TI TMS570LS20206

TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
www.ti.com
SPNS141 – MARCH 2010
TMS570LS Series 16/32-BIT RISC Flash Microcontroller
Check for Samples: TMS570LS20216, TMS570LS20206, TMS570LS10216, TMS570LS10206, TMS570LS10116, TMS570LS10106
1 TMS570LS Series 16/32-BIT RISC Flash Microcontroller
1.1
Features
• High-Performance Automotive Grade
Microcontroller for Safety Critical Applications
– Certified for use in SIL3 Applications
– Dual CPU’s running in Lockstep
– ECC on Flash and SRAM
– CPU and Memory BIST (Built-In Self Test)
– Error Signaling Module (ESM) w/ Error Pin
• ARM® Cortex™-R4F 32-Bit RISC CPU
– Efficient 1.6 DMIPS/MHz with 8-stage
pipeline
– Floating Point Unit with Single/Double
Precision
– Memory Protection Unit (MPU)
– Open Architecture With Third-Party Support
• Operating Features
– Up to 160-MHz System Clock
– Core Supply Voltage (VCC): 1.5 V
– I/O Supply Voltage (VCCIO): 3.3 V
• Integrated Memory
– 1M-Byte or 2M-Byte Flash with ECC
– 128K-Byte or 160K-Byte RAM with ECC
• Multiple Communication interfaces including
Flexray, CAN, and LIN
• NHET Timer and 2x 12-bit ADC's
• External Memory Interface (EMIF)
– 16bit Data, 22bit Address, 4 Chip Selects
• Common TMS470/570 Platform Architecture
– Consistent Memory Map across the family
– Real-Time Interrupt (RTI) OS Timer
– Vectored Interrupt Module (VIM)
– Cyclic Redundancy Checker (CRC)
• Direct Memory Access (DMA) Controller
– 32 Control Packets and 16 Channels
– Parity on Control Packet Memory
– Dedicated Memory Protection Unit (MPU)
• Frequency-Modulated Zero-Pin Phase-Locked
Loop (FMZPLL)-Based Clock Module
– Oscillator and PLL clock monitor
• Up to 115 Peripheral IO pins
– 16 Dedicated GIO - 8 w/ External Interrupts
– Programmable External Clock (ECLK)
• Communication Interfaces
– Three Multi-buffered Serial Peripheral
Interface (MibSPI) each with:
• Four chip selects and one Enable pin
• 128 buffers with parity
• One with parallel mode
– Two UART (SCI) interfaces with Local
Interconnect Network Interface (LIN 2.0)
– Three CAN (DCAN) Controller
• Two with 64 mailboxes, one with 32
• Parity on mailbox RAM
– Dual Channel FlexRay™ Controller
• 8K-Byte message RAM with parity
• Transfer Unit with MPU and parity
• High-End Timer (nHET)
– 32 Programmable I/O Channels
– 128 Words High-End Timer RAM with parity
– Transfer Unit with MPU and parity
• Two 12-Bit Multi-Buffered ADCs (MibADC)
– 24 total ADC Input channels
– Each has 64 Buffers with parity
• Trace and Calibration Interfaces
– Embedded Trace Module (ETMR4)
– Data Modification Module (DMM)
– RAM Trace Port (RTP)
– Parameter Overlay Module (POM)
• On-Chip emulation logic including IEEE 1149.1
JTAG, Boundary Scan and ARM Coresight
components
• Full Development Kit Available
– Development Boards
– Code Composer Studio Integrated
Development Environment (IDE)
– HaLCoGen Code Generation Tool
– HET Assembler and Simulator
– nowFlash Flash Programming Tool
• Packages Supported
– 144-Pin Quad Flatpack (PGE) [Green]
– 337-Pin Ball Grid Array (ZWT) [Green]
• Community Resources
– TI E2E Community
1
2
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
All trademarks are the property of their respective owners.
PRODUCT PREVIEW information concerns products in the formative
or design phase of development. Characteristic data and other
specifications are design goals. Texas Instruments reserves the right
to change or discontinue these products without notice.
Copyright © 2010, Texas Instruments Incorporated
PRODUCT PREVIEW
12
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
SPNS141 – MARCH 2010
1.2
www.ti.com
Description
The TMS570LS series is a high performance automotive grade microcontroller family which has been
certified for use in IEC 61508 SIL3 safety systems. The safety architecture includes Dual CPUs in
lockstep, CPU and Memory Built-In Self Test (BIST) logic, ECC on both the Flash and the data SRAM,
parity on peripheral memories, and loop back capability on peripheral IOs.
The TMS570LS family integrates the ARM® Cortex™-R4F Floating Point CPU which offers an efficient 1.6
DMIPS/MHz, and has configurations which can run up to 160 MHz providing more than 250 DMIPS. The
TMS570LS series also provides different Flash (1MB or 2MB) and data SRAM (128KB or 160KB) options
with single bit error correction and double bit error detection.
The TMS570LS devices feature peripherals for real-time control-based applications, including up to 32
nHET timer channels and two 12-bit A to D converters supporting up to 24 inputs. There are multiple
communication interfaces including a 2-channel Flexray, 3 CAN controllers supporting 64 mailboxes each,
and 2 LIN/UART controllers.
With integrated SIL3 certified safety features and a wide choice of communication and control peripherals,
the TMS570LS series is an ideal solution for high performance real time control applications with safety
critical requirements.
PRODUCT PREVIEW
The devices included in the TMS570LS series and described in this document are:
• TMS570LS20216
• TMS570LS20206
• TMS570LS10216
• TMS570LS10206
• TMS570LS10116
• TMS570LS10106
The TMS570LS series microcontrollers contain the following:
• Dual TMS570 16/32-Bit RISC (ARM Cortex™-R4F) in Lockstep
• Up to 2M-Byte Program Flash with ECC
• Up to 160K-Byte Static RAM (SRAM) with ECC
• Real-Time Interrupt (RTI) Operating System Timer
• Vectored Interrupt Module (VIM)
• Cyclic Redundancy Checker (CRC) with Parallel Signature Analysis (PSA)
• Direct Memory Access (DMA) Controller
• Frequency-Modulated Phase-Locked Loop (FMZPLL)-Based Clock Module With Prescaler
• Three Multi-buffered Serial Peripheral Interfaces (MibSPI)
• Two UARTs (SCI) with Local Interconnect Network Interfaces (LIN)
• Three CAN Controllers (DCAN)
• High-End Timer (NHET) with dedicated Transfer Unit (HTU)
• Available FlexRay Controller with dedicated PLL and Transfer Unit (FTU)
• External Clock Prescale (ECP) Module
• Two 16-Channel 12-Bit Multi-Buffered ADCs (MibADC) - 8 shared channels between the two ADCs
• System Bus Parity with Failure Detection
• Error Signaling Module (ESM) with external error pin
• Voltage Monitor (VMON) with out of range reset assertion
• Embedded Trace Module (ETMR4)
• Data Modification Module (DMM)
• RAM Trace Port (RTP)
• Parameter Overlay Module (POM)
2
TMS570LS Series 16/32-BIT RISC Flash Microcontroller
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
www.ti.com
•
•
•
SPNS141 – MARCH 2010
16 Dedicated General-Purpose I/O (GIO) Pins for ZWT; 8 Dedicated GIO Pins for PGE
115 Total Peripheral I/Os for ZWT; 68 Total Peripheral I/Os for PGE
16-Bit External Memory Interface (EMIF)
The devices utilize the big-endian format where the most significant byte of a word is stored at the lowest
numbered byte and the least significant byte at the highest numbered byte.
The device has nine communication interfaces: three MibSPIs, two LIN/SCIs, three DCANs and one
FlexRay™ controller (optional). The SPI provides a convenient method of serial interaction for high-speed
communications between similar shift-register type devices. The LIN supports the Local Interconnect
standard 2.0 and can be used as a UART in full-duplex mode using the standard Non-Return-to-Zero
(NRZ) format. The DCAN supports the CAN 2.0B protocol standard and uses a serial, multimaster
communication protocol that efficiently supports distributed real-time control with robust communication
rates of up to 1 megabit per second (Mbps). The DCAN is ideal for applications operating in noisy and
harsh environments (e.g., automotive and industrial fields) that require reliable serial communication or
multiplexed wiring. The FlexRay uses a dual channel serial, fixed time base multimaster communication
protocol with communication rates of 10 megabits per second (Mbps) per channel. A FlexRay Transfer
Unit (FTU) enables autonomous transfers of FlexRay data to and from main CPU memory. Transfers are
protected by a dedicated, built-in Memory Protection Unit (MPU).
The NHET is an advanced intelligent timer that provides sophisticated timing functions for real-time
applications. The timer is software-controlled, using a reduced instruction set, with a specialized timer
micromachine and an attached I/O port. The NHET can be used for pulse width modulated outputs,
capture or compare inputs, or general-purpose I/O.. It is especially well suited for applications requiring
multiple sensor information and drive actuators with complex and accurate time pulses. A High End Timer
Transfer Unit (HET-TU) provides features to transfer NHET data to or from main memory. A Memory
Protection Unit (MPU) is built into the HET-TU to protect against erroneous transfers.
The device has two 12-bit-resolution MibADCs with 24 total channels and 64 words of parity protected
buffer RAM each. The MibADC channels can be converted individually or can be grouped by software for
sequential conversion sequences. Eight channels are shared between the two ADCs. There are three
separate groupings, two of which are triggerable by an external event. Each sequence can be converted
once when triggered or configured for continuous conversion mode.
The frequency-modulated phase-locked loop (FMZPLL) clock module contains a phase-locked loop, a
clock-monitor circuit, a clock-enable circuit, and a prescaler. The function of the FMZPLL is to multiply the
external frequency reference to a higher frequency for internal use. The FMZPLL provides one of the six
possible clock source inputs to the global clock module (GCM). The GCM module provides system clock
(HCLK), real-time interrupt clock (RTICLK1), CPU clock (GCLK), NHET clock (VCLK2), DCAN clock
(AVCLK1), and peripheral interface clock (VCLK) to all other peripheral modules.
The device also has an external clock prescaler (ECP) module that when enabled, outputs a continuous
external clock on the ECLK pin. The ECLK frequency is a user-programmable ratio of the peripheral
interface clock (VCLK) frequency.
The Direct Memory Access Controller (DMA) has 16 channels, 32 control packets and parity protection on
its memory. The DMA provides memory to memory transfer capabilities without CPU interaction. A
Memory Protection Unit (MPU) is built into the DMA to protect memory against erroneous transfers.
The Error Signaling Module (ESM) monitors all device errors and determines whether an interrupt or
external Error pin is triggered when a fault is detected.
TMS570LS Series 16/32-BIT RISC Flash Microcontroller
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
Copyright © 2010, Texas Instruments Incorporated
3
PRODUCT PREVIEW
The device memory includes general-purpose SRAM supporting single-cycle read/write accesses in byte,
halfword, and word modes. The flash memory on this device is a nonvolatile, electrically erasable and
programmable memory implemented with a 64-bit-wide data bus interface. The flash operates on a 3.3V
supply input (same level as I/O supply) for all read, program and erase operations. When in pipeline
mode, the flash operates with a system clock frequency of up to 160 MHz.
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
SPNS141 – MARCH 2010
www.ti.com
The External Memory Interface (EMIF) provides a memory extension to asynchronous memories or other
slave devices.
Several interfaces are implemented to enhance the debugging capabilities of application code. In addition
to the built in ARM Cortex™-R4F CoreSight™ debug features, an External Trace Macrocell (ETM)
provides instruction and data trace of program execution. For instrumentation purposes, a RAM Trace Port
Module (RTP) is implemented to support high-speed output of RAM accesses by the CPU or any other
master. A Direct Memory Module (DMM) gives the ability to write external data into the device memory.
Both the RTP and DMM have no or only minimum impact on the program execution time of the application
code. A Parameter Overlay Module (POM) can re-route Flash accesses to the EMIF, thus avoiding the
re-programming steps necessary for parameter updates in Flash.
PRODUCT PREVIEW
4
TMS570LS Series 16/32-BIT RISC Flash Microcontroller
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
www.ti.com
Functional Block Diagram
ETMDATA[31:0]
ETMTRACECTL
DAP
ETM
CCM-R4
ETMTRACECLKOUT
ETMTRACECLKIN
VCCP1
FLTP1
FLTP2
RAM
Flash
2.0MB
with ECC
160kB
Cortex-R4F
with MPU
P
O
M
with ECC
Cortex-R4F
with MPU
STC
LBIST
32 Regions
DMMENA
DMMSYNC
DMMCLK
DMMDATA[1:0]
DMMDATA[15:2]*
Flexray HET TU
8 DCP
TU
16 Channels
1 Port
with Parity
with MPU
with MPU
with Parity
SCR1
ERROR
LIN1
LIN2
Flexray
8k Byte
Msg RAM
with Parity
128 Words
with Parity
SYS
MiBSPI1
8 Transfer
Groups
Primary SCR
128 Buffers
with Parity
EMIFDQM[1:0]
EMIFDATA[15:0]
EMIFADD[21:0]
EMIFBADD[1:0]
EMIFCS[3:0]
EMIFWE
EMIFOE
OSCIN
OSCOUT
Kelvin_GND
SCR
CRC
Periph Bridge
2 Channel
EMIF
PCR
MiBSPI3
8 Transfer
Groups
128 Buffers
with Parity
MiBSPIP5
OSC
Clock
Monitor
8 Transfer
Groups
FMzPLL
RTI
FPLL
VIM
for Flexray
64 Channel
with Parity
128 Buffers
with Parity
DCAN1
64 Messages
with Parity
DCAN2
64 Messages
with Parity
64 Words
64 Words
with Parity
12Bit
64 Words
with Parity
12Bit
2 RAM blocks
AD2IN[7:0]
AD2EVT
MiBADC2
VCCAD
VSSAD
ADREFHI
ADREFLO
VMON
MiBADC1
RTPENA
RTPSYNC
RTPCLK
RTPDATA[15:0]
VccIO
RTP
AD1IN[7:0]
AD1EVT
ADSIN[15:8]
Vcc
FRAYRX1
FRAYTX1
FRAYTXEN1
FRAYRX2
FRAYTX2
FRAYTXEN2
NHET[31:0]
with MPU
with Parity
SCR2
ESM
RTCK
TDI
TDO
LIN1RX
LIN1TX
LIN2RX
LIN2TX
NHET
DMA
DMM
with
ICEPick
TRST
TMS
TCK
DCAN3
32 Messages
with Parity
GIO
RST
PORRST
TEST
ECLK
MIBSPI1SIMO
MIBSPI1SOMI
MIBSPI1CLK
MIBSPI1SCS[3:0]
MIBSPI1ENA
MIBSPI3SIMO
MIBSPI3SOMI
MIBSPI3CLK
MIBSPI3SCS[3:0]
MIBSPI3ENA
MIBSPI5SIMO[3:0]*
MIBSPI5SOMI[3:0]*
MIBSPI5CLK*
MIBSPI5SCS[3:0]*
MIBSPI5ENA*
CAN1RX
CAN1TX
CAN2RX
CAN2TX
CAN3RX
CAN3TX
GIOA[7:0]/INT[7:0]
GIOB[7:0]
Note:
Priorities
SCR : round robin
SCR1 : 1=DMA, 2=DMM, 3=DAP
SCR2 : round robin
* MIBSPIP5 pins are multiplexed
with DMMDATA[15:2] pins
TMS570LS Series 16/32-BIT RISC Flash Microcontroller
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
Copyright © 2010, Texas Instruments Incorporated
5
PRODUCT PREVIEW
1.3
SPNS141 – MARCH 2010
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
SPNS141 – MARCH 2010
1
TMS570LS Series 16/32-BIT RISC Flash
Microcontroller .......................................... 1
1.1
3
4
PRODUCT PREVIEW
5
6
Features .............................................. 1
........................................... 2
1.3
Functional Block Diagram ............................ 5
Device Overview ........................................ 7
2.1
Device Characteristics ............................... 7
2.2
Memory .............................................. 8
2.3
Pin Assignments .................................... 16
2.4
Terminal Functions ................................. 21
2.5
Device Support ..................................... 34
Reset / Abort Sources ................................ 36
3.1
Reset / Abort Sources .............................. 36
Peripherals .............................................. 39
4.1
Error Signaling Module (ESM) ...................... 39
4.2
Direct Memory Access (DMA) ...................... 42
4.3
High End Timer Transfer Unit (HET-TU) ........... 43
4.4
Vectored Interrupt Manager (VIM) .................. 44
4.5
MIBADC Event Trigger Sources .................... 46
4.6
MIBSPI .............................................. 47
4.7
ETM ................................................. 49
4.8
Debug Scan Chains ................................ 49
4.9
CCM ................................................ 51
4.10 LPM ................................................. 52
4.11 Voltage Monitor ..................................... 52
4.12 CRC ................................................ 52
4.13 System Module ..................................... 52
4.14 Debug ROM ........................................ 53
4.15 CPU Self Test Controller: STC / LBIST ............ 54
Device Registers ....................................... 56
1.2
2
www.ti.com
Description
Contents
6
................
....................................
5.3
PLL Registers .......................................
Device Electrical Specifications ....................
6.1
Operating Conditions ...............................
5.1
Device Identification Code Register
56
5.2
Die-ID Registers
58
6.2
6.3
6.4
7
60
Absolute Maximum Ratings Over Operating
Free-Air Temperature Range (unless otherwise
noted) ............................................... 60
Device Recommended Operating Conditions ...... 60
Electrical Characteristics Over Operating Free-Air
Temperature Range ................................ 61
..........
..............................................
ECLK Specification .................................
RST And PORRST Timings ........................
DAP - JTAG Scan Interface Timing ................
Output Timings .....................................
Input Timings .......................................
Flash Timings .......................................
SPI Master Mode Timing Parameters ..............
SPI Slave Mode Timing Parameters ...............
CAN Controller Mode Timings ......................
Flexray Controller Mode Timings ...................
EMIF Timings .......................................
ETM Timings .......................................
RTP Timings ........................................
DMM Timings .......................................
MibADC .............................................
Peripheral and Electrical Specifications
66
7.1
66
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14
7.15
7.16
8
59
60
Clocks
69
70
72
73
74
75
76
80
84
84
85
87
88
90
91
Mechanical Packaging and Orderable
Information .............................................. 97
.......................................
..............................
8.1
Thermal Data
8.2
Packaging Information
97
97
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
www.ti.com
SPNS141 – MARCH 2010
2 Device Overview
2.1
Device Characteristics
The table below shows the different configurations options offered in the TMS570LS series of devices:
Table 2-1. Characteristics of the TMS570LS Series Devices
Feature
Package
TMS570LS20216
337
BGA
144 QFP
TMS570LS20206
337
BGA
144 QFP
TMS570LS10216
337
BGA
144 QFP
TMS570LS10206
337
BGA
144 QFP
TMS570LS10116
337
BGA
144 QFP
TMS570LS10106
337
BGA
144 QFP
(ZWT)
(PGE)
(ZWT)
(PGE)
(ZWT)
(PGE)
(ZWT)
(PGE)
(ZWT)
(PGE)
(ZWT)
(PGE)
160MHz
140MHz
160MHz
140MHz
160MHz
140MHz
160MHz
140MHz
160MHz
140MHz
160MHz
140MHz
Flash
Size
2MB
2MB
2MB
2MB
1MB
1MB
1MB
1MB
1MB
1MB
1MB
1MB
RAM Size
160KB
160KB
160KB
160KB
160KB
160KB
160KB
160KB
160KB
160KB
128KB
128KB
FlexRay
2ch
2ch
-
-
2ch
2ch
-
-
2ch
2ch
-
-
CAN
3
2
3
2
3
2
3
2
3
2
3
2
MibSPI
3
3
3
3
3
3
3
3
3
3
3
3
UART /
LIN
2
2
2
2
2
2
2
2
2
2
2
2
NHET
Channels
32
25
32
25
32
25
32
25
32
25
32
25
12 Bit
ADC
Channels
24
20
24
20
24
20
24
20
24
20
24
20
EMIF
16-bit
-
16-bit
-
16-bit
-
16-bit
-
16-bit
-
16-bit
-
GIO
16
8
16
8
16
8
16
8
16
8
16
8
ETM
32-bit
-
32-bit
-
32-bit
-
32-bit
-
32-bit
-
32-bit
-
RTP
16-bit
-
16-bit
-
16-bit
-
16-bit
-
16-bit
-
16-bit
-
DMM
16-bit
-
16-bit
-
16-bit
-
16-bit
-
16-bit
-
16-bit
-
Device Overview
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
Copyright © 2010, Texas Instruments Incorporated
PRODUCT PREVIEW
Type
Speed
7
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
SPNS141 – MARCH 2010
2.2
2.2.1
www.ti.com
Memory
Memory Map
The memory map including all available Flash and RAM memory configurations for the device family are
shown in the Figure 2-1 figure below.
0xFFFFFFFF
0xFFF80000
0xFFF7FFFF
0xFF000000
0xFEFFFFFF
0xFE000000
SYSTEM Modules
Peripherals
CRC
RESERVED
0x6FFFFFFF
CS3
CS2
CS1
CS0
0x60000000
EMIF (256MB)
0x603FFFFF
POM (4MB) 0x60000000
RESERVED
0x204FFFFF
PRODUCT PREVIEW
Flash - ECC
(a)
(2MB Mirrored Image)
0x20400000
0x204FFFFF
RESERVED
Flash - ECC (1MB)(b)
RESERVED
0x201FFFFF
(a)
0x20400000
0x201FFFFF
Flash (2MB)
RESERVED
(Mirrored Image)
Flash (1MB)(b)
(Mirrored Image)
0x20000000
0x2047FFFF
0x200FFFFF
0x20000000
RESERVED
0x08427FFF
0x08400000
(c)
RAM - ECC (160kB)
0x08427FFF
RESERVED
(d) 0x08401FFF
RAM - ECC (128kB) 0x08400000
RESERVED
0x08027FFF
(c)
RAM (160kB)
RESERVED
(d)
RAM (128kB)
0x08000000
0x08027FFF
0x0801FFFF
0x08000000
RESERVED
0x004FFFFF
(a)
Flash-ECC (2MB)
0x00400000
RESERVED
Flash - ECC (1MB)
(b)
0x004FFFFF
0x0047FFFF
0x00400000
RESERVED
0x001FFFFF
0x001FFFFF
(a)
RESERVED
Flash (2MB)
(b)
0x000FFFFF
Flash (1MB)
0x00000000
0x00000000
(a)
(b)
(c )
(d)
2MB Flash Devices
1MB Flash Devices
160kB RAM Devices
128kB RAM Devices
Figure 2-1. Memory Map
8
Device Overview
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
www.ti.com
SPNS141 – MARCH 2010
PRODUCT PREVIEW
The Parameter Overlay memory space maps to the lower 4MB of the EMIF CS0 memory space. ECC
must be disabled by software via the CPU CP15 register if POM is used to overlay the program memory
to the EMIF space; otherwise ECC errors will be generated. The contents of memory connected to the
EMIF are not guaranteed after a power on reset. The addressable EMIF memory range is limited to the
lower 32MB of each EMIF chip select for 16bit memories, and to the lower 16MB of each EMIF chip select
for 8bit memories. The default EMIF data width is 16bit.
