agree to fully indemnify Conexant for any damages
resulting from such improper use or sale.
The following are trademarks of Conexant Systems, Inc.: Conexant™, the Conexant C symbol, and “What’s Next in
Communications Technologies”™. Product names or services listed in this publication are for identification purposes only, and may
be trademarks of third parties. Third-party brands and names are the property of their respective owners.
For additional disclaimer information, please consult Conexant’s Legal Information posted at www.conexant.com, which is
incorporated by reference.
Reader Response: Conexant strives to produce quality documentation and welcomes your feedback. Please send comments and
suggestions to [email protected]. For technical questions, contact your local Conexant sales office or field applications
engineer.
ii
Conexant Proprietary and Confidential Information
102069A
CX11656 HomePlug 1.0 PHY Data Sheet
Contents
1. Introduction ......................................................................................................................................... 1-1
1.1
1.2
1.3
Overview .....................................................................................................................................................................1-1
Features ......................................................................................................................................................................1-3
Applications ................................................................................................................................................................1-3
2. Hardware Interface .............................................................................................................................. 2-1
2.1
2.2
CX11656 PHY Hardware Interface Signals...................................................................................................................2-1
CX11656 PHY Electrical and Environmental Specifications..........................................................................................2-9
3. CX11656 Functional Description.......................................................................................................... 3-1
3.1
3.2
MII Data Interface with MDI Control ............................................................................................................................3-2
3.1.1
MII Interface................................................................................................................................................3-3
MII Timing Diagram .................................................................................................................3-3
3.1.1.2
MII Signal Descriptions............................................................................................................3-6
3.1.2
3.1.1.3
MII Frame Structure.................................................................................................................3-8
MDI Control Interface ..................................................................................................................................3-9
3.1.3
3.1.2.1
MDI Signal Descriptions ........................................................................................................3-10
MII Management Register Set ...................................................................................................................3-10
3.1.3.1
PRE (Preamble) .....................................................................................................................3-10
3.1.3.2
ST (Start of Frame) ................................................................................................................3-10
3.1.3.3
OP (Operation Code) ..............................................................................................................3-11
3.1.3.4
PHYAD (PHY Address)...........................................................................................................3-11
3.1.3.5
REGAD (Register Address).....................................................................................................3-11
3.1.3.6
TA (Turnaround) ....................................................................................................................3-11
3.1.3.7
Data .......................................................................................................................................3-11
GPSI Interface with SPI Control.................................................................................................................................3-12
3.2.1
GSPI Interface ...........................................................................................................................................3-12
3.2.2
102069A
3.1.1.1
3.2.1.1
GPSI Timing Diagrams...........................................................................................................3-12
3.2.1.2
GPSI DC Characteristics.........................................................................................................3-14
3.2.1.3
GPSI Signal Descriptions .......................................................................................................3-14
SPI Slave Port Interface.............................................................................................................................3-15
3.2.2.1
SPI Slave Port Signal Timing .................................................................................................3-15
3.2.2.2
SPI Slave Port DC Characteristics ..........................................................................................3-16
Conexant Proprietary and Confidential Information
iii
CX11656 HomePlug 1.0 PHY Data Sheet
3.3
3.4
Clocks .......................................................................................................................................................................3-16
AFE Interface .............................................................................................................................................................3-17
3.4.1
ADC/DAC Interface ....................................................................................................................................3-17
3.4.2
3.5
3.6
3.4.1.1
ADC/DAC Timing Diagrams....................................................................................................3-17
3.4.1.2
DAC DC Characteristics..........................................................................................................3-19
3.4.1.3
ADC DC Characteristics..........................................................................................................3-19
AGC Circuitry.............................................................................................................................................3-20
3.4.2.1
AGC DC Characteristics..........................................................................................................3-20
SPI Master Interface..................................................................................................................................................3-21
3.5.1
SPI Master Interface Timing ......................................................................................................................3-21
3.5.2
SPI Master Interface DC Characteristics ....................................................................................................3-21
LED Interface.............................................................................................................................................................3-22
4. Package Dimensions............................................................................................................................ 4-1
5. Application Designs ............................................................................................................................. 5-1
5.1
5.2
5.3
5.4
iv
Ethernet Router Application.........................................................................................................................................5-1
USB Application ..........................................................................................................................................................5-2
Embedded Application.................................................................................................................................................5-3
ADI-Related Components ............................................................................................................................................5-3
Conexant Proprietary and Confidential Information
102069A
CX11656 HomePlug 1.0 PHY Data Sheet
Figures
Figure 1-1. CX11656 HomePlug 1.0 PHY Simplified Hardware Interface..........................................................................1-1
Figure 1-2. CX11656 HomePlug 1.0 PHY Functional Block Diagram................................................................................1-2
Figure 2-1. CX11656 PHY Hardware Interface Signals - 144-Pin LQFP ............................................................................2-2
Figure 2-2. CX11656 PHY Pin Signals - 144-Pin LQFP ....................................................................................................2-3
Figure 3-1. CX11656 PHY Block Diagram ........................................................................................................................3-1
Figure 3-2. MII Data Interface with MDI Control ..............................................................................................................3-2
Figure 3-3. MII TX Waveform ..........................................................................................................................................3-3
Figure 3-4. MII RX Waveform..........................................................................................................................................3-4
Figure 3-5. MII TX with Collision Based on RX Activity ....................................................................................................3-4
Figure 3-6. MII Receive Timing........................................................................................................................................3-5
Figure 3-7. MII Transmit Timing ......................................................................................................................................3-5
Figure 3-8. MII Flow Control Overview, Part 1 .................................................................................................................3-7
Figure 3-9. MII Flow Control Overview, Part 2 .................................................................................................................3-7
Figure 3-10. Partition of Serial Bit Stream to Nibble Stream ............................................................................................3-8
Figure 3-11. MDI Receive Timing ....................................................................................................................................3-9
Figure 3-12. MDI Transmit Timing...................................................................................................................................3-9
Figure 3-13. MDI Frame Structure .................................................................................................................................3-10
Figure 3-14. GPSI Data Interface with SPI Control.........................................................................................................3-12
Figure 3-15. GPSI Flow Control .....................................................................................................................................3-13
Figure 3-16. GPSI Transmit Timing ...............................................................................................................................3-13
Figure 3-17. GPSI Receive Timing .................................................................................................................................3-13
Figure 3-18. SPI Slave Port Timing................................................................................................................................3-16
Figure 3-19. AFE TX and RX Activity ..............................................................................................................................3-17
Figure 3-20. AFE Clock Waveforms................................................................................................................................3-17
Figure 3-21. AFE Transmit Timing Diagram ...................................................................................................................3-18
Figure 3-22. AFE Receive Timing Diagram .....................................................................................................................3-18
Figure 3-23. SPI Master Interface Signal Timing Diagram .............................................................................................3-21
Figure 4-1. Package Dimensions - 144-Pin LQFP.............................................................................................................4-1
Figure 5-1. Ethernet Router Application Block Diagram ...................................................................................................5-1
Figure 5-2. USB Application Block Diagram .....................................................................................................................5-2
Figure 5-3. Embedded Application Block Diagram ...........................................................................................................5-3
102069A
Conexant Proprietary and Confidential Information
v
CX11656 HomePlug 1.0 PHY Data Sheet
Tables
Table 1-1. CX11656 HomePlug 1.0 PHY and CX82100-41 Ordering Information.............................................................1-2
Table 2-1. CX11656 PHY Pin Signals - 144-Pin LQFP......................................................................................................2-4
Table 2-2. CX11656 PHY Hardware Signal Definitions.....................................................................................................2-5
Table 2-3. CX11656 PHY DC Electrical Characteristics ....................................................................................................2-9
Table 2-4. CX11656 PHY Operating Conditions ...............................................................................................................2-9
Table 2-5. CX11656 PHY Absolute Maximum Ratings .....................................................................................................2-9
Table 2-6. CX11656 PHY Power Consumption ................................................................................................................2-9
Table 3-1. MII DC Characteristics ....................................................................................................................................3-5
Table 3-2. MI DC Characteristics .....................................................................................................................................3-9
Table 3-3. Powerline Control and Status Register (PLCSR) Summary ...........................................................................3-10
Table 3-4. GPSI DC Characteristics................................................................................................................................3-14
Table 3-5. SPI Slave Command Summary .....................................................................................................................3-15
Table 3-6. SPI Slave Port DC Characteristics .................................................................................................................3-16
Table 3-7. DAC DC Characteristics.................................................................................................................................3-19
Table 3-8. ADC DC Characteristics.................................................................................................................................3-19
Table 3-9. RX Gain Control Values.................................................................................................................................3-20
Table 3-10. AGC DC Characteristics...............................................................................................................................3-20
Table 3-11. SPI Master Interface DC Characteristics......................................................................................................3-21
Table 3-12. LED Interface Signal Description.................................................................................................................3-22
vi
Conexant Proprietary and Confidential Information
102069A
CX11656 HomePlug 1.0 PHY Data Sheet
1.
Introduction
1.1
Overview
The Conexantä CX11656 device is an integrated physical layer transceiver or PHY
(Figure 1-1). It is designed to use existing ac electrical wiring within the home as a
networking physical medium. The PHY’s robust performance in the electrically noisy
power line channel is due to the use of Orthogonal Frequency Division Multiplexing
(OFDM). This multi-carrier modulation scheme allows the PHY to dynamically “learn
the channel”— data can be shifted from one carrier to another as real time noise and
attenuation conditions change. This overcomes the flaw inherent in previous power line
networking technologies—as electrical appliances were turned on and off, changing line
conditions caused signal quality to become degraded to such an extent that data
transmission became impossible. The CX11656’s OFDM technology finds the low noise,
low attenuation portions of the spectrum available to it and continues data transmission.
The CX11656 is compliant with the HomePlug Powerline Alliance Industry Specification
V1.0. This ensures interoperability with other HomePlug PHYs. Quality-of-service (QoS)
is built into the PHY to ensure low-latency, high reliability channels for streaming audio,
streaming video, voice, and gaming, and video.
