ELPIDA MC-45V8AB642KS

DATA SHEET
MOS INTEGRATED CIRCUIT
MC-45V8AB642KS
8M-WORD BY 64-BIT
VirtualChannel DYNAMIC RAM MODULE (SO DIMM)
TM
Description
The MC-45V8AB642KS is a 8,388,608 words by 64 bits VirtualChannel dynamic RAM module (small outline DIMM)
on which 4 pieces of 128M VirtualChannel DRAM : µPD45V128161 are assembled.
This module provides high density and large quantities of memory in a small space without utilizing the surface-
mounting technology on the printed circuit board.
Decoupling capacitors are mounted on power supply line for noise reduction.
Features
• 8,388,608 words by 64 bits organization
• Clock frequency and access time from CLK
Part number
Read
Clock
Access time
latency
frequency
from CLK
Maximum supply current mA
Operating
MHz (MAX.)
ns (MAX.)
Prefetch Restore
Refresh
Channel
Auto
Self
920
8
read / write (Burst)
MC-45V8AB642KS-A75
2
133
5.4
600
300
• Fully Standard Synchronous Dynamic RAM, with all signals referenced to a positive clock edge
• Dual internal banks controlled by BA0 (Bank Select)
• Programmable wrap sequence (interleave)
• Read latency (2)
• Prefetch read latency (4)
• Auto precharge and without auto precharge
• Auto refresh and self refresh
• Single 3.3 V ± 0.3 V power supply
• Interface: LVTTL
• Refresh cycle: 4K cycles/64 ms
• 144-pin small outline dual in-line memory module (Pin pitch = 0.8 mm)
• Unbuffered type
• Serial PD
• Programmable burst length (4)
The information in this document is subject to change without notice. Before using this document, please
confirm that this is the latest version.
Not all devices/types available in every country. Please check with local Elpida Memory, Inc. for
availability and additional information.
Document No. E0028N11 (Ver. 1.1)
(Previous No. M15239EJ1V0DS00)
Date Published April 2001 CP (K)
Printed in Japan
This Product became EOL in January, 2003.
Elpida Memory, Inc. is a joint venture DRAM company of NEC Corporation and Hitachi, Ltd.
MC-45V8AB642KS
Ordering Information
Clock
Part number
frequency
MHz (MAX.)
MC-45V8AB642KS-A75
133
Read
latency
2
Prefetch
read
Package
Mounted devices
latency
4
144-pin Small Outline DIMM
4 pieces of µPD45V128161G5
(Socket Type)
(10.16 mm (400) TSOP (II))
Edge connector : Gold plated
25.4 mm height
2
E0028N11
MC-45V8AB642KS
Pin Configuration
144-pin Small Outline Dual In-line Memory Module Socket Type (Edge connector: Gold plated)
/xxx indicates active low signal.