Device Overview
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
Copyright © 2010, Texas Instruments Incorporated
9
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
SPNS141 – MARCH 2010
2.2.2
www.ti.com
Flash Memory
The F035 (130nm Flash Process) Flash memory is a nonvolatile electrically erasable and programmable
memory. The Flash has a state machine for simplifying the program and erase functions.
This device’s 2M-byte flash memory contains four 512K-byte memory arrays (or banks) consisting of 22
total sectors. 1M-byte versions of the device contain only the first two 512K-byte banks (Bank 0 and Bank
1) and have a total of 14 sectors. The bank and sector configurations are shown in Flash Memory Banks
and Sectors . When in pipeline mode, the Flash operates with a system clock frequency of up to 160MHz
(versus a system clock in non-pipeline mode of up to 36MHz). The flash in pipeline mode is capable of
accessing 128 bits at a time and provides two 64-bit pipelined words to the CPU. The minimum size for an
erase operation is one sector. A single program operation can program either one 32-bit word or one
16-bit half word at a time.
Table 2-2. Flash Memory Banks and Sectors
Sector NO.
Segment
Low Address
High address
0
32K Bytes
0x0000_0000
0x0000_7FFF
1
32K Bytes
0x0000_8000
0x0000_FFFF
2
32K Bytes
0x0001_0000
0x0001_7FFF
3
8K Bytes
0x0001_8000
0x0001_9FFF
MEMORY ARRAYS (OR
BANKS)
Bank 0: 512K Bytes
PRODUCT PREVIEW
4
8K Bytes
0x0001_A000
0x0001_BFFF
5
16K Bytes
0x0001_C000
0x0001_FFFF
6
64K Bytes
0x0002_0000
0x0002_FFFF
7
64K Bytes
0x0003_0000
0x0003_FFFF
8
128K Bytes
0x0004_0000
0x0005_FFFF
9
128K Bytes
0x0006_0000
0x0007_FFFF
BANK0 (512k Bytes)
Bank 1: 512K Bytes
0
128K Bytes
0x0008_0000
0x0009_FFFF
1
128K Bytes
0x000A_0000
0x000B_FFFF
2
128K Bytes
0x000C_0000
0x000D_FFFF
3
128K Bytes
0x000E_0000
0x000F_FFFF
0
128K Bytes
0x0010_0000
0x0011_FFFF
1
128K Bytes
0x0012_0000
0x0013_FFFF
2
128K Bytes
0x0014_0000
0x0015_FFFF
3
128K Bytes
0x0016_0000
0x0017_FFFF
BANK1 (512k Bytes)
Bank 2: 512K Bytes
BANK2 (512k Bytes)
Bank 3: 512K Bytes
0
128K Bytes
0x0018_0000
0x0019_FFFF
1
128K Bytes
0x001A_0000
0x001B_FFFF
2
128K Bytes
0x001C_0000
0x001D_FFFF
3
128K Bytes
0x001E_0000
0x001F_FFFF
BANK3 (512k Bytes)
NOTE
The external flash pump voltage (VccP) is required for all flash operations (program, erase,
and read).
NOTE
After a system reset, pipeline mode is disabled (FRDCNTL[2:0] is a "000"). In other words,
the device powers up and comes out of reset in non-pipeline mode.
10
Device Overview
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
www.ti.com
2.2.3
SPNS141 – MARCH 2010
System Modules Assignment
This table shows the memory map for the Cyclic Redundancy Check (CRC) module, the Cortex™-R4F
CoreSight™ debug module, and the System modules.
Table 2-3. System Modules Assignment
Address Range
Frame Start Address
Frame Ending Address
CRC
0xFE00_0000
0xFEFF_FFFF
CoreSight Debug ROM Register
0xFFA0_0000
0xFFA0_0FFF
Cortex-R4F Debug Register
0xFFA0_1000
0xFFA0_1FFF
ETM-R4 Register
0xFFA0_2000
0xFFA0_2FFF
CoreSight TPIU Register
0xFFA0_3000
0xFFA0_3FFF
POM Register
0xFFA0_4000
0xFFA0_4FFF
DMA RAM
0xFFF8_0000
0xFFF8_0FFF
VIM RAM
0xFFF8_2000
0xFFF8_2FFF
RTP RAM
0xFFF8_3000
0xFFF8_3FFF
Flash Wrapper Register
0xFFF8_7000
0xFFF8_7FFF
PCR Register
0xFFFF_E000
0xFFFF_E0FF
Flexray PLL/STC CLK Register
0xFFFF_E100
0xFFFF_E1FF
PBIST Register
0xFFFF_E400
0xFFFF_E5FF
STC Register
0xFFFF_E600
0xFFFF_E6FF
EMIF Register
0xFFFF_E800
0xFFFF_E8FF
DMA Register
0xFFFF_F000
0xFFFF_F3FF
ESM Register
0xFFFF_F500
0xFFFF_F5FF
CCMR4 Register
0xFFFF_F600
0xFFFF_F6FF
DMM Register
0xFFFF_F700
0xFFFF_F7FF
RAM ECC even Register
0xFFFF_F800
0xFFFF_F8FF
RAM ECC odd Register
0xFFFF_F900
0xFFFF_F9FF
RTP Register
0xFFFF_FA00
0xFFFF_FAFF
RTI Register
0xFFFF_FC00
0xFFFF_FCFF
VIM Parity Register
0xFFFF_FD00
0xFFFF_FDFF
VIM Register
0xFFFF_FE00
0xFFFF_FEFF
System Register
0xFFFF_FF00
0xFFFF_FFFF
Device Overview
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
Copyright © 2010, Texas Instruments Incorporated
PRODUCT PREVIEW
Frame Name
11
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
SPNS141 – MARCH 2010
2.2.4
www.ti.com
Peripheral Selects
The peripheral frame contains the memory map for the peripheral registers as well as the peripheral
memories. The first table shows the memory map for the peripheral module registers and following table
shows the memory map for the peripheral module memories.
Table 2-4. Peripheral Select Assignment
Peripheral Module
Address Range
Peripheral Selects
Base Address
Ending Address
MIBSPIP5
0xFFF7_FC00
0xFFF7_FDFF
PS[0]
MIBSPI3
0xFFF7_F800
0xFFF7_F9FF
PS[1]
MIBSPI1
0xFFF7_F400
0xFFF7_F5FF
PS[2]
LIN2
0xFFF7_E500
0xFFF7_E5FF
PS[6]
LIN1
0xFFF7_E400
0xFFF7_E4FF
DCAN3
0xFFF7_E000
0xFFF7_E1FF
PS[7]
DCAN2
0xFFF7_DE00
0xFFF7_DFFF
PS[8]
DCAN1
0xFFF7_DC00
0xFFF7_DDFF
Flexray
0xFFF7_C800
0xFFF7_CFFF
PS[12]+PS[13]
MIBADC2
0xFFF7_C200
0xFFF7_C3FF
PS[15]
PRODUCT PREVIEW
MIBADC1
0xFFF7_C000
0xFFF7_C1FF
GIO
0xFFF7_BC00
0xFFF7_BCFF
PS[16]
NHET
0xFFF7_B800
0xFFF7_B8FF
PS[17]
HET TU
0xFFF7_A400
0xFFF7_A4FF
PS[22]
Flexray TU
0xFFF7_A000
0xFFF7_A1FF
PS[23]
Table 2-5. Peripheral Memory Selects
Peripheral Module Memory
12
Address Range
Peripheral Selects
Base Address
Ending Address
MIBSPIP5 RAM
0xFF0A0000
0xFF0BFFFF
PCS[5]
MIBSPI3 RAM
0xFF0C0000
0xFF0DFFFF
PCS[6]
MIBSPI1 RAM
0xFF0E0000
0xFF0FFFFF
PCS[7]
DCAN3 RAM
0xFF1A0000
0xFF1BFFFF
PCS[13]
DCAN2 RAM
0xFF1C0000
0xFF1DFFFF
PCS[14]
DCAN1 RAM
0xFF1E0000
0xFF1FFFFF
PCS[15]
MIBADC2 RAM
0xFF3A0000
0xFF3BFFFF
PCS[29]
MIBADC1 RAM
0xFF3E0000
0xFF3FFFFF
PCS[31]
NHET RAM
0xFF460000
0xFF47FFFF
PCS[35]
HET TU RAM
0xFF4E0000
0xFF4FFFFF
PCS[39]
Flexray TU RAM
0xFF500000
0xFF51FFFF
PCS[40]
Device Overview
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
www.ti.com
2.2.5
SPNS141 – MARCH 2010
Memory Auto-Initialization
This device allows some of the on-chip memories to be initialized via the memory hardware initialization
control registers in the System module. The purpose of having the hardware initialization is to program the
memory arrays with error detection capability to a known state based on their error detection scheme
(odd/even parity or ECC). The MINITGCR register enables the memory initialization sequence, and the
MSINENA register selects the memories that are to be initialized. Please refer to the Architecture chapter
of the Technical Reference Manual (TRM) for more information.
The mapping of the different memories to the specific bits in the MSINENA register is shown in the
following table.
Table 2-6. Memory Initialization
Address Range
Base Address
RAM Select
Ending Address
RAM
0x08000000
0x0801FFFF
0
MIBSPIP5 RAM
0xFF0A0000
0xF0BFFFFF
12
MIBSPI3 RAM
0xFF0C0000
0xFF0DFFFF
11
MIBSPI1 RAM
0xFF0E0000
0xFF0FFFFF
7
DCAN3 RAM
0xFF1A0000
0xFF1BFFFF
10
DCAN2 RAM
0xFF1C0000
0xFF1DFFFF
6
DCAN1 RAM
0xFF1E0000
0xFF1FFFFF
5
Flexray RAM
RAM is not visible
9
MIBADC2 RAM
0xFF3A0000
0xFF3BFFFF
14
MIBADC1 RAM
0xFF3E0000
0xFF3FFFFF
8
NHET RAM
0xFF460000
0xFF47FFFF
3
HET TU RAM
0xFF4E0000
0xFF4FFFFF
4
DMA RAM
0xFFF80000
0xFFF80FFF
1
VIM RAM
0xFFF82000
0xFFF82FFF
2
Flexray TU RAM
0xFF500000
0xFF51FFFF
13
Device Overview
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
Copyright © 2010, Texas Instruments Incorporated
PRODUCT PREVIEW
Connecting Module
13
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
SPNS141 – MARCH 2010
2.2.6
www.ti.com
PBIST RAM Self Test
The PBIST (Programmable Built-In Self Test) architecture provides a run-time-programmable memory
BIST engine for varying levels of test coverage across the device’s embedded RAM memory. The PBIST
architecture consists of a small CPU with an instruction set targeted specifically towards testing RAM
memories. This CPU includes both control and instruction registers necessary to execute the individual
memory algorithms. In order to minimize test load overhead, once an algorithm is loaded into the
instruction registers, it can be run on multiple memories of different sizes or types. The memory
configuration information and test algorithm code is stored in an on-chip ROM. The PBIST RAM groups
implemented on this device are shown in the following table. More information about memory self test can
be found in the PBIST chapter of the device TRM.
Table 2-7. PBIST RAM Grouping
RAM
Group
Module
PRODUCT PREVIEW
Memory
Type
RGS/RD
S
1
PBIST
ROM
ROM
2
STC
ROM
3
Test Pattern (Algorithm)
Triple
slow
read
Triple
fast read
March
13N[cycl
es]
Down 1A
Precharge
Map
column
DTXN 2A
PMOS
open
0/1
x
x
ROM
13/1
x
x
DCAN1
SP
1/0..2
12600
x
x
x
x
x
4
DCAN2
5
DCAN3
SP
2/0..2
12600
x
x
x
x
x
SP
3/0..2
6360
x
x
x
x
6
x
ESRAM
SP,
multistrobe w/
page
mode
4/21..22
266320
x
x
x
x
x
7
MibSPI
SP
5/0..5
50160
x
x
x
x
x
8
VIM
SP
Jun-00
4200
x
x
x
x
x
9
MibADC
2P, sync
write
async
read
7/0..1
8400
x
x
x
x
x
10
DMA
2P, sync
write
async
read
8/0..5
18960
x
x
x
x
x
11
NHET
2P, sync
write
async
read
9/0..11
25440
x
x
x
x
x
12
HET TU
2P, sync
write
async
read
10/0..5
6480
x
x
x
x
x
13
RTP
2P, sync
write
async
read
11/0..8
37800
x
x
x
x
x
14
Flexray
SP
12/0..7
175040
x
x
x
x
x
15
ESRAM
SP,
multistrobe w/
page
mode
20-Apr
133160
x
x
x
x
x
SP = Single Port RAM; 2P = Two Port RAM
14
Device Overview
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
www.ti.com
SPNS141 – MARCH 2010
NOTE
The March13N test algorithm is recommended for application testing.
The maximum PBIST test execution speed is limited to 100MHz.
The supply current while performing PBIST self test is different than the device operating
mode current. These values can be found in the Icc section of the device electrical
specifications.
PRODUCT PREVIEW
•
•
•
Device Overview
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
Copyright © 2010, Texas Instruments Incorporated
15
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
SPNS141 – MARCH 2010
2.3
www.ti.com
Pin Assignments
2.3.1
PGE QFP Package Pinout (144 pin)
75
74
73
78
77
76
85
84
83
82
81
80
79
95
94
93
92
91
90
89
88
87
86
97
96
99
98
100
102
101
72
109
110
71
70
69
68
67
66
65
64
63
62
61
60
59
58
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
57
56
55
54
53
52
51
50
131
49
48
47
46
45
44
43
42
41
40
39
38
37
132
133
134
135
136
137
138
139
140
141
142
36
34
35
32
33
30
31
24
25
26
27
28
29
21
22
23
18
19
20
ADSIN[11]
ADSIN[12]
ADSIN[13]
ADSIN[14]
ADSIN[15]
VCCAD
ADREFHI
ADREFLO
VSSAD
AD2IN[3]
AD2IN[2]
AD2IN[1]
AD2IN[0]
AD2EVT
TEST
NHET[9]
NHET[2]
CAN2RX
CAN2TX
LIN1RX
LIN1TX
GIOA[7]/INT[7]
CAN1TX
CAN1RX
NHET[6]
VCC
VSS
NHET[20]
NHET[5]
NHET[24]
NHET[1]
NHET[3]
VCCIO
VSSIO
VSS
VCC
VCCIO
VSSIO
MIBSPI3CLK
MIBSPI3SIMO
MIBSPI3SOMI
nMIBSPI3ENA
NMIBSPI3CS[0]
NHET[12]
NHET[22]
NHET[18]
NHET[21]
NHET[23]
MIBSPI1SOMI
MIBSPI1SIMO
VCCIO
VSSIO
MIBSPI1CLK
nMIBSPI1ENA
VCC
OSCIN
OSCOUT
VSS
nMIBSPI1CS[0]
nMIBSPI1CS[1]
nMIBSPI1CS[2]
NHET[13]
GIOA[6]/INT[6]
nPORRST
nTRST
TCK
VCC
VSS
TDO
TDI
RTCK
TMS
1
143
144
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
PRODUCT PREVIEW
NHET[7]
GIOA[4]/INT[4]
GIOA[5]/INT[5]
NHET[8]
NHET[15]
VCC
VSS
NHET[10]
NHET[11]
GIOA[0]/INT[0]
VCCIO
VSSIO
NHET[4]
FLTP1
FLTP2
FRAYTX1
FRAYTXEN1
FRAYRX1
VSS
VCCP
FRAYTX2
FRAYTXEN2
FRAYRX2
VCCIO
VSSIO
GIOA[1]/INT[1]
VCC
VSS
NHET[30]
NHET[14]
LIN2TX
LIN2RX
GIOA[2]/INT[2]
NHET[16]
nERROR
GIOA[3]/INT[3]
106
105
104
103
108
107
VCCIO
VSSIO
NHET[28]
NHET[0]
VCC
VSS
DMMDATA[15]/MIBSPI5SOMI[3]
DMMDATA[14]/MIBSPI5SOMI[2]
DMMDATA[13]/MIBSPI5SOMI[1]
DMMDATA[12]/MIBSPI5SOMI[0]
DMMDATA[11]/MIBSPI5SIMO[3]
DMMDATA[10]/MIBSPI5SIMO[2]
DMMDATA[9]/MIBSPI5SIMO[1]
DMMDATA[8]/MIBSPI5SIMO[0]
DMMDATA[7]/nMIBSPI5ENA
DMMDATA[6]/nMIBSPI5CS[1]
DMMDATA[5]/nMIBSPI5CS[0]
DMMDATA[4]/MIBSPI5CLK
VCCIO
VSSIO
ECLK
VCC
VSS
nRST
AD1EVT
AD1IN[0]
AD1IN[1]
AD1IN[2]
AD1IN[3]
AD1IN[4]
AD1IN[5]
AD1IN[6]
AD1IN[7]
ADSIN[8]
ADSIN[9]
ADSIN[10]
(TOP VIEW)
Figure 2-2. PGE Pinout (144 pin) [Top View]
16
Device Overview
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
www.ti.com
ZWT BGA Package Pinout (337 ball)
A
B
C
D
E
F
G
H
J
K
L
19
VSS
VSS
TMS
NHET
[10]
MIBSPI5
CS[0]
MIBSPI1
SIMO
MIBSPI1
ENA
MIBSPI5
CLK
MIBSPI5
SIMO[0]
NHET
[28]
DMM
DATA[0]
19
18
VSS
TCK
TDO
TRST
NHET
[08]
MIBSPI1
CLK
MIBSPI1
SOMI
MIBSPI5
ENA
MIBSPI5
SOMI[0]
NHET
[0]
DMM
DATA[1]
18
17
TDI
RST
EMIF_
ADDR[21]
EMIF
_WE
MIBSPI5
SOM[1]
DMM
CLK
MIBSPI5
SIMO[3]
MIBSPI5
SIMO[2]
NHET
[31]
EMIF_
CS[1]
EMIF_
CS[0]
17
16
RTCK
FRAY
TXEN1
EMIF_
ADDR[20]
EMIF_
BA[1]
MIBSPI5
SIMO[1]
DMM
ENA
MIBSPI5
SOMI[3]
MIBSPI5
SOMI[2]
DMM
SYNC
EMIF_
DATA[0]
EMIF_
DATA[1]
16
15
FRAY
RX1
FRAY
TX1
EMIF_
ADDR[19]
EMIF_
ADDR[18]
ETM
DATA[06]
ETM
DATA[05]
ETM
DATA[04]
ETM
DATA[03]
ETM
DATA[02]
ETM
DATA[16]
ETM
DATA[17]
15
14
NHET
[26]
ERROR
EMIF_
ADDR[15]
EMIF_
ADDR[16]
ETM
DATA[07]
VCCIO
VCCIO
VCCIO
VCC
VCC
VCCIO
14
13
NHET
[17]
NHET
[19]
EMIF_
ADDR[15]
EMIF_
BA[0]
ETM
DATA[12]
VCCIO
12
ECLK
NHET
[04]
EMIF_
ADDR[14]
EMIF_
OE
ETM
DATA[13]
11
NHET
[14]
NHET
[30]
EMIF_
ADDR[13]
EMIF_
DQM[1]
ETM
DATA[14]
10
CAN1
TX
CAN1
RX
EMIF_
ADDR[12]
EMIF_
DQM[0]
ETM
DATA[15]
A
B
C
D
E
13
VSS
VSS
VCC
VSS
12
VCCIO
VSS
VSS
VSS
VSS
11
VCC
VCC
VSS
VSS
VSS
10
J
K
L
VCCIO
F
PRODUCT PREVIEW
2.3.2
SPNS141 – MARCH 2010
G
H
Figure 2-3. ZWT Package Pinout Top Left Quadrant (337 ball) [Top View]
Device Overview
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
Copyright © 2010, Texas Instruments Incorporated
17
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
SPNS141 – MARCH 2010
www.ti.com
PRODUCT PREVIEW
K
L
M
N
P
R
T
19
NHET
[28]
DMM
DATA[0]
CAN3
RX
AD1
EVT
ADS
IN[15]
AD2
IN[6]
AD1
IN[6]
ADS
IN[11]
VSSAD
VSSAD
19
18
NHET
[0]
DMM
DATA[1]
CAN3
TX
NC
ADS
IN[8]
ADS
IN[14]
ADS
IN[13]
AD1
IN[4]
AD1
IN[2]
VSSAD
18
17
EMIF_
CS[1]
EMIF_
CS[0]
EMIF_
CS[2]
EMIF_
CS[3]
NC
AD1
IN[5]
AD1
IN[3]
ADS
IN[10]
AD1
IN[1]
ADS
IN[9]
17
16
EMIF_
DATA[0]
EMIF_
DATA[1]
EMIF_
DATA[2]
EMIF_
DATA[3]
NC
AD2
IN[7]
ADS
IN[12]
AD2
IN[3]
ADREF
LO
VSSAD
16
15
ETM
DATA[16]
ETM
DATA [17]
ETM
DATA[18]
ETM
DATA[19]
NC
NC
AD2
IN[5]
AD2
IN[4]
ADREF
HI
VCCAD
15
14
VCC
VCCIO
VCCIO
VCCIO
VCCIO
NC
NC
AD2
IN[2]
AD1
IN[7]
AD1
IN[0]
14
VCCIO
ETM
DATA[1]
NC
AD2
IN[1]
AD2
IN[0]
AD2
EVT
13
13
U
V
W
12
VCC
VSS
VSS
VCCIO
ETM
DATA[0]
MIBSPI5
CS[3]
RTP
ENA
LIN1
TX
LIN1
RX
12
11
VSS
VSS
VSS
VCC
ETM
TRACE
CTL
RTP
SYNC
RTP
DATA[1]
RTP
DATA[0]
RTP
CLK
11
10
VSS
VSS
VCC
VCC
ETM
TRACE
CLKOUT
RTP
DATA[2]
RTP
DATA[3]
MIBSPI3
CS[0]
GIOB[3]
10
K
L
M
P
R
T
U
V
W
N
Figure 2-4. ZWT Package Pinout Top Right Quadrant (337 ball) [Top View]
18
Device Overview
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
www.ti.com
SPNS141 – MARCH 2010
B
C
D
E
F
10
CAN1TX
CAN1RX
EMIF_
ADDR[12]
EMIF_
DQM[0]
ETM_
DATA[15]
9
NHET
[27]
FRAY
TXEN2
EMIF_
ADDR[11]
EMIF_
ADDR[5]
8
FRAY
RX2
FRAY
TX2
EMIF_
ADDR[10]
7
LIN2
RX
LIN2
TX
6
GIOA
[4]
5
G
H
J
K
L
VCC
VCC
VSS
VSS
VSS
10
ETM
DATA[8]
VCC
VSS
VSS
VSS
VSS
9
EMIF_
ADDR[4]
ETM
DATA[9]
VCCP
VSS
VSS
VCC
VSS
8
EMIF_
ADDR[9]
EMIF_
ADDR[3]
ETM
DATA[10]
VCCIO
MIBSPI5
CS[1]
EMIF_
ADDR[8]
EMIF_
ADDR[2]
ETM
DATA[11]
VCCIO
VCCIO
GIOA
[0]
GIOA
[5]
EMIF_
ADDR[7]
EMIF_
ADDR[1]
ETM
DATA[20]
ETM
DATA[21]
DATA[22]
NHET
NHET
EMIF_
EMIF_
EMIF_
EMIF_
[16]
[12]
ADDR[6]
ADDR[0]
DATA[4]
DATA[5]
3
NHET
[29]
NHET
[22]
MIBSPI3
CS[3]
NC
NHET
[11]
MIBSPI1
CS[1]
2
VSS
MIBSPI3
CS[2]
GIOA
[1]
NC
NC
1
VSS
VSS
GIOA
[2]
NC
A
B
C
D
4
7
VCCIO
VCCIO
FLTP2
FLTP1
EMIF_
NHET
DATA[6]
[21]
NHET
[23]
MIBSPI1
CS[2]
GIOA
[6]
GIOB
[2]
GIOB
[5]
CAN2
TX
GIOA
[3]
GIOB
[7]
GIOB
[4]
CAN2
RX
E
F
G
H
ETM
VCC
VCC
6
ETM
ETM
DATA[24]
5
DATA[23]
EMIF_
EMIF_
DATA[7]
DATA[8]
MIBSPI1
CS[3]
NC
NC
3
GIOB
[6]
GIOB
[1]
KELVIN
GND
2
NHET
[18]
OSCIN
OSCOUT
1
J
K
PRODUCT PREVIEW
A
4
L
Figure 2-5. ZWT Package Pinout Bottom Left Quadrant (337 ball) [Top View]
Device Overview
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
Copyright © 2010, Texas Instruments Incorporated
19
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
SPNS141 – MARCH 2010
www.ti.com
P
R
T
U
V
W
VCC
VCC
ETM
TRACE
CLKOUT
RTP
DATA[2]
RTP
DATA[3]
MIBSPI3
CS[0]
GIOB[3]
10
VSS
VCCIO
RTP
DATA[4]
RTP
DATA[4]
RTP
DATA[5]
MIBSPI3
CLK
MIBSPI3
ENA
9
VCCIO
ETM
DATA[31]
EMIF_
DATA[15]
RTP
DATA[6]
MIBSPI3
SOMI
MIBSPI3
SIMO
8
VCCIO
ETM
DATA[30]
EMIF_
DATA[14]
RTP
DATA[7]
NHET
[9]
PORRST
7
MIBSPI5
CS[2]
6
K
L
M
10
VSS
VSS
9
VSS
VSS
8
VCC
VSS
N
VSS
7
PRODUCT PREVIEW
6
VCC
VCC
VCCIO
VCCIO
VCCIO
ETM
DATA[29]
EMIF_
DATA[13]
RTP
DATA[8]
NHET
[5]
5
ETM
DATA[23]
ETM
DATA[24]
ETM
DATA[25]
ETM
DATA[26]
ETM
DATA[27]
ETM
DATA[28]
EMIF_
DATA[12]
RTP
DATA[9]
MIBSPI3
CS[1]
NHET
[2]
5
4
EMIF_
DATA[7]
EMIF_
DATA[8]
EMIF_
DATA[9]
EMIF_
DATA[10]
EMIF_
DATA[11]
NC
RTP
DATA[11]
RTP
DATA[19]
VSS
NC
4
3
NC
NC
NHET
[25]
NC
NC
RTP
DATA[14]
RTP
RTP
DATA[13] DATA[12]
NHET
[6]
3
2
GIOB
[1]
KELVIN
GND
GIOB
[0]
NHER
[13]
NHET
[20]
MIBSPI1
CS[0]
RTP
DATA[15]
TEST
NHET
[1]
VSS
2
1
OSCIN
OSCOUT
GIOA
[7]
NHET
[15]
NHET
[24]
NC
NHET
[7]
NHET
[3]
VSS
VSS
1
M
N
P
R
T
U
V
W
K
L
NC
Figure 2-6. ZWT Package Pinout Bottom Right Quadrant (337 ball) [Top View]
20
Device Overview
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
www.ti.com
2.4
SPNS141 – MARCH 2010
Terminal Functions
This following table describes the pins on the device.