The PHY utilizes the IEEE 802.3u standard Media Independent Interface (MII). This
standard interface can also be configured as a seven-wire General Purpose Serial
Interface (GPSI). These standard interfaces allow the CX11656 to be paired almost any
embedded media access controller (MAC) for use in a variety of information appliances.
The CX11656 operates on both +1.8 V and +3.3 V supplies and is packaged in a 144-pin
Low Quad Flat Pack (LQFP).
The CX11656 ordering information is listed in Table 1-1.
A functional block diagram of the CX11656 is shown in Figure 1-2.
Please contact Conexant marketing for information concerning the AFE.
Figure 1-1. CX11656 HomePlug 1.0 PHY Simplified Hardware Interface
Ethernet
Interface
802.3 EMAC
(e.g., Conexant
CX82100)
MII/GPSI
Interface
Conexant
CX11656
HomePlug 1.0 PHY
144-Pin LQFP
Parallel
Interface
Analog
Front End*
Coupler
Powerline
* See Section 5.4.
102069_001
102069A
Conexant Proprietary and Confidential Information
1-1
CX11656 HomePlug 1.0 PHY Data Sheet
Table 1-1. CX11656 HomePlug 1.0 PHY and CX82100-41 Ordering Information
Marketing Order No.
HomePlug 1.0 PHY
[144-Pin LQFP]
Part No.
Home Network Processor (HNP)
[196-Pin FPBGA]
Part No.
DSHP-L100-001
CX11656-11
CX82100-41
Figure 1-2. CX11656 HomePlug 1.0 PHY Functional Block Diagram
CX11656
RESET
MAC
Interface Block
MDIO Control
MDCLK/MDIO
- or SPI Control
SDI, SDO, SCLK, CS
MII
RX[3:0], RXCLK, RXDV, RX_ER,
TX[3:0], TXCLK, TXEN, TX_ER,
COL, CRS
- or GPSI
RXD, RXCLK, RXEN,
TXD, TXCLK, TXEN,
COL, TXBSY
Configuration
Registers
ROM
CLK IN
ROM
PHY
Gain
Control
RISC
uProcessor
Core
MII/GPSI
Interface
Arbiter
MII/GPSI
Select
Configuration
EEPROM
Control
Power
&
GND
EEPROM
Control
DMA
&
Link
Sequencer
PHY
Core
AFE
Interface
ADC
DAC
Interface
MDIO
Address
Slect
Buffer
RAM
LED
Control
LEDS
102069_002
1-2
Conexant Proprietary and Confidential Information
102069A
CX11656 HomePlug 1.0 PHY Data Sheet
1.2
Features
•
•
•
•
•
•
•
•
•
•
•
•
•
1.3
Applications
•
•
•
•
•
•
•
102069A
Single-chip powerline networking controller with IEEE802.3u MII interface
Implements the HomePlug Powerline Alliance Industry Specification V1.0
General purpose 7-wire serial PHY data interface
Selectable MDI/SPI PHY management interface
Up to 14 Mbps data rate on the powerline
Orthogonal Frequency Division Multiplexing (OFDM) with patented signal
processing techniques for high data reliability in noisy media conditions
Intelligent channel adaptation maximizes throughput under harsh channel conditions
Integrated quality-of-service (QoS) features such as prioritized random access,
contention-free access, and segment bursting
56-bit DES Link Encryption with key management for secure powerline
communications
EEPROM interface for fast access to configuration parameters allows system designs
to leverage standard Ethernet drivers
3.3 V signaling, 5 V tolerant interface
Support for three status LEDs
144-pin LQFP package
Residential gateways and home routers
Network home or small office PCs
Enable no wire installation networking for information appliances
LAN gaming
Share DSL or cable modem access
MDU/MTU applications
Embedded applications
Conexant Proprietary and Confidential Information
1-3
CX11656 HomePlug 1.0 PHY Data Sheet
This page is intentionally blank
1-4
Conexant Proprietary and Confidential Information
102069A
CX11656 HomePlug 1.0 PHY Data Sheet
2.
Hardware Interface
2.1
CX11656 PHY Hardware Interface Signals
The CX11656 PHY hardware interface signals are shown in Figure 2-1.
CX11656 PHY pin signals are shown in Figure 2-2 and are listed in Table 2-1.
CX11656 PHY hardware interface signals are defined in Table 2-2.
102069A
Conexant Proprietary and Confidential Information
2-1
CX11656 HomePlug 1.0 PHY Data Sheet
Figure 2-1. CX11656 PHY Hardware Interface Signals - 144-Pin LQFP
49
100 MHz Clock Input
48
100 MHz Clock Output
44
111
112
Reset Control
NC
Shared
MMII/GSPI/SPI
Interface
SPI Master Port
Interface
JTAG Test
Interface
(Reserved)
+1.8 V
Core Power
+3.3 V
I/O and Quiet
Power
131
27
29
31
33
22
25
18
4
6
8
11
14
12
16
42
40
135
133
141
137
139
126
59
57
54
52
114
120
124
116
129
1
2
7
13
17
23
24
28
32
37
38
43
50
53
60
68
73
78
99
104
109
115
121
122
123
125
132
140
3
39
64
79
95
110
136
15
51
91
ADC_CLK
DAC_CLK
TX_EN
RX_EN
ADC_CAL
AGCENC_N
CLKIN
CLKOUT
RESET_N
TEST1
TEST2
NC
MII_RX3
MII_RX2
MII_RX1
MII_RX0
MII_RXCLK/GPSI_RXCLK
MII_RXDV/GPSI_TXBSY
MII_RX_ER/GPSI_RXD
MII_TX3
MII_TX2
MII_TX1
MII_TX0/GPSI_TXD
MII_TXCLK/GPSI_TXCLK
MII_TXEN/GPSI_TXEN
MII_TX_ER
MII_CRS/GPSI_RXEN
MII_COL/GPSI_COL
MII_MDIO/SPIS_SDO
MII_MDCLK/SPIS_SCLK
MII_GPSI_N
MDI_ADRSEL[1]/SPIS_SDI
MDI_ADRSEL[0]/SPIS_CS_N
MDI_SPIS_N
SPI_DO
SPI_DI
SPI_CLK
SPI_CS
TCK
TDI
TMS
TDO
TRST_N
VDD_C
VDD_C
VDD_C
VDD_C
VDD_C
VDD_C
VDD_C
VDD_C
VDD_C
VDD_C
VDD_C
VDD_C
VDD_C
VDD_C
VDD_C
VDD_C
VDD_C
VDD_C
VDD_C
VDD_C
VDD_C
VDD_C
VDD_C
VDD_C
VDD_C
VDD_C
VDD_C
VDD_C
CX11656
HomePlug 1.0
PHY
144-PIN LQFP
ADIO9
ADIO8
ADIO7
ADIO6
ADIO5
ADIO4
ADIO3
ADIO2
ADIO1
ADIO0
AGC7
AGC6
AGC5
AGC4
AGC3
AGC2
AGC1
AGC0
LED0_N
LED1_N
LED2_N
VSS_C
VSS_C
VSS_C
VSS_C
VSS_C
VSS_C
VSS_C
VSS_C
VSS_C
VSS_C
VSS_C
VSS_C
VSS_C
VSS_C
VSS_C
VSS_C
VSS_C
VSS_C
VSS_C
VSS_C
VSS_C
VSS_C
VSS_C
VSS_C
VSS_C
VSS_C
VSS_C
VSS_C
VSS_C
VSS_C
VSS_C
VSS_C
VSS_IO
VSS_IO
VSS_IO
VSS_IO
VSS_IO
VSS_IO
VSS_IO
VSS_Q
VSS_Q
VSS_Q
71
74
76
77
67
69
94
93
92
90
87
86
84
82
81
80
AFE
Interface
106
105
103
102
100
98
97
96
AGC IC Interface
61
63
65
LED Interface
5
10
19
20
26
30
34
36
41
46
47
55
56
58
62
66
72
75
85
88
101
108
113
117
118
119
127
128
134
138
143
144
9
35
45
70
83
107
142
21
89
130
VDD_IO
VDD_IO
VDD_IO
VDD_IO
VDD_IO
VDD_IO
VDD_IO
VDD_Q
VDD_Q
VDD_Q
102069_003
2-2
Conexant Proprietary and Confidential Information
102069A
CX11656 HomePlug 1.0 PHY Data Sheet
VDD_IO
VDD_C
109
VSS_C
TEST2
TEST1
112
111
110
TDO
VDD_C
TCK
VDD_C
TDI
VSS_C
121
120
115
114
113
TMS
VDD_C
VDD_C
124
123
122
VSS_C
VSS_C
VSS_C
MDI_SPIS_N
VDD_C
127
126
125
118
117
116
VSS_Q
TRST_N
VSS_C
130
129
128
119
MII_MDCLK/SPIS_SCLK
VDD_C
NC
132
131
VDD_IO
MII_MDIO/SPIS_SDO
VSS_C
135
134
133
MDI_ADRSEL[0]/SPIS_CS_N
VSS_C
MDI_ADRSEL[1]/SPIS_SDI
138
137
136
VSS_IO
MII_GPSI_N
VDD_C
141
140
139
144
143
142
VSS_C
VSS_C
Figure 2-2. CX11656 PHY Pin Signals - 144-Pin LQFP
VDD_C
1
108
VSS_C
VDD_C
VDD_IO
2
3
107
106
VSS_IO
AGC7
AGC6
MII_TX3
VSS_C
4
5
105
104
VDD_C
MII_TX2
VDD_C
6
7
103
102
AGC5
AGC4
MII_TX1
VSS_IO
8
9
101
100
VSS_C
AGC3
VSS_C
MII_TX0/GPSI_TXD
MII_TXEN/GPSI_TXEN
VDD_C
MII_TXCLK/GPSI_TXCLK
10
11
99
98
VDD_C
AGC2
12
13
97
96
AGC1
AGC0
VDD_Q
14
15
95
94
VDD_IO
ADIO9
MII_TX_ER
VDD_C
16
17
93
92
ADIO8
ADIO7
MII_RX_ER/GPSI_RXD
18
91
VDD_Q
VSS_C
VSS_C
19
20
90
89
ADIO6
VSS_Q
VSS_Q
MII_RXCLK/GPSI_RXCLK
21
22
VDD_C
VDD_C
23
24
CX11656
88
87
VSS_C
ADIO5
86
85
ADIO4
VSS_C
MII_RXDV/GPSI_TXBSY
VSS_C
25
26
84
83
ADIO3
VSS_IO
MII_RX3
VDD_C
27
28
82
81
ADIO2
ADIO1
MII_RX2
VSS_C
29
30
80
79
ADIO0
VDD_IO
MII_RX1
VDD_C
31
32
78
77
VDD_C
RX_EN
MII_RX0
VSS_C
33
34
76
75
TX_EN
VSS_C
66
67
68
69
70
71
VSS_C
ADC_CAL
VDD_C
AGCENC_N
VSS_IO
72
63
64
65
LED1_N
VDD_IO
LED2_N
ADC_CLK
VSS_C
61
62
58
59
60
VDD_C
LED0_N
VSS_C
SPI_CLK
VSS_C
VSS_C
SPI_DI
VSS_C
SPI_DO
51
VDD_Q
SPI_CS
VDD_C
55
56
57
49
50
CLKIN
VDD_C
52
53
54
46
47
48
VSS_C
VSS_C
CLKOUT
VDD_C
VDD_C
VDD_IO
MII_COL/GPSI_COL
43
44
45
VDD_C
VDD_C
RESET_N
VSS_IO
DAC_CLK
73
VSS_C
MII_CRS/GPSI_RXEN
74
36
40
41
42
35
VSS_C
37
38
39
VSS_IO
102069_004
102069A
Conexant Proprietary and Confidential Information
2-3
CX11656 HomePlug 1.0 PHY Data Sheet
Table 2-1. CX11656 PHY Pin Signals - 144-Pin LQFP
Pin
No.
