CDB1601-120W CS1601 120W, High-efficiency PFC Demonstration Board Features General Description Line Voltage Range: 108 to 305 VACrms Output Voltage (VLINK): 460V Rated Pout : 115W Efficiency: 95% @ 115W The CDB1601-120W board demonstrates the performance of the CS1601 digital PFC controller as a standalone unit. This board is 95% efficient at full load, and has been tailored for use with a resonant second stage to power up to two T5 fluorescent lamps for a maximum output power of 108W. A resonant second stage driver efficiency of 94% is assumed for this application. Spread Spectrum Switching Frequency Integrated Digital Feedback Control Low Component Count ORDERING INFORMATION CDB1601-120W Customer Demonstration Board Actual Size: 258 mm x 43 mm 8.16 in x 1.7 in www.cirrus.com Copyright Cirrus Logic, Inc. 2011 (All Rights Reserved) MAR ‘11 DS931DB3 CDB1601-120W IMPORTANT SAFETY INSTRUCTIONS Read and follow all safety instructions prior to using this demonstration board. 7KLV(QJLQHHULQJ(YDOXDWLRQ8QLWRU'HPRQVWUDWLRQ%RDUG PXVWRQO\EHXVHGIRU DVVHVVLQJ,& SHUIRUPDQFHLQD ODERUDWRU\VHWWLQJ7KLVSURGXFWLVQRWLQWHQGHGIRUDQ\RWKHUXVHRULQFRUSRUDWLRQLQWRSURGXFWVIRUVDOH 7KLVSURGXFWPXVWRQO\EHXVHGE\TXDOLILHGWHFKQLFLDQVRUSURIHVVLRQDOVZKRDUHWUDLQHGLQWKHVDIHW\SURFHGXUHV DVVRFLDWHGZLWKWKHXVHRIGHPRQVWUDWLRQERDUGV Risk of Electric Shock • 7KHGLUHFWFRQQHFWLRQWRWKH $&SRZHUOLQHDQGWKH RSHQDQGXQSURWHFWHGERDUGVSUHVHQWDVHULRXVULVNRIHOHFWULF VKRFNDQGFDQFDXVHVHULRXVLQMXU\RUGHDWK([WUHPHFDXWLRQQHHGVWREHH[HUFLVHGZKLOHKDQGOLQJWKLVERDUG • $YRLG FRQWDFWZLW KWK H H[SRVHG FRQGXFWRUR UWH UPLQDOV RI FRPSRQHQWVR QWK H ERDUG +LJKY ROWDJHL V SUHVHQWRQ H[SRVHGFRQGXFWRUDQGLWPD\EHSUHVHQWRQWHUPLQDOVRIDQ\FRPSRQHQWVGLUHFWO\RULQGLUHFWO\FRQQHFWHGWRWKH$& OLQH • 'DQJHURXVYROWDJHVDQGRUFXUUHQWVPD\EHLQWHUQDOO\JHQHUDWHGDQGDFFHVVLEOHDWYDULRXVSRLQWVDFURVVWKHERDUG • &KDUJHGFDSDFLWRUVVWRUHKLJKYROWDJHHYHQDIWHUWKHFLUFXLWKDVEHHQGLVFRQQHFWHGIURPWKH$&OLQH • 0DNH VXUHWK DWWKH SRZHU VRXUFHL VRII EHIRUHZL ULQJ DQ\ FRQQHFWLRQ0D NHVX UHWKDWDO O FRQQHFWRUV DUH ZHOO FRQQHFWHGEHIRUHWKHSRZHUVRXUFHLVRQ • )ROORZDOOODERUDWRU\VDIHW\SURFHGXUHVHVWDEOLVKHGE\\RXUHPSOR\HUDQGUHOHYDQWVDIHW\UHJXODWLRQVDQGJXLGHOLQHV VXFKDVWKHRQHVOLVWHGXQGHU26+$*HQHUDO,QGXVWU\5HJXODWLRQV6XESDUW6DQG1)3$( 6XLWDEOHH\HSURWHFWLRQPXVWEHZRUQZKHQZRUNLQJZLWKRUDURXQGGHPRQVWUDWLRQERDUGV$OZD\V FRPSO\ZLWK\RXUHPSOR\HU¶VSROLFLHVUHJDUGLQJWKHXVHRISHUVRQDOSURWHFWLYHHTXLSPHQW $OOFRPSRQHQWVKHDWVLQNVRUPHWDOOLFSDUWVPD\EHH[WUHPHO\KRWWRWRXFKZKHQHOHFWULFDOO\DFWLYH +HDWVLQNLQJLVUHTXLUHGIRU47KHHQGSURGXFWVKRXOGXVHWDUSLWFKRUDQHTXLYDOHQWFRPSRXQGIRUWKLV SXUSRVH)RUODEHYDOXDWLRQSXUSRVHVDIDQLVUHFRPPHQGHGWRSURYLGHDGHTXDWHFRROLQJ Contacting Cirrus Logic Support For all product questions and inquiries contact a Cirrus Logic Sales