Vss
DQ 32
DQ 33
DQ 34
DQ 35
Vcc
DQ 36
DQ 37
DQ 38
DQ 39
Vss
DQMB4
DQMB5
Vcc
A3
A4
A5
Vss
DQ 40
DQ 41
DQ 42
DQ 43
Vcc
DQ 44
DQ 45
DQ 46
DQ 47
Vss
NC
NC
Vss
DQ 0
DQ 1
DQ 2
DQ 3
VCC
DQ 4
DQ 5
DQ 6
DQ 7
Vss
DQMB0
DQMB1
VCC
A0
A1
A2
Vss
DQ 8
DQ 9
DQ 10
DQ 11
VCC
DQ 12
DQ 13
DQ 14
DQ 15
Vss
NC
NC
1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
49
51
53
55
57
59
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
52
54
56
58
60
CLK0
CKE0
Vcc
Vcc
/RAS
/CAS
/WE
NC
/CS0
NC
NC
NC
NC
CLK1
Vss
Vss
NC
NC
NC
NC
VCC
Vcc
DQ 16
DQ 48
DQ 17
DQ 49
DQ 18
DQ 50
DQ 19
DQ 51
Vss
Vss
DQ 20
DQ 52
DQ 21
DQ 53
DQ 22
DQ 54
DQ 23
DQ 55
Vcc
Vcc
A6
A7
A8
BA0 (A13)
Vss
Vss
A9
A12
A10
A11
Vcc
Vcc
DQMB2
DQMB6
DQMB3
DQMB7
Vss
Vss
DQ 24
DQ 56
DQ 25
DQ 57
DQ 26
DQ 58
DQ 27
DQ 59
VCC
Vcc
DQ 28
DQ 60
DQ 29
DQ 61
DQ 30
DQ 62
DQ 31
DQ 63
Vss
Vss
SDA
SCL
VCC
Vcc
61
63
65
67
69
71
73
75
77
79
81
83
85
87
89
91
93
95
97
99
101
103
105
107
109
111
113
115
117
119
121
123
125
127
129
131
133
135
137
139
141
143
A0 - A12
: Address Inputs
[Row: A0 - A12, Column: A0 - A6]
BA0 (A13)
: VirtualChannel DRAM
Bank Select
DQ0 - DQ63
: Data Inputs/Outputs
CLK0, CLK1
: Clock Input
CKE0
: Clock Enable Input
/CS0
: Chip Select Input
/RAS
: Row Address Strobe
/CAS
: Column Address Strobe
/WE
: Write Enable
DQMB0 - DQMB7
: DQ Mask Enable
SDA
: Serial Data I/O for PD
SCL
: Clock Input for PD
62
64
66
68
70
72
74
76
78
80
82
84
86
88
90
92
94
96
98
100
102
104
106
108
110
112
114
116
118
120
122
124
126
128
130
132
134
136
138
140
142
144
VCC
: Power Supply
VSS
: Ground
NC
: No Connection
E0028N11
3
MC-45V8AB642KS
Block Diagram
/WE
/CS0
LDQM
DQMB0
DQ 0
/CS
/WE
LDQM
DQMB4
DQ 32
DQ 0
DQ 1
DQ 1
DQ 33
DQ 1
DQ 2
DQ 2
DQ 34
DQ 2
DQ 3
DQ 3
DQ 35
DQ 3
DQ 4
DQ 4
DQ 36
DQ 4
DQ 5
DQ 5
DQ 37
DQ 5
DQ 6
DQ 6
DQ 38
DQ 6
DQ 7
DQ 7
DQ 39
DQ 7
UDQM
DQ 0
D0
UDQM
DQMB1
DQ 8
DQ 15
DQMB5
DQ 40
DQ 9
DQ 14
DQ 41
DQ 14
DQ 10
DQ 13
DQ 42
DQ 13
DQ 11
DQ 12
DQ 43
DQ 12
DQ 12
DQ 11
DQ 44
DQ 11
DQ 13
DQ 10
DQ 45
DQ 10
DQ 14
DQ 9
DQ 46
DQ 9
DQ 15
DQ 8
DQ 47
DQ 8
LDQM
/CS
/WE
LDQM
DQMB6
DQ 48
DQ 7
DQ 17
DQ 6
DQ 49
DQ 6
DQ 18
DQ 5
DQ 50
DQ 5
DQ 19
DQ 4
DQ 51
DQ 4
DQ 20
DQ 3
DQ 52
DQ 3
DQ 2
DQ 53
DQ 2
DQ 1
DQ 54
DQ 1
DQ 55
DQ 0
DQ 23
DQ 7
DQ 22
D1
DQ 0
UDQM
DQMB3
DQ 24
DQ 25
DQ 26
DQ 27
DQ 8
DQ 8
DQ 9
DQ 57
DQ 9
DQ 10
DQ 58
DQ 10
DQ 11
DQ 59
DQ 11
DQ 12
DQ 60
DQ 12
DQ 61
DQ 13
DQ 62
DQ 14
DQ 63
DQ 15
DQ 13
DQ 30
DQ 14
DQ 31
DQ 15
SERIAL PD
D3
UDQM
DQMB7
DQ 56
DQ 29
/WE
/CS
DQ 28
D2
DQ 15
DQMB2
DQ 16
DQ 21
/WE
/CS
VCC
D0 - D3
C
SCL
VSS
SDA
A0
A1
A2
10 Ω
CLK0
CLK : D0 - D3
BA0
Remark
A0 - A12 : D0 - D3
/CAS
A13 : D0 - D3
CKE0
D0 - D3: µPD45V128161 (4M words × 16 bits × 2 banks)
CLK1
10 pF
/RAS
A0 - A12
D0 - D3
/RAS : D0 - D3
/CAS : D0 - D3
CKE : D0 - D3
4
E0028N11
MC-45V8AB642KS
Electrical Specifications
• All voltages are referenced to VSS (GND).