Signal
Pin
No.
37
38
Signal
VDD_C
VDD_C
Pin
No.
73
74
Signal
VDD_C
DAC_CLK
Pin
No.
109
110
Signal
1
2
VDD_C
VDD_C
VDD_C
VDD_IO
3
VDD_IO
39
VDD_IO
75
VSS_C
111
TEST1
4
MII_TX3
40
MII_COL/GPSI_COL
76
TX_EN
112
TEST2
5
VSS_C
41
VSS_C
77
RX_EN
113
VSS_C
6
MII_TX2
42
MII_CRS/GPSI_RXEN
78
VDD_C
114
TCK
7
VDD_C
43
VDD_C
79
VDD_IO
115
VDD_C
8
MII_TX1
44
RESET_N
80
ADIO0
116
TDO
9
VSS_IO
45
VSS_IO
81
ADIO1
117
VSS_C
10
VSS_C
46
VSS_C
82
ADIO2
118
VSS_C
11
MII_TX0/GPSI_TXD
47
VSS_C
83
VSS_IO
119
VSS_C
12
13
MII_TXEN/GPSI_TXEN
VDD_C
48
49
CLKOUT
CLKIN
84
85
ADIO3
VSS_C
120
121
TDI
VDD_C
14
MII_TXCLK/GPSI_TXCLK 50
VDD_C
86
ADIO4
122
VDD_C
15
VDD_Q
51
VDD_Q
87
ADIO5
123
VDD_C
16
MII_TX_ER
52
SPI_CS
88
VSS_C
124
TMS
17
VDD_C
53
VDD_C
89
VSS_Q
125
VDD_C
18
MII_RX_ER/GPSI_RXD
54
SPI_CLK
90
ADIO6
126
MDI_SPIS_N
19
VSS_C
55
VSS_C
91
VDD_Q
127
VSS_C
20
VSS_C
56
VSS_C
92
ADIO7
128
VSS_C
21
VSS_Q
57
SPI_DI
93
ADIO8
129
TRST_N
22
MII_RXCLK/GPSI_RXCLK 58
VSS_C
94
ADIO9
130
VSS_Q
23
24
VDD_C
VDD_C
59
60
SPI_DO
VDD_C
95
96
VDD_IO
AGC0
131
132
NC
VDD_C
25
MII_RXDV/GPSI_TXBSY
61
LED0_N
97
AGC1
133
MII_MDCLK/SPIS_SCLK
26
VSS_C
62
VSS_C
98
AGC2
134
VSS_C
27
MII_RX3
63
LED1_N
99
VDD_C
135
MII_MDIO/SPIS_SDO
28
VDD_C
64
VDD_IO
100
AGC3
136
VDD_IO
29
MII_RX2
65
LED2_N
101
VSS_C
137
MDI_ADRSEL[1]/
SPIS_SDI
30
VSS_C
66
VSS_C
102
AGC4
138
VSS_C
31
MII_RX1
67
ADC_CAL
103
AGC5
139
MDI_ADRSEL[0]/
SPIS_CS_N
32
VDD_C
68
VDD_C
104
VDD_C
140
VDD_C
33
MII_RX0
69
AGCENC_N
105
AGC6
141
MII_GPSI_N
VSS_IO
34
VSS_C
70
VSS_IO
106
AGC7
142
35
VSS_IO
71
ADC_CLK
107
VSS_IO
143
VSS_C
36
VSS_C
72
VSS_C
108
VSS_C
144
VSS_C
2-4
Conexant Proprietary and Confidential Information
102069A
CX11656 HomePlug 1.0 PHY Data Sheet
Table 2-2. CX11656 PHY Hardware Signal Definitions
Signal Name
I/O Type
Signal Name/Description
Media Independent Interface (MII)
These pins are multiplexed with the GPSI pins and are selected when MII_GSPI_N signal is at VDD.
MII Receive Data. Data is transferred from the CX11656 to the
O
Ot1
MII_RX[3:0]
27, 29, 31,
external MAC across these four lines, MII_RX[3:0], one nibble at a
33
time.
MII Receive Clock. MII_RXCLK outputs a continuous 25 MHz clock to
MII_RXCLK/
22
O
Ot1
GPSI_RXCLK
the external MAC.
MII Receive Data Valid. When asserted high, MII_RXDV indicates
MII_RXDV/
25
O
Ot1
GPSI_TXBSY
that the incoming data on the MII_RX[3:0] pins are valid.
MII Receive Error. When asserted high, MII_RX_ER indicates to the
MII_RX_ER/
18
O
Ot1
GPSI_RXD
external MAC that an error has occurred during the frame reception.
MII Transmit Data. Data is transferred to the CX11656 from the
4, 6, 8
MII_TX[3:1]
I
It
external MAC across these four lines (MII_TX[3:0]) one nibble at a
MII_TX0/GPSI_TXD 11
time.
MII Transmit Clock. MII_TXCLK outputs a continuous 25MHz clock to
MII_TXCLK/
14
O
Ot1
GPSI_TXCLK
the external MAC.
MII Transmit Enable. This signal indicates to the CX11656 that valid
MII_TXEN/
12
I
It
GPSI_TXEN
data is present on the MII_TX[3:0] pins.
MII Transmit Error. MII_TX_ER is activated by the external host
MII_TX_ER
16
I
It
controller when an error condition is detected during packet
transmission. The CX11656 will ignore any MII transmission within
which MII_TX_ER is asserted. MII_TX_ER is ignored if MII_TXEN is
not asserted.
MII Carrier Sense. When asserted high, MII_CRS indicates to the
MII_CRS/
42
O
Ot1
GPSI_RXEN
external host that traffic is present on the powerline and the host
should wait until the signal goes invalid before sending additional data.
This signal is an asynchronous output signal.
MII Collision Detect. This signal indicates to the external host that a
MII_COL/
40
O
Ot1
GPSI_COL
collision has occurred on the MII interface. This signal is an
asynchronous output signal.
MII Management Data Interface (MDI)
These pins are multiplexed with the SPIS_SDO and SPIS_SCLK signals and are selected when MDI_SPIS_N is at VDD.
MII Management Data Output. MII_MDIO is the bidirectional signal
MII_MDIO/
135
I/O
It/Ot1
SPIS_SDO
that carries the data for the Management Data Interface.
MII Management Data Clock. MII_MDCLK is the clock reference for
MII_MDCLK/
133
I
It
SPIS_SCLK
the MII_MDIO signal.
102069A
Pin
I/O
Conexant Proprietary and Confidential Information
2-5
CX11656 HomePlug 1.0 PHY Data Sheet
Table 2-2. CX11656 PHY Hardware Signal Definitions (Continued)
Signal Name
I/O Type
Signal Name/Description
General Purpose Serial Interface (GPSI)
These pins are multiplexed with the MII pins and are selected when MII_GSPI_N signal is at VSS.
GPSI Receive Data. GPSI_RXD carries data received from the
MII_RX_ER/
18
O
Ot1
GPSI_RXD
powerline and delivers to the external host. Data is driven on the
falling edge of the GPSI_RXCLK.
GPSI Receive Clock. GPSI_RXCLK is the timing reference for the
MII_RXCLK/
22
O
Ot1
serial data transfer from the CX11656 to the external host. This clock
GPSI_RXCLK
operates at 10 MHz.
GPSI Transmit Data. GPSI_TXD carries data transmitted from the
MII_TX0/GPSI_TXD 11
I
It
external host to the CX11656 for transmission over the powerline.
GPSI_TXD
Data is latched on the falling edge of the GPSI_TXCLK.
GPSI Transmit Clock. This signal is the timing reference for the serial
MII_TXCLK/
14
O
Ot1
GPSI_TXCLK
data transfer from the external host to the CX11656. This clock
operates at 10 MHz.
GPSI Receive Enable. When asserted high, GPSI_RXEN indicates
MII_CRS/
42
O
Ot1
GPSI_RXEN
valid data is on the GPSI_RXD line.
GPSI Transmit Enable. When asserted high, GPSI_TXEN indicates
MII_TXEN/
12
I
It
GPSI_TXEN
when the external host is providing valid data on GPSI_TXD.