Representative. To find the one nearest to you go to www.cirrus.com IMPORTANT NOTICE Cirrus Logic, Inc. and its subsidiaries ("Cirrus") believe that the information contained in this document is accurate and reliable. However, the information is subject to change without notice and is provided "AS IS" without warranty of any kind (express or implied). Customers are advised to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, indemnification, and limitation of liability. No responsibility is assumed by Cirrus for the use of this information, including use of this information as the basis for manufacture or sale of any items, or for infringement of patents or other rights of third parties. This document is the property of Cirrus and by furnishing this information, Cirrus grants no license, express or implied under any patents, mask work rights, copyrights, trademarks, trade secrets or other intellectual property rights. Cirrus owns the copyrights associated with the information contained herein and gives consent for copies to be made of the information only for use within your organization with respect to Cirrus integrated circuits or other products of Cirrus. This consent does not extend to other copying such as copying for general distribution, advertising or promotional purposes, or for creating any work for resale. CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, AUTOMOTIVE SAFETY OR SECURITY DEVICES, LIFE SUPPORT PRODUCTS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK AND CIRRUS DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY CIRRUS PRODUCT THAT IS USED IN SUCH A MANNER. IF THE CUSTOMER OR CUSTOMER'S CUSTOMER USES OR PERMITS THE USE OF CIRRUS PRODUCTS IN CRITICAL APPLICATIONS, CUSTOMER AGREES, BY SUCH USE, TO FULLY INDEMNIFY CIRRUS, ITS OFFICERS, DIRECTORS, EMPLOYEES, DISTRIBUTORS AND OTHER AGENTS FROM ANY AND ALL LIABILITY, INCLUDING ATTORNEYS' FEES AND COSTS, THAT MAY RESULT FROM OR ARISE IN CONNECTION WITH THESE USES. Cirrus Logic, Cirrus, and the Cirrus Logic logo designs are trademarks of Cirrus Logic, Inc. All other brand and product names in this document may be trademarks or service marks of their respective owners. 2 DS931DB3 CDB1601-120W 1. INTRODUCTION The CS1601 is a high-performance Variable Frequency Discontinuous Conduction Mode (VF-DCM), active Power Factor Correction (PFC) controller, optimized to deliver the lowest PFC system cost for electronic ballast applications. The CS1601 uses a digital control algorithm that is optimized for high efficiency and near unity power factor over a wide input voltage range (108-305 VAC). The CS1601 uses an adaptive digital control algorithm. Both the ON time and the switching frequency are varied on