• After power up, wait more than 100 µs and then, execute power on sequence and auto refresh before proper device
operation is achieved.
Absolute Maximum Ratings
Parameter
Symbol
Condition
Rating
Unit
Voltage on power supply pin relative to GND
VCC
–0.5 to +4.6
V
Voltage on input pin relative to GND
VT
–0.5 to +4.6
V
Short circuit output current
IO
50
mA
Power dissipation
PD
4
W
Operating ambient temperature
TA
0 to 70
°C
Storage temperature
Tstg
–55 to +125
°C
Caution Exposing the device to stress above those listed in Absolute Maximum Ratings could cause
permanent damage. The device is not meant to be operated under conditions outside the limits
described in the operational section of this specification. Exposure to Absolute Maximum Rating
conditions for extended periods may affect device reliability.
Recommended Operating Conditions
Supply voltage
High level input voltage
Low level input voltage
Symbol
Condition
MIN.
TYP.
MAX.
Unit
VCC
3.0
3.3
3.6
V
VIH
2.0
VCC + 0.3
V
VIL
−0.3
+0.8
V
TA
0
70
°C
Operating ambient temperature
Capacitance (TA = 25 °C, f = 1 MHz)
Parameter
Input capacitance
Test condition
MIN.
CI1
A0 - A12, BA0 (A13), /RAS, /CAS, /WE
CI2
CLK0
CI3
CKE0
CI4
/CS0
CI5
DQMB0 - DQMB7
CI/O
DQ0 - DQ63
TYP.
MAX.
Unit
15
30
pF
23
37
15
26
15
26
5
10
5
12
Data input/output capacitance
Symbol
Parameter
pF
E0028N11
5
MC-45V8AB642KS
DC Characteristics (Recommended Operating Conditions Unless Otherwise Noted)
Parameter
Symbol Test condition
Operating current (Prefetch
ICC1P
mode at one bank active)
Grade
tRC ≥ tRC (MIN.)
MIN.
MAX.
Unit Notes
-A75
600
mA
1
-A75
600
mA
1
4.8
mA
Prefetch is executed one time during tRC.
Operating current (Restore
ICC1R
tRC ≥ tRC (MIN.)
ICC2P
CKE ≤ VIL (MAX.), tCK = 15 ns
mode at one bank active)
Precharge standby current
in power down mode
Precharge standby current
ICC2PS CKE ≤ VIL (MAX.), tCK = ∞
ICC2N
in non power down mode
Active standby current in
power down mode
Active standby current in
4.8
CKE ≥ VIH (MIN.), tCK = 15 ns, /CS ≥ VIH (MIN.),
80
ICC2NS CKE ≥ VIH (MIN.), tCK = ∞ , Input signals are stable.
ICC3P
ICC3N
24
24
CKE ≥ VIH (MIN.), tCK = 15 ns, /CS ≥ VIH (MIN.),
120
ICC3NS CKE ≥ VIH (MIN.), tCK = ∞, Input signals are stable.