Table 2-8. Terminal Functions
Terminal
Name
TMS570LSXXX16
337
144
TMS570LSXXX06
337
Type
144
Internal
pullup/p
ulldown
Description
NHET[0]
K18
105
K18
105
NHET[1]
V2
NHET[2]
W5
42
V2
42
56
W5
NHET[3]
56
U1
41
U1
NHET[4]
41
B12
121
B12
121
NHET[5]
V6
44
V6
44
NHET[6]
W3
48
W3
48
NHET[7]
T1
109
T1
109
NHET[8]
E18
112
E18
112
NHET[9]
V7
57
V7
57
NHET[10]
D19
116
D19
116
NHET[11]
E3
117
E3
117
NHET[12]
B4
8
B4
8
NHET[13]
N2
26
N2
26
NHET[14]
A11
138
A11
138
NHET[15]
N1
113
N1
113
NHET[16]
A4
142
A4
142
NHET[17]
A13
A13
NHET[18]
J1
NHET[19]
B13
10
J1
10
NHET[20]
P2
45
P2
45
NHET[21]
H4
11
H4
11
NHET[22]
B3
9
B3
9
NHET[23]
J4
12
J4
12
NHET[24]
P1
43
P1
43
3.3V I/O
2mA - z
program
mable
IPD
(20mA)
Timer input capture or output compare.
The applicable NHET pins can be
programmed as general-purpose
input/output (GIO) pins. NHET pins are
high-resolution.
The high-resolution (HR) SHARE feature
allows even HR pins to share the next
higher odd HR pin structures. The next
higher odd HR pin structure is always
implemented, even if the next higher odd
HR pad and/or pin itself is not. The HR
sharing is independent of whether or not
the odd pin is available externally. If an
odd pin is available externally and
shared, then the odd pin can only be
used as a general-purpose I/O.
NHET[0] provides SPI clock when used
for SPI emulation.
Each NHET pin is equipped with an input
suppression filter that can be used to
eliminate the sampling of pulses that are
smaller than a programmable duration
GIOA[0]/INT[0] is also connected to the
NHET Pin Disable input of the NHET
module.
NHET pins can be programmed as a
GIO pins when not used as NHET
functional pins.
B13
NHET[25]
M3
M3
NHET[26]
A14
A14
NHET[27]
A9
A9
NHET[28]
K19
NHET[29]
A3
NHET[30]
B11
NHET[31]
J17
106
K19
106
A3
137
B11
137
J17
Device Overview
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
Copyright © 2010, Texas Instruments Incorporated
21
PRODUCT PREVIEW
HIGH-END TIMER (NHET)
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
SPNS141 – MARCH 2010
www.ti.com
Table 2-8. Terminal Functions (continued)
Terminal
Name
TMS570LSXXX16
337
144
TMS570LSXXX06
337
Internal
pullup/p
ulldown
Type
144
Description
GENERAL-PURPOSE I/O (GIO)
GIOA[0]/INT0
A5
118
A5
118
GIOA[1]/INT1
C2
134
C2
134
GIOA[2]/INT2
C1
141
C1
141
GIOA[3]/INT3
E1
144
E1
144
GIOA[4]/INT4
A6
110
A6
110
GIOA[5]/INT5
B5
111
B5
111
GIOA[6]/INT6
H3
27
H3
27
GIOA[7]/INT7
M1
51
M1
51
GIOB[0]
M2
M2
GIOB[1]
K2
K2
PRODUCT PREVIEW
GIOB[2]
F2
F2
GIOB[3]
W10
W10
GIOB[4]
G1
G1
GIOB[5]
G2
G2
GIOB[6]
J2
J2
GIOB[7]
F1
F1
General-purpose input/output pin.
GIOA[0]/INT[0] is an interrupt-capable
pin. GIOA[0]/INT[0] is also connected to
the NHET Pin Disable input of the NHET
module.
3.3V I/O
2mA - z
Program
mable
IPD
(20mA)
General-purpose input/output
pins.GIOA[7:1]/INT[7:1] are
interrupt-capable pins.
General-purpose input/output pins.
Flexray Controller (FLEXRAY)
NOTE: Devices with out the FlexRay option should leave all FlexRay pins unconnected (NC)
FRAYRX1
A15
126
FRAYTX1
B15
124
FRAYTXEN1
B16
125
FRAYRX2
A8
131
FRAYTX2
B8
129
FRAYTXEN2
B9
130
Program
mable
Flexray data receive (channel 1) pin
IPD
(20mA)
3.3V I
3.3V O
8mA
Flexray data transmit (channel 1) pin
8mA
Flexray transmit enable (channel 1) pin
Program
mable
Flexray data receive (channel 2) pin
IPD(20m
A)
3.3V I
3.3V O
8mA
Flexray data transmit (channel 2) pin
8mA
Flexray transmit enable (channel 2) pin
CAN Controller (DCAN1)
CAN1TX
A10
50
A10
CAN1RX
B10
49
B10
CAN2TX
H2
54
H2
50
49
3.3V I/O
2mA - z
Program CAN1 transmit pin or GIO pin
mable
IPU
CAN1 receive pin or GIO pin
(20mA)
CAN Controller (DCAN2)
CAN2RX
H1
55
H1
CAN3TX
M18
M18
CAN3RX
M19
M19
54
55
3.3V I/O
2mA - z
Program CAN2 transmit pin or GIO pin
mable
IPU
CAN2 receive pin or GIO pin
(20mA)
CAN Controller (DCAN3)
22
Device Overview
3.3V I/O
2mA - z
program
mable
IPU
(20mA)
CAN3 transmit pin or GIO pin
CAN3 receive pin or GIO pin
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
www.ti.com
SPNS141 – MARCH 2010
Table 2-8. Terminal Functions (continued)
Terminal
Name
TMS570LSXXX16
337
TMS570LSXXX06
144
337
Internal
pullup/p
ulldown
Type
144
Description
Serial Communications Interface (SCI)/Local Interconnect Network (LIN1)
LIN1RX
W12
LIN1TX
V12
LIN2RX
A7
53
W12
52
V12
53
52
3.3V I/O
2mA - z
Program LIN1 data receive pin or GIO pin
mable
IPU
LIN1 data transmit pin or GIO pin
(20mA)
Serial Communications Interface (SCI)/Local Interconnect Network (LIN2)
LIN2TX
B7
140
A7
139
B7
140
139
3.3V I/O
2mA - z
Program LIN2 data receive pin or GIO pin
mable
IPU
LIN2 data transmit pin or GIO pin
(20mA)
Multibuffered Serial Peripheral Interface (MIBSPI1)
F18
17
F18
17
MIBSPI1CS[0]
R2
23
R2
23
MIBSPI1CS[1]
F3
24
F3
24
MIBSPI1CS[2]
G3
25
G3
25
MIBSPI1CS[3]
J3
MIBSPI1ENA
G19
218
G19
218
MIBSPI1SIMO
F19
14
F19
14
MIBSPI1SOMI
G18
13
G18
13
2mA - z
3.3V I/O
J3
MIBSPI1 slave chip select pins or GIO
pins
4mA
2mA - z
MIBSPI1 clock pin or GIO pin
Program
mable
IPU
(20µA) MIBSPI1 enable pin or GIO pin
MIBSPI1 data stream - Slave in/master
out pin or GIO pin
4mA
MIBSPI1 data stream - Slave out/master
in pin or GIO pin
Multibuffered Serial Peripheral Interface (MIBSPI3)
MIBSPI3CLK
V9
3
V9
3
MIBSPI3CS[0]
V10
7
V10
7
MIBSPI3CS[1]
V5
V5
MIBSPI3CS[2]
B2
B2
MIBSPI3CS[3]
C3
C3
MIBSPI3ENA
W9
6
W9
6
MIBSPI3SIMO
W8
4
W8
4
MIBSPI3SOMI
V8
5
V8
5
4mA
2mA - z
3.3V I/O
2mA - z
4mA
MIBSPI3 slave chip select pins or GIO
pins
MIBSPI3 clock pin or GIO pin
Program
mable
IPU
(20mA) MIBSPI3 enable pin or GIO pin
MIBSPI3 data stream - Slave in/master
out pin or GIO pin
MIBSPI3 data stream - Slave out/master
in pin or GIO pin
Device Overview
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
Copyright © 2010, Texas Instruments Incorporated
23
PRODUCT PREVIEW
MIBSPI1CLK
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
SPNS141 – MARCH 2010
www.ti.com
Table 2-8. Terminal Functions (continued)
Terminal
Name
TMS570LSXXX16
337
144
TMS570LSXXX06
337
Internal
pullup/p
ulldown
Type
144
Description
Multibuffered Serial Peripheral Interface - Parallel (MIBSPIP5)
PRODUCT PREVIEW
MIBSPI5CLK/DM
MDATA[4]
H19
91
H19
91
MIBSPI5CS[0]/DM
MDATA[5]
E19
92
E19
92
MIBSPI5CS[1]/DM
MDATA[6]
B6
93
B6
93
MIBSPI5CS[2]/DM
MDATA[2]
W6
W6
MIBSPI5CS[3]/DM
MDATA[3]
T12
T12
MIBSPI5ENA/DM
MDATA[7]
H18
94
H18
94
MIBSPI5SIMO[0]/
DMMDATA[8]
J19
95
J19
95
DMMDATA[9]/MIB
SPI5SIMO[1]
E16
96
E16
96
MIBSPI5SIMO[2]/
DMMDATA[10]
H17
97
H17
97
MIBSPI5SIMO[3]/
DMMDATA[11]
G17
98
G17
98
MIBSPI5SOMI[0]/
DMMDATA[12]
J18
99
J18
99
MIBSPI5SOMI[1]/
DMMDATA[13]
E17
100
E17
100
MIBSPI5SOMI[2]/
DMMDATA[14]
H16
101
H16
101
MIBSPI5SOMI[3]/
DMMDATA[15]/
G16
102
G16
102
4mA
2mA - z
MIBSPI5 clock pin or GIO pin;
multiplexed with DMMDATA[4] pin
MIBSPI5 slave chip select pins or GIO
pins; multiplexed with DMMDATA pins
MIBSPI5 enable pin or GIO pin;
multiplexed with DMMDATA[7] pin
Program
mable
IPU
(20mA) MIBSPI5 data stream - Slave in/master
out pins or GIO pins; multiplexed with
DMMDATA pins
3.3V I/O
4mA
MIBSPI5 data stream - Slave out/master
in pins or GIO pins; multiplexed with
DMMDATA pins
Multibuffered Analog-To-Digital Converter (MIBADC1)
AD1EVT
N19
84
N19
84
AD1IN[0]
W14
83
W14
83
AD1IN[1]
V17
82
V17
82
AD1IN[2]
V18
81
V18
81
AD1IN[3]
T17
80
T17
80
AD1IN[4]
U18
79
U18
79
AD1IN[5]
R17
78
R17
78
AD1IN[6]
T19
77
T19
77
AD1IN[7]
V14
76
V14
76
24
Device Overview
3.3V I/O
3.3V I
2 mA - z
Program
mable
MibADC1 event input pin or GIO pin
IPD
(20mA)
MibADC1 analog input pins
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
www.ti.com
SPNS141 – MARCH 2010
Table 2-8. Terminal Functions (continued)
Terminal
Name
TMS570LSXXX16
337
TMS570LSXXX06
144
337
Type
144
Internal
pullup/p
ulldown
Description
Multibuffered Analog-To-Digital Converter (MIBADC2)
AD2EVT
W13
59
W13
59
AD2IN[0]
V13
AD2IN[1]
U13
60
V13
60
61
U13
AD2IN[2]
61
U14
62
U14
62
AD2IN[3]
U16
63
U16
63
AD2IN[4]
U15
U15
AD2IN[5]
T15
T15
AD2IN[6]
R19
R19
AD2IN[7]
R16
R16
3.3V I/O
2 mA - z
3.3 V I
Program
mable
MibADC2 event input pin or GIO pin
IPD
(20mA)
MibADC2 analog input pins
ADSIN[8]
P18
75
P18
75
ADSIN[9]
W17
74
W17
74
ADSIN[10]
U17
73
U17
73
ADSIN[11]
U19
72
U19
72
ADSIN[12]
T16
71
T16
71
ADSIN[13]
T18
70
T18
70
ADSIN[14]
R18
69
R18
69
ADSIN[15]
P19
68
P19
68
ADREFHI
V15
66
V15
ADREFLO
V16
65
VCCAD
W15
VSSAD
V19
VSSAD
W16
W16
VSSAD
W18
W18
VSSAD
W19
W19
3.3 V I
MibADC1, MibADC2 shared analog input
pins
66
3.3-V
REF
MibADC1, MibADC2 module
high-voltage reference input
V16
65
GND
REF
MibADC1, MibADC2 module low-voltage
reference input
67
W15
67
3.3-V
PWR
MibADC1, MibADC2 analog supply
voltage
64
V19
64
GND
MibADC1, MibADC2 analog ground
reference
Oscillator (OSC)
OSCIN
K1
20
K1
20
1.5VI
Oscillator input connection pin or
external clock input pin
OSCOUT
L1
21
L1
21
1.5V O
Oscillator ouptut connection pin
Kelvin_GND
L2
L2
GND
Kelvin_GND for oscillator
Device Overview
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
Copyright © 2010, Texas Instruments Incorporated
25
PRODUCT PREVIEW
Multibuffered Analog-To-Digital Converter - shared signals (MIBADC1, MIBADC2)
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
SPNS141 – MARCH 2010
www.ti.com
Table 2-8. Terminal Functions (continued)
Terminal
Name
TMS570LSXXX16
337
144
TMS570LSXXX06
337
Internal
pullup/p
ulldown
Type
144
Description
System Module (SYS)
PORRST
W7
28
W7
28
Power on Reset Pin. External power
supply monitor circuitry must assert a
power-on reset on this pin.
3.3V I
IPD
(100µA)
RST
B17
85
B17
85
4mA
3.3V I/O
ECLK
A12
88
A12
88
8mA
IPD
(20µA)
Active Low Bidirectional Reset pin. An
external device can assert a device reset
on this pin.
The output buffer on this pin is
implemented as an open drain (drives
low only).
To ensure an external reset is not
arbitrarily generated, TI recommends
that an external pullup resistor is
connected to this pin.
External Clock Prescaler module output
pin or GIO pin
Tset/Debug (T/D)
PRODUCT PREVIEW
TCK
B18
30
B18
30
3.3V I
RTCK
A16
35
A16
35
3.3V O
TDI
A17
34
A17
34
TDO
C18
33
C18
33
C19
36
C19
36
TRST
D18
29
D18
29
JTAG return test clock pin. (JTAG)
JTAG test data in pin.
3.3V I/O
TMS
IPD
JTAG test clock pin. Clocks the JTAG
(100mA) debug logic.
JTAG test data out pin.
8 mA
JTAG serial input pin for controlling the
state of the CPU test access port (TAP)
controller.
IPU
JTAG test hardware reset to TAP. IEEE
(100mA)
Standard 1149-1 (JTAG) Boundary-Scan
Logic
3.3V I
TEST
U2
58
U2
Test enable pin. Reserved for internal TI
use only. For proper operation, this pin
must be connected to ground, e.g. using
a external resistor.
58
Error Signaling Module (ESM)
ERROR
B14
143
B14
143
3.3V I/O
8mA
IPD
(20mA)
Error Signaling pin
Flash
FLTP1
J5
122
J5
122
Flash Test Pad 1 pin. For proper
operation this pin must connect only to a
test pad or not be connected at all [no
connect (NC)]. The test pad must not be
exposed in the final product where it
might be subjected to an ESD event.
Flash Test Pad 2 pin. For proper
operation this pin must connect only to a
test pad or not be connected at all [no
connect (NC)]. The test pad must not be
exposed in the final product where it
might be subjected to an ESD event.
FLTP2
H5
123
H5
123
VCCP
F8
128
F8
128
26
Device Overview
3.3V
PWR
Flash pump voltage supply (3.3 V). This
pin is required for Flash read, program
and erase operations.