a cycle-by-cycle basis over the entire AC line to achieve close to unity power factor. The variation in switching frequency also provides a spread frequency spectrum, thus minimizing the conducted EMI filtering requirements. The feedback loop is closed through an integrated digital control system within the IC. Protection features such as overvoltage, overcurrent, overpower, open circuit, overtemperature, and brownout help protect the device during abnormal transient conditions. Details of these features are provided in the CS1601 data sheet. The CDB1601-120W board demonstrates the performance of the CS1601 over a wide input voltage range of 108 to 305 VAC, typically seen in universal input ballast applications. This board has been designed for a 460 V, 115 W full load output application. Extreme caution needs to be exercised while handling this board. This board is to be powered up by trained professionals only. Prior to applying AC power to the CDB1601-120W board, the CS1601 needs to be biased using an external 13 VDC power supply, applied across pins 1 and 3 of terminal block J5. Terminal block J6 is used to connect the AC line. The load is connected to J7. As a safety measure, jumper J1 is provided as a means to apply a small resistive load (200 kΩ minium) to rapidly discharge the output capacitors. Other jumpers and test points are provided to evaluate the behavior of the IC and the various sections of the design. AC Line Input J7 Output Terminals J6 J5 VDD Input J1 Figure 1. Board Connections DANGER High Voltage Hazard ONLY QUALIFIED PERSONNEL SHOULD HANDLE THE CDB1601-120W. WARNING: Heatsinking is required for Q4. The end product should use tar pitch or an equivalent compound for this purpose. For lab evaluation purposes, a fan is recommended to provide adequate cooling. DS931DB3 3 GROUND NEUTRAL 2 3 CHGND RV1 S14K300 NO POP 3.15A SHORT WITH 28 AWG WIRE C1 2200pF SHORT WITH 28 AWG WIRE L5 5mH NO POP 1. ALL RESISTOR VALUES ARE IN OHMS. 2200pF C2 C3 NO POP 0.22uF L1 5mH 2 3 2 NOTES: UNLESS OTHERWISE SPECIFIED; LINE 1 J6 TERM BLK F2 1 4 1 4 45 - 65 Hz 2 3 108-305 VAC 1 2 1 3 2 4 C13 0.22uF L3 1mH 1 4 1 3 2 4 1 - C4 0.47uF NO POP L4 1mH NO POP C5 0.33uF 1.15M R10 1.15M R12 1.15M R11 TP6 TP7 D1 1 L2 380uH MUR160 1 2 3 4 GND IFB NC IAC CS 0 VDD GD GND ZCD U1 CS1601-FSZ R4 R5 17.8K TP5 8 7 6 5 NO POP C11 X7R 2200pF 75V LL4148 GND R1 24.9 S R9 0.1 2W 20K R7 C9 X7R 4.7uF G D MH4 MH3 FD1 1 1 603-00466-Z1 240-00466-Z1 LBL SUBASSY PROD ID AND REV PCB DWG- ASSY DWG- 422-00013-01 3057/1 BK005 600-00466-Z1 3050/1 BK005 SCH DWG- L 500 UL1422 28/1 BLU 1 WIRE-BLACK-INSULATED-16AWG FD3 WIRE-BLACK-INSULATED-24AWG 4880G FD2 WIRE-BLUE-INSULATED-28AWG SCREW-PHILIPS-4-40THR-PH-5/16-L-Z