CHENYI MBR10150CT

MBR10150CT
Shanghai Lunsure Electronic
Technology Co.,Ltd
Tel:0086-21-37185008
Fax:0086-21-57152769
Features
•
•
10 Amp High Voltage
High Junction Temperature Capability
Good Trade Off Between Leakage Current
And Forward Volage Drop
Low Leakage Current
•
Power Schottky
Barrier Rectifier
150Volts
Maximum Ratings
•
•
•
•
TO-220AB
Operating J unction Temperature : 150°C
Storage Temperature: - 50°C to +150°C
Per d iode Thermal Resistance 4°C/W Junction to Case
Total Thermal Resistance 2.4°C/W Junction to Case
Catalog
Number
MBR 10150 CT
Maximum
Recurrent
Peak Reverse
Voltage
150 V
Maximum
RMS
Voltage
105V
B
L
M
C
Maximum
DC
Blocking
Voltage
150 V
D
A
K
PIN
E
F
G
I
J
N
H H
Electrical Characteristics @ 25°C Unless Otherwise Specified
Average Forward
Current
Peak Forward Surge
Current
Maximum
Instantaneous
Forward Voltage
MBR10150CT
Maximum
Reverse Current At
Rated DC Blocking
Voltage
IF(AV)
10 A
TC = 155 °C
IFSM
120A
8.3ms half sine
PIN 1
VF
.92V
VF
.75V
IR
50 µ A
7m A
IFM = 5A
TJ = 25°C
I FM = 5A
TJ = 125°C
TJ = 25°C
TJ = 125°C
PIN 2
CASE
PIN 3
A
B
C
D
E
F
G
H
I
J
K
L
M
N
INCHES
.560
.625
.380
.420
.100
.135
.230
.270
.380
.420
-----.250
.500
.580
.090
.110
.020
.045
.012
.025
.139
.161
.140
.190
.045
.055
.080
.115
* Pulse Test: Pulse Width380µsec, Duty Cycle 2%
www.cnelectr.com
MM
14.22
9.65
2.54
5.84
9.65
-----12.70
2.29
0.51
0.30
3.53
3.56
1.14
2.03
15.88
10.67
3.43
6.86
10.67
6.35
14.73
2.79
1.14
0.64
4.09
4.83
1.40
2.92
MBR10150CT
Fig. 1: Average forward power dissipation versus
average forward current (per diode).
PF(av)(W)
5.0
δ = 0.2
δ = 0.5
δ = 0.1
4.5
4.0
δ = 0.05
3.5
δ=1
3.0
2.5
2.0
1.5
T
1.0
0.5
IF(av) (A)
tp
δ=tp/T
0.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
Fig. 3: Non repetitive surge peak forward current
versus overload duration (maximum values, per
diode).
Fig. 2: Average forward current versus ambient
temperature (δ = 0.5, per diode).
IF(av)(A)
6
Rth(j-a)=Rth(j-c)
5
4
Rth(j-a)=15°C/W
3
2
T
1
0
δ=tp/T
0
Tamb(°C)
tp
25
50
75
100
125
150
175
Fig. 4: Relative variation of thermal impedance
junction to case versus pulse duration (per diode).
Zth(j-c)/Rth(j-c)
IM(A)
1.0
80
70
0.8
60
50
Tc=50°C
0.6
Tc=75°C
0.4
δ = 0.5
40
30
20
δ = 0.2
δ = 0.1
Tc=125°C
IM
10
Single pulse
t(s)
t
δ=0.5
0
1E-3
1E-2
T
0.2
1E-1
1E+0
Fig. 5: Reverse leakage current versus reverse
voltage applied (typical values, per diode)
0.0
1E-3
tp(s)
δ=tp/T
1E-2
tp
1E-1
1E+0
Fig. 6: Junction capacitance versus reverse
voltage applied (typical values, per diode).
IR(µA)
C(pF)
1E+5
200
F=1MHz
Tj=25°C
Tj=175°C
1E+4
100
Tj=150°C
1E+3
Tj=125°C
1E+2
50
Tj=75°C
1E+1
1E+0
Tj=25°C
20
1E-1
1E-2
VR(V)
0
25
50
75
VR(V)
100
125
150
10
1
2
5
10
www.cnelectr.com
20
50
100
200
MBR10150CT
Fig. 7: Forward voltage drop versus forward
current (maximum values, per diode).
Fig. 8: Thermal resistance junction to ambient
versus copper surface under tab (Epoxy printed
circuit board, copper thickness: 35µm)
(STPS10150CG only).
IFM(A)
Rth(j-a) (°C/W)
100.0
80
70
Tj=125°C
Typical values
10.0
60
Tj=125°C
50
Tj=25°C
40
30
1.0
20
VFM(V)
0.1
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
10
0
S(cm²)
0
2
4
6
8
10
www.cnelectr.com
12
14
16
18
20
Marking
1. Marking on the semiconductor ( laser marking or UV ink marking )
Logo
MBR10150CT
Type Name
Terminal sign
www.cnelectr.com