GPSI Transmit Busy. GPSI_TXBSY is asserted within 120 GPSI
MII_RXDV/
25
O
Ot1
GPSI_TXBSY
clocks after GPSI_TXEN indicates a TX frame is being sent by the
local host. GPSI_TXBSY stays true until the entire TX frame is loaded
into an internal buffer AND a new buffer is allocated to the GPSI TX
interface. This signal should be monitored by the GPSI TX host. A new
GPSI TX frame should not be sent until GPSI_TXBSY returns to false
to prevent TX buffer overflows. GPSI_TXBSY is an asynchronous
output signal.
GPSI Collision Detect. GPSI_COL is driven false in GPSI mode.
MII_COL/
40
O
Ot1
GPSI_COL
SPI Slave Port
Selected when MDI_SPIS_N signal is at VSS.
SPI Slave Data Out. SPIS_SDO is the SPI data from the CX11656 to
MII_MDIO/
135
O
Ot1
SPIS_SDO
the external host.
SPI Slave Data In. SPIS_SDI is the SPI data from the external host
MDI_ADRSEL[1]/
137
I
It
SPIS_SDI
to the CX11656. This pin is shared with the MDI_ADRSEL[1].
SPI Slave Clock. SPIS_SCLK is the timing reference signal for
MII_MDCLK/
133
I
It
SPIS_SCLK
SPI_SDI and SPI_SDO.
SPI Slave Chip Select. When asserted low, SPIS_CS_N enables SPI
MDI_ADRSEL[0]/
139
I
It
SPIS_CS_N
data transfers on the CX11656. This pin is shared with the
MDI_ADRSEL[0].
SPI Master Port (Configuration PROM Interface)
SPI Master Data Out. SPI_DO is the CX11656 configuration data
SPI_DO
59
O
Ot1
from the CX11656 to the external E 2 PROM.
SPI Master Data In. SPI_DI is the CX11656 configuration data from
SPI_DI
57
I
It
the external E 2 PROM to the CX11656.
SPI Master Clock. SPI_CLK is the timing reference signal for SPI_DI
SPI_CLK
54
O
Ot1
and SPI_DO.
SPI Master Chip Select. When asserted high, SPI_CS enables data
SPI_CS
52
O
Ot1
transfers on the SPI Master Interface.
LED Control
Collision Detection. LED0_N is asserted low for 9–10 ms upon
LED0_N
61
O
Ot1
detection of a collision.
LED1Activity Detection. LED1_N is asserted low for 9–10 ms upon
LED1_N
63
O
Ot1
the receipt of a properly addressed unicast or broadcast frame or the
transmission of a frame.
Link Detection. LED2_N is asserted low when initialization is
LED2_N
65
O
Ot1
complete successfully and “network” is established.
2-6
Pin
I/O
Conexant Proprietary and Confidential Information
102069A
CX11656 HomePlug 1.0 PHY Data Sheet
Table 2-2. CX11656 PHY Hardware Signal Definitions (Continued)
Signal Name
ADC_CLK
DAC_CLK
TX_EN
RX_EN
ADIO[9:0]
Pin
I/O
O
O
O
O
I/O
ADC_CAL
71
74
76
77
94, 93, 92,
90, 87, 86,
84, 82, 81,
80
106, 105,
103, 102,
100, 98, 97,
96
67
AGCENC_N
69
I
TCK
TDI
TMS
TDO
TRST_N
114
120
124
116
129
I
I
I
O
I
RESET_N
44
I
CLKIN
49
I
CLKOUT
48
O
MDI_ADRSEL[1]/
SPIS_SDI,
MDI_ADRSEL[0]/
SPIS_CS_N
137,
I
MDI_SPIS_N
126
I
MII_GPSI_N
141
I
TEST1
TEST2
NC
111
112
131
I
I
AGC[7:0]
102069A
I/O Type
Signal Name/Description
Analog Front End Interface
ADC Clock. ADC clock output to the Analog Conversion IC.
Ot1
DAC Clock. DAC clock output to the Analog Conversion IC.
Ot1
Analog Front End Transmit Enable. Transmit Enable signal
Ot1
Analog Front End Receive Enable. Receive Enable signal
Ot1
Analog/Digital I/O. ADC and DAC Data. Multiplexed parallel interface
It/Ot12
to Analog Conversion IC.
AGC Gain Select. Gain control driven by the CX11656 to set the AGC
level.
O
Ot1
O
ADC Calibrate. This pin must remain low during normal operation of
the ADC. It is pulsed high to request a calibration cycle. The
ADC_CAL minimum pulse width is 4 clock cycles. While this signal is
high the ADC calibration registers are cleared and the calibration
control circuitry is reset. The ADC_CAL pulse will go high 217 clock
cycles (2.6 ms) after power on reset drops, and will remain high for the
required 4 clock cycles.
AGC Encode. An inactive signal (logic 1) applied to this input selects
It
unitary AGC format. An active signal (logic 0) applied to this input
selects encoded AGC format.
Test Access Port (Reserved)
Test Clock. Test Clock for the IEEE 1149.1 JTAG Port.
It
Test Data In. Data In for the IEEE 1149.1 JTAG Port.
It
Test Mode Select. Test Mode Select for the IEEE 1149.1 JTAG Port.
It
Test Data Out. Data Out for the IEEE 1149.1 JTAG Port.
Ot1
Test Reset. This pin will be used to reset the TAP controller. It should
It
be connected to ground when the JTAG port is not in use.
System Control
Reset. Resets logic circuitry, but not clock circuitry. Reset is active low
It
and should be held low for a minimum of 100 ns.
Clock Input. 100 MHz clock input driven by an external oscillator or
Ix
AFE. Note: CLKIN connects directly to the +1.8 V core of the IC and
does not connect to the +3.3 V I/O ring. Therefore, this pin is not +3.3
or 5 V tolerant.
Clock Output. 100 MHz clock output. This pin should be left as NO
Ox
CONNECT.
MDI PHY Address Selection. MDI_ADRSEL[1:0] is the address
It
select used to compare against the upper two bits of the MDI Address.
These pins share function with SPIS_SDI and SPIS_CS_N and should
be pulled-up or down with external resistors to set the appropriate
value which is read by the CX11656 during power up.
Management Data Interface/Serial Peripheral Interface Slave
It
Select. When asserted low, MDI_SPIS_N selects which PHY
management signals are active.
Media Independent Interface/General Purpose Serial Interface
It
Select. When asserted low, MII_GPSI_N selects which PHY data
interface signals are active.
Factory Test Pin 1. Tie to I/O Ground.
It
Factory Test Pin 2. Tie to I/O Ground.
It
No Connect.
139
Ot1
Conexant Proprietary and Confidential Information
2-7
CX11656 HomePlug 1.0 PHY Data Sheet
Table 2-2. CX11656 PHY Hardware Signal Definitions (Continued)
Signal Name
VDD_C
VSS_C
VDD_IO
VSS_IO
VDD_Q
VSS_Q
2-8
Pin
1, 2, 7, 13,
17, 23, 24,
28, 32, 37,
38, 43, 50,
53, 60, 68,
73, 78, 99,
104, 109,
115, 121,
122, 123,
125, 132,
140
5, 10, 19,
20, 26, 30,
34, 36, 41,
46, 47, 55,
56, 58, 62,
66, 72, 75,
85, 88, 101,
108, 113,
117, 118,
119, 127,
128, 134,
138, 143,
144
3, 39, 64,
79, 95, 110,
136
9, 35, 45,
70, 83, 107,
142
15, 51, 91
21, 89, 130
I/O
I/O Type
Signal Name/Description
Power Supplies
+1.8 V Digital Power
P
PWR
G
GND
Digital Ground
P
PWR
+3.3 VI/O Power
G
GND
I/O Ground
P
G
PWR
GND
+3.3 V Quiet Power. Connect to +3.3 V I/O Power
Quiet Ground. Connect to I/O Ground
Conexant Proprietary and Confidential Information
102069A
CX11656 HomePlug 1.0 PHY Data Sheet
2.2
CX11656 PHY Electrical and Environmental Specifications
DC electrical characteristics are listed Table 2-3.
Operating conditions are specified in Table 2-4.
Absolute maximum ratings are stated in Table 2-5.
Power consumption is listed in Table 2-6.
Table 2-3. CX11656 PHY DC Electrical Characteristics
Parameter
Input Voltage High
Input Voltage Low
Output Voltage High
Symbol
VIH
VIL
VOH
Min.
2.0
–
2.4
Typ.
–
–
–
Max.
–
0.8
–
Units
VDC
VDC
VDC
Test Conditions
IOH = -1 mA
Output Voltage Low
VOL
–
–
0.4
VDC
IOH = 1 mA
Input Current
II
-15
–
15
µA
Supply Current
IDD
370
mA
Supply Current
ICC
–
25
mA
Note: Any signal applied to the CX11656 clock pin (CLKIN) should not exceed +1.8 V.
Table 2-4. CX11656 PHY Operating Conditions
Parameter
Core Supply Voltage
I/O Supply Voltage
Operating Temperature
Symbol
VDD_C
VDD_IO
TA
Min
1.7
3.0
0
Typ
1.8
3.3
Max
1.9
3.6
+70
Units
VDC
VDC
°C
Table 2-5. CX11656 PHY Absolute Maximum Ratings
Parameter
Core Supply Voltage
I/O Supply Voltage
Input Voltage
Storage Temperature Range
Analog Inputs
Voltage Applied to Outputs in High Impedance
(Off) State
Symbol
VDD_C
VDD_IO
VIN
TSTG
VIN
VHZ
Limits
-0.35 to +1.95
-0.35 to +3.65
-0.35 to (VDD +0.35)
-55 to +125
-0.35 to (VDDA + 0.35)
-0.35 to (VDDA +0.35)
Units
VDC
VDC
VDC
°C
VDC
VDC
Table 2-6. CX11656 PHY Power Consumption
Typ.
Max.
Typ.
Current
Current
Power
(mA)
(mA)
(mW)
TBD
TBD
TBD
TBD
TBD
TBD
VDD_C = +1.8 VDC for typical values; +1.9 VDC for maximum values.
VDD_IO = +3.3 VDC for typical values; +3.465 VDC for maximum values.
Mode
VDD_C
VDD_IO
Test conditions:
102069A
Max.
Power
(mW)
TBD
TBD
Conexant Proprietary and Confidential Information
2-9
CX11656 HomePlug 1.0 PHY Data Sheet
This page is intentionally blank.