TO220-INSUL-MOUNT-HEATSINK-KIT MH2 MH1 2 R18 0.24 1W COG 33pF C7 NO POP 3 DESCRIPTION CHANGED L2 TO NEW FOOTPRINT INITIAL DESIGN TP3 2 1 R17 1.78K R22 0.24 1W 1 2 HS1 12.5W TP1 R8 0.1 2W NO POP SHEET TITLE: NO POP DATE: J3 1K E3 J7 TERM BLK 115 W GND DC LOAD 2 1 3 11/22/2010 G.P. RADHAKRISHNAN 1 OF 1 SHEET SIZE C ENGINEER CDB1601-120W FOR LIGHTING APPLICATIONS REV C Buss Bar E4 J5 TERM BLK 2 1 SHORT WITH 24 AWG WIRE TP8 Open for efficiency measurements Jumper for preloading J1 R20 100K 1W Resistors for cap discharge R19 100K 1W 3/21/11 3/21/11 TYPICAL VLINK 460 VDC 1/31/11 COLIN LAMBERT A. GARZA 12/7/10 G.P. RADHAKRISHNAN G.P. RADHAKRISHNAN 1/31/11 12/7/10 A. GARZA A. GARZA 08/10/2010 CHK BY/DATE G.P. RADHAKRISHNAN G.MENDEL 08/27/2010 INC BY/DATE SCHEM., CDB1601-120W G.P. RADHAKRISHNAN DRAWN BY: R3 R2 100 1.15M R16 1.15M R15 1.15M R13 600-00466-Z1 NO POP C12 X7R 2200pF R6 0 TP4 C8 COG 330pF NO POP C14 ELEC 47uF 250V C6 ELEC 47uF 250V GND DESCRIPTION: PART #: C10 COG 100pF 1K R14 JMP4 0.300" WIRE JUMPER MURS360T3G 600V D2 CHGD C13 TO 330V, CHGD WARNING LABEL ADDED 28AWG, 24AWG & 16AWG WIRES STF13NM60N Q4 C ECO840 1 B B1 ECO826 A REV ECO804 AUXILIARY HARDWARE AND RELATED DOCUMENTS: 2 JMP2 0.750" WIRE JUMPER Figure 2. Schematic 3 BR1 GBU4J-BP 600V 1 SHORT WITH 28 AWG WIRE SHORT WITH 16 AWG WIRE A1 A2 2 12 6 NO POP L6 4mH + 10 9 NO POP L7 4mH TP2 JMP1 1.15" WIRE JUMPER FOR USE BY TRAINED PROFESSIONALS ONLY D4 DANGER: HIGH VOLTAGE 2 1 4 JMP3 0.500" WIRE JUMPER ECO# CDB1601-120W 2. SCHEMATIC DS931DB3 2 &LUUXV31 070-00157-Z1 011-00042-Z1 011-00055-Z1 011-00040-Z1 013-00034-Z1 012-00186-Z1 001-05280-Z1 001-05783-Z1 001-10233-Z1 001-05542-Z1 001-06276-Z1 011-00064-Z1 070-00132-Z1 070-00166-Z1 070-00001-Z1 180-00022-Z1 311-00019-Z1 115-00014-Z1 110-00301-Z1 110-00302-Z1 080-00013-Z1 050-00039-Z1 050-00050-Z1 040-00127-Z1 040-00127-Z1 050-00039-Z1 050-00047-Z1 304-00004-Z1 071-00107-Z1 020-06337-Z1 020-02502-Z1 020-02616-Z1 020-02273-Z1 020-06390-Z1 020-06310-Z1 030-00091-Z1 030-00091-Z1 020-06356-Z1 020-02616-Z1 020-06391-Z1 020-06372-Z1 030-00080-Z1 036-00015-Z1 110-00045-Z1 065-00331-Z3 080-00002-01 080-00040-Z1 311-00025-Z1 300-00025-Z1 240-00466-Z1 603-00466-Z1 600-00466-Z1 422-00013-01 ,WHP 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 &,5586/2*,& &'%:B5HYB& DS931DB3 A A A A A A A A A A A A A A A A A2 A A A A C C C C A A A A A A A A A A A 5HY A A A A A A A A A A A A A A A A A TRAN MOSFT nCH 11A 600V NPb TO220FP RES 24.9 OHM 1/4W ±1% NPb 1206 FILM RES 100 OHM 1/4W ±1% NPb 1206 FILM RES 1k OHM 1/4W ±1% NPb 1206 FILM RES 0 OHM 1/4W NPb 1206 FILM RES 17.8K OHM 1/4W ±1% NPb 1206 RES 20K OHM 1/4W ±1% NPb 1206 FILM RES 0.1 OHM 2W ±1% WW NPb AXL RES 0.1 OHM 2W ±1% WW NPb AXL RES 1.15M OHM 1/4W ±1% NPb 