ICC4
tCK ≥ tCK (MIN.), IO = 0 mA
ICC5
tRCF ≥ tRCF
Self refresh current
ICC6
CKE ≤ 0.2 V
Input leakage current
II (L)
VI = 0 to 3.6 V, All other pins not under test = 0 V
(MIN.)
80
-A75
300
mA
2
-A75
920
mA
3
-A75
Low level output voltage
mA
Background : precharge standby
Auto Refresh current
High level output voltage
mA
Input signals are changed one time during 30 ns.
(Burst mode)
Output leakage current
40
CKE ≤ VIL (MAX.), tCK = 15 ns
ICC3PS CKE ≤ VIL (MAX.), tCK = ∞
non power down mode
Operating current
mA
Input signals are changed one time during 30 ns.
8
mA
–4
+4
µA
+1.5
µA
IO (L)
DOUT is disabled, VO = 0 to 3.6 V
–1.5
VOH
IO = – 4.0 mA
2.4
VOL
IO = + 4.0 mA
V
0.4
V
Notes 1. ICC1 depends on output loading and cycle rates. Specified values are obtained with the output open. In
addition to this, ICC1 is measured on condition that addresses are changed only one time during tCK (MIN.).
2. ICC4 depends on output loading and cycle rates. Specified values are obtained with the output open. In
addition to this, ICC4 is measured on condition that addresses are changed only one time during tCK (MIN.).
3. ICC5 is measured on condition that addresses are changed only one time during tCK (MIN.).
6
E0028N11
MC-45V8AB642KS
AC Characteristics (Recommended Operating Conditions unless otherwise noted)
Test Conditions
• AC measurements assume tT = 1 ns.
• Reference level for measuring timing of input signals is 1.4 V. Transition times are measured between VIH and VIL.
• If tT is longer than 1 ns, reference level for measuring timing of input signals is VIH (MIN.) and VIL (MAX.).
• An access time is measured at 1.4 V.
tCK
tCK
tCL
tCH
tCL
CLK
tCKH
tCKS
CKE
tS
Command
Address
DQM
(Input)
tH
Valid
tDS
Valid
tAC
Hi-Z
tDH
Valid
tAC
tLZ
Data (Output)
tDS
Data (Input)
tDH
tOH
Valid
tHZ
Hi-Z
Valid
E0028N11
7
MC-45V8AB642KS
AC characteristics
Parameter
Symbol
-A75
Unit
MIN.
MAX.
tCK2
7.5
−
ns
Access time from CLK
tAC2
−
5.4
ns
CLK high level width
tCH
2.5
−
ns
CLK low level width
t
CL
2.5
−
ns
Data-out hold time
tOH
2.7
−
ns
Data-out low-impedance time
tLZ
0
−
ns
Data-out high-impedance time
tHZ2
2.5
5.4
ns
Data-in setup time
tDS
1.5
−
ns
Data-in hold time
tDH
0.8
−
ns
Address, Command, DQM setup time
tS
1.5
−
ns
tH
0.8
−
ns
tCKS
1.5
−
ns
−
ns
Clock cycle time
Address, Command, DQM hold time
CKE setup time
CKE hold time
tCKH
0.8
CKE setup time (Power down exit)
tCKSP
1.5
−
ns
tT
0.5
30
ns
Refresh time (4,096 refresh cycle)
tREF
−
64
ms
Mode register set cycle time
tRSC
2
−
CLK
Transition time
1
1
Note 1. Output load.
Note
Z = 50 Ω
Output
50 pF
8
E0028N11
MC-45V8AB642KS
AC characteristics (Background to Background operation)
Parameter
Symbol
-A 75
Unit Notes
MIN.