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
www.ti.com
SPNS141 – MARCH 2010
Table 2-8. Terminal Functions (continued)
Terminal
Name
TMS570LSXXX16
337
144
TMS570LSXXX06
337
Internal
pullup/p
ulldown
Type
144
Description
RAM Trace Port Module (RTP)
V11
V11
RTPDATA[1]
U11
U11
RTPDATA[2]
T10
T10
RTPDATA[3]
U10
U10
RTPDATA[4]
T9
T9
RTPDATA[5]
U9
U9
RTPDATA[6]
U8
U8
RTPDATA[7]
U7
U7
RTPDATA[8]
U6
U6
RTPDATA[9]
U5
U5
RTPDATA[10]
U4
U4
RTPDATA[11]
T4
T4
RTPDATA[12]
V3
V3
RTPDATA[13]
U3
U3
RTPDATA[14]
T3
T3
RTPDATA[15]
T2
T2
RTPENA
U12
U12
RTPSYNC
T11
T11
RTPCLK
W11
W11
8mA
Program
mable
IPU
(20mA)
3.3V I/O
2mA - z
8mA
RAM Trace Port Output Data Signal pins
or GIO pins
Packet Handshake Signal pin or GIO pin
Packet Synchronization Signal pin or
GIO pin
Packet Clock Signal pin or GIO pin
Device Overview
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
Copyright © 2010, Texas Instruments Incorporated
27
PRODUCT PREVIEW
RTPDATA[0]
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
SPNS141 – MARCH 2010
www.ti.com
Table 2-8. Terminal Functions (continued)
Terminal
Name
TMS570LSXXX16
337
144
TMS570LSXXX06
337
Internal
pullup/p
ulldown
Type
144
Description
Data Modification Module (DMM)
PRODUCT PREVIEW
DMMDATA[0]
L19
L19
DMMDATA[1]
L18
L18
DMMDATA[2]/MIB
SPI5CS[2]
W6
W6
DMMDATA[3]/MIB
SPI5CS[3]
T12
T12
DMMDATA[4]/MIB
SPI5CLK
H19
H19
DMMDATA[5]/MIB
SPI5CS[0]
E19
E19
DMMDATA[6]/MIB
SPI5CS[1]
B6
B6
DMMDATA[7]/MIB
SPI5ENA
H18
H18
DMMDATA[8]/MIB
SPI5SIMO[0]
J19
J19
DMMDATA[9]/MIB
SPI5SIMO[1]
E16
E16
DMMDATA[10]/MI
BSPI5SIMO[2]
H17
H17
DMMDATA[11]/MI
BSPI5SIMO[3]
G17
G17
DMMDATA[12]/MI
BSPI5SOMI[0]
J18
J18
DMMDATA[13]/MI
BSPI5SOMI[1]
E17
E17
DMMDATA[14]/MI
BSPI5SOMI[2]
H16
H16
DMMDATA[15]/MI
BSPI5SOMI[3]
G16
G16
DMMENA
F16
F16
DMMSYNC
J16
J16
DMMCLK
F17
F17
28
DMM Data pins or GIO pins
2mA - z
4mA
2mA - z
Program DMM Data pins or GIO pins; multiplexed
mable
with MIBSPI5 pins
IPU
(20mA)
3.3V I/O
4mA
Device Overview
8mA
2mA - z
DMM Handshake pin or GIO pin
DMM Synchronization pin or GIO pin
DMM Clock input pin or GIO pin
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
www.ti.com
SPNS141 – MARCH 2010
Table 2-8. Terminal Functions (continued)
Terminal
Name
TMS570LSXXX16
337
144
TMS570LSXXX06
337
Internal
pullup/p
ulldown
Type
144
Description
External Memory Interface Module (EMIF)
D13
D13
EMIFBADD[1]
D16
D16
EMIFDATA[0]
K16
K16
EMIFDATA[1]
L16
L16
EMIFDATA[2]
M16
M16
EMIFDATA[3]
N16
N16
EMIFDATA[4]
E4
E4
EMIFDATA[5]
F4
F4
EMIFDATA[6]
G4
G4
EMIFDATA[7]
K4
K4
EMIFDATA[8]
L4
L4
EMIFDATA[9]
M4
M4
EMIFDATA[10]
N4
N4
EMIFDATA[11]
P4
P4
EMIFDATA[12]
T5
T5
EMIFDATA[13]
T6
T6
EMIFDATA[14]
T7
T7
EMIFDATA[15]
T8
T8
EMIFADD[0]
D4
D4
EMIFADD[1]
D5
D5
EMIFADD[2]
D6
D6
EMIFADD[3]
D7
D7
EMIFADD[4]
D8
D8
EMIFADD[5]
D9
D9
EMIFADD[6]
C4
C4
EMIFADD[7]
C5
C5
EMIFADD[8]
C6
C6
EMIFADD[9]
C7
C7
EMIFADD[10]
C8
C8
EMIFADD[11]
C9
C9
EMIFADD[12]
C10
C10
EMIFADD[13]
C11
C11
EMIFADD[14]
C12
C12
EMIFADD[15]
C13
C13
EMIFADD[16]
D14
D14
EMIFADD[17]
C14
C14
EMIFADD[18]
D15
D15
EMIFADD[19]
C15
C15
EMIFADD[20]
C16
C16
EMIFADD[21]
C17
C17
EMIFCS[0]
L17
L17
EMIFCS[1]
K17
K17
EMIFCS[2]
M17
M17
EMIFCS[3]
N17
N17
3.3V I/O
8mA
EMIF Byte Address pins
3.3V I/O
8mA
3.3V I/O
8mA
EMIF Address pins
3.3V I/O
8mA
EMIF Chip Select pins
Program
mable
EMIF Data pins
IPU
(20mA)
PRODUCT PREVIEW
EMIFBADD[0]
Device Overview
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
Copyright © 2010, Texas Instruments Incorporated
29
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
SPNS141 – MARCH 2010
www.ti.com
Table 2-8. Terminal Functions (continued)
Terminal
Name
TMS570LSXXX16
337
144
TMS570LSXXX06
337
Internal
pullup/p
ulldown
Type
144
Description
EMIFWE
D17
D17
3.3V I/O
8mA
EMIF Write Enable pin
EMIFOE
D12
D12
3.3V I/O
8mA
EMIF Output Enable pin
EMIFDQM[0]
D10
D10
EMIFDQM[1]
D11
D11
3.3V I/O
8mA
EMIF Byte Enable pins
PRODUCT PREVIEW
30
Device Overview
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
www.ti.com
SPNS141 – MARCH 2010
Table 2-8. Terminal Functions (continued)
Terminal
Name
TMS570LSXXX16
337
144
TMS570LSXXX06
337
Internal
pullup/p
ulldown
Type
144
Description
ETMDATA[0]
R12
R12
ETMDATA[1]
R13
R13
ETMDATA[2]
J15
J15
ETMDATA[3]
H15
H15
ETMDATA[4]
G15
G15
ETMDATA[5]
F15
F15
ETMDATA[6]
E15
E15
ETMDATA[7]
E14
E14
ETMDATA[8]
E9
E9
ETMDATA[9]
E8
E8
ETMDATA[10]
E7
E7
ETMDATA[11]
E6
E6
ETMDATA[12]
E13
E13
ETMDATA[13]
E12
E12
ETMDATA[14]
E11
E11
ETMDATA[15]
E10
E10
ETMDATA[16]
K15
K15
ETMDATA[17]
L15
L15
ETMDATA[18]
M15
M15
ETMDATA[19]
N15
N15
ETMDATA[20]
E5
E5
ETMDATA[21]
F5
F5
ETMDATA[22]
G5
G5
ETMDATA[23]
K5
K5
ETMDATA[24]
L5
L5
ETMDATA[25]
M5
M5
ETMDATA[26]
N5
N5
ETMDATA[27]
P5
P5
ETMDATA[28]
R5
R5
ETMDATA[29]
R6
R6
ETMDATA[30]
R7
R7
ETMDATA[31]
R8
R8
ETMTRACECTL
R11
R11
ETMTRACECLKO
UT
R10
R10
ETMTRACECLKIN
R9
R9
3.3V O
8mA
3.3V O
8mA
ETM Trace Data output pins
ETM Control pin
3.3V I
ETM Clock output pin
IPU
(20mA)
ETM Clock input pin
Device Overview
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
Copyright © 2010, Texas Instruments Incorporated
PRODUCT PREVIEW
Embedded Trace Module (ETM)
31
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
SPNS141 – MARCH 2010
www.ti.com
Table 2-8. Terminal Functions (continued)
Terminal
Name
TMS570LSXXX16
337
144
TMS570LSXXX06
337
Type
144
Internal
pullup/p
ulldown
Description
Supply Voltage Digital I/O (3.3V) and Core (1.5V)
VCCIO
F6
1
F6
1
VCCIO
F7
15
F7
15
VCCIO
F11
40
F11
40
VCCIO
F12
90
F12
90
VCCIO
F13
108
F13
108
VCCIO
F14
119
F14
119
VCCIO
G6
132
G6
132
VCCIO
G14
VCCIO
H6
H6
VCCIO
H14
H14
G14
PRODUCT PREVIEW
VCCIO
J6
J6
VCCIO
L14
L14
VCCIO
M6
M6
VCCIO
M14
M14
VCCIO
N6
N6
VCCIO
N14
N14
VCCIO
P6
P6
VCCIO
P7
P7
VCCIO
P8
P8
VCCIO
P9
P9
VCCIO
P12
P12
VCCIO
P13
P13
VCCIO
P14
P14
3.3V
PWR
Digital I/O supply pins
Note: All VccIO pads are connected to
the BGA packages through the package
substrate. There is not a direct ball to
bond pad connection for this supply.
1.5V
PWR
Digital Core supply pins
Note: All Vcc pads are connected to the
BGA packages through the package
substrate. There is not a direct ball to
bond pad connection for this supply.
VCCIO
VCC
F9
19
F9
19
VCC
F10
31
F10
31
VCC
H10
37
H10
37
VCC
J14
47
J14
47
VCC
K6
87
K6
87
VCC
K8
104
K8
104
VCC
K12
114
K12
114
VCC
K14
135
K14
135
VCC
L6
L6
VCC
M10
M10
VCC
P10
P10
VCC
P11
P11
VCC
32
Device Overview
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
www.ti.com
SPNS141 – MARCH 2010
Table 2-8. Terminal Functions (continued)
Terminal
Name
TMS570LSXXX16
337
144
TMS570LSXXX06
337
Type
144
Internal
pullup/p
ulldown
Description
VSS
A1
2
A1
2
VSS
A2
16
A2
16
VSS
A18
22
A18
22
VSS
A19
32
A19
32
VSS
B1
38
B1
38
VSS
B19
39
B19
39
VSS
H8
46
H8
46
VSS
H9
86
H9
86
VSS
H11
89
H11
89
VSS
H12
103
H12
103
VSS
J8
107
J8
107
VSS
J9
115
J9
115
VSS
J10
120
J10
120
VSS
J11
127
J11
127
VSS
J12
133
J12
133
VSS
K9
136
K9
136
VSS
K10
K10
VSS
K11
K11
VSS
L8
L8
VSS
L9
L9
VSS
L10
L10
VSS
L11
L11
VSS
L12
L12
VSS
M8
M8
VSS
M9
M9
VSS
M11
M11
VSS
M12
M12
VSS
V1
V1
VSS
W1
W1
VSS
W2
W2
VSS
V4
V4
GND
Digital supply ground reference pins
Note: All Vss pads are connected to the
BGA packages through the package
substrate.
VSS
VSS
VSS
VSS
VSS
Device Overview
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
Copyright © 2010, Texas Instruments Incorporated
33
PRODUCT PREVIEW
Supply Ground
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
SPNS141 – MARCH 2010
2.5
2.5.1
www.ti.com
Device Support
Device and Development-Support Tool Nomenclature
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all
devices and support tools. Each commercial family member has one of three prefixes: TMX, TMP, or TMS
(e.g.,TMS570LS20216ASPGEQQ1). Texas Instruments recommends two of three possible prefix
designators for its support tools: TMDX and TMDS. These prefixes represent evolutionary stages of
product development from engineering prototypes (TMX/TMDX) through fully qualified production
devices/tools (TMS/TMDS).
Device development evolutionary flow:
TMX
Experimental device that is not necessarily representative of the final device's electrical
specifications.
TMP
Final silicon die that conforms to the device's electrical specifications but has not completed
quality and reliability verification.
TMS
Fully-qualified production device.
Support tool development evolutionary flow:
PRODUCT PREVIEW
TMDX
Development-support product that has not yet completed Texas Instruments internal
qualification testing.
TMDS
Fully qualified development-support product.
TMX and TMP devices and TMDX development-support tools are shipped against the following
disclaimer:
"Developmental product is intended for internal evaluation purposes."
TMS devices and TMDS development-support tools have been characterized fully, and the quality and
reliability of the device have been demonstrated fully. TI's standard warranty applies.
Predictions show that prototype devices (TMX or TMP) have a greater failure rate than the standard
production devices. Texas Instruments recommends that these devices not be used in any production
system because their expected end-use failure rate still is undefined. Only qualified production devices are
to be used.
TI device nomenclature also includes a suffix with the device family name. This suffix indicates the
package type (for example, PGE), the temperature range (for example, "Blank" is the commercial
temperature range), and the device speed range in megahertz.
34
Device Overview
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
www.ti.com
SPNS141 – MARCH 2010
Full Part #
TMS
570
LS
20
2 16
A
S
PGE
Q
Q1
R
S
5
LS
20
2 16
A
S
PGE
Q
Q1
R
Orderable Part #
Prefix: TM
S = Fully TMS Qualified
P = TMP Prototype
X = TMX Samples
Core Technology:
5 = 570 Cortex R4
Architecture:
LS = Lockstep CPUs
Flash Memory Size:
20 = 2MB
10 = 1MB
RAM Memory Size:
PRODUCT PREVIEW
2 = 160kB
1 = 128kB
Peripheral Set:
16 = Flexray
06 = No Flexray
Die Revision:
Blank = Initial Die
A = 1st Die Revision
B = 2nd Die Revision
Technology/Core Voltage:
S = F035 (130nm), 1.5 V nominal core voltage
Package Type:
PGE = 144p QFP Package [Green]
ZWT = 337p BGA Package [Green]
Temperature Range:
I = -40...+85oC
T = -40...+105ooC
Q = -40...+125 C
Quality Designator:
Q1 = Automotive
Shipping Options:
R = Tape and Reel
A.
For actual device part numbers (P/Ns) and ordering information, see the TI website (http://www.ti.com).
Figure 2-7. Device Numbering Conventions(A)
Device Overview
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
Copyright © 2010, Texas Instruments Incorporated
35
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
SPNS141 – MARCH 2010
www.ti.com
3 Reset / Abort Sources
3.1
Reset / Abort Sources
The device Resets and Aborts are handled as shown in the following table. The table shows the source of
the error, the system mode, the type of error response and the corresponding Error Signaling Module
(ESM) channel. Only standard ARM exception handlers and ESM errors are used.
Table 3-1. Reset / Abort Sources
Error Source
System Mode
Error Response
ESM Hookup group channel
Precise write error (Strongly
Ordered)
User/Privilege
Precise Abort (CPU)
n/a
Precise read error (Device or
Normal)
User/Privilege
Precise Abort (CPU)
n/a
Imprecise write error (Device or
Normal)
User/Privilege
Imprecise Abort (CPU)
n/a
Illegal instruction
User/Privilege
Undefined Instruction Trap
(CPU) (1)
n/a
MPU access violation
User/Privilege
Abort (CPU)
n/a
B0 Tightly Coupled Memory
(TCM) (even) ECC single error
(correctable)
User/Privilege
ESM
1.26
B0 TCM (even) ECC double error
(non-correctable)
User/Privilege
Abort (CPU), ESM => nERROR
1) CPU transactions
PRODUCT PREVIEW
2) SRAM
ESM => nERROR
3.3
B0 TCM (even) uncorrectable
error (i.e. redundant address
decode)
User/Privilege
ESM => NMI
2.6
B0 TCM (even) address bus
parity error
User/Privilege
ESM => NMI
2.1
B1 TCM (odd) ECC single error
(correctable)
User/Privilege
ESM
1.28
B1 TCM (odd) ECC double error
(non-correctable)
User/Privilege
Abort (CPU), ESM => nERROR
ESM => nERROR
3.5
B1 TCM (odd) uncorrectable
error (i.e. redundant address
decode)
User/Privilege
ESM => NMI
2.8
B1 TCM (odd) address bus parity
error
User/Privilege
ESM => NMI
2.12
1.6
3) Flash with ECC INTEGRATED INTO CPU
ECC single error (correctable)
User/Privilege
ESM
ECC double error
(non-correctable)
User/Privilege
Abort (CPU), ESM => nERROR
ESM => nERROR
3.7
Uncorrectable error (i.e.
redundant address tag,
redundant syndrome
compare, address bus parity,
etc.)
User/Privilege
ESM => NMI
2.4
4) DMA transactions
(1)
36
The Undefined Instruction TRAP is NOT detectable outside the CPU. The trap is taken only if the Code reaches the execute stage of
the CPU.
Reset / Abort Sources
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
www.ti.com
SPNS141 – MARCH 2010
Table 3-1. Reset / Abort Sources (continued)
Error Source
System Mode
Error Response
ESM Hookup group channel
External imprecise error on read
(Illegal transaction with ok
response)
User/Privilege
ESM
1.5
External imprecise error on write
(Illegal transaction with ok
response)
User/Privilege
ESM
1.13
Memory access permission
violation
User/Privilege
ESM
1.2
Memory parity error
User/Privilege
ESM
1.3
External imprecise error on read
(Illegal transaction with ok
response)
User/Privilege
ESM
1.5
External imprecise error on write
(Illegal transaction with ok
response)
User/Privilege
ESM
1.13
External imprecise error on read
(Illegal transaction with ok
response)
User/Privilege
ESM
1.5
External imprecise error on write
(Illegal transaction with ok
response)
User/Privilege
ESM
1.13
NCNB (Strongly Ordered)
transaction with slave error
response
User/Privilege
Interrupt => VIM
n/a
External imprecise error (Illegal
transaction with ok response)
User/Privilege
Interrupt => VIM
n/a
Memory access permission
violation
User/Privilege
ESM
1.9
Memory parity error
User/Privilege
ESM
1.8
User/Privilege
ESM
1.7
MibSPI1 memory parity error
User/Privilege
ESM
1.17
MibSPI3 memory parity error
User/Privilege
ESM
1.18
MibSPIP5 memory parity error
User/Privilege
ESM
1.24
MibADC1 memory parity error
User/Privilege
ESM
1.19
MibADC2 memory parity error
User/Privilege
ESM
1.1
DCAN1 memory parity error
User/Privilege
ESM
1.21
DCAN2 memory parity error
User/Privilege
ESM
1.23
DCAN3 memory parity error
User/Privilege
ESM
1.22
User/Privilege
ESM
1.1
User/Privilege
ESM
1.11
5) DMM transactions
PRODUCT PREVIEW
6) AHB-AP transactions
7) HET TU
8) NHET
Memory parity error
9) MibSPI
10) MibADC
11) DCAN
12) PLL
PLL slip error
13) Clock monitor
Clock monitor interrupt
14) CCM
Self test failure
User/Privilege
ESM
1.31
Compare failure
User/Privilege
ESM => NMI
2.2
Reset / Abort Sources
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
Copyright © 2010, Texas Instruments Incorporated
37
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
SPNS141 – MARCH 2010
www.ti.com
Table 3-1. Reset / Abort Sources (continued)
Error Source
System Mode
Error Response
ESM Hookup group channel
User/Privilege
ESM
1.12
NCNB (Strongly Ordered)
transaction with slave error
response
User/Privilege
Interrupt => VIM
n/a
External imprecise error (Illegal
transaction with ok response)
User/Privilege
Interrupt => VIM
n/a
Memory access permission
violation
User/Privilege
ESM
1.16
Memory parity error
User/Privilege
ESM
1.14
User/Privilege
ESM
1.15
n/a
Reset
n/a
User/Privilege
ESM
1.27
15) Flexray
Memory parity error
16) Flexray TU
17) VIM
Memory parity error
18) voltage monitor
VMON out of voltage range
19) CPU Selftest (LBIST)
CPU Selftest (LBIST) error
PRODUCT PREVIEW
20) errors reflected in the SYSESR register
Power-Up Reset; VCC out of
voltage range
n/a
Reset
n/a
Oscillator fail / PLL slip (2)
n/a
Reset
n/a
Watchdog time limit exceeded
n/a
Reset
n/a
CPU Reset
n/a
Reset
n/a
Software Reset
n/a
Reset
n/a
External Reset
n/a
Reset
n/a
(2)
38
Oscillator fail/PLL slip can be configured in the system register PLLCTL1 to generate a reset.
Reset / Abort Sources
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
www.ti.com
SPNS141 – MARCH 2010
4 Peripherals
4.1
Error Signaling Module (ESM)
The Error Signaling Module (ESM) is used to indicate a severe device failure via interrupts and the
external ERROR pin. The error pin is normally used by an external device to either reset the controller
and/or keep the system in a fail safe state.
The ESM module consists of three error groups with 32 inputs each. The generation of the interrupts and
the activation of the ERROR Pin is shown in the following table. The next table shows the ESM error
sources and their corresponding group and channel numbers.