1206 RES 1k OHM 1/4W ±1% NPb 1206 FILM RES 1.78K OHM 1/4W ±1% NPb 1206 RES 0.24 OHM 1W ±1% NPb 2512 RES 100K 1W ±5% MTL FLM NPb AXL VARISTOR 470V RMS 14MM NPb RAD CON TEST PT .1"CTR TIN PLAT NPb BLK IC CRUS LPWR FACTOR CORR NPb SOIC8 WIRE 28/1 AWG, KYNAR MOD, 500FT WIRE 16AWG SOLID PVC INS BLK NPb HTSNK TO220 MOUNTING KIT NPb SCREW 4-40X5/16" PH MACH SS NPb PCB CDB1601-120W-Z-NPb ASSY DWG CDB1601-120W-Z-NPb SCHEM CDB1601-120W-Z-NPb LBL SUBASSY PRODUCT ID AND REV HDR 2x1 ML .1" 062BD ST GLD NPb TH CON 3POS TERM BLK 5.08mm SPR NPb RA CON 2POS TERM BLK 5.08mm SPR NPb RA WIRE 24 AWG SOLID PVC INS BLK NPb XFMR 5mH 1:1 1500Vrms 4PIN NPb TH XFMR 380uH 10% .265O NPb TH IND 1mH 1.3A ±15% TOR VERT NPb TH IND 1mH 1.3A ±15% TOR VERT NPb TH XFMR 5mH 1:1 1500Vrms 4PIN NPb TH XFMR COMMON MODE CHOKE 1.3 A TH NPb SPCR STANDOFF 4-40 THR .500"L NPb 'HVFULSWLRQ DIODE RECT BRIDGE 600V 4A NPb GBU CAP 2200pF ±10% 2000V CER NPb RAD CAP 0.22uF ±20% 305V PLY FLM NPb TH CAP 0.47uF ±20% 305V PLY FLM NPb TH CAP 0.33uF ±10% 630V POLY NPb RAD CAP 47UF ±20% 250V ELEC NPb RAD CAP 33pF ±5% 50V C0G NPb 1206 CAP 330pF ±10% 50V C0G NPb 1206 CAP 4.7uF ±20% 25V X7R NPb 1206 CAP 100pF ±5% 50V C0G NPb 1206 CAP 2200pF ±10% 50V X7R NPb 1206 CAP 0.22uF ±20% 330V PLY FLM NPb TH DIODE RECT 800V 1A 200mA NPb DO-41 DIODE RECT 600V 4A ULT FST NPb SMC DIODE SS 75V 500mW NPb SOD80 FUSE 3.15A TLAG IEC NPb SHORT TR5 HTSNK W LOCK TAB .5" TO220 NPb 1 1 1 0 2 1 1 0 1 6 1 1 0 2 0 7 1 2.000 4.000 1 4 1 REF REF 1 2 2 1 6.000 1 1 1 0 0 0 4 4W\ 1 2 0 0 1 2 1 0 1 1 0 1 1 1 1 1 1 Q4 R1 R2 R3 R4 R6 R5 R7 R8 R9 R10 R11 R12 R13 R15 R16 R14 R17 R18 R22 R19 R20 RV1 TP2 TP3 TP4 TP5 TP6 TP7 TP8 U1 W1 W3 XHS1 XMH1MXMH2 XMH3 XMH4 J1 J3 J5 J6 J7 JMP1 JMP2 JMP3 JMP4 W2 L1 L2 L3 L4 L5 L6 L7 MH1 MH2 MH3 MH4 5HIHUHQFH'HVLJQDWRU BR1 C1 C2 C3 C4 C5 C6 C14 C7 C8 C9 C10 C11 C12 C13 D1 D2 D4 F2 HS1 ST MICROELECTRONICS DALE DALE DALE DALE DALE DALE VISHAY VISHAY DALE DALE DALE PANASONIC XICON EPCOS KEYSTONE CIRRUS LOGIC SQUIRES ALPHA WIRE COMPANY AAVID THERMALLOY BUILDING FASTENERS CIRRUS LOGIC CIRRUS LOGIC CIRRUS LOGIC CIRRUS LOGIC SAMTEC WEIDMULLER WEIDMULLER ALPHA WIRE COMPANY PREMIER MAGNETICS RENCO BOURNS BOURNS PREMIER MAGNETICS RENCO KEYSTONE 0)* MICRO COMMERCIAL CO MURATA EPCOS EPCOS PANASONIC NICHICON KEMET KEMET TDK KEMET KEMET EPCOS DIODES INC ON SEMICONDUCTOR DIODES INC LITTLE FUSE AAVID THERMALLOY %,//2)0$7(5,$/3DJHRI STF13NM60N CRCW120624R9FKEA CRCW1206100RFKEA CRCW12061K00FKEA CRCW12060000Z0EA CRCW120617K8FKEA CRCW120620K0FKEA G003R1000FE7080 G003R1000FE7080 CRCW12061M15FKEA CRCW12061K00FKEA CRCW12061K78FKEA ERJ1TRQFR24U 294-100K-RC S14K300 5001 CS1601-FSZ/A2 L 500 UL1422 28/1 BLU 3057/1 BK005 4880G PMSSS 440 0031 PH 240-00466-Z1 603-00466-Z1 