MAX.
tRC
67.5
−
ns
REF to REF/ ACT Command period
tRCF
67.5
−
ns
ACT to PRE Command period
tRAS
52.5
120,000
ns
PRE to ACT / REF Command period
tRP
20
−
ns
ACT to PFC/PFCA Command delay time
tAPD
15
−
ns
ACT to PFR Command delay time (Prefetch Read Operation)
tAPRD
ACT to ACT/REF Command period
15
−
ns
PFC to PRE Command delay time
t
PPL
22.5
−
ns
PFCA / PFR to ACT/REF Command delay time
tPAL
45
−
ns
tRAD
7.5
30
ns
tRPD
37.5
−
ns
tPPD
22.5
−
ns
RST / RSTA to ACT(R)
Note1
Command delay time
2
ACT(R)
Note1
to PFC/PFCA/PFR Command delay time
PFC to PFC / PFCA Command delay time
tRRD
15
−
ns
ACT(R) to ACT(R) Command delay time
tRRDR
30
−
ns
PFC /PFCA to RST /RSTA Command delay time
tPRD
22.5
−
ns
ACT to ACT/ACT(R) or ACT(R) to ACT Command delay time
Notes 1. ACT (R) command is ACT command after RST command.
2. The another background operation and same channel foreground operation are illegal while tRAD period.
E0028N11
9
MC-45V8AB642KS
AC characteristics (Foreground to Foreground operation)
Parameter
Symbol
READ/WRITE to READ/WRITE Command delay time
-A 75
Unit
MIN.
MAX.
7.5
−
tCCD
Note
ns
AC characteristics (Background to Foreground operation)
(after same channel Prefetch/Restore)
Parameter
Symbol
-A 75
Unit
MIN.
MAX.
PFC/PFCA to READ/WRITE Command delay time
tPCD
15
−
ns
ACT(R) to READ/WRITE Command delay time
tRCD
30
−
ns
Note
1
Note 1. ACT (R) command is ACT command after RST command.
10
E0028N11
MC-45V8AB642KS
Serial PD
Byte No.
0
(1/2)
Function Described
Defines the number of bytes written
Hex
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Notes
80H
1
0
0
0
0
0
0
0
128 bytes
08H
0
0
0
0
1
0
0
0
256 bytes
into serial PD memory
1
Total number of bytes of serial PD
memory
Fundamental memory type
08H
0
0
0
0
1
0
0
0
VC DRAM
3
Number of row addresses
0DH
0
0
0
0
1
1
0
1
13 rows
4
Number of column addresses
07H
0
0
0
0
0
1
1
1
7 columns
5
Number of banks
01H
0
0
0
0
0
0
0
1
1 bank
6
Data width
40H
0
1
0
0
0
0
0
0
64 bits
7
Data width (continued)
00H
0
0
0
0
0
0
0
0
0
8
Voltage interface standard
01H
0
0
0
0
0
0
0
1
LVTTL
9
Read latency (/CAS latency) = 2 -A75
75H
0
1
1
1
0
1
0
1
7.5 ns
2
cycle time
10
Read latency (/CAS latency) = 2 -A75
54H
0
1
0
1
0
1
0
0
5.4 ns
access time
DIMM configuration type
00H
0
0
0
0
0
0
0
0
None
12
Refresh rate / type
80H
1
0
0
0
0
0
0
0
Normal
13
VC DRAM width
10H
0
0
0
1
0
0
0
0
×16
14
Error checking DRAM width
00H
0
0
0
0
0
0
0
0
None
15
Minimum clock delay
01H
0
0
0
0
0
0
0
1
1 clock
16
Burst length supported
04H
0
0
0
0
0
1
0
0
4
17
Number of banks on each VC DRAM
02H
0
0
0
0
0
0
1
0
2 banks
18
Read latency (/CAS latency) supported
02H
0
0
0
0
0
0
1
0
2
19
/CS latency supported
01H
0
0
0
0
0
0
0
1
0
20
/WE latency supported
01H
0
0
0
0
0
0
0
1
0
21
VC DRAM module attributes
00H
0
0
0
0
0
0
0
0
22
VC DRAM device attributes : general
0EH
0
0
0
0
1
1
1
0
00H
0
0
0
0
0
0
0
0
23-26
11
27
tRP (MIN.)