2-10
Conexant Proprietary and Confidential Information
102069A
CX11656 HomePlug 1.0 PHY Data Sheet
3.
CX11656 Functional Description
The interfaces that provide data, status, and control to and from the CX11656 include:
•
•
•
•
•
•
External host interface provided via the Media Independent Interface (MII) format
(described by IEEE 802.3u, Clause 22) or a General Purpose Serial Interface (GPSI)
Management control provided via the Management Data Interface (MDI) or the
Serial Peripheral Interface (SPI)
Analog Front End interface
LEDs indicating network status
Optional EEPROM interface providing a path to initialize the CX11656
The JTAG port implements the IEEE 1149.1 Standard Test Access Port and
Boundary Scan Architecture.
A block diagram of the CX11656 PHY is shown in Figure 3-1.
Figure 3-1. CX11656 PHY Block Diagram
LEDs
CX11656
ROM
MDI
or SPI
Configuration
Registers
ROM
RISC
uProcessor Core
Link
Sequencer
PHY
Seq
ADIO[9:0]
PHY
Core
MDII
or GPSI
TEST
EEPROM
MII/GPSI
Interface
JTAG
Interface
DMA
Arbiter
PHY
DMA
AFE
Logic
AGC [7:0]
FIFOs
Buffer
RAM
SPI
Master
Interface Block
MAC
PHY
102069_005
102069A
Conexant Proprietary and Confidential Information
3-1
CX11656 HomePlug 1.0 PHY Data Sheet
3.1
MII Data Interface with MDI Control
Data communication between the CX11656 and the external host controller is provided
via the Media Independent Interface (MII) or a reduced General Purpose Serial Interface
(GPSI). The MII_GPSI_N select pin is included on the chip interface to configure the
CX11656 in either MII mode or GPSI mode. Access to the CX11656’s internal MII
status and control registers is via the Management Data Interface or a SPI interface. The
MDI_SPIS_N select pin is included on the chip interface to configure the CX11656 in
either MDI mode or SPI mode. The information that follows describes the MII
communication interface along with the MDI management interface as a typical example.
The MII data interface with MDI control is illustrated in Figure 3-2.
Figure 3-2. MII Data Interface with MDI Control
CX11656
MII_RX(3:0)
MII_RXCLK
MII_RX_ER
MII_RXDV
MII_CRS
MII_COL
External
Host Controller
MII_TX(3:0)
Interface
Block
PowerPacket
MAC
PowerPacket
PHY
MII_TXCLK
MII_TX_ER
MII_TXEN
MII_MDCLK
MII_MDIO
102069_006
3-2
Conexant Proprietary and Confidential Information
102069A
CX11656 HomePlug 1.0 PHY Data Sheet
3.1.1
MII Interface
MII is an industry standard, multi-vendor, interoperable interface between separate MAC
and PHY devices. It provides a simple interconnection between the CX11656 and
IEEE802.3 Ethernet MAC controllers (commonly referred to as external host controllers
in this document) available from a variety of IC suppliers. The MII consists of separate 4bit data paths for transmit and receive data along with carrier sense and collision
detection. Data is transferred between the MAC and PHY over each 4-bit data path
synchronous with a clock signal supplied to the host by the CX11656. The MII interface
also provides a 2-wire bidirectional serial management data interface (MDI). This
interface provides access to the status and control registers in the CX11656.
3.1.1.1
MII Timing Diagram
The transmission behavior of the MII interface is illustrated in Figure 3-3.
The receive behavior of the MII interface is illustrated in Figure 3-4.
An unsuccessful attempt to transmit a packet, resulting in a collision, is illustrated in
Figure 3-5.
The MII receive timing is illustrated in Figure 3-6.
The MII transmit timing is illustrated in Figure 3-7.
The MII DC characteristics are listed in Table 3-1.
Note:
MII_CRS is asynchronous to MII_TXCLK.
Figure 3-3. MII TX Waveform
MII_TXCLK
MII_CRS
MII_TXEN
MII_TXD[3:1], MII_TX0
DATA
DATA
DATA
DATA
MII_COL
102069_007
102069A
Conexant Proprietary and Confidential Information
3-3
CX11656 HomePlug 1.0 PHY Data Sheet
Figure 3-4. MII RX Waveform
MII_RXCLK
MII_CRS
MII_RXDV
MII_RX[3:0]
DATA
DATA
DATA
DATA
Figure 3-5. MII TX with Collision Based on RX Activity
MII_CRS
MII_TXEN
MII_RXDV
MII_COL
102069_009
3-4
Conexant Proprietary and Confidential Information
102069A
CX11656 HomePlug 1.0 PHY Data Sheet
Figure 3-6. MII Receive Timing
MII_RXCLK
tMII_RVAL
MII_RXD[3:0], MII_RXVD,
MII_RX_ER, MII_COL, MII_CRS
DATA
102069_010
Figure 3-7. MII Transmit Timing
MII_TXCLK
tMII_TSU
tMII_TH
MII_TXD[3:1], MII_TX0,
MII_TXEN, MII_TX_ER
DATA
102069_011
Table 3-1. MII DC Characteristics
Parameter
Symbol
Parameter Name
tMII_RVAL
MII_RX[3:0], MII_RXDV valid
from ↑ MII_RXCLK
tMII_TSU
MII_TXEN, MII_TX0, MII_TX[3:1]
setup to ↓ MII_TXCLK
MII_TXEN, MII_TX0, MII_TX[3:1]
hold to ↑ MII_TXCLK
Test Condition
Receive Timing
Measured from Vilmax = 0.8V or
Measured from Vihmin = 2.0V
Min.
Max.
Unit
0
25
ns
Transmit Timing
tMII_TH
102069A
Measured from Vilmax = 0.8V or
Measured from Vihmin = 2.0V
8
ns
Measured from Vilmax = 0.8V or
Measured from Vihmin = 2.0V
0
ns
Conexant Proprietary and Confidential Information
3-5
CX11656 HomePlug 1.0 PHY Data Sheet
3.1.1.2
MII Signal Descriptions
The following description references Clause 22, Media Independent Interface
specification, used in the 100 Mbps half-duplex mode. The MII is used as a data channel
that transfers data back and forth with flow controlled by the carrier sense signal
(MII_CRS).
MII_TXCLK and MII_RXCLK. The CX11656 generates a stable, continuous 25 MHz
square wave that is supplied on MII_TXCLK and MII_RXCLK. These clocks provide
the timing reference for the transfer of the MII_TXEN and MII_TX signals, as well as
MII_RX, MII_RX_ER, and MII_RXDV.
MII_RX_ER. MII_RX_ER is activated when the CX11656 detects an error in the
receive stream as a result of decoding.
MII_TX_ER. MII_TX_ER is activated by the external host controller when an error
condition is detected during packet transmission. The CX11656 will ignore any MII
transmission within which MII_TX_ER is asserted. MII_TX_ER is ignored if
MII_TXEN is not asserted.
MII_TXEN. MII_TXEN from the external host provides the framing for the Ethernet
packet. An active MII_TXEN indicates to the CX11656 that data on MII_TX[3:0] should
be sampled using MII_TXCLK.
MII_TX[3:0]. MII_TX[3:0] contains the data to be transmitted and transitions
synchronously with respect to MII_TXCLK. MII_TX[0] is the least significant bit. It is
generally assumed that the data will contain a properly formatted Ethernet frame. That is,
the first bits on MII_TX[3:0] correspond to the preamble, followed by SFD and the rest
of the Ethernet frame (DA, SA, length/type, data, CRC).
MII_RXDV. MII_RXDV is asserted by the CX11656 to indicate that the CX11656 has
decoded receive data to present to the external host.
MII_RX[3:0]. MII_RX[3:0] contains the data recovered from the medium by the
CX11656 and transitions synchronously with respect to MII_RXCLK. MII_RX[0] is the
least-significant bit. The CX11656 formats the frame such that the external MAC will be
presented with expected preamble plus SFD.
MII_CRS. MII_CRS is used to tell the external host when the CX11656 is available for
sending a packet. MII_CRS is asynchronous to MII_TXCLK. When a packet is being
transmitted, CRS is held high. CRS will go low whenever the CX11656 is ready to accept
another packet.
On transmit, the CX11656 asserts MII_CRS some time after MII_TXEN becomes active,
and drops MII_CRS after MII_TXEN goes inactive AND when the CX11656 is ready to
receive another packet from the external host for transmission. When MII_CRS has been
negated for at least 900ns, the external MAC may assert MII_TXEN again if there is
another packet to send. This differs from nominal behavior of MII_CRS in that MII_CRS
can extend past the end of the packet by an arbitrary amount of time, while the CX11656
is gaining access to the channel and transmitting the packet. MII_CRS does not affect the
receive side of the channel. Once packets start arriving from the powerline medium and
begin transmission to the external host controller over the MII interface, the external host
must be ready to receive or the packet can be lost. Note that external MACs programmed
to run in 100 Mbps mode do not use a jabber timeout, so there is no timing restriction on
how long MII_CRS can be asserted.
3-6
Conexant Proprietary and Confidential Information
102069A
CX11656 HomePlug 1.0 PHY Data Sheet
Figure 3-8. MII Flow Control Overview, Part 1
32 ns
(32 bit times)
32 ns
(32 bit times)
MII_CRS
32 ns
(32 bit times)
32 ns
(32 bit times)
MII_TXEN
MII_TXD[3:1], MII_TX0
P
P
Internal TX buffer available pulse
MII_RX[3:0]
P
P
P
MII_RXDV
External RX buffer available pulse
MII_COL
Case 1
Case 2
Case 3
Case 4
Case 4
TX only
RX only
RX while TX, delayed TX buf avail
RX while no TX buf avail
TX buf avail
102069_012
Figure 3-9. MII Flow Control Overview, Part 2
MII_CRS
MII_TXEN
MII_TXD[3:1], MII_TX0
P
P
MII_RX[3:0]
P
P
MII_RXDV
MII_COL
Case 1
Case 7
Case 8
TX only
TX overrun, frame dropped
Collision
1102069_013
102069A
Conexant Proprietary and Confidential Information
3-7
CX11656 HomePlug 1.0 PHY Data Sheet
3.1.1.3
MII Frame Structure
The frame structure transmitted on the MII or GPSI interface is the following sequence of
fields:
Interframe Gap
Preamble
Start Frame
Delimiter Data
Interframe Gap
A period on the MII interface during which no data activity occurs on the MII.