600-00466-Z1 422-00013-01 TSW-102-07-G-S 1716030000 1716020000 3050/1 BK005 TSD-2796 RLCS-1005 2124-V-RC 2124-V-RC TSD-2796 RL-4400-2-4.00 2203 0)*31 GBU4J-BP DEBB33D222KA2B B32923C3224M B32922C3474M ECQE6334KF UVZ2E470MHD C1206C330J5GAC C1206C331K5GAC C3216X7R1E475M C1206C101J5GAC C1206C222K5RAC B32912B3224M 1N4006G-T MURS360T3G LL4148 37213150411 6021PBG ECO840 ADD LENGTH TO BOM QUANTITY IN INCHES ADD LENGTH TO BOM QUANTITY IN INCHES INCLUDES ALL MOUNTING HARDWARE SCREWS FOR STANDOFFS ECO805/826/840 ECO805/826/840 ECO805/826/840 NO POP NO POP NO POP NO POP NO POP NO POP NO POP REQUIRES SCREW 4-40X5X16" PH STEEL 300-00025Z1 SEE ASSY DWG FOR LENGTH REQUIRES 1 SCREW, 300-00025-Z1, 1 WASHER, 30100013-Z1, 1 NUT, 302-00007-Z1 OR MOUNTING KIT 4880G AAVID NO POP ECO840 NO POP NO POP NO POP 1RWHV CDB1601-120W 3. BILL OF MATERIALS 5 6 Figure 5. Silkscreen (Top) Figure 4. Solder Mask (Top) Figure 3. Solder Mask (Bottom) CDB1601-120W 4. BOARD LAYOUT DS931DB3 DS931DB3 Figure 8. Silkscreen (Bottom) Figure 7. Solder Paste Mask (Bottom) Figure 6. Circuit Routing (Bottom) CDB1601-120W 7 CDB1601-120W 5. TYPICAL PERFORMANCE PLOTS 100 277V 230V 95 120V 90 Efficiency (%) 85 80 75 70 65 60 55 50 10 20 30 40 50 60 70 80 90 100 110 120 Output Power (Watts) Figure 9. Efficiency vs. Output Power 1.00 120V 0.98 230V 0.96 Power Factor 0.94 277V 0.92 0.90 0.88 0.86 0.84 0.82 0.80 20 30 40 50 60 70 80 90 100 110 120 Output Power (Watts) Figure 10. Power Factor vs. Output Power 8 DS931DB3 CDB1601-120W 50 45 40 35 THD (%) 30 25 277V 20 15 230V 10 120V 5 0 10 20 30 40 50 60 70 80 90 100 110 120 Output Power (Watts) Figure 11. THD vs. Output Power 470 468 466 464 Vlink (V) 462 277V 230V 460 120V 458 456 454 452 450 0 10 20 30 40 50 60 70 80 90 100 110 120 Output Power (Watts) Figure 12. VLink Voltage vs. Output Power DS931DB3 9 CDB1601-120W Figure 13. Steady State Waveforms — 120 VAC Figure 14. Steady State Waveforms — 230 VAC 10 DS931DB3 CDB1601-120W Figure 15. Steady State Waveforms — 277 VAC DS931DB3 11 CDB1601-120W Ch. 1–VLINK Ch. 2–VRECT Ch. 3–Gate Ch. 4–Inductor Current Figure 16. Switching Frequency Profile at Peak of AC Line Voltage — 120 VAC Ch. 1–VDS Ch. 2–VRECT Ch. 3–CS Ch. 4–ZCD Figure 17. Switching Frequency Profile at Peak of AC Line Voltage — 120 VAC (cont.) 12 DS931DB3 CDB1601-120W Ch. 1–VLINK Ch. 2–VRECT Ch. 3–Gate Ch. 4–Inductor Current Figure 18. Switching Frequency Profile at Trough of AC Line Voltage —120 VAC Ch. 1–VDS Ch. 2–VRECT Ch. 3–CS Ch. 4–ZCD Figure 19. Switching Frequency Profile at Trough of AC Line Voltage — 120 VAC (cont.) DS931DB3 13 CDB1601-120W Ch. 1–VLINK Ch. 2–VRECT Ch. 3–Gate Ch. 4–Inductor Current Figure 20. Switching Frequency Profile at Peak of AC Line Voltage — 230 VAC Ch. 