-A75
14H
0
0
0
1
0
1
0
0
20 ns
28
tRRD (MIN.)
-A75
0FH
0
0
0
0
1
1
1
1
15 ns
29
tAPD (MIN.)
-A75
0FH
0
0
0
0
1
1
1
1
15 ns
30
tRAS (MIN.)
-A75
34H
0
0
1
1
0
1
0
0
52.5 ns
E0028N11
11
MC-45V8AB642KS
(2/2)
Byte No.
Function Described
31
Module bank density
32
Address and command signal
Hex
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Notes
10H
0
0
0
1
0
0
0
0
64M bytes
-A75
15H
0
0
0
1
0
1
0
1
1.5 ns
-A75
08H
0
0
0
0
1
0
0
0
0.8 ns
input setup time
33
Address and command signal
input hold time
Data signal input setup time
-A75
15H
0
0
0
1
0
1
0
1
1.5 ns
35
Data signal input hold time
-A75
08H
0
0
0
0
1
0
0
0
0.8 ns
36
Prefetch read latency
-A75
04H
0
0
0
0
0
1
0
0
4 clocks
37
tPCD (MIN.)
-A75
0FH
0
0
0
0
1
1
1
1
15 ns
38
Number of segment addresses
02H
0
0
0
0
0
0
1
0
2 bits
39
Number of channels
04H
0
0
0
0
0
1
0
0
16
40
Depth of channels
07H
0
0
0
0
0
1
1
1
128 bits
2.0
34
41-61
62
SPD revision
63
Checksum for bytes 0 - 62
64-71
72
-A75
02H
0
0
0
0
0
0
1
0
2AH
0
0
1
0
1
0
1
0
Manufacture’s JEDEC ID code
Manufacturing location
Manufacture’s P/N
91-92
Revision code
93-94
Manufacturing date
95-98
Assembly serial number
99-125
Mfg specific
Timing Charts
73-90
Please refer to the µPD45V128421, 45V128821, 45V128161 Data sheet (E0025N).
12
E0028N11
MC-45V8AB642KS
Package Drawing
144-PIN DUAL IN-LINE MODULE (SOCKET TYPE)
A (AREA B)
Y
M1 (AREA B)
R
M2 (AREA A)
N
Q
M
L
S
A
H
(OPTIONAL HOLES)
I
U1
U2
C
T
E
B
D
A1 (AREA A)
F
MILLIMETERS
67.6
A1
67.6±0.15
B
23.2
C
29.0
D
4.6
detail of A part
ITEM
A
W
D2
D1
X
V
D1
1.5±0.10
D2
4.0
E
F
32.8
3.7
H
0.8 (T.P.)
I
3.3
L
M
20.0
25.4±0.15
M1
M2
3.8 MAX.
N
3.4
22.0
R2.0
R
S
4.0±0.10
φ 1.8
T
1.0±0.1
U1
U2
3.2 MIN.
4.0 MIN.
V
0.25 MAX.
W
0.6±0.05
X
2.55 MIN.
Y
2.0 MIN.
E0028N11
Q
13
MC-45V8AB642KS
Edition /
Date
Page
This edition
Description
Previous
edition
Type of
−
−
Location
edition
NEC Corporation (M15239E)
1st edition /
−
−
Dec.2000
Elpida Memory, Inc. (E0028N)
1st edition /
Jan. 2001
−
−
−
Republished by Elpida Memory, Inc.
14
E0028N11
MC-45V8AB642KS
NOTES FOR CMOS DEVICES
1
PRECAUTION AGAINST ESD FOR SEMICONDUCTORS
Note:
Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and
ultimately degrade the device operation. Steps must be taken to stop generation of static electricity
as much as possible, and quickly dissipate it once, when it has occurred. Environmental control
must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using
insulators that easily build static electricity. Semiconductor devices must be stored and transported
in an anti-static container, static shielding bag or conductive material. All test and measurement
tools including work bench and floor should be grounded. The operator should be grounded using
wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need
to be taken for PW boards with semiconductor devices on it.