Preamble
Begins a frame transmission that consists of 7 octets with the following bit values:
10101010 10101010 10101010 10101010 10101010 10101010 10101010
The preamble is stripped by the CX11656 when transmitting (the preamble is not
transmitted on the PLC medium) and pre-pended by the CX11656 when receiving.
Start Frame Delimiter
Indicates the start of a frame and follows the preamble. The SFD bit sequence is
10101011.
The start frame delimiter is stripped by the CX11656 when transmitting (the SFD is not
transmitted on the PLC medium) and pre-pended by the CX11656 when receiving
Data
Data sent over the MII interface consists of N bytes of data transmitted as 2N nibbles.
The de-assertion of the MII_TXEN signals the End Of Frame (EOF) for data transmitted
on the MII_TX[3:0] pins. Likewise, the de-assertion of the MII_RXDV signals the EOF
for data transmitted on MII_RX[3:0].
Figure 3-10. Partition of Serial Bit Stream to Nibble Stream
MACs Serial Bit Stream
LSb
First nibble
LSb
MII
Nibble
Stream
MSb
D0
D1
D2
D3
D4
D5
D6
D7
MSb
Second nibble
D0
D1
D2
D3
101409_014
3-8
Conexant Proprietary and Confidential Information
102069A
CX11656 HomePlug 1.0 PHY Data Sheet
3.1.2
MDI Control Interface
The Management Data Interface connects the external host to the CX11656 for purposes
of controlling the CX11656 and gathering status. A specific frame format and protocol
definition exists for exchanging management frames over this interface. A register
definition exists as well that specifies a basic register set with an extension mechanism.
The CX11656 implements the basic register set only.
The MDI receive timing is illustrated in Figure 3-11.
The MDI transmit timing is illustrated in Figure 3-12.
The MDI DC characteristics are listed in Table 3-2.
Figure 3-11. MDI Receive Timing
MII_MDCLK
tMII_RVAL
MII_MDIO
DATA
102069_015
Figure 3-12. MDI Transmit Timing
MII_MDCLK
tMII_TSU
tMII_TH
MII_MDIO
DATA
102069_016
Table 3-2. MI DC Characteristics
Parameter
Symbol
Parameter Name
tMI_RVAL
MII_MDIO valid from ↑
MII_MDCLK
tMI_TSU
MII_MDIO setup to ↑
MII_MDCLK
MII_MDIO hold to
↑ MII_MDCLK
tMI_TH
102069A
Test Condition
Min.
Max.
Unit
Receive Timing
Measured from Vilmax = 0.8V or
Measured from Vihmin = 2.0V
0
300
ns
Transmit Timing
Measured from Vilmax = 0.8V or
Measured from Vihmin = 2.0V
10
ns
10
ns
Measured from Vilmax = 0.8V or
Measured from Vihmin = 2.0V
Conexant Proprietary and Confidential Information
3-9
CX11656 HomePlug 1.0 PHY Data Sheet
3.1.2.1
MDI Signal Descriptions
Management Data Input/Output
MII_MDIO is a bi-directional signal that is used to transfer status and control information
between the CX11656 and the external host. Control information is driven by the external
host synchronously with respect to MII_MDCLK and is sampled synchronously by the
CX11656. Status information is transferred from the CX11656 to the external host in the
same manner.
Management Data Clock
MII_MDCLK is sourced by the external host as the timing reference for transfer of
information on the MII_MDIO signal.
3.1.3
MII Management Register Set
The IEEE 802.3u mandated management data registers for control and status are
accessible via the Management Data Interface (MDI). These registers are also accessible
via the industry supported serial peripheral interface. The MDI Port will only respond to
addresses 0xbXX000 when the XX field (MSbits of the MDI address) match the state of
the MDI_ADRSEL[1:0] input signals. These registers can also be accessed from the SPI
Slave port when the MDI_SPIS_N select line has been tied low to select the SPI Slave
port.
Table 3-3 summarizes the Power Line Control and Status Register.
The MDI Frame Structure is shown in Figure 3-13.
Table 3-3. Powerline Control and Status Register (PLCSR) Summary
PLCSR
0
1
Register Name
Control Register
Status Register
MII Mandated
X
X
Figure 3-13. MDI Frame Structure
READ
WRITE
3.1.3.1
PRE
1...1
1...1
ST
01
01
OP
10
01
PHYAD
AAAAA
AAAAA
RAGAD
RRRRR
RRRRR
TA
Z0
10
Data
DDDDDDDDDDDDDDDD
DDDDDDDDDDDDDDDD
Idle
Z
Z
PRE (Preamble)
At the beginning of each MDI transaction, the external host shall send a sequence of 32
contiguous logic “1” bits on the MDIO signal so the CX11656 can establish
synchronization. The CX11656 needs to observe this 32 bit sequence on the MII_MDIO
signal before it responds to any transaction.
3.1.3.2
ST (Start of Frame)
Indicated by a “01” pattern.
3-10
Conexant Proprietary and Confidential Information
102069A
CX11656 HomePlug 1.0 PHY Data Sheet
3.1.3.3
OP (Operation Code)
READ is indicated by “10”. WRITE is indicated by “01”.
3.1.3.4
PHYAD (PHY Address)
The PHY Address is 5 bits, allowing up the 32 unique PHY addresses. The CX11656 will
respond to PHY addresses indicated by 0bXX000. The “XX” bits of the PHY address are
controlled by the CX11656 interface pins MDI_ADRSEL(0:1). This allows the designer
to assign the CX11656 to one of 4 unique PHY addresses.
3.1.3.5
REGAD (Register Address)
The Register Address is 5 bits and is used to index the maximum of 32 individual
registers in the MDI address space. The CX11656 only implements the two mandated
MII registers. 0b00000 will index the MII Control Register and 0b00001 will index the
MII Status Register.
3.1.3.6
TA (Turnaround)
The turnaround time is a 2-bit time spacing between the Register Address field and the
Data field to avoid contention during a read transaction.
For reads, both the external host and the CX11656 remain three-stated for the first bit
time. The CX11656 will drive a “0” during the second bit time.
For writes, the external host drives a “1” for the first bit time and a “0” bit for the second
bit time.
3.1.3.7
Data
The data field is 16 bits. The first data bit transmitted and received is bit 15 of the register
being addressed.
102069A
Conexant Proprietary and Confidential Information
3-11
CX11656 HomePlug 1.0 PHY Data Sheet
3.2
GPSI Interface with SPI Control
The General Purpose Serial Interface (GPSI) is a flexible, bi-directional serial interface
that can be utilized in place of the MII. It provides a straightforward interface to a
communications controller through a synchronous serial data stream for transmit and
receive data. When using the GPSI interface, the management interface can either be
MDI or SPI, selected by the MDI_SPIS_N pin. The information that follows describes
the GPSI communication interface along with the SPI management interface as a typical
example.
The GPSI interface signals are shown in Figure 3-14.
Figure 3-14. GPSI Data Interface with SPI Control
CX11656
GPSI_RXD
GPSI_RXCLK
GPSI_RXEN
GPSI_COL
GPSI_TXBSY
GPSI_TXD
External
Host
Controller
GPSI_TXCLK
Interface
Block
PowerPacket
MAC
PowerPacket
PHY
GPSI_TXEN
SPIS_SDO
SPIS_SDI
SPIS_SCLK
SPIS_CS_N
102069_018
3.2.1
GSPI Interface
GPSI is an interoperable interface providing a simple interconnection between the
CX11656 and embedded microcontrollers. Data is transferred between the host controller
and the CX11656 over separate 1-bit transmit and receive data paths synchronous with
clock signals supplied to the host by the CX11656.
3.2.1.1
GPSI Timing Diagrams
The figures below show the transmission and reception of packets and the corresponding
behavior of the GPSI interface. A packet is transferred from the host when GPSI_TXEN
goes high. An unsuccessful attempt is made to transmit a packet in Case 5. The received
packet is passed to the host when GPSI_RXEN is high.
The GSPI flow control is illustrated in Figure 3-15.
The GSPI transmit and receive timing are illustrated in Figure 3-16 and Figure 3-17,
respectively.
3-12
Conexant Proprietary and Confidential Information
102069A
CX11656 HomePlug 1.0 PHY Data Sheet
Figure 3-15. GPSI Flow Control
GPSI_TXEN
P
GPSI_TXD
P
P
P
GPSI_TXBSY
Internal TX buffer available pulse
GPSI_RXEN
GPSI_RXD
P
P
Internal RX buffer available pulse
GPSI_COL
Case 1
Case 2
Case 3
Case 4
Case 5
TX only
RX only
RX & TX
TX, buf avail
TX, no buf avail,
frame dropped
102069_019
Figure 3-16. GPSI Transmit Timing
tGPSI_THIGH
tGPSI_TPER
GPSI_TXCLK
tGPSI_TDELAY
tGPSI_TDELAY
GPSI_TXD
GPSI_TXEN
tGPSI_TTXBSYH
GPSI_TXBSY
GPSI_COL
102069_020
Figure 3-17. GPSI Receive Timing
tGPSI_RHIGH
tGPSI_RPER
GPSI_TXCLK
tGPSI_RSU
tGPSI_RLOW
tGPSI_RRXENH
GPSI_RXD
tGPSI_RDH
GPSI_RXEN
GPSI_COL
102069_021
102069A
Conexant Proprietary and Confidential Information
3-13
CX11656 HomePlug 1.0 PHY Data Sheet
3.2.1.2
GPSI DC Characteristics
The GSPI DC characteristics are listed in Table 3-4.