Table 4-1. ESM Groups
Error Group
Interrupt, Level
Influence on Error pin
Group1
maskable, low/high
configurable
Group2
non-maskable, high
fixed
Group3
none, none
fixed
ERROR Sources
Group
Channels
Reserved
Group1
0
MibADC2 - parity
Group1
1
DMA - MPU
Group1
2
DMA - parity
Group1
3
Reserved
Group1
4
DMA/DMM/AHB-AP - imprecise read error
Group1
5
Flash (ATCM) - correctable error
Group1
6
NHET - parity
Group1
7
HET TU - parity
Group1
8
HET TU - MPU
Group1
9
PLL - slip
Group1
10
Clock Monitor - interrupt
Group1
11
Flexray - parity
Group1
12
DMA/DMM/AHB-AP - imprecise write error
Group1
13
Flexray TU - parity
Group1
14
VIM RAM - parity
Group1
15
Flexray TU - MPU
Group1
16
MibSPI1 - parity
Group1
17
MibSPI3 - parity
Group1
18
MibADC1 - parity
Group1
19
Reserved
Group1
20
DCAN1 - parity
Group1
21
DCAN3 - parity
Group1
22
DCAN2 - parity
Group1
23
MibSPIP5 - parity
Group1
24
Reserved
Group1
25
RAM even bank (B0TCM) - correctable error
Group1
26
CPU - selftest
Group1
27
RAM odd bank (B1TCM) - correctable error
Group1
28
Reserved
Group1
29
Peripherals
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
Copyright © 2010, Texas Instruments Incorporated
PRODUCT PREVIEW
Table 4-2. ESM Assignments
39
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
SPNS141 – MARCH 2010
www.ti.com
Table 4-2. ESM Assignments (continued)
PRODUCT PREVIEW
40
ERROR Sources
Group
Channels
Reserved
Group1
30
CCM-R4 - selftest
Group1
31
Reserved
Group2
0
Reserved
Group2
1
CCM-R4 - compare
Group2
2
Reserved
Group2
3
Flash (ATCM) - uncorrectable error
Group2
4
Reserved
Group2
5
RAM even bank (B0TCM) - uncorrectable error
Group2
6
Reserved
Group2
7
RAM odd bank (B1TCM) - uncorrectable error
Group2
8
Reserved
Group2
9
RAM even bank (B0TCM) - address bus parity error
Group2
10
Reserved
Group2
11
RAM odd bank (B1TCM) - address bus parity error
Group2
12
Reserved
Group2
13
Reserved
Group2
14
Reserved
Group2
15
Flash (ATCM) - ECC live lock detect
Group2
16
Reserved
Group2
17
Reserved
Group2
18
Reserved
Group2
19
Reserved
Group2
20
Reserved
Group2
21
Reserved
Group2
22
Reserved
Group2
23
Reserved
Group2
24
Reserved
Group2
25
Reserved
Group2
26
Reserved
Group2
27
Reserved
Group2
28
Reserved
Group2
29
Reserved
Group2
30
Reserved
Group2
31
Reserved
Group3
0
Reserved
Group3
1
Reserved
Group3
2
RAM even bank (B0TCM) - ECC uncorrectable error
Group3
3
Reserved
Group3
4
RAM odd bank (B1TCM) - ECC uncorrectable error
Group3
5
Reserved
Group3
6
Flash (ATCM) - ECC uncorrectable error
Group3
7
Reserved
Group3
8
Reserved
Group3
9
Reserved
Group3
10
Reserved
Group3
11
Reserved
Group3
12
Peripherals
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
www.ti.com
SPNS141 – MARCH 2010
Group
Channels
Reserved
Group3
13
Reserved
Group3
14
Reserved
Group3
15
Reserved
Group3
16
Reserved
Group3
17
Reserved
Group3
18
Reserved
Group3
19
Reserved
Group3
20
Reserved
Group3
21
Reserved
Group3
22
Reserved
Group3
23
Reserved
Group3
24
Reserved
Group3
25
Reserved
Group3
26
Reserved
Group3
27
Reserved
Group3
28
Reserved
Group3
29
Reserved
Group3
30
Reserved
Group3
31
Peripherals
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
Copyright © 2010, Texas Instruments Incorporated
PRODUCT PREVIEW
Table 4-2. ESM Assignments (continued)
ERROR Sources
41
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
SPNS141 – MARCH 2010
4.2
www.ti.com
Direct Memory Access (DMA)
The direct-memory access (DMA) controller transfers data to and from any specified location in the device
memory map. The DMA supports data transfer for both on-chip memories and peripherals.
The DMA controller on this device supports 16 channels and 32 request lines. Each of the 32 DMA
requests are assigned by default to one of the 32 available channels. For DMA requests multiplexed
between multiple sources, the DMA controller cannot differentiate between the multiple sources and the
user has to ensure that multiple sources are not enabled at the same time. Please refer to the DMA
Specification in the TRM for more details.
The DMA request configuration is shown in the following table.
Table 4-3. DMA Request Line Connection
PRODUCT PREVIEW
(1)
(2)
42
Modules
DMA Request Sources
DMA Request
MIBSPI1
MIBSPI1[1] (1)
DMAREQ[0]
(2)
DMAREQ[1]
MIBSPI1
MIBSPI1[0]
Reserved
Reserved
DMAREQ[2]
Reserved
Reserved
DMAREQ[3]
MIBSPI1 / MIBSPI3 / DCAN2
MIBSPI1[2] / MIBSPI3[2] / DCAN2 IF3
DMAREQ[4]
MIBSPI1 / MIBSPI3 / DCAN2
MIBSPI1[3] / MIBSPI3[3] / DCAN2 IF2
DMAREQ[5]
MIBSPIP5 / DCAN1
MIBSPIP5[2] / DCAN1 IF2
DMAREQ[6]
MIBADC1 / MIBSPIP5
MIBADC1 event / MIBSPIP5[3]
DMAREQ[7]
MIBSPI1 / MIBSPI3 / DCAN1
MIBSPI1[4] / MIBSPI3[4] / DCAN1 IF1
DMAREQ[8]
MIBSPI1 / MIBSPI3 / DCAN2
MIBSPI1[5] / MIBSPI3[5] / DCAN2 IF1
DMAREQ[9]
MIBADC1 / MIBSPIP5
MIBADC1 G1 / MIBSPIP5[4]
DMAREQ[10]
MIBADC1 / MIBSPIP5
MIBADC1 G2 / MIBSPIP5[5]
DMAREQ[11]
RTI / MIBSPI1 / MIBSPI3
RTI DMAREQ0 / MIBSPI1[6] / MIBSPI3[6]
DMAREQ[12]
RTI / MIBSPI1 / MIBSPI3
RTI DMAREQ1 / MIBSPI1[7] / MIBSPI3[7]
DMAREQ[13]
MIBADC2 / MIBSPI3 / MIBSPIP5
MIBADC2 event / MIBSPI3[1]* / MIBSPIP5[6]
DMAREQ[14]
MIBSPI3 / MIBSPIP5
MIBSPI3[0]† / MIBSPIP5[7]
DMAREQ[15]
MIBADC2 / MIBSPI1 / MIBSPI3 / DCAN1
MIBADC2 G1 / MIBSPI1[8] / MIBSPI3[8] / DCAN1
IF3
DMAREQ[16]
MIBADC2 / MIBSPI1 / MIBSPI3 / DCAN3
MIBADC2 G2 / MIBSPI1[9] / MIBSPI3[9] / DCAN3
IF1
DMAREQ[17]
RTI / MIBSPIP5
RTI DMAREQ2 / MIBSPIP5[8]
DMAREQ[18]
RTI / MIBSPIP5
RTI DMAREQ3 / MIBSPIP5[9]
DMAREQ[19]
LIN2 / NHET / DCAN3
LIN2 receive / NHET DMAREQ[4] / DCAN3 IF2
DMAREQ[20]
LIN2 / NHET / DCAN3
LIN2 transmit / NHET DMAREQ[5] / DCAN3 IF3
DMAREQ[21]
MIBSPI1 / MIBSPI3 / MIBSPIP5
MIBSPI1[10] / MIBSPI3[10] / MIBSPIP5[10]
DMAREQ[22]
MIBSPI1 / MIBSPI3 / MIBSPIP5
MIBSPI1[11] / MIBSPI3[11] / MIBSPIP5[11]
DMAREQ[23]
NHET / MIBSPIP5
NHET DMAREQ[6] / MIBSPIP5[12]
DMAREQ[24]
NHET / MIBSPIP5
NHET DMAREQ[7] / MIBSPIP5[13]
DMAREQ[25]
CRC / MIBSPI1 / MIBSPI3
CRC DMAREQ[0] / MIBSPI1[12] / MIBSPI3[12]
DMAREQ[26]
CRC / MIBSPI1 / MIBSPI3
CRC DMAREQ[1] / MIBSPI1[13] / MIBSPI3[13]
DMAREQ[27]
LIN1 / MIBSPIP5
LIN1 receive / MIBSPIP5[14]
DMAREQ[28]
LIN1 / MIBSPIP5
LIN1 transmit / MIBSPIP5[15]
DMAREQ[29]
MIBSPI1 / MIBSPI3 / MIBSPIP5
MIBSPI1[14] / MIBSPI3[14] / MIBSPIP5[1]*
DMAREQ[30]
MIBSPI1 / MIBSPI3 / MIBSPIP5
MIBSPI1[15] / MIBSPI3[15] / MIBSPIP5[0]†
DMAREQ[31]
SPI1, SPI3, SPI5 receive in standard SPI/compatibility mode
SPI1, SPI3, SPI5 transmit in standard SPI/compatibility mode
Peripherals
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
www.ti.com
4.3
SPNS141 – MARCH 2010
High End Timer Transfer Unit (HET-TU)
The High End Timer Transfer Unit (HET-TU) is a local Direct Memory Access (DMA) module. It is
specifically designed to transfer High End Timer (NHET) data to (or from) the CPU data SRAM . The HET
software controls which HET instructions generate transfer requests to the transfer unit. More information
about the NHET and the HET-TU can be found in the technical reference manual (TRM). The HET-TU
supports 8 channels.
The HET-TU request assignment is shown in the following table.
Modules
Request Source
HET TRANSFER UNIT Request
NHET
HTUREQ[0]
HET TU DCP[0]
NHET
HTUREQ[1]
HET TU DCP[1]
NHET
HTUREQ[2]
HET TU DCP[2]
NHET
HTUREQ[3]
HET TU DCP[3]
NHET
HTUREQ[4]
HET TU DCP[4]
NHET
HTUREQ[5]
HET TU DCP[5]
NHET
HTUREQ[6]
HET TU DCP[6]
NHET
HTUREQ[7]
HET TU DCP[7]
Peripherals
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
Copyright © 2010, Texas Instruments Incorporated
PRODUCT PREVIEW
Table 4-4. NHET Request Line Connection
43
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
SPNS141 – MARCH 2010
4.4
www.ti.com
Vectored Interrupt Manager (VIM)
The Vectored Interrupt Manager (VIM) provides hardware assistance for prioritizing and controlling the
many interrupt sources present on the device. Interrupt requests originating from the device modules (i.e.,
SPI, LIN, SCI, etc.) are assigned to channels within the 64-channel VIM. Programming multiple interrupt
sources to the same VIM channel effectively shares the VIM channel between sources. The VIM request
channels are maskable so that individual channels can be selectively disabled. All interrupt requests can
be programmed in the VIM to be of either type:
• Fast interrupt request (FIQ)
• Normal interrupt request (IRQ)
• Non maskable interrupt (NMI) - Programmable via CPU CP15 register setting
The VIM prioritizes interrupts, whose precedence of request channels decrease with ascending channel
order in the VIM (0 [highest] and 64[lowest] priority). For VIM default mapping, channel priorities, and their
associated modules see the table below. More information on the VIM can be found in the technical
reference manual (TRM).
Table 4-5. Interrupt Request Assignments
PRODUCT PREVIEW
44
Modules
Interrupt Sources
Default VIM Interrupt Request
ESM
ESM High level interrupt (NMI)
0
Reserved
(NMI)
1
RTI
RTI compare interrupt 0
2
RTI
RTI compare interrupt 1
3
RTI
RTI compare interrupt 2
4
RTI
RTI compare interrupt 3
5
RTI
RTI overflow interrupt 0
6
RTI
RTI overflow interrupt 1
7
RTI
RTI timebase
8
GIO
GIO interrupt A
9
NHET
NHET level 1 interrupt
10
HET TU
HET TU level 1 interrupt
11
MIBSPI1
MIBSPI1 level 0 interrupt
12
LIN1 (incl. SCI)
LIN1 level 0 interrupt
13
MIBADC1
MIBADC1 event group interrupt
14
MIBADC1
MIBADC1 sw group 1 interrupt
15
DCAN1
DCAN1 level 0 interrupt
16
Reserved
Reserved
17
Flexray
Flexray level 0 interrupt
18
CRC
CRC Interrupt
19
ESM
ESM Low level interrupt
20
SYSTEM
Software interrupt (SSI)
21
CPU
PMU Interrupt
22
GIO
GIO interrupt B
23
NHET
NHET level 2 interrupt
24
HET TU
HET TU level 2 interrupt
25
MIBSPI1
MIBSPI1 level 1 interrupt
26
LIN1 (incl. SCI)
LIN1 level 1 interrupt
27
MIBADC1
MIBADC1 sw group 2 interrupt
28
DCAN1
DCAN1 level 1 interrupt
29
Reserved
Reserved
30
MIBADC1
MIBADC1 magnitude interrupt
31
Peripherals
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
www.ti.com
SPNS141 – MARCH 2010
Interrupt Sources
Default VIM Interrupt Request
Flexray
Flexray level 1 interrupt
32
DMA
FTCA interrupt
33
DMA
LFSA interrupt
34
DCAN2
DCAN2 level 0 interrupt
35
DMM
DMM level 0 interrupt
36
MIBSPI3
MIBSPI3 level 0 interrupt
37
MIBSPI3
MIBSPI3 level 1 interrupt
38
DMA
HBCA interrupt
39
DMA
BTCA interrupt
40
Reserved
Reserved
41
DCAN2
DCAN2 level 1 interrupt
42
DMM
DMM level 1 interrupt
43
DCAN1
DCAN1 IF3 interrupt
44
DCAN3
DCAN3 level 0 interrupt
45
DCAN2
DCAN2 IF3 interrupt
46
FPU
FPU interrupt
47
Flexray TU
Flexray TU Transfer Status interrupt
48
LIN2 (incl. SCI)
LIN2 level 0 interrupt
49
MIBADC2
MIBADC2 event group interrupt
50
MIBADC2
MIBADC2 sw group 1 interrupt
51
Flexray
Flexray T0C interrupt
52
MIBSPIP5
MIBSPIP5 level 0 interrupt
53
LIN2 (incl. SCI)
LIN2 level 1 interrupt
54
DCAN3
DCAN3 level 1 interrupt
55
MIBSPIP5
MIBSPIP5 level 1 interrupt
56
MIBADC2
MIBADC2 sw group 2 interrupt
57
Flexray TU
Flexray TU Error interrupt
58
MIBADC2
MIBADC2 magnitude interrupt
59
DCAN3
DCAN3 IF3 interrupt
60
Reserved
Reserved
61
Flexray
Flexray T1C interrupt
62
Reserved
Reserved
63
PRODUCT PREVIEW
Table 4-5. Interrupt Request Assignments (continued)
Modules
Address location 0x00000000 in the VIM RAM is reserved for the phantom interrupt ISR entry.
Peripherals
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
Copyright © 2010, Texas Instruments Incorporated
45
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
SPNS141 – MARCH 2010
4.5
www.ti.com
MIBADC Event Trigger Sources
All three conversion groups can be configured for event-triggered operation, providing up to three event
triggered groups.
The trigger source and polarity can be selected individually for group 1, group 2 and the event group from
the options identified in the first table following for MibADC1 and in the second table following for
MibADC2.
Table 4-6. MIBADC1 Event Trigger Sources
Event #
SOURCE SELECT BITS for G1, G2 or
EVENT (G1SRC[2:0], G2SRC[2:0] or
EVSRC[2:0])
Hookup
1
0
AD1EVT
PRODUCT PREVIEW
2
1
NHET[8]
3
10
NHET[10]
4
11
RTI compare 0
5
100
NHET[17]
6
101
NHET[19]
7
110
GIOB[0]
8
111
GIOB[1]
NOTE
The Trigger is present, even if the pin is not available.
Table 4-7. MIBADC2 Event Trigger Sources
Event #
SOURCE SELECT BITS for G1, G2 or
EVENT (G1SRC[2:0], G2SRC[2:0] or
EVSRC[2:0])
Hookup
1
0
AD2EVT
2
1
NHET[8]
3
10
NHET[10]
4
11
RTI compare 0
5
100
NHET[17]
6
101
NHET[19]
7
110
GIOB[0]
8
111
GIOB[1]
NOTE
The Trigger is present, even if the pin is not available.
The application can generate the trigger condition using these signals by configuring the corresponding
device pins as input pins and driving them from an external source, or by configuring them as output pins
and driving them by software. The pin doesn't have to be present on the package to be able to be used as
a trigger.
The interrupt request signals (RTI compare 0) are driven HIGH when the interrupt condition occurs. So if
the ADC is required to be triggered on the interrupt being asserted, select the rising edge for this trigger
source. The ADC can be still triggered using the falling edge on the interrupt line. In this case, the falling
edge occurs when the interrupt line is deasserted.
46
Peripherals
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
www.ti.com
4.6
4.6.1
SPNS141 – MARCH 2010
MIBSPI
MIBSPI Event Trigger Sources
The Multi-buffered Serial Peripheral Interfaces (MIBSPIs) have a programmable buffer memory that
enables data transmission to be completed without CPU intervention. The buffers are combined in
different Transfer Groups (TGs) that can be triggered by external events such as I/O activity, timers or by
the internal tick counter. The internal tick counter supports the periodic trigger of events. Each buffer of the
MibSPI can be associated with different DMA channels in different TGs, allowing the user to move data
between internal memory and an external slave with minimal CPU interaction.
Event
TGxCTRL TRIGSRC[3:0]
Hookup
Disabled
0
No trigger source
EVENT0
1
GIOA[0]
EVENT1
10
GIOA[1]
EVENT2
11
GIOA[2]
EVENT3
100
GIOA[3]
EVENT4
101
GIOA[4]
EVENT5
110
GIOA[5]
EVENT6
111
GIOA[6]
EVENT7
1000
GIOA[7]
EVENT8
1001
NHET[8]
EVENT9
1010
NHET[10]
EVENT10
1011
NHET[12]
EVENT11
1100
NHET[14]
EVENT12
1101
NHET[16]
EVENT13
1110
NHET[18]
EVENT14
1111
Internal Tick counter
PRODUCT PREVIEW
Table 4-8. MIBSPI1 Event Trigger Sources
Table 4-9. MIBSPI3 Event Trigger Sources
Event
TGxCTRL TRIGSRC[3:0]
Hookup
Disabled
0
No trigger source
EVENT0
1
GIOA[0]
EVENT1
10
GIOA[1]
EVENT2
11
GIOA[2]
EVENT3
100
GIOA[3]
EVENT4
101
GIOA[4]
EVENT5
110
GIOA[5]
EVENT6
111
GIOA[6]
EVENT7
1000
GIOA[7]
EVENT8
1001
NHET[8]
EVENT9
1010
NHET[10]
EVENT10
1011
NHET[12]
EVENT11
1100
NHET[14]
EVENT12
1101
NHET[16]
EVENT13
1110
NHET[18]
EVENT14
1111
Internal Tick counter
Peripherals
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
Copyright © 2010, Texas Instruments Incorporated
47
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
SPNS141 – MARCH 2010
www.ti.com
Table 4-10. MIBSPI5 Event Trigger Sources
PRODUCT PREVIEW
4.6.2
Event
TGxCTRL TRIGSRC[3:0]
Hookup
Disabled
0
No trigger source
EVENT0
1
GIOA[0]
EVENT1
10
GIOA[1]
EVENT2
11
GIOA[2]
EVENT3
100
GIOA[3]
EVENT4
101
GIOA[4]
EVENT5
110
GIOA[5]
EVENT6
111
GIOA[6]
EVENT7
1000
GIOA[7]
EVENT8
1001
NHET[8]
EVENT9
1010
NHET[10]
EVENT10
1011
NHET[12]
EVENT11
1100
NHET[14]
EVENT12
1101
NHET[16]
EVENT13
1110
NHET[18]
EVENT14
1111
Internal Tick counter
MIBSPIP5/DMM Pin Multiplexing
The multiplexing of MIBSPIP5 and DMM pins are controlled by the status of the MIBSPIP5 module and
the DMM module. The pins will have DMM functionality if the DMM module is enabled and the MIBSPIP5
module is disabled; if the MIBSPIP5 is enabled the pins will have MIBSPI functionality, regardless of the
DMM module status. DMMCLK, DMMSYNC, DMMENA and DMMDATA[1:0] are always functional
independent of the MIBSPIP5 configuration because they are not multiplexed. The related pin numbers
can be found in the MIBSPI5 and the DMM section of the Terminal Functions chapter. The following table
shows the MIBSPI5 and DMM Data pin multiplexing.
Table 4-11. MIBSPIP5 Pin Multiplexing
48
Peripherals
MIBSPIP5 enabled
DMM enabled &MIBSPIP5 disabled
MIBSPI5CLK
DMMDATA[4]
MIBSPI5CS[0]
DMMDATA[5]
MIBSPI5CS[1]
DMMDATA[6]
MIBSPI5CS[2]
DMMDATA[2]
MIBSPI5CS[3]
DMMDATA[3]
MIBSPI5ENA
DMMDATA[7]
MIBSPI5SIMO[0]
DMMDATA[8]
MIBSPI5SIMO[1]
DMMDATA[9]
MIBSPI5SIMO[2]
DMMDATA[10]
MIBSPI5SIMO[3]
DMMDATA[11]
MIBSPI5SOMI[0]
DMMDATA[12]
MIBSPI5SOMI[1]
DMMDATA[13]
MIBSPI5SOMI[2]
DMMDATA[14]
MIBSPI5SOMI[3]
DMMDATA[15]
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
www.ti.com
4.7
SPNS141 – MARCH 2010
ETM
The device contains an ARM Cortex™-R4F External Trace Macrocell (ETM-R4) with a 32bit data port. The
ETM-R4 module is connected to a Test Port Interface Unit (TPIU) with a 32bit data bus. The ETM-R4 is
CoreSight compliant and follows the ARM ETM v3 specification; for more details see ARM CoreSight™
ETM-R4 TRM specification Revr0p0. The ETM-R4 supports "half rate clocking" only.
The ETM clock source can be selected as either VCLK or the external ETMTRACECLKIN pin. The
selection is done by the EXTCTRLOUT[1:0] control bits of the TPIU; the default is '00'.
Table 4-12. ETMTRACECLKIN Selection
TPIU/TRACECLKIN
0
tied-low
1
VCLK
10
ETMTRACECLKIN
11
tied-zero
Debug Scan Chains
The device contains an ICEPICK module to access the debug scan chains. Debug scan chain #0 handles
the access to the CPU, to the ETM-R4 (External Trace Macrocell), to the POM (Parameter Overlay
Module) and to the TPIU (Test Port Interface Unit). Debug scan chain #1 handles the access to the Ram
Trace Port (RTP) and the Data Modification Module (DMM) which each incorporate a dedicated TAP (Test
Access Port) controller. Each module is selected via its scan chain number. The IcePick scan ID is
0x80206D05, which is the same number as the device ID.
DAP
ETM
ICEPICK
CPU
RTP TAP
TPIU
CoreSight
debug scan chain #0
TDI
POM
RTP
0
TDO
DMM TAP
DMM
1
debug scan chain #1
Boundary
Scan
boundary scan interface
Figure 4-1. Debug Scan Chains
Peripherals
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
Copyright © 2010, Texas Instruments Incorporated
49
PRODUCT PREVIEW
4.8
EXTCTRLOUT[1:0]
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
SPNS141 – MARCH 2010
4.8.1
www.ti.com
JTAG
The 32bit JTAG ID code for this device is 0x0B7B302F.