1–VDS Ch. 2–VRECT Ch. 3–CS Ch. 4–ZCD Figure 21. Switching Frequency Profile at Peak of AC Line Voltage — 230 VAC (cont.) 14 DS931DB3 CDB1601-120W Ch. 1–VLINK Ch. 2–VRECT Ch. 3–Gate Ch. 4–Inductor Current Figure 22. Switching Frequency Profile at Trough of AC Line Voltage — 230 VAC Ch. 1–VDS Ch. 2–VRECT Ch. 3–CS Ch. 4–ZCD Figure 23. Switching Frequency Profile at Trough of AC Line Voltage — 230 VAC (cont.) DS931DB3 15 CDB1601-120W Ch. 1–VLINK Ch. 2–VRECT Ch. 3–Gate Ch. 4–Inductor Current Figure 24. Switching Frequency Profile at Peak of AC Line Voltage — 277 VAC Ch. 1–VDS Ch. 2–VRECT Ch. 3–CS Ch. 4–ZCD Figure 25. Switching Frequency Profile at Peak of AC Line Voltage — 277 VAC (cont.) 16 DS931DB3 CDB1601-120W Ch. 1–VLINK Ch. 2–VRECT Ch. 3–Gate Ch. 4–Inductor Current Figure 26. Switching Frequency Profile at Trough of AC Line Voltage — 277 VAC Ch. 1–VDS Ch. 2–VRECT Ch. 3–CS Ch. 4–ZCD Figure 27. Switching Frequency Profile at Trough of AC Line Voltage — 277 VAC (cont.) DS931DB3 17 CDB1601-120W Ch. 1–VLINK Ch. 2–VRECT Ch. 3–Gate Ch. 4–Inductor Current Figure 28. Transient — 15W to 115W Load at 10W/μs, Vin = 120VAC Ch. 1–VDS Ch. 2–VRECT Ch. 3–CS Ch. 4–ZCD Figure 29. Transient — 15W to 115W Load at 10W/μs, Vin = 120VAC (cont.) 18 DS931DB3 CDB1601-120W Ch. 1–VLINK Ch. 2–VRECT Ch. 3–Gate Ch. 4–Inductor Current Figure 30. Transient — 15W to 115W Load at 10W/μs, Vin = 230VAC Ch. 1–VDS Ch. 2–VRECT Ch. 3–CS Ch. 4–ZCD Figure 31. Transient — 15W to 115W Load at 10W/μs, Vin = 230VAC (cont.) DS931DB3 19 CDB1601-120W Ch. 1–VLINK Ch. 2–VRECT Ch. 3–Gate Ch. 4–Inductor Current Figure 32. Transient — 15W to 115W Load at 10W/μs, Vin = 277VAC Ch. 1–VDS Ch. 2–VRECT Ch. 3–CS Ch. 4–ZCD Figure 33. Transient — 15W to 115W Load at 10W/μs, Vin = 277VAC (cont.) 20 DS931DB3 CDB1601-120W Ch. 1–VLINK Ch. 2–VRECT Ch. 3–Gate Ch. 4–Inductor Current Figure 34. Transient — 115W to Zero Load at 10W/μs, Vin = 120VAC Ch. 1–VDS Ch. 2–VRECT Ch. 3–CS Ch. 4–ZCD Figure 35. Transient — 115W to Zero Load at 10W/μs, Vin = 120VAC (cont.) DS931DB3 21 CDB1601-120W Ch. 1–VLINK Ch. 2–VRECT Ch. 3–Gate Ch. 4–Inductor Current Figure 36. Transient — 115W to Zero Load at 10W/μs, Vin = 230VAC Ch. 1–VDS Ch. 2–VRECT Ch. 3–CS Ch. 4–ZCD Figure 37. Transient — 115W to Zero Load at 10W/μs, Vin = 230VAC (cont.) 22 DS931DB3 CDB1601-120W Ch. 1–VLINK Ch. 2–VRECT Ch. 3–Gate Ch. 4–Inductor Current Figure 38. Transient — 115W to Zero Load at 10W/μs, Vin = 277VAC Ch. 1–VDS Ch. 2–VRECT Ch. 3–CS Ch. 4–ZCD Figure 39. Transient — 115W to Zero Load at 10W/μs, Vin = 277VAC (cont.) DS931DB3 23 CDB1601-120W 6. REVISION HISTORY Revision 24 Date Changes DB1 FEB 2011 Initial Release. DB2 FEB 2011 Minor BOM change. DB3 MAR 2011 Updated BOM & Layers to rev C. DS931DB3