Table 3-4. GPSI DC Characteristics
Parameter
Symbol
Parameter Name
Test
Condition
Min
Max
Unit
99.99
40
40
15
100.01
60
60
ns
ns
ns
ns
Receive Timing
tGPSI_RPER
tGPSI_RHIGH
tGPSI_RLOW
tGPSI_RSU
GPSI RXCLK Period
GPSI RXCLK High Time
GPSI RXCLK Low Time
GPSI_RXD and GPSI_RXEN Setup to ↑ GPSI_RXCLK
@ 1.5 V
@ 1.5 V
@ 1.5 V
@ 1.5 V
tGPSI_RDH
GPSI_RXD Hold after ↑ GPSI_RXCLK
@ 1.5 V
15
ns
tGPSI_RRXENH
GPSI_RXEN Hold after ↓ GPSI_RXCLK
Transmit Timing
@ 1.5 V
0
ns
tGPSI_TPER
tGPSI_THIGH
tGPSI_TDELAY
GPSI TXCLK Period
GPSI TXCLK High Time
GPSI_TXD and GPSI_TXEN Delay from ↑ GPSI_TXCLK
@ 1.5 V
@ 1.5 V
@ 1.5 V
99.99
40
0
tGPSI_TRXENH
GPSI_RXEN Hold after ↓ GPSI_TXEN
@ 1.5 V
0
3.2.1.3
100.01
60
70
ns
ns
ns
ns
GPSI Signal Descriptions
GPSI_TXCLK and GPSI_RXCLK: The CX11656 generates a stable, continuous 10
MHz square wave that is supplied on GPSI_TXCLK and GPSI_RXCLK. These clocks
provide the timing reference for the transfer of the GPSI_TXEN and GPSI_TXD signal,
as well as GPSI_RXEN and GPSI_RXD.
GPSI_RXD: GPSI_RXD contains the data recovered from the medium by the CX11656
and transitions synchronously with respect to GPSI_RXCLK. The CX11656 properly
formats the frame such that the external host controller will be presented with the
expected preamble plus SFD.
GPSI_RXEN: GPSI_RXEN is asserted by the CX11656 to indicate that the CX11656
has decoded receive data to present to the external host controller.
GPSI_TXBSY: GPSI_TXBSY is an optionally used signal to tell the external host
controller when the CX11656 is available for sending packets. When a packet is being
transmitted, GPSI_TXBSY is held high. GPSI_TXBSY will go low whenever the
CX11656 is ready to send another packet. If this signal is not used, the transmitting logic
must pace the packet transmissions to ensure that no packets are lost due to buffer
overflow.
On transmit, the CX11656 asserts GPSI_TXBSY sometime after GPSI_TXEN becomes
active, and drops GPSI_TXBSY after GPSI_TXEN goes inactive AND when the
CX11656 is ready to accept another packet for transmission. When GPSI_TXBSY falls,
the external host controller may assert GPSI_TXEN again if there is another packet to
send.
GPSI_TXBSY does not affect nor reflect the receive side of the channel. Once packets
start arriving off of the powerline medium and begin transmission to the external host
controller over the GPSI interface, the external host controller MUST be ready to receive
or the packet can be lost.
GPSI_TXEN: GPSI_TXEN from the external host provides the framing for the Ethernet
packet. An active GPSI_TXEN indicates to the CX11656 that data on GPSI_TXD should
be sampled using GPSI_TXCLK.
3-14
Conexant Proprietary and Confidential Information
102069A
CX11656 HomePlug 1.0 PHY Data Sheet
GPSI_TXD: GPSI_TXD contains the data to be transmitted and transitions
synchronously with respect to GPSI_TXCLK. It is generally assumed that the data will
contain a properly formatted Ethernet frame (see MII Frame Structure above). That is, the
first bits on GPSI_TXD correspond to the preamble, followed by Start Frame Delimiter
(SFD) and the rest of the Ethernet frame (DA, SA, length/type, data, CRC).
3.2.2
SPI Slave Port Interface
The CX11656 implements a SPI Slave port that when connected to an external host
controller containing a SPI Master, can be used to control access to the two configuration
registers. The SPI Slave port uses a 16- bit control field (MSb first) consisting of a 6-bit
command field, a 5-bit reserved field, and a 5-bit address field to control access to the
two configuration registers detailed above (Table 3-5). Following the control field, the
16-bit register contents are written or read based on the command field.
Table 3-5. SPI Slave Command Summary
Register function
15
Write PLCSR0
(Control Register)
Read PLCSR0
(Control Register)
Write PLCSR1 (Status
Register)
Read PLCSR1 (Status
Register)
0
L
Control Field
9
87
6
5
Reserved Field
4
3
2
1
H
L
L
L
H
H
H
L
L
L
H
L
H
L
L
H
H
H
L
10
5
L
14 13 12 11
Command Field
4
3
2
1
H
L
L
L
L
L
L
L
L
L
L
L
L
L
4
3
0
L
2
1
0
Address Field
4
3
2
1
L
L
L
L
0
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
H
CX11656 SPECIFICATION
3.2.2.1
SPI Slave Port Signal Timing
SPI Slave Port timing is illustrated in Figure 3-18.
102069A
Conexant Proprietary and Confidential Information
3-15
CX11656 HomePlug 1.0 PHY Data Sheet
Figure 3-18. SPI Slave Port Timing
tSPIS_LOW
tSPIS_HIGH
SPIS_CLK
tSPIS_SU
SPIS_DI
MSB IN
BITS 6-1
LSB IN
BITS 6-1
LSB OUT
tSPIS_H
SPIS_DO
MSB OUT
tSPIS_CSLAG
tSPIS_SDOSV
SPIS_CS_N
tSPIS_CSLEAD
102069_022
3.2.2.2
SPI Slave Port DC Characteristics
The SPI Slave Port DC characteristics are listed in Table 3-6.
Table 3-6. SPI Slave Port DC Characteristics
Parameter
Symbol
tSPIS_F
tSPIS_HIGH
tSPIS_LOW
tSPIS_SDOVD
tSPIS_CSLEAD
tSPIS_CSLAG
tSPIS_SU
tSPIS_H
3.3
Parameter Name
SPIS_SCLK Frequency
SPIS_SCLK High Time
SPIS_SCLK Low Time
SPIS_SDO Valid Output Delay from SPIS_SCLK
SPIS_CS Lead to SPIS_SCLK
SPIS_CS Lag from SPIS_SCLK
SPIS_SDI Setup Time to SPIS_SCLK
SPIS_SDI Hold Time to SPIS_SCLK
Test Condition
Min
@ 1.5 V
400
@ 1.5 V
400
@ 1.5 V
0
Max
Unit
2.1
MHz
ns
ns
500
ns
@ 1.5 V
500
@ 1.5 V
1500
ns
ns
@ 1.5 V
200
ns
@ 1.5 V
200
ns
Clocks
The CX11656 runs from a single 100 MHz oscillator input and generates a 50 MHz clock
to feed the ADC, a 50 MHz clock to feed the DAC, the 25 MHz MII clock, and the 10
MHz GPSI clock. The 100 MHz clock input directly feeds the clock distribution network
that clocks up to 60% of the digital logic.
Note:
Both CLKIN and CLKOUT connect directly to the +1.8 V core of the IC and do
not connect to the +3.3 V I/O ring. Therefore these pins are not +3.3 V or +5 V
tolerant.
The oscillator must have ± 25 PPM RMS maximum tolerance including initial accuracy,
temperature/voltage range and 5 years of aging. This oscillator must have a symmetry no
worse than 40/60, jitter of 75 ps and 4 ns rise and fall time. The oscillator must be rated
over the desired temperature range and ± 10% voltage range. The CX11656 uses a crystal
input cell to receive the clock input.
3-16
Conexant Proprietary and Confidential Information
102069A
CX11656 HomePlug 1.0 PHY Data Sheet
3.4
AFE Interface
The CX11656 provides a simple parallel interface to the analog front end (AFE). The
analog data is clocked into or out of the CX11656 on a 10-bit bi-directional parallel data
bus under control of transmit or receive enable signals and sample clock references
provided to the AFE from the CX11656. The CX11656 also provides a parallel byte-wide
automatic gain control interface.
3.4.1
ADC/DAC Interface
The CX11656 outputs a sequential stream of digital time samples of the OFDM
waveforms for transmission. The digital transmit signal is passed on to the A/D
Converter. The ADC digitizes the analog OFDM receive signal for input to the CX11656.
The DAC converts digital samples into analog waveforms.
3.4.1.1
ADC/DAC Timing Diagrams
AFE TX and RX activity is illustrated in Figure 3-19.
AFE clock waveforms are illustrated in Figure 3-20.
AFE transmit and receive timing is illustrated in Figure 3-21 and Figure 3-22,
respectively.
Figure 3-19. AFE TX and RX Activity
DAC_CLK
TX_EN
ADIO[9:0]
TX DATA
TX DATA
TX DATA
RX DATA
RX DATA
RX DATA
ADC_CLK
RX_EN
102069_023
Figure 3-20. AFE Clock Waveforms
tAFE_H
2.0 V
DAC_CLK,
ADC_CLK
tAFE_L
1.5 V
0.8 V
tAFE_R
tAFE_FT
tAFE_PW
102069_024
102069A
Conexant Proprietary and Confidential Information
3-17
CX11656 HomePlug 1.0 PHY Data Sheet
Figure 3-21. AFE Transmit Timing Diagram
DAC_CLK
tMII_RVAL
ADIO[9:0], RX_EN, TX_EN
DATA
102069_025
Figure 3-22. AFE Receive Timing Diagram
ADC_CLK
tMII_TSU
ADIO[9:0]
DATA
tMII_TH
102069026
3-18
Conexant Proprietary and Confidential Information
102069A
CX11656 HomePlug 1.0 PHY Data Sheet
3.4.1.2
DAC DC Characteristics
The DAC DC characteristics are listed in Table 3-7.