PRODUCT PREVIEW
50
Peripherals
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
www.ti.com
4.9
4.9.1
SPNS141 – MARCH 2010
CCM
Dual Core Implementation
The microcontroller has two Cortex-R4 cores, where the output signals of both CPUs are compared in the
CCM-R4 (Core Compare Module). To avoid common mode impacts the signals of the CPUs to be
compared are delayed in a different way as shown in the following figure..
CCM-R4
1.5cycle delay
CCM-R4
Compare
CPU1CLK
CPU 2
PRODUCT PREVIEW
CPU 1
Compare
Error
1.5cycle delay
CPU2CLK
Figure 4-2. Dual Core Implementation
4.9.2
CCM-R4
To avoid an erroneous CCM-R4 compare error, the application software must ensure that the CPU
registers of both CPUs are initialized with the same values before the 1st function call or other operation
that pushes the CPU registers onto the stack. All CCM-R4 error forcing test modes are limited to 100MHz
HCLK speed.
Peripherals
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
Copyright © 2010, Texas Instruments Incorporated
51
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
SPNS141 – MARCH 2010
www.ti.com
4.10 LPM
TMS570 Platform devices support multiple low power modes. These different modes allow the user to
trade-off the amount of current consumption during low power mode versus functionality and wake-up
time.
Supported Low Power modes on this devices are Doze, Snooze and Sleep; for detailed description please
refer to the Architecture section of the Technical Reference Manual.
4.11 Voltage Monitor
A voltage monitor has been implemented on this device. The purpose of this voltage monitor is to
eliminate the requirement for a specific sequence when powering up the core and I/O voltage supplies. It
also reduces the risk of corrupting memory or glitches on I/O pins during power-up, power-down or brown
outs. The voltage monitor does not eliminate the need of a voltage supervisor circuit to guarantee that the
device is held in reset when the voltage supplies are out of range. The voltage monitor thresholds can be
found in the Vmon section of the device electrical specifications.
When the voltage monitor detects a low voltage on the I/O supply, it will assert a reset. When the voltage
monitor detects a low voltage on the core supply, it asynchronously makes all output pins high impedance,
and asserts a reset. The voltage monitor is disabled when the device is in halt mode.
PRODUCT PREVIEW
The voltage monitor has three filter functions:
• It rejects short low-going glitches on the PORRST pin
• It rejects noise on the VCCIO supply
• It rejects noise on the VCC supply
Please note that such glitches on VCC and VCCIO could still corrupt the system depending on many
factors. The width of noise that can be filtered by the voltage monitor on the VCC and VCCIO supplies is
shown in the table below. The duration of glitches that will be filtered on the PORRST pin can be found in
Table 7-5, Timing Requirements for PORRST.
Table 4-13. VMON Supply Glitch Filter Capability
Parameter
Min
Max
Width of glitch on VCC that can be filtered out
250ns
1us
Width of glitch on VCCIO that can be filtered out
300ns
1us
4.12 CRC
MCRC Controller is a module which is used to perform CRC (Cyclic Redundancy Check) to verify the
integrity of memory system. A signature representing the contents of the memory is obtained when the
contents of the memory are read into MCRC Controller. The responsibility of MCRC controller is to
calculate the signature for a set of data and then compare the calculated signature value against a
pre-determined good signature value. MCRC controller provides up to four channels to perform CRC
calculation on multiple memories in parallel and can be used on any memory system. Channel 1 can also
be put into data trace mode. In data trace mode, MCRC controller compresses each data being read
through the CPU read data bus.
When using the MCRC module in PSA mode while ECC is enabled, bus masters (e.g. FTU, HTU, DMA or
CPU) should not write to the data RAM (TCRAM) to avoid corrupting the PSA value.
4.13 System Module
The system module access modes and access rights are shown in the following table.
52
Peripherals
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
www.ti.com
SPNS141 – MARCH 2010
Table 4-14. System Module Access
Domain
Module
Access Mode Used by Module
Access Rights Required to
Access the Module RAMS
System
VIM
n/a
privilege mode (RWP)
System
RTP
n/a
privilege mode (RWP)
System
DMA
user mode
privilege mode (RWP)
Peripheral
HTU
privilege mode
privilege mode (RWP)
Peripheral
FTU
user & privilege mode
user & privilege mode (RW)
4.14 Debug ROM
The Debug ROM stores the location of the components on the Debug APB bus.
Table 4-15. Debug ROM Table
Address
Description
Value
pointer to Cortex-R4
0x00001003
0x000
ETM
0x00002003
0x000
TPIU
0x00003003
0x000
POM
0x00004003
0x001
end of table
0x00000000
0x000
Peripherals
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
Copyright © 2010, Texas Instruments Incorporated
PRODUCT PREVIEW
Components Table
53
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
SPNS141 – MARCH 2010
www.ti.com
4.15 CPU Self Test Controller: STC / LBIST
The CPU Self Test Controller (STC) is used to test the ARM CPU core using a Deterministic Logic BIST
(LBIST) Controller as the test engine. The STC has the capability of dividing the complete test run into
smaller independent test sets (intervals). The test coverage and number of test execution cycles for each
test interval is shown in the table below.
The maximum clock rate for the STC / LBIST is:
• 53.333MHz when HCLK = 160MHz / VCLK = 80MHz on BGA package
• 50MHz when HCLK = 100MHz / VCLK = 100MHz on QFP and BGA packages
• 46.666MHz when HCLK = 140MHz / VCLK = 70MHz on QFP and BGA packages
In order to achieve the proper clock rate during CPU self test a STC clock divider has been implemented.
The clock divider is set by the CLKDIV bits in STCCLKDIV register in the secondary system module frame
at location 0xFFFF E108. The default value of the CPU Self Test LBIST clock divider is set to divide-by-1’.
NOTE
The supply current while performing CPU self test is different than the device operating
mode current. These values can be found in the Icc section of the device electrical
specifications.
PRODUCT PREVIEW
Table 4-16. STC/LBIST Test Coverage and Duration
54
Intervals
Test Coverage
0
0
0
1
57,14
1555
2
65,82
3108
3
70,56
4661
4
73,56
6214
5
76,06
7767
6
78,07
9320
7
79,62
10873
8
80,92
12426
Peripherals
Test Cycles
9
82,1
13979
10
82,94
15532
11
83,76
17085
12
84,51
18638
13
85,12
20191
14
85,62
21744
15
86,19
23297
16
86,56
24850
17
86,97
26403
18
87,33
27956
19
87,67
29509
20
88,01
31062
21
88,31
32615
22
88,58
34168
23
88,87
35721
24
89,11
37274
25
89,34
38827
26
89,59
40380
27
89,82
41933
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
www.ti.com
SPNS141 – MARCH 2010
Table 4-16. STC/LBIST Test Coverage and Duration (continued)
Test Coverage
Test Cycles
28
90,05
43486
29
90,26
45039
30
90,46
46592
31
90,64
48145
32
90,84
49698
PRODUCT PREVIEW
Intervals
Peripherals
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
Copyright © 2010, Texas Instruments Incorporated
55
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
SPNS141 – MARCH 2010
www.ti.com
5 Device Registers
5.1
Device Identification Code Register
The device identification code register identifies several aspects of the device including the silicon version.
The details of the device identification code register are shown in Figure 11. The device identification code
register value for this device is:
• Rev 0 = 0x80206D05
• Rev A = 0x80206D0D
Figure 5-1. Device ID Bit Allocation Register
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
CP-15
UNIQUE ID
16
R-1
R-00000 0000 10000
R-0
15
PRODUCT PREVIEW
12
11
2
1
0
TECH
14
13
I/O
VOLT
AGE
PERIP
HERA
L
PARIT
Y
FLASH ECC
10
9
RAM
ECC
8
7
6
VERSION
5
4
3
1
0
1
R-0
R-0
R-1
R-10
R-1
R-1
R-1
R-0
R-1
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; D= device dependent
Table 5-1. Device ID Bit Allocation Register Field Descriptions
Bit
Field
31
CP15
30-17
UNIQUE ID
16-13
TECH
Value
Indicates the presence of coprocessor 15
0
CP15 not present
1
CP15 present
1
Silicon version (revision) bits This bitfield holds a unique number for a dedicated device configuration
(die).
Process technology on which the device is manufactured.
0000
C05
0001
F05
0010
C035
0011
F035
Others
12
11
10-9
8
56
I/O
VOLTAGE
Reserved
I/O voltage of the device.
0
I/O are 3.3v
1
I/O are 5v
PERIPHERA
L PARITY
Peripheral Parity
0
No parity on peripherals
1
Parity on peripherals
FLASH ECC
Flash ECC
00
No error detection/correction
01
Program memory with parity
10
Program memory with ECC
11
Reserved
RAM ECC
Device Registers
Description
Indicates if RAM memory ECC is present.
0
No ECC implemented
1
ECC implemented
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
www.ti.com
SPNS141 – MARCH 2010
Table 5-1. Device ID Bit Allocation Register Field Descriptions (continued)
Field
Value
Description
7-3
REVISION
Revision of the Device.
2-0
101
The platform family ID is always 0b101
PRODUCT PREVIEW
Bit
Device Registers
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
Copyright © 2010, Texas Instruments Incorporated
57
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
SPNS141 – MARCH 2010
5.2
www.ti.com
Die-ID Registers
The two registers (DIEIDL and DIEIDH) form a 64-bit number that contains information about the device’s
die lot number, wafer number and X, Y wafer coordinates. The die identification information will vary from
unit to unit. This information is programmed by TI as part of the initial device test procedure. The data
format of the Die-ID registers is shown here.
Figure 5-2. DIEIDL Register (Location: 0xFFFF FF7C)
31
15
30
14
29
13
28
27
26
25
24
23
22
21
20
19
18
LOT (LOWER 10 BITS)
WAFER #
R-D
R-D
12
11
10
9
8
7
6
5
4
3
2
Y WAFER COORDINATES
X WAFER COORDINATES
R-D
R-D
17
16
1
0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; D= device dependent
Figure 5-3. DIEIDH Register (Location: 0xFFFF FF80)
31
30
29
28
27
26
25
24
23
PRODUCT PREVIEW
22
21
20
19
18
17
16
6
5
4
3
2
1
0
RESERVED
R-D
15
14
13
RESERVED
12
11
10
9
8
7
LOT # (UPPER 14 BITS)
R-D
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; D= device dependent
58
Device Registers
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
www.ti.com
5.3
SPNS141 – MARCH 2010
PLL Registers
The default values for the PLL (Phase Locked Loop) control registers are shown in this section. PLLCTL1
and PLLCTL2 are used to configure PLL1 (F035 FMzPLL) and PLLCTL3 is used to configure PLL2 (F035
FPLL).
Figure 5-4. PLLCTL1 Register (Location: 0xFFFF FF70)
23
223
ROS
31
BPOS[1:0]
PLLDIV[4:0]
ROF
RESERVED
REFCLKDIV[5:0]
R/WP0
R/WP-01
R/WP-111
R/WP0
R-0
R/WP-000010
15
30
14
29
13
28
12
27
26
11
10
25
9
8
7
21
6
5
20
4
19
3
18
17
16
2
1
0
18
17
16
1
0
17
16
1
0
PLLMUL[15:0]
R/WP-01011111000000000101
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; D= device specific
31
30
29
28
27
26
25
24
23
22
21
20
19
FMEN
A
SPREADINGRATE[8:0]
RESV
EWADJ[8:4]
R/WP0
R/WP-111111111
R-0
R/WP-00000
15
14
13
12
11
10
9
8
7
6
5
4
3
BWADJ[3:0]
ODPLL
SPR_AMOUNT[8:0]
R/WP-0111
R/WP-001
R/WP-000000000
2
PRODUCT PREVIEW
Figure 5-5. PLLCTL2 Register (Location: 0xFFFF FF74)
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; D = device specific
NOTE
There are several combinations of the modulation depth and modulation frequency that are
not allowed. Valid settings for this device include the following: TBD
Figure 5-6. PLLCTL3 Register (Location: 0xFFFF E100)
31
15
30
14
29
13
28
27
26
25
24
23
22
21
20
19
18
RESERVED
OSC
DIV
RESERVED
R/W-000000000
R/WP0
R/W-000000
12
11
10
9
8
7
6
5
4
3
2
RESERVED
PLL_MUL[3:0]
RESERVED
PLL_DIV [2:0]
R/W-000000
R/WP-011
R/W-00000
R/WP 111
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; D= device specific
Device Registers
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
Copyright © 2010, Texas Instruments Incorporated
59
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
SPNS141 – MARCH 2010
www.ti.com
6 Device Electrical Specifications
6.1
Operating Conditions
6.2
Absolute Maximum Ratings Over Operating Free-Air Temperature Range (unless
otherwise noted) (1)
Supply voltage ranges
VCC (2)
- 0.3 V to 2.1V
VCCIO, VCCAD, VCCP (Flash pump) (see Note 1) - 0.3 V to 4.1V
Input voltage range
All input pins
- 0.3 V to 4.1 V
Input clamp current
IIK(VI<0 or VI> VCCIO)
±20 mA
All pins except AD1IN[7:0], AD2IN[7:0],
ADSIN[15:8]
IIK (VI<0 or VI>VCCAD)
PRODUCT PREVIEW
Operating free-air temperature
ranges, TA
AD1IN[7:0], AD2IN[7:0], ADSIN[15:8]
±10 mA
total
±40 mA
A version
- 40°C to 85°C
T version
- 40°C to 105°C
Q version
- 40°C to 125°C
Operating junction temperature range,
TJ
-40°C to 150°C
Storage temperature range, Tstg
- 65°C to 150°C
(1)
(2)
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating
conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability
All voltage values are with respect to their associated grounds.
Device Recommended Operating Conditions (1)
6.3
MIN
VCC
Digital logic supply voltage (Core)
VCCIO
VCCAD
NOM
MAX
Unit
1.35
1.5
1.65
V
Digital logic supply voltage (I/O)
3
3.3
3.6
V
MibADC supply voltage
3
3.3
3.6
V
VCCP
Flash pump supply voltage
3
3.3
3.6
V
VSS
Digital logic supply ground
VSSAD
MibADC supply ground
TA
Operating free-air temperature
0
0.1
V
A version
-40
85
°C
T version
-40
105
°C
Q version
-40
125
°C
-40
150
°C
TJ
Operating junction temperature
(1)
All voltages are with respect to VSS except VCCAD is with respect to VSSAD.
60
Device Electrical Specifications
V
-0.1
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
www.ti.com
SPNS141 – MARCH 2010
Electrical Characteristics Over Operating Free-Air Temperature Range (1)
Parameter
Test Conditions
Vhys
Input hysteresis
VIL
Low-level input voltage
All inputs (2)
VIH
High-level input voltage
All inputs
VOL
Low-level output voltage
MIN
TYP
0.15
V
0.8
V
2
VCCIO +
0.3
V
0.2 VCCIO
V
IOL = IOL MAX
High-level output voltage
IOH = IOH MAX
IOH = 50 µA
0.2
0.8 VCCIO
V
VCCIO 0.2
VILoscin
Low-level input voltage
OSCIN
-0.3
VIHoscin
High-level input voltage
OSCIN
0.8 VCC
VMON
Voltage monitoring
threshold
VCC low
1.1
1.2
VCC high
1.7
2
2.38
2.0
2.4
3.0
VCCIO low
IIC
Input clamp current
II
Input current (I/O pins)
(1)
(2)
IIL Pulldown
Unit
-0.3
IOL = 50 µA
VOH
MAX
0.2 VCC
V
VCC + 0.3
V
1.35
V
VI < VSSIO - 0.3 or VI
> VCCIO + 0.3
-2
2
mA
VI = VSS
-1
1
µA
IIH Pulldown 20 mA VI = VCCIO
5
40
IIH Pulldown 100
mA
VI = VCCIO
40
195
IIL Pullup 20 mA
VI = VSS
-40
-5
IIL Pullup 100 mA
VI = VSS
-195
-40
IIH Pullup
VI = VCCIO
-1
1
All other pins
No pullup or pulldown
-1
1
PRODUCT PREVIEW
6.4
Source currents (out of the device) are negative while sink currents (into the device) are positive.
This does not apply to PORRST pin.
Device Electrical Specifications
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
Copyright © 2010, Texas Instruments Incorporated
61
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
SPNS141 – MARCH 2010
www.ti.com
Electrical Characteristics Over Operating Free-Air Temperature Range
Parameter
IOL
Low-level output
current
Test Conditions
TDO
(1)
(continued)
MIN
TYP
MAX
Unit
VOL = VOL MAX
8
mA
VOL = VOL MAX
4
mA
TDI
TMS
RTCK
ECLK
FRAYRX1
FRAYTX1
FRAYTXEN1
FRAYRX2
FRAYTX2
FRAYTXEN2
DMMENA
ETMTRACECTL
ETMTRACECLKO
UT
ETMDATA[31:0]
PRODUCT PREVIEW
RTPSYNC
RTPCLK
RTPDATA[15:0]
DMMENA
EMIFWE
EMIFOE
EMIFCS[3:0]
EMIFDATA[15:0]
EMIFADD[21:0]
EMIFBADD[1:0]
EMIFDQM[1:0]
ERROR
IOL
Low-level output
current
RST
MIBSPI1CLK
MIBSPI1SIMO
MIBSPI1SOMI
MIBSPI3CLK
MIBSPI3SIMO
MIBSPI3SOMI
MIBSPI5CLK
MIBSPI5SIMO[3:0]
MIBSPI5SOMI[3:0]
DMMDATA[15:8]
DMMDATA[4]
All other output
pins
62
Device Electrical Specifications
2
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
www.ti.com
SPNS141 – MARCH 2010
Electrical Characteristics Over Operating Free-Air Temperature Range
Parameter
IOH
High-level output
current
Test Conditions
TDO
(1)
(continued)
MIN
TYP
MAX
Unit
VOH = VOH MIN
-8
mA
VOH = VOH MIN
-4
mA
TDI
TMS
RTCK
ECLK
FRAYRX1
FRAYTX1
FRAYTXEN1
FRAYRX2
FRAYTX2
FRAYTXEN2
DMMENA
ETMTRACECTL
ETMTRACECLKO
UT
ETMDATA[31:0]
PRODUCT PREVIEW
RTPSYNC
RTPCLK
RTPDATA[15:0]
DMMENA
EMIFWE
EMIFOE
EMIFCS[3:0]
EMIFDATA[15:0]
EMIFADD[21:0]
EMIFBADD[1:0]
EMIFDQM[1:0]
ERROR
IOH
High-level output
current
RST
MIBSPI1CLK
MIBSPI1SIMO
MIBSPI1SOMI
MIBSPI3CLK
MIBSPI3SIMO
MIBSPI3SOMI
MIBSPI5CLK
MIBSPI5SIMO[3:0]
MIBSPI5SOMI[3:0]
DMMDATA[15:8]
DMMDATA[4]
All other output
pins
-2
Device Electrical Specifications
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
Copyright © 2010, Texas Instruments Incorporated
63
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
SPNS141 – MARCH 2010
www.ti.com
Electrical Characteristics Over Operating Free-Air Temperature Range
Parameter
ICC
(3)
Unit
HCLK = 100MHz,
VCLK = 100MHz
350
mA
HCLK = 140MHz,
VCLK= 70MHz
390
mA
BGA packages
HCLK = 160MHz,
VCLK = 80MHz
430
mA
All packages
LBIST (STC) CLK =
46.666MHz
450
mA
LBIST (STC) CLK =
50.0MHz
500
mA
BGA packages
LBIST (STC) CLK =
53.333MHz
550
mA
All packages
HCLK=80MHz,
VCLK=40MHz
320
mA
HCLK=100MHz,
VLCK=100MHz
400
mA
VCC Digital supply current (doze mode)
OSCIN = 6 MHz, VCC
= 1.65 V (4)
35
mA
VCC Digital supply current (snooze mode)
All frequencies, VCC =
1.65 V (4)
30
mA
VCC Digital supply current (sleep mode)
All frequencies, VCC =
1.65 V (4)
10
mA
VCCIO Digital supply current (operating mode) No DC load, VCCIO =
3.6 V (5)
15
mA
VCCIO Digital supply current (doze mode)
No DC load, VCCIO =
3.6 V (5)
100
mA
VCCIO Digital supply current (snooze mode)
No DC load, VCCIO =
3.6 V (5)
100
mA
VCCIO Digital supply current (sleep mode)
No DC load, VCCIO =
3.6 V (5)
100
mA
VCCAD supply current (operating mode)
All frequencies, VCCAD
= 3.6 V
30
mA
VCCAD supply current (doze mode)
All frequencies, VCCAD
= 3.6 V (6)
10
mA
VCCAD supply current (snooze mode)
All frequencies, VCCAD
= 3.6 V (6)
10
mA
VCCAD supply current (sleep mode)
All frequencies, VCCAD
= 3.6 V (6)
10
mA
VCCP pump supply current
VCCP = 3.6 V read
operation
25
mA
VCCP = 3.6 V
program (7)
90
mA
VCCP = 3.6 V erase
90
mA
VCCP = 3.6 V doze
mode (6)
5
mA
VCCP = 3.6 V snooze
mode (6)
5
mA
VCCP = 3.6 V sleep
mode (6)
5
mA
VCC Digital supply
current (CPU selftest
mode: LBIST)
VCC Digital supply
current (Mem selftest
mode: PBIST)
PRODUCT PREVIEW
ICCIO
ICCAD
ICCP
CI
(3)
(4)
(5)
(6)
(7)
(8)
64
(continued)
MAX
VCC Digital supply
current (Operating
mode)
Input capacitance (8)
Test Conditions
(1)
All packages
MIN
TYP
2
pF
Typical values are at Vcc=1.5V and maximum values are at Vcc=1.65V
For Flash banks/pumps in sleep mode.
I/O pins configured as inputs or outputs with no load. All pulldown inputs ≤ 0.2 V. All pullup inputs ≥ VCCIO - 0.2 V.
For Flash banks/pumps in sleep mode.
This assumes reading from one bank while programming the same bank.
The maximum input capacitance CI of the Flexray RX pin(s) is 10pF.