2
HANDLING OF UNUSED INPUT PINS FOR CMOS
Note:
No connection for CMOS device inputs can be cause of malfunction. If no connection is provided
to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence
causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels
of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused
pin should be connected to V DD or GND with a resistor, if it is considered to have a possibility of
being an output pin. All handling related to the unused pins must be judged device by device and
related specifications governing the devices.
3
STATUS BEFORE INITIALIZATION OF MOS DEVICES
Note:
Power-on does not necessarily define initial status of MOS device. Production process of MOS
does not define the initial operation status of the device. Immediately after the power source is
turned ON, the devices with reset function have not yet been initialized. Hence, power-on does
not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the
reset signal is received. Reset operation must be executed immediately after power-on for devices
having reset function.
E0028N11
15
MC-45V8AB642KS
The names of the companies, products, and logos described herein are the trademarks or registered trademarks of
each company.
CAUTION FOR HANDLING MEMORY MODULES
When handling or inserting memory modules, be sure not to touch any components on the modules, such as
the memory IC, chip capacitors and chip resistors. It is necessary to avoid undue mechanical stress on these
components to prevent damaging them.
When re-packing memory modules, be sure the modules are NOT touching each other. Modules in contact
with other modules may cause excessive mechanical stress, which may damage the modules.
• The information in this document is current as of April, 2001. The information is subject to change
without notice. For actual design-in, refer to the latest publications of Elpida's data sheets or data
books, etc., for the most up-to-date specifications of Elpida semiconductor products. Not all
products and/or types are available in every country. Please check with an Elpida Memory, Inc. for
availability and additional information.
• No part of this document may be copied or reproduced in any form or by any means without prior
written consent of Elpida. Elpida assumes no responsibility for any errors that may appear in this document.
• Elpida does not assume any liability for infringement of patents, copyrights or other intellectual property rights of
third parties by or arising from the use of Elpida semiconductor products listed in this document or any other
liability arising from the use of such products. No license, express, implied or otherwise, is granted under any
patents, copyrights or other intellectual property rights of Elpida or others.
• Descriptions of circuits, software and other related information in this document are provided for illustrative
purposes in semiconductor product operation and application examples. The incorporation of these
circuits, software and information in the design of customer's equipment shall be done under the full
responsibility of customer. Elpida assumes no responsibility for any losses incurred by customers or third
parties arising from the use of these circuits, software and information.
• While Elpida endeavours to enhance the quality, reliability and safety of Elpida semiconductor products,
customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To
minimize risks of damage to property or injury (including death) to persons arising from defects in Elpida
semiconductor products, customers must incorporate sufficient safety measures in their design, such as
redundancy, fire-containment, and anti-failure features.
• Elpida semiconductor products are classified into the following three quality grades:
"Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products
developed based on a customer-designated "quality assurance program" for a specific application. The
recommended applications of a semiconductor product depend on its quality grade, as indicated below.
Customers must check the quality grade of each semiconductor product before using it in a particular
application.
"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio
and visual equipment, home electronic appliances, machine tools, personal electronic equipment
and industrial robots
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support)
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems and medical equipment for life support, etc.
The quality grade of Elpida semiconductor products is "Standard" unless otherwise expressly specified in
Elpida's data sheets or data books, etc. If customers wish to use Elpida semiconductor products in
applications not intended by Elpida, they must contact an Elpida Memory, Inc. in advance to determine
Elpida's willingness to support a given application.
(Note)
(1) "Elpida" as used in this statement means Elpida Memory, Inc. and also includes its majority-owned
subsidiaries.
(2) "Elpida semiconductor products" means any semiconductor product developed or manufactured by or
for Elpida (as defined above).
M8E 00. 4