Table 3-7. DAC DC Characteristics
Symbol
Parameter
Test Conditions
Number of Bits
Data Format
Sample Rate
VOH
VOL
tAFE_RVAL
Min
Typ
Max
10
Straight Binary
50
High level output voltage
Low level output voltage
Propagation Delay Time
tAFE_PW
DAC Clock Pulse Width
tAFE_R
DAC Clock Rise Time
tAFE_FT
DAC Clock Fall Time
tJ
DAC Clock Jitter
Conditions:
1. VDD = 3.3 V, CL = 15 pF, RL = 1K Ω
2. IOH = -1 mA
3. IOL = 1mA
DAC Data Output
1, 2
1, 3
1
DAC Clock Output
1
1
1
1
MSPS
2.4
5.0
Unit
bits
8.2
10
0.4
15.0
V
V
ns
15
2
2
75
ns
ns
ns
ps rms
1647 SPECIFICATION
3.4.1.3
ADC DC Characteristics
The ADC DC characteristics are listed in Table 3-8.
Table 3-8. ADC DC Characteristics
Symbol
Parameter
Test Conditions
Number of Bits
Data Format
Sample Rate
Min
Typ
Max
10
Straight Binary
50
Unit
bits
MSPS
ADC Data Input
VIH
VIL
tA
tAFE_TSU
tAFE_TH
High level input voltage
Low level input voltage
Aperture Delay Time
Data Setup Time
Data Hold Time
1
1
1
1
1
2.0
1
1
1
1
1
1
1
2.1
0.8
2.7
3
3
V
V
ns
ns
ns
ADC Clock Output
VOH
High level output voltage
VOL
Low level output voltage
tAFE_H
ADC/DAC Clock Pulse Width High
tAFE_L
ADC/DAC Clock Pulse Width Low
tAFE_R
ADC/DAC Clock Rise Time
tAFE_FT
ADC/DAC Clock Fall Time
tJ ADC/DAC
Clock Jitter
Conditions:
VDD = 3.3 V, CL = 15 pF, RL = 1K Ω
10
10
V
0.9
15
15
2
2
75
V
ns
ns
ns
ns
ps rms
CX11656 SPECIFICATION
102069A
Conexant Proprietary and Confidential Information
3-19
CX11656 HomePlug 1.0 PHY Data Sheet
3.4.2
AGC Circuitry
The CX11656 receives 10-bit digitized samples from the D/A Converter and uses them to
adjust the Switched Gain Amplifier (SGA) gain to maintain optimum signal level at the
input of the ADC. The AGC[7:0] control bus is used to pass a Gain Control Value (GCV)
to the SGA. If the AGCENC_N input pin is low, the GCV is encoded on pins [3:0] of the
AGC[7:0] control bus. If the AGCENC_N input pin is high, the GCV is decoded on pins
[7:0] of the AGC[7:0] control bus with pins [7:4] selecting the gain switch setting for the
first stage amplifier and pins [3:0] selecting the gain switch setting for the second stage
amplifier.
RX gain control values are listed in Table 3-9.
Table 3-9. RX Gain Control Values
GCV (AGCENC_N = 0)
AGC[3:0]
0000
0001
0010
0011
0100
0101
0110
0111
3.4.2.1
GCV (AGCENC_N = 1)
AGC[7:4]
AGC[3:0]
000
000
1000
1000
0100
1000
0010
1000
0001
1000
0001
0100
0001
0010
0001
0001
Front End Gain (dB)
OFF
0
8
16
24
32
40
48
Notes
Mute RX during TX mode
AGC DC Characteristics
AGC DC characteristics are listed in Table 3-10.
Table 3-10. AGC DC Characteristics
Symbol
Parameter
VOH
High level output voltage
VOL
Low level output voltage
tR
Rise time
tF
Fall time
Conditions:
VDD = 3.3 V, CL = 15 pF, RL = 1K Ω
3-20
Test Conditions
1
1
1
1
Min
2.1
Typ
Conexant Proprietary and Confidential Information
Max
0.9
5
5
Unit
V
V
ns
ns
102069A
CX11656 HomePlug 1.0 PHY Data Sheet
3.5
SPI Master Interface
The SPI Master interface gives the system designer the option of providing the CX11656
with the necessary configuration information from a simple, SPI-controlled EEPROM as
opposed to supplying this information via MAC management frames (transmitted over
the MII interface). The information stored in the EEPROM is intended to initialize the
CX11656 with specific information that will not be changed throughout its normal course
of operation. For specific features that require real-time control, this information must be
provided via the MAC management frames and not from the EEPROM.
The EEPROM must be an Atmel AT93C46, or equivalent, programmed in 8-bit mode.
3.5.1
SPI Master Interface Timing
The SPI Master interface signal timing is illustrated in Figure 3-23.
Figure 3-23. SPI Master Interface Signal Timing Diagram
tSPI_HIGH
tSPI_SU
SPIS_CLK
tSPI_LOW
tSPI_H
SPIS_DI
DATA
tSPI_DIVD
SPIS_DO
tSPI_CSDV
DATA
tSPI_CSL
SPIS_CS_N
102069_027
3.5.2
SPI Master Interface DC Characteristics
The SPI Master interface DC characteristics are listed in Table 3-11.
Table 3-11. SPI Master Interface DC Characteristics
Parameter
Symbol
tSPI_F
tSPI_HIGH
tSPI_LOW
tSPI_DIVD
tSPI_CSVD
tSPI_CSL
tSPI_SU
tSPI_H
102069A
Parameter Name
SPI_SCLK Frequency
SPI_SCLK High Time
SPI_SCLK Low Time
SPI_DI Valid Output Delay from SPI_SCLK
SPI_CS Valid Output Delay from SPI_SCLK
SPI_CS Low Time
SPI_DO Setup Time to SPI_SCLK
SPI_DO Hold Time to SPI_SCLK
Test Condition
Min
@ 1.5 V
@ 1.5 V
@ 1.5 V
@ 1.5 V
@ 1.5 V
@ 1.5 V
@ 1.5 V
70
70
0
0
1000
50
0
Conexant Proprietary and Confidential Information
Max
Unit
6.125
90
90
15
15
MHz
ns
ns
ns
ns
ns
ns
ns
3-21
CX11656 HomePlug 1.0 PHY Data Sheet
3.6
LED Interface
LED interface signals are described in Table 3-12.
Table 3-12. LED Interface Signal Description
Signal
LED0_N
Status
Collision
LED1_N
Activity
LED2_N
Link
3-22
Description
LED0_N: Collision Detection. Activates for a duration of 9–10 ms upon detection of
a collision.
LED1_N: Activity Detection. Activates for a duration of 9–10 ms upon the receipt of
a properly addressed unicast or broadcast frame or the transmission of a frame.
LED2_N: Link Detection. Turns on when initialization is completed successfully and
“network” is established.
Conexant Proprietary and Confidential Information
102069A
CX11656 HomePlug 1.0 PHY Data Sheet
4.
Package Dimensions
Package dimensions for the 144-pin LQFP are shown in Figure 4-1.
Figure 4-1. Package Dimensions - 144-Pin LQFP
D
D1
D2
PIN 1
REF
D
D1
D1 D2
e
b
DETAIL A
A
A1
Millimeters
Min.
Max.
1.6 MAX
0.15
0.05
Inches*
Max.
Min.
0.0630 MAX
0.0020 0.0059
A2
D
21.75
1.4 REF
22.25
0.0551 REF
0.8563 0.8760
D1
D2
L
20.0 REF
17.5 REF
0.75
0.5
0.7874 REF
0.6890 REF
0.0197 0.0295
L1
e
1.0 REF
0.50 BSC
0.0394 REF
0.0197 BSC
0.0067 0.0106
Dim.
D1
A
b
c
Coplanarity
A2
0.17
0.11
0.27
0.17
0.08 MAX
0.0043
0.0067
0.0031 MAX
Ref: 144-PIN LQFP (GP00-D252)
c
A1
L
* Metric values (millimeters) should be used for
PCB layout. English values (inches) are
converted from metric values and may include
round-off errors.
L1
DETAIL A
PD_LQFP_144
102069A
Conexant Proprietary and Confidential Information
4-1
CX11656 HomePlug 1.0 PHY Data Sheet
This page is intentionally blank.
4-2
Conexant Proprietary and Confidential Information
102069A
CX11656 HomePlug 1.0 PHY Data Sheet
5.
Application Designs
5.1
Ethernet Router Application
An Ethernet Router application design is illustrated in Figure 5-1.
Refer to CX82100 Home Network Processor (HNP) Data Sheet (Doc. No. 101306) for
CX82100-41 information.
Figure 5-1. Ethernet Router Application Block Diagram
LEDs
LEDs
Powerline
Etherent
CX82100-41
Home
Network
Processor
(HNP)
MII
CX11656
HomePlug 1.0 PHY
Transceiver
Analog
Front End
Coupler
102069_030
102069A
Conexant Proprietary and Confidential Information
5-1
CX11656 HomePlug 1.0 PHY Data Sheet
5.2
USB Application
A USB application design is illustrated in Figure 5-2.
Figure 5-2. USB Application Block Diagram
LEDs
Powerline
USB
802.3 MAC
Controller for
USB
MII
CX11656
HomePlug 1.0 PHY
Transceiver
Analog
Front End
Coupler
102069_031
5-2
Conexant Proprietary and Confidential Information
102069A
CX11656 HomePlug 1.0 PHY Data Sheet
5.3
Embedded Application
An embedded application design is illustrated in Figure 5-3.
Figure 5-3. Embedded Application Block Diagram
LEDs
Powerline
USB
Embedded
IC with
Integrated
802.3 MAC
Controller
MII
CX11656
HomePlug 1.0 PHY
Transceiver
Analog
Front End
Coupler
102069_032
5.4
ADI-Related Components
For further information regarding the ADI components used in the Analog Front End,
please refer to the following ADI data sheets:
AD8007/AD8008 - Low Distortion High Speed Amp
AD6417 - LC2MOS Precision Mini-DIP Analog Switch
AD8016 – Low Power, High Output Current xDSL Line Driver
AD9975 – Broadband Modem Mixed-Signal Front End
102069A
Conexant Proprietary and Confidential Information
5-3
CX11656 HomePlug 1.0 PHY Data Sheet
This page is intentionally blank.
5-4
Conexant Proprietary and Confidential Information
102069A
NOTES
www.conexant.com
General Information:
U.S. and Canada: (800) 854-8099
International: (949) 483-6996
Headquarters – Newport Beach
4311 Jamboree Rd.
Newport Beach, CA 92660-3007