Device Electrical Specifications
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
www.ti.com
SPNS141 – MARCH 2010
Electrical Characteristics Over Operating Free-Air Temperature Range
Parameter
Output capacitance
(continued)
MIN
TYP
MAX
3
Unit
pF
PRODUCT PREVIEW
CO
Test Conditions
(1)
Device Electrical Specifications
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
Copyright © 2010, Texas Instruments Incorporated
65
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
SPNS141 – MARCH 2010
www.ti.com
7 Peripheral and Electrical Specifications
7.1
Clocks
7.1.1
PLL And Clock Specifications
Table 7-1. Timing Requirements For PLL Circuits Enabled Or Disabled
MIN
MAX
Unit
f(OSC)
Input clock frequency
5
20
MHz
tc(OSC)
Cycle time, OSCIN
50
ns
tw(OSCIL)
Pulse duration, OSCIN low
15
ns
tw(OSCIH)
Pulse duration, OSCIN high
15
ns
f(OSCRST)
OSC FAIL frequency - upper level
20
50
MHz
f(OSCRST)
OSC FAIL frequency - lower level
1.5
5
MHz
7.1.2
External Reference Resonator/Crystal Oscillator Clock Option
PRODUCT PREVIEW
The oscillator is enabled by connecting the appropriate fundamental 5–20 MHz resonator/crystal and load
capacitors across the external OSCIN and OSCOUT pins as shown in section (a) of the figure below. The
oscillator is a single stage inverter held in bias by an integrated bias resistor. This resistor is disabled
during leakage test measurement and HALT mode.
NOTE
TI strongly encourages each customer to submit samples of the device to the
resonator/crystal vendors for validation. The vendors are equipped to determine what load
capacitors will best tune their resonator/crystal to the microcontroller device for optimum
start-up and operation over temperature/voltage extremes.
An external oscillator source can be used by connecting a 1.5V clock signal to the OSCIN pin and leaving
the OSCOUT pin unconnected (open) as shown in section (b) of the figure below.
OSCIN
(see Note B)
Kelvin_GND
C1
OSCOUT
OSCIN
OSCOUT
C2
External
Clock Signal
(toggling 0-1.5V)
(see Note A)
Crystal
(a)
(b)
Figure 7-1. Recommended Crystal/Clock Connection
NOTE
In figure (a), The values of C1 and C2 should be provided by the resonator/crystal vendor.
In figure (b), Kelvin_GND should not be connected to any other GND.
66
Peripheral and Electrical Specifications
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
www.ti.com
7.1.3
SPNS141 – MARCH 2010
LPO And Clock Detection
The LPOCLKDET module consists of a clock monitor (CLKDET) and 2 low power oscillators (LPO) - a low
frequency (LF) and a high frequency {HF) oscillator. The CLKDET is a supervisor circuit for an externally
supplied clock signal. In case the externally supplied clock frequency falls out of a frequency window, the
clock detector flags this condition and switches to the HF LPO clock (limp mode). The OSCFAIL flag and
clock switch-over remain, regardless of the behavior of the oscillator clock signal. The only way OSCFAIL
can be cleared (and re-enable OSCIN as the clock source) is a power-on-reset.
Table 7-2. LPO And Clock Detection
Parameter
MIN
lower threshold
1.5
upper threshold
Type
Unit
5
MHz
50
MHz
Limp mode frequency (HFosc)
TBD
10
TBD
MHz
HFosc frequency
TBD
10
TBD
MHz
LFosc frequency
TBD
80
TBD
kHz
lowerthreshold
guaranteed fail
20
MAX
guaranteed pass
upperthreshold
guaranteed fail
PRODUCT PREVIEW
Invalid frequency
f[MHz]
1.5
5.0
20.0
50.0
Figure 7-2. LPO And Clock Detection
Peripheral and Electrical Specifications
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
Copyright © 2010, Texas Instruments Incorporated
67
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
SPNS141 – MARCH 2010
7.1.4
www.ti.com
Switching Characteristics Over Recommended Operating Conditions For Clocks
Table 7-3. Switching Characteristics Over Recommended Operating Conditions For Clocks
Parameter
Test Conditions
MIN
MAX
Unit
160
MHz
Pipeline mode disabled
36
MHz
Pipeline mode enabled
140
MHz
36
MHz
f(HCLK)
MHz
PRODUCT PREVIEW
f(HCLK)
HCLK - System clock frequency (BGA packages)
f(HCLK)
HCLK - System clock frequency (144pin QFP
package)
f(GCLK)
GCLK - CPU clock frequency (ratio GCLK :
HCLK = 1:1)
f(RTICLK)
RTICLK - clock frequency
f(VCLK)
MHz
f(VCLK)
VCLK - Primary peripheral clock frequency
100
MHz
f(VCLK2)
VCLK2 - Secondary peripheral clock frequency
f(VCLK)
MHz
f(AVCLK1)
AVCLK1 - Primary asynchronous peripheral clock
frequency
f(VCLK)
MHz
f(AVCLK2)
AVCLK2 - Secondary asynchronous peripheral
clock frequency
f(VCLK)
MHz
f(ECLK) (1)
ECLK - External clock output frequency for ECP
Module
80
MHz
f(PROG/ERASE)
System clock frequency - Flash
programming/erase
f(HCLK)
MHz
(1)
Pipeline mode enabled
Pipeline mode disabled
(ECLK) = f(VCLK) / N, where N = {1 to 65536}. N is the ECP prescale value defined by the ECPCNTL.[15:0] register bits in the System
module. Pipeline mode enabled or disabled is determined by the FRDCNTL[2:0].
7.1.4.1
Timing - Wait States
RAM
0
Address Waitstates
0MHz
f(HCLK)
Data Waitstates
0
f(HCLK)
0MHz
Flash
0
Address Waitstates
1
0MHz
Data Waitstates
0
0MHz
f(HCLK)
100MHz
2
1
36MHz
72MHz
3
108MHz
f(HCLK)
Figure 7-3. Wait States
NOTE
If FMzPLL frequency modulation is enabled, special care must be taken to ensure that the
maximum system clock frequency f(HCLK) and peripheral clock frequency f(VCLK) are not
exceeded. The speed of the device clocks may need be derated to accommodate the
modulation depth when FMzPLL frequency modulation is enabled.
68
Peripheral and Electrical Specifications
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
www.ti.com
7.2
SPNS141 – MARCH 2010
ECLK Specification
7.2.1
Switching Characteristics Over Recommended Operating Conditions For External
Clocks
Table 7-4. Switching Characteristics Over Recommended Operating Conditions For External Clocks (1) (2)
NO.
Parameter
Test Conditions
MIN
MAX
Unit
3
tw(EOL)
Pulse duration, ECLK
low
under all prescale
factor combinations (X
and N)
0.5tc(ECL
K) – tf
ns
4
tw(EOH)
Pulse duration, ECLK
high
under all prescale
factor combinations (X
and N)
0.5tc(ECL
K) – tr
ns
(1)
(2)
X = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}. X is the VBUS interface clock divider ratio determined by the CLKCNTL.[19:16] bits in the
SYS module.
N = {1 to 65536}. N is the ECP prescale value defined by the ECPCNTL.[15:0] register bits in the System module.
4
PRODUCT PREVIEW
ECLK
3
Figure 7-4. ECLK Timing Diagram
Peripheral and Electrical Specifications
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
Copyright © 2010, Texas Instruments Incorporated
69
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
SPNS141 – MARCH 2010
7.3
www.ti.com
RST And PORRST Timings
7.3.1
Timing Requirements For PORRST
Table 7-5. Timing Requirements For PORRST
NO.
MIN
MAX
Unit
0.5
V
VCCPORL
VCC low supply level when PORRST must be active during power up
VCCPORH
VCC high supply level when PORRST must remain active during power up
and become active during power down
VCCIOPORL
VCCIO / VCCP low supply level when PORRST must be active during
power up
VCCIOPORH
VCCIO / VCCP high supply level when PORRST must remain active during
power up and become active during power down
VIL(PORRST)
Low-level input voltage of PORRST VCCIO > 2.5V
0.2 VCCIO
Low-level input voltage of PORRST VCCIO < 2.5V
0.5
1.35
V
1.1
V
3
V
V
V
PRODUCT PREVIEW
3
tsu(PORRST)
Setup time, PORRST active before VCCIO and VCCP > VCCIOPORL during
power up
0
ms
6
th(PORRST)
Hold time, PORRST active after VCC > VCCPORH
1
ms
7
tsu(PORRST)
Setup time, PORRST active before VCC <= VCCPORH during power down
8
ms
8
th(PORRST)
Hold time, PORRST active after VCCIO and VCCP > VCCIOPORH
1
ms
9
th(PORRST)
Hold time, PORRST active after VCC < VCCPORL
0
tf(PORRST)
Filter time PORRST, pulses less than MIN will be filtered out, pulses
greater than MAX are guaranteed to generate a reset
30
150
ns
tf(RST)
Filter time RST, pulses less than MIN will be filtered out, pulses greater
than MAX are guaranteed to generate a reset
40
150
ns
ms
3.3 V
VCCIOPORH
VCCIOPORH
VCCIO / VCCP
8
1.5 V
VCCPORH
6
VCC
7
VCCPORH
6
VCCIOPORL
7
VCCPORL
VCCPORL
VCCIOPORL
VCC (1.5 V)
3
PORRST
VIL(PORRST)
9
VIL
VIL
VIL
VIL
VIL(PORRST)
Figure 7-5. PORRST Timing Diagram
NOTE
There is no timing dependency between the ramp of the VCCIO and the VCC supply voltage;
this is just an exemplary drawing. All requirements are to ensure PORRST is active when
VCCIO or VCC is out of the normal operating range.
70
Peripheral and Electrical Specifications
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
www.ti.com
7.3.2
SPNS141 – MARCH 2010
Switching Characteristics Over Recommended Operating Conditions For RST
Table 7-6. Switching Characteristics Over Recommended Operating Conditions For RST (1)
Parameter
tv(RST)
Valid time, RST active after PORRST inactive
Valid time, RST active (all others)
MAX
Unit
ns
8tc(VCLK)
Specified values do NOT include rise/fall times. For rise and fall timings, see the switching characteristics for output timings versus load
capacitance table.
PRODUCT PREVIEW
(1)
MIN
1048c(OSC)
Peripheral and Electrical Specifications
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
Copyright © 2010, Texas Instruments Incorporated
71
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
SPNS141 – MARCH 2010
7.4
www.ti.com
DAP - JTAG Scan Interface Timing
7.4.1
JTAG clock specification 12-MHz and 50-pF load on TDO output
Table 7-7. JTAG Scan Interface Timing
NO.
MIN
MAX
Unit
12
MHz
f(TCK)
TCK frequency (at HCLKmax)
f(RTCK)
RTCK frequency (at TCKmax and HCLKmax)
1
td(TCK -RTCK)
Delay time, TCK to RTCK
2
tsu(TDI/TMS - RTCKr)
Setup time, TDI, TMS before RTCK rise (RTCKr)
15
ns
3
th(RTCKr -TDI/TMS)
Hold time, TDI, TMS after RTCKr
0
ns
4
th(RTCKr -TDO)
Hold time, TDO after RTCKr
0
5
td(RTCKf -TDO)
Delay time, TDO valid after RTCK fall (RTCKf)
10
MHz
20
ns
ns
10
ns
TCK
RTCK
PRODUCT PREVIEW
1
1
TMS
TDI
2
3
TDO
4
5
Figure 7-6. JTAG timing
72
Peripheral and Electrical Specifications
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
www.ti.com
7.5
7.5.1
SPNS141 – MARCH 2010
Output Timings
Switching Characteristics For Output Timings Versus Load Capacitance ©L)
Table 7-8. Switching Characteristics For Output Timings Versus Load Capacitance ©L)
tr
tf
tr
tf
tr
tf
MIN
8mA pins
8mA pins
4mA pins
4mA pins
2mA-z pins
2mA-z pins
MAX
Unit
CL = 15 pF
2.5
ns
CL = 50 pF
5
CL = 100 pF
9
CL = 150 pF
12
CL = 15 pF
2.5
CL = 50 pF
5
CL = 100 pF
9
CL = 150 pF
12
CL = 15 pF
7
CL = 50 pF
13
CL = 100 pF
21
CL = 150 pF
29
CL = 15 pF
7
CL = 50 pF
13
CL = 100 pF
21
CL = 150 pF
29
CL = 15 pF
10
CL = 50 pF
17
CL = 100 pF
25
CL = 150 pF
35
CL = 15 pF
10
CL = 50 pF
17
CL = 100 pF
25
CL = 150 pF
35
tr
20%
ns
ns
ns
ns
tf
80%
Output
ns
PRODUCT PREVIEW
Parameter
VCCIO
80%
20%
0
Figure 7-7. CMOS-Level Outputs
Peripheral and Electrical Specifications
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
Copyright © 2010, Texas Instruments Incorporated
73
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
SPNS141 – MARCH 2010
7.6
www.ti.com
Input Timings
7.6.1
Timing Requirements For Input Timings (1)
Table 7-9. Timing Requirements For Input Timings
MIN
tpw
(1)
(1)
Input minimum pulse width
tc(VCLK) + 10
MAX
(1)
Unit
ns
tc(VCLK) = peripheral VBUS clock cycle time = 1 / f(VCLK)
The timing shown above is only valid for pin used in GIO mode
tpw
80%
Input
20%
VCCIO
80%
20%
0
Figure 7-8. CMOS-Level Inputs
PRODUCT PREVIEW
74
Peripheral and Electrical Specifications
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
www.ti.com
7.7
SPNS141 – MARCH 2010
Flash Timings
NOM
MAX
Unit
tprog(32-bit)
Full word (32-bit) programming time
MIN
33
300
µs
tprog(Total)
2M-byte programming
time (1)
-40°C to 125°C
17
74
s
0°C to 60C, for first 25
cycles
17
25
s
33
300
µs
Total ECC bit
programming time
(256k-byte)
-40°C to 125°C
4.3
15
s
0°C to 60°C, for first 25
cycles
4.3
7
s
Sector erase time
(including compaction)
-40°C to 125°C
tprog
tprog
ECC(16-bit)
ECC(total)
terase(sector)
terase(bank)
twec
(1)
ECC programming time
2
15
s
1.5
10
s
Bank erase time (including Bank 0
compaction),0C to 60C,
Bank 1
for first 25 cycles
Bank 2
7.5
20
s
5.5
12
s
5.5
12
s
Bank 3
5.5
12
s
1000
cycles
0°C to 60°C, for first 25
cycles
Write/erase cycles at TA = 125°C with 15 year Data
Retention requirement
PRODUCT PREVIEW
Table 7-10. Timing Requirements For Program Flash
This programming time includes overhead of state machine, but does not include data transfer time.
Peripheral and Electrical Specifications
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
Copyright © 2010, Texas Instruments Incorporated
75
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
SPNS141 – MARCH 2010
7.8
www.ti.com
SPI Master Mode Timing Parameters
7.8.1
SPI Master Mode External Timing Parameters (CLOCK PHASE = 0, SPICLK = output,
SPISIMO = output, and SPISOMI = input)
Table 7-11. SPI Master Mode External Timing Parameters (1) (2) (3)
NO.
1
2
(5)
3 (5)
4 (5)
5 (5)
PRODUCT PREVIEW
6 (5)
7 (5)
8 (6)
9 (6)
10
11
(1)
(2)
(3)
(4)
(5)
(6)
76
MIN
MAX
Unit
50
256tc(VCLK)
ns
Pulse duration, SPICLK high (clock polarity = 0)
0.5tc(SPC)M – 3 – tr
0.5tc(SPC)M + 5
ns
Pulse duration, SPICLK low (clock polarity = 1)
0.5tc(SPC)M – 3 – tf
0.5tc(SPC)M + 5
tw(SPCL)M
Pulse duration, SPICLK low (clock polarity = 0)
0.5tc(SPC)M – 3 – tf
0.5tc(SPC)M + 5
tw(SPCH)M
Pulse duration, SPICLK high (clock polarity = 1)
0.5tc(SPC)M – 3 – tr
0.5tc(SPC)M + 5
td(SPCH-SIMO)M
Delay time, SPISIMO valid before SPICLK low
(clock polarity = 0)
0.5tc(SPC)M – 10
td(SPCL-SIMO)M
Delay time, SPISIMO valid before SPICLK high
(clock polarity = 1)
0.5tc(SPC)M – 10
tv(SPCL-SIMO)M
Valid time, SPISIMO data valid after SPICLK low
(clock polarity = 0)
0.5tc(SPC)M – tf(SPC)
-5
tv(SPCH-SIMO)M
Valid time, SPISIMO data valid after SPICLK high
(clock polarity = 1)
0.5tc(SPC)M – tr(SPC)
-5
tsu(SOMI-SPCL)M
Setup time, SPISOMI before SPICLK low (clock
polarity = 0)
tf(SPC)
tsu(SOMI-SPCH)M
Setup time, SPISOMI before SPICLK high (clock
polarity = 1)
tr(SPC) + 4
th(SPCL-SOMI)M
Hold time, SPISOMI data valid after SPICLK low
(clock polarity = 0)
10
th(SPCH-SOMI)M
Hold time, SPISOMI data valid after SPICLK high
(clock polarity = 1)
10
tC2TDELAY
Setup time CS active until SPICLK high (clock
polarity = 0)
C2TDELAY*tc(VCLK) +
2*tc(VCLK) - tf(SPICS) +
tr(SPC)
ns
Setup time CS active until SPICLK low (clock
polarity = 1)
C2TDELAY*tc(VCLK) +
2*tc(VCLK) - tf(SPICS) +
tf(SPC)
ns
tc(SPC)M
Cycle time, SPICLK
tw(SPCH)M
tw(SPCL)M
tT2CDELAY
(4)
ns
ns
ns
ns
ns
Hold time SPICLK low CS until inactive (clock
polarity = 0)
0.5*tc(SPC)M +
T2CDELAY*tc(VCLK) +
tc(VCLK) tf(SPC) + tr(SPICS)
ns
Hold time SPICLK high until CS inactive (clock
polarity = 1)
0.5*tc(SPC)M +
T2CDELAY*tc(VCLK) +
tc(VCLK) tr(SPC) + tr(SPICS)
ns
(C2TDELAY+1)*tc(VCLK)
ns
(C2TDELAY+2)*tc(VCLK)
ns
tSPIENA
SPIENAn Sample point
tSPIENAW
SPIENAn Sample point from write to buffer
(C2TDELAY+1)*tc(VCLK)
- tf(SPICS)
The MASTER bit (SPIGCR1.0) is set and the CLOCK PHASE bit (SPIFMTx.16) is set.
tc(VCLK) = interface clock cycle time = 1 / f(VCLK)\
For rise and fall timings, see the "switching characteristics for output timings versus load capacitance" table.
When the SPI is in Master mode, the following must be true:
For PS values from 1 to 255: tc(SPC)M ≥ (PS +1)tc(VCLK) ≥ 50 ns, where PS is the prescale value set in the SPIFMTx.[15:8] register
bits.
For PS values of 0: tc(SPC)M = 2tc(VCLK) ≥ 50 ns. The external load on the SPICLK pin must be less than 60pF.
The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPIFMTx.17).
C2TDELAY and T2CDELAY are programmed in the SPIDELAY register
Peripheral and Electrical Specifications
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
www.ti.com
SPNS141 – MARCH 2010
1
SPICLK
(clock polarity = 0)
2
3
SPICLK
(clock polarity = 1)
5
4
SPISIMO
Master Out Data Is Valid
6
7
PRODUCT PREVIEW
Master In Data
Must Be Valid
SPISOMI
Figure 7-9. SPI Master Mode External Timing (CLOCK PHASE = 0)
Write to buffer
SPICLK
(clock polarity = 0)
SPICLK
(clock polarity = 1)
SPISIMO
Master Out Data Is Valid
8
9
SPICSn
10
11
SPIENAn
Figure 7-10. SPI Master Mode Chip Select timing (CLOCK PHASE = 0)
Peripheral and Electrical Specifications
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
Copyright © 2010, Texas Instruments Incorporated
77
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
SPNS141 – MARCH 2010
7.8.2
www.ti.com
SPI Master Mode External Timing Parameters (CLOCK PHASE = 1, SPICLK = output,
SPISIMO = output, and SPISOMI = input) (7) (8) (9)
Table 7-12. SPI Master Mode External Timing Parameters
NO.
1
2 (2)
3 (2)
4 (2)
5 (2)
6 (2)
PRODUCT PREVIEW
7 (2)
8 (3)
9 (3)
(7)
(8)
(9)
(1)
(2)
(3)
78
MIN
(1)
MAX
Unit
tc(SPC)M
Cycle time, SPICLK
50
256tc(VCLK)
ns
tw(SPCH)M
Pulse duration, SPICLK high (clock polarity = 0)
0.5tc(SPC)M – 3 – tr
0.5tc(SPC)M + 5
ns
tw(SPCL)M
Pulse duration, SPICLK low (clock polarity = 1)
0.5tc(SPC)M – 3 – tf
0.5tc(SPC)M + 5
tw(SPCL)M
Pulse duration, SPICLK low (clock polarity = 0)
0.5tc(SPC)M – 3 – tr
0.5tc(SPC)M + 5
tw(SPCH)M
Pulse duration, SPICLK high (clock polarity = 1)
0.5tc(SPC)M – 3 – tf
0.5tc(SPC)M + 5
tv(SIMO-SPCH)M
Valid time, SPICLK high after SPISIMO data
valid(clock polarity = 0)
0.5tc(SPC)M – 15
tv(SIMO-SPCL)M
Valid time, SPICLK low after SPISIMO data valid
(clock polarity = 1)
0.5tc(SPC)M – 15
tv(SPCH-SIMO)M
Valid time, SPISIMO data valid after SPICLK
high(clock polarity = 0)
0.5tc(SPC)M – tr(SPC)
tv(SPCL-SIMO)M
Valid time, SPISIMO data valid after SPICLK
low(clock polarity = 1)
0.5tc(SPC)M – tf(SPC)
tsu(SOMI-SPCH)M
Setup time, SPISOMI before SPICLK high (clock
polarity = 0)
4
tsu(SOMI-SPCL)M
Setup time, SPISOMI before SPICLK low (clock
polarity = 1)
4
tv(SPCH-SOMI)M
Valid time, SPISOMI data valid after SPICLK high
(clock polarity = 0)
6
tv(SPCL-SOMI)M
Valid time, SPISOMI data valid after SPICLK low
(clock polarity = 1)
6
tC2TDELAY
Setup time CS active until SPICLK high (clock
polarity = 0)
0.5*tc(SPC)M +
C2TDELAY*tc(VCLK) +
2*tc(VCLK) - tf(SPICS) +
tr(SPC)
ns
Setup time CS active until SPICLK low (clock
polarity = 1)
0.5*tc(SPC)M +
C2TDELAY*tc(VCLK) +
2*tc(VCLK) - tf(SPICS) +
tf(SPC)
ns
tT2CDELAY
ns
ns
ns
ns
ns
Hold time SPICLK low CS until inactive (clock
polarity = 0)
T2CDELAY*tc(VCLK) +
tc(VCLK) - tf(SPC) + tr(SPICS)
ns
Hold time SPICLK high until CS inactive (clock
polarity = 1)
T2CDELAY*tc(VCLK) +
tc(VCLK) - tr(SPC) + tr(SPICS)
ns
(C2TDELAY+1)*tc(VCLK)
ns
(C2TDELAY+2)*tc(VCLK)
ns
10
tSPIENA
SPIENAn Sample Point
11
tSPIENAW
SPIENAn Sample point from write to buffer
(C2TDELAY+1)*tc(VCLK)
- tf(SPICS)
The MASTER bit (SPIGCR1.0) is set and the CLOCK PHASE bit (SPIFMTx.16) is set.
tc(VCLK) = interface clock cycle time = 1 / f(VCLK)
For rise and fall timings, see the "switching characteristics for output timings versus load capacitance" table.
When the SPI is in Master mode, the following must be true:
For PS values from 1 to 255: tc(SPC)M ≥ (PS +1)tc(VCLK) ≥ 50 ns, where PS is the prescale value set in the SPIFMTx.[15:8] register
bits.
For PS values of 0: tc(SPC)M = 2tc(VCLK) ≥ 50 ns. The external load on the SPICLK pin must be less than 60pF.
The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPIFMTx.17).
C2TDELAY and T2CDELAY are programmed in the SPIDELAY register
Peripheral and Electrical Specifications
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
www.ti.com
SPNS141 – MARCH 2010
1
SPICLK
(clock polarity = 0)
2
3
SPICLK
(clock polarity = 1)
4
5
Data Valid
Master Out Data Is Valid
SPISIMO
6
7
PRODUCT PREVIEW
Master In Data
Must Be Valid
SPISOMI
Figure 7-11. SPI Master Mode External Timing (CLOCK PHASE = 1)
Write to buffer
SPICLK
(clock polarity = 0)
SPICLK
(clock polarity = 1)
SPISIMO
Master Out Data Is Valid
8
9
SPICS
10
11
SPIENA
Figure 7-12. SPI Master Mode Chip Select timing (CLOCK PHASE = 1)
Peripheral and Electrical Specifications
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
Copyright © 2010, Texas Instruments Incorporated
79
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
SPNS141 – MARCH 2010
7.9
www.ti.com
SPI Slave Mode Timing Parameters
7.9.1
SPI Slave Mode External Timing Parameters (CLOCK PHASE = 0, SPICLK = input,
SPISIMO = input, and SPISOMI = output) (4) (5) (6) (7)
Table 7-13. SPI Slave Mode External Timing Parameters
NO.
PRODUCT PREVIEW
ns
Pulse duration, SPICLK high(clock polarity = 0)
0.5tc(SPC)S –
0.25tc(VCLK)
0.5tc(SPC)S +
0.25tc(VCLK)
ns
tw(SPCL)S
Pulse duration, SPICLK low(clock polarity = 1)
0.5tc(SPC)S –
0.25tc(VCLK)
0.5tc(SPC)S +
0.25tc(VCLK)
tw(SPCL)S
Pulse duration, SPICLK low(clock polarity = 0)
0.5tc(SPC)S –
0.25tc(VCLK)
0.5tc(SPC)S +
0.25tc(VCLK)
tw(SPCH)S
Pulse duration, SPICLK high(clock polarity = 1)
0.5tc(SPC)S –
0.25tc(VCLK)
0.5tc(SPC)S +
0.25tc(VCLK)
td(SPCH-SOMI)S
Delay time, SPISOMI valid after SPICLK high
(clock polarity = 0)
trf(SOMI) + 15
td(SPCL-SOMI)S
Delay time, SPISOMI valid after SPICLK low (clock
polarity = 1)
trf(SOMI) + 15
tH(SPCH-SOMI)S
Hold time, SPISOMI data valid after SPICLK high
(clock polarity =0)
0
tH(SPCL-SOMI)S
Hold time, SPISOMI data valid after SPICLK low
(clock polarity =1)
0
tsu(SIMO-SPCL)S
Setup time, SPISIMO before SPICLK low(clock
polarity = 0)
4
tsu(SIMO-SPCH)S
Setup time, SPISIMO before SPICLK high(clock
polarity = 1)
4
th(SPCL-SIMO)S
Hold time, SPISIMO data valid after SPICLK low
(clock polarity = 0)
6
th(SPCH-SIMO)S
Hold time, SPISIMO data valid after S PICLK high
(clock polarity = 1)
6
td(SPCL-SENAH)S
Delay time, SPIENAn high after last SPICLK low
(clock polarity = 0)
1.5tc(VCLK)
2.5tc(VCLK)+tr(ENAn)
td(SPCH-SENAH)S
Delay time, SPIENAn high after last SPICLK high
(clock polarity = 1)
1.5tc(VCLK)
2.5tc(VCLK)+tr(ENAn)
td(SCSL-SENAL)S
Delay time, SPIENAn low after SPICSn low (if new
data has been written to the SPI buffer)
(2)
tw(SPCH)S
4 (2)
5 (2)
6 (2)
7 (2)
8
9
80
Unit
256tc(VCLK)
Cycle time, SPICLK (1)
3 (2)
(2)
MAX
50
tc(SPC)S
2
(4)
(5)
(6)
(7)
(1)
MIN
1
ns
ns
ns
ns
ns
tf(ENAn)+6
ns
ns
The MASTER bit (SPIGCR1.0) is set and the CLOCK PHASE bit (SPIFMTx.16) is set.
If the SPI is in slave mode, the following must be true: tc(SPC)S >= (PS + 1) tc(VCLK), where PS = prescale value set in SPIFMTx.[15:8].
tc(VCLK) = interface clock cycle time = 1 /f(VCLK)
For rise and fall timings, see the "switching characteristics for output timings versus load capacitance" table.
When the SPI is in Slave mode, the following must be true:
For PS values from 1 to 255: tc(SPC)S >= (PS +1)tc(VCLK) >= 50 ns, where PS is the prescale value set in the SPIFMTx.[15:8] register bits.
For PS values of 0: tc(SPC)S = 2tc(VCLK) >= 50 ns.
The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPIFMTx.17).
Peripheral and Electrical Specifications
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
www.ti.com
SPNS141 – MARCH 2010
1
SPICLK
(clock polarity = 0)
2
3
SPICLK
(clock polarity = 1)
5
4
SPISOMI Data Is Valid
SPISOMI
6
7
PRODUCT PREVIEW
SPISIMO Data
Must Be Valid
SPISIMO
Figure 7-13. SPI Slave Mode External Timing (CLOCK PHASE = 0)
SPICLK
(clock polarity = 0)
SPICLK
(clock polarity = 1)
8
SPIENAn
9
SPICSn
Figure 7-14. SPI Slave Mode Enable Timing (CLOCK PHASE = 0)
Peripheral and Electrical Specifications
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
Copyright © 2010, Texas Instruments Incorporated
81
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
SPNS141 – MARCH 2010
7.9.2
www.ti.com
SPI Slave Mode External Timing Parameters (CLOCK PHASE = 1, SPICLK = input,
SPISIMO = input, and SPISOMI = output) (3) (4) (5) (6)
Table 7-14. SPI Slave Mode External Timing Parameters
NO.
1
2 (2)
3 (2)
4 (2)
MIN
Cycle time, SPICLK
50
256tc(VCLK)
ns
Pulse duration, SPICLK high (clock polarity = 0)
0.5tc(SPC)S –
0.25tc(VCLK)
0.5tc(SPC)S +
0.25tc(VCLK)
ns
tw(SPCL)S
Pulse duration, SPICLK low (clock polarity = 1)
0.5tc(SPC)S –
0.25tc(VCLK)
0.5tc(SPC)S +
0.25tc(VCLK)
tw(SPCL)S
Pulse duration, SPICLK low (clock polarity = 0)
0.5tc(SPC)S –
0.25tc(VCLK)
0.5tc(SPC)S +
0.25tc(VCLK)
tw(SPCH)S
Pulse duration, SPICLK high (clock polarity = 1)
0.5tc(SPC)S –
0.25tc(VCLK)
0.5tc(SPC)S +
0.25tc(VCLK)
td(SOMI-
Delay time, SPISOMI data valid after SPICLK low
(clock polarity = 0)
trf(SOMI)+15
Delay time, SPISOMI data valid after SPICLK high
(clock polarity = 1)
trf(SOMI)+15
SPCH)S
tH(SPCLSOMI)S
PRODUCT PREVIEW
tH(SPCHSOMI)S
tsu(SIMOSPCH)S
tsu(SIMOSPCL)S
7 (2)
tv(SPCHSIMO)S
tv(SPCLSIMO)S
8
td(SPCHSENAH)S
td(SPCLSENAH)S
9
td(SCSLSENAL)S
10
td(SCSLSOMI)S
(3)
(4)
(5)
(6)
(1)
(2)
82
Unit
tw(SPCH)S
td(SOMI-
6 (2)
MAX
tc(SPC)S
SPCL)S
5 (2)
(1)
Hold time, SPISOMI data valid after SPICLK high
(clock polarity =0)
0
Hold time, SPISOMI data valid after SPICLK low
(clock polarity =1)
0
Setup time, SPISIMO before SPICLK high (clock
polarity = 0)
4
Setup time, SPISIMO before SPICLK low (clock
polarity = 1)
4
High time, SPISIMO data valid after SPICLK high
(clock polarity = 0)
6
High time, SPISIMO data valid after SPICLK low
(clock polarity = 1)
6
Delay time, SPIENAn high after last SPICLK high
(clock polarity = 0)
1.5tc(VCLK)
2.5tc(VCLK)+tr(ENAn)
Delay time, SPIENAn high after last SPICLK low
(clock polarity = 1)
1.5tc(VCLK)
2.5tc(VCLK)+tr(ENAn)
ns
ns
ns
ns
ns
ns
Delay time, SPIENAn low after SPICSn low (if new
data has been written to the SPI buffer)
tf(ENAn)+6
ns
Delay time, SOMI valid after SPICSn low (if new data
has been written to the SPI buffer)
trf(SOMI)+6
ns
The MASTER bit (SPIGCR1.0) is set and the CLOCK PHASE bit (SPIFMTx.16) is set.
If the SPI is in slave mode, the following must be true: tc(SPC)S >= (PS + 1) tc(VCLK), where PS = prescale value set in SPIFMTx.[15:8].
tc(VCLK) = interface clock cycle time = 1 /f(VCLK)
For rise and fall timings, see the "switching characteristics for output timings versus load capacitance" table.
When the SPI is in Slave mode, the following must be true:
For PS values from 1 to 255: tc(SPC)S >= (PS +1)tc(VCLK) >= 50 ns, where PS is the prescale value set in the SPIFMTx.[15:8] register bits.
For PS values of 0: tc(SPC)S = 2tc(VCLK) >= 50 ns.
The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPIFMTx.17).
Peripheral and Electrical Specifications
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
www.ti.com
SPNS141 – MARCH 2010
1
SPICLK
(clock polarity = 0)
2
3
SPICLK
(clock polarity = 1)
4
5
Data Valid
SPISOMI Data Is Valid
SPISOMI
6
7
PRODUCT PREVIEW
SPISIMO Data
Must Be Valid
SPISIMO
Figure 7-15. SPI Slave Mode External Timing (CLOCK PHASE = 1)
SPICLK
(clock polarity = 0)
SPICLK
(clock polarity = 1)
8
SPIENAn
9
SPICSn
10
SPISOMI
Slave Out Data Is Valid
Figure 7-16. SPI Slave Mode Enable Timing (CLOCK PHASE = 1)
Peripheral and Electrical Specifications
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
Copyright © 2010, Texas Instruments Incorporated
83
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
SPNS141 – MARCH 2010
www.ti.com
7.10 CAN Controller Mode Timings
7.10.1 Dynamic Characteristics For The CANnTX And CANnRX Pins
Table 7-15. Dynamic Characteristics For The CANnTX And CANnRX Pins
Parameter
(1)
MIN
td(CANnTX)
Delay time, transmit shift register to CANnTX pin
td(CANnRX)
Delay time, CANnRX pin to receive shift register
MAX
Unit
15
ns
5
ns
MIN
MAX
Unit
98
102
ns
(1)
These values do not include rise/fall times of the output buffer.
7.11 Flexray Controller Mode Timings
7.11.1 Jitter Timing
Table 7-16. Jitter Timing
Parameter
PRODUCT PREVIEW
tTx1bit
clock jitter and signal symmetry
tTx10bit
FlexRay BSS (byte start sequence) to BSS
tTx10bitAvg
average over 10000 samples
tRxAsymDelay
delay difference between rise and fall from Rx pin to
sample point in FlexRay core
84
Peripheral and Electrical Specifications
999
1001
ns
999.5
1000.5
ns
-
2.5
ns
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
www.ti.com
SPNS141 – MARCH 2010
7.12 EMIF Timings
Table 7-17. EMIF Read/Write Mode Switching Characteristics (1) (2)
NO
Parameter
Description
MIN
MAX
Unit
(TA + 1) * E TBD
(TA + 1) * E +
TBD
ns
(RS + RST +
RH + TA +4) *
E - TBD
(RS + RST +
RH + TA +4) *
E - TBD
ns
(RS +1) * E TBD
(RS +1) * E +
TBD
ns
Output setup time, EMIFCS[3:0] low to EMIFOE
low (SS=1)
TBD
TBD
ns
Output hold time, EMIFOE high to EMIFCS[3:0]
high (SS=0)
(RH +1) * E TBD
(RH +1) * E +
TBD
ns
Output hold time, EMIFOE high to EMIFCS[3:0]
high (SS=1)
TBD
TBD
ns
Reads and Writes
1
td(TURNAROUND)
Turn around time
2
tc(EMRCYCLE)
EMIF read cycle time
3
tsu(EMCSL-EMOEL) Output setup time, EMIFCS[3:0] low to EMIFOE
low (SS=0)
4
th(EMOEH-EMCSH)
5
tsu(EMBAV-EMOEL) Output setup time, EMIFBADD[1:0] valid to
EMIFOE low
(RS +1) * E TBD
(RS +1) * E +
TBD
ns
6
th(EMOEH-EMBAIV) Output hold time, EMIFOE high to
EMIFBADD[1:0] invalid
(RH +1) * E TBD
(RH +1) * E +
TBD
ns
7
tsu(EMAV-EMOEL)
Output setup time, EMIFADD[21:0] valid to
EMIFOE low
(RS +1) * E TBD
(RS +1) * E +
TBD
ns
8
th(EMOEH-EMAIV)
Output hold time, EMIFOE high to EMIFADD[21:0]
invalid
(RH +1) * E TBD
(RH +1) * E +
TBD
ns
9
tw(EMOEL)
EMIFOE active low width
(RST +1) * E TBD
(RST +1) * E +
TBD
ns
10
tsu(EMDV-EMOEH)
Setup time, EMIFD[15:0] valid before EMIFOE
high
TBD
11
th(EMOEH-EMDV)
Hold time, EMIFD[15:0] valid after EMIFOE high
TBD
12
tc(EMWCYCLE)
EMIF write cycle time
13
tsu(EMCSL-EMWEL) Output setup time, EMIFCS[3:0] low to EMIFWE
low (SS=0)
PRODUCT PREVIEW
Reads
ns
Writes
Output setup time, EMIFCS[3:0] low to EMIFWE
low (SS=1)
14
th(EMWEH-EMCSH) Output hold time, EMIFWE high to EMIFCS[3:0]
high (SS=0)
Output hold time, EMIFWE high to EMIFCS[3:0]
high (SS=1
(1)
(2)
(WS + WST +
WH + TA +4) *
E - TBD
(WS + WST +
WH + TA +4) *
E - TBD
ns
(WS +1) * E TBD
(WS +1) * E +
TBD
ns
TBD
TBD
ns
(WH +1) * E TBD
(WH +1) * E +
TBD
ns
TBD
TBD
ns
15
tsu(EMBAV-EMWEL) Output setup time, EMIFBADD[1:0] valid to
EMIFWE low
(WS +1) * E TBD
(WS +1) * E +
TBD
ns
16
th(EMWEH-EMBAIV) Output hold time, EMIFWE high to EMBADD[1:0]
invalid
(WH +1) * E TBD
(WH +1) * E +
TBD
ns
17
tsu(EMAV-EMWEL)
Output setup time, EMIFADD[21:0] valid to
EMIFWE low
(WS +1) * E TBD
(WS +1) * E +
TBD
ns
18
th(EMWEH-EMAIV)
Output hold time, EMIFWE high to
EMIFADD[21:0] invalid
(WH +1) * E TBD
(WH +1) * E +
TBD
ns
19
tw(EMWEL)
EMIFWE active low width
(WST +1) * E TBD
(WST +1) * E +
TBD
RS = Read setup, RST = Read Strobe, RH = Read Hold, WS = Write Setup, WST = Write Strobe, WH = Write Hold, TA = Turn Around,
SS= Strobe Select Mode
E = VCLK period in ns.
Peripheral and Electrical Specifications
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
Copyright © 2010, Texas Instruments Incorporated
85
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
SPNS141 – MARCH 2010
www.ti.com
Table 7-17. EMIF Read/Write Mode Switching Characteristics
NO
Parameter
20
21
(1) (2)
(continued)
Description
MIN
MAX
Unit
tsu(EMDV-ENWEL)
Output setup time, EMIFD[15:0] valid to EMIFWE
low
(WS +1) * E TBD
(WS +1) * E +
TBD
ns
th(EMWEH-EMDIV)
Output hold time, EMIFD[15:0] valid after
EMIFWE high
(WH +1) * E TBD
(WH +1) * E +
TBD
ns
7.12.1 Read Timing (Asynchronous RAM)
2
1
EMIFCS[3:0]
EMIFR/W
EMIFBADD[1:0]
EMIFADD[21:0]
PRODUCT PREVIEW
8
6
4
3
5
7
9
EMIFOE
11
10
EMIFD[15:0]
EMIFWE
Figure 7-17. Asynchronous Memory Read Timing for EMIF
7.12.2 Write Timing (Asynchronous RAM)
12
1
EMIFCS[3:0]
EMIFBADD[1:0]
EMIFADD[21:0]
13
15
17
16
18
14
19
EMIFWE
20
21
EMIFD[15:0]
EMIFOE
Figure 7-18. Asynchronous Memory Write Timing for EMIF
86
Peripheral and Electrical Specifications
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
www.ti.com
SPNS141 – MARCH 2010
7.13 ETM Timings
7.13.1 ETMTRACECLK Timing
t(ETM)l
t(ETM)h
t(ETM)r
t(ETM)f
t(ETM)cyc
Figure 7-19. ETMTRACECLK Timing
Table 7-18. ETMTRACECLK Timing
Minimum
f(ETM)cyc
t(ETM)cyc
22.22ns
Maximum
Description
45MHz
Clock frequency
Clock period
t(ETM)l
2ns
Low pulse width
t(ETM)h
2ns
High pulse width
t(ETM)r
3ns
Clock and data rise time
t(ETM)f
3ns
Clock and data fall time
PRODUCT PREVIEW
Parameter
7.13.2 ETMDATA Timing
ETMTRACECLK
ETMDATA
t(ETM)su
t(ETM)ho
t(ETM)su
t(ETM)ho
Figure 7-20. ETMDATA Timing
Table 7-19. ETMDATA Timing
Parameter
Minimum
t(ETM)su
t(ETM)ho
1.5ns
Maximum
Description
2.5ns
Data setup time
Data hold time
Note: The ETMTRACECLK and ETMDATA timing is based on a 50pF load.
Peripheral and Electrical Specifications
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
Copyright © 2010, Texas Instruments Incorporated
87
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
SPNS141 – MARCH 2010
www.ti.com
7.14 RTP Timings
7.14.1 RTPCLK Timing
t(RTP)l
tr
tf
t(RTP)h
t(RTP)cyc
Figure 7-21. RTPCLK Timing
Table 7-20. RTPCLK Timing
PRODUCT PREVIEW
Parameter
Minimum
Description
t(RTP)cyc
tc(HCLK)
Clock period (depending on HCLK divide
ratio)
t(RTP)h
(t(RTP)cyc/2) - ((tr+tf)/2)
High pulse width (depending on HCLK divide
ratio and load on pin)
t(RTP)l
(t(RTP)cyc/2) - ((tr+tf)/2)
Low pulse width (depending on HCLK divide
ratio and load on pin)
7.14.2 RTPDATA Timing
td(RTPSYNC) t(RTPSYNC)valid
RTPSYNC
RTPCLK
RTPDATA
td(RTPDATA)
t(RTPDATA)valid
Figure 7-22. RTPDATA Timing
Table 7-21. RTPDATA Timing
88
Parameter
Minimum
Description
td(RTPSYNC)
3ns
RTP SYNC delay time
t(RTP)svalid
2ns
RTP SYNC valid
td(RTPDATA)
3ns
RTP DATA delay time
t(RTP)dvalid
2ns
SYNC hold time
Peripheral and Electrical Specifications
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
www.ti.com
SPNS141 – MARCH 2010
7.14.3 RTPENABLE Timing
t(RTP)enable
t(RTP)enable
tt(RTP)disable
(RTP)disable
1
2
3
4
5
d1
d2
d3
6
7
8
9
10 11 12 13 14 15 16
HCLK
RTPCLK
RTPENA
RTPSYNC
RTPDATA
RTPDATA
d5
d4
d6
d7
d8
Divide by 1
Figure 7-23. RTPENABLE Timing
Parameter
Minimum
t(RTP)disable
3tc(HCLK) + tr(RTPSYNC) + 12ns
t(RTP)enable
4tc(HCLK) + tr(RTPSYNC)
Maximum
Description
time RTPENA must go high
before what would be the next
RTPSYNC, to guarantee
delaying the next packet
5tc(HCLK) + tr(RTPSYNC) + 12ns
time after RTPENA goes low
before a packet that has been
halted, resumes
Peripheral and Electrical Specifications
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
Copyright © 2010, Texas Instruments Incorporated
PRODUCT PREVIEW
Table 7-22. RTPENABLE Timing
89
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
SPNS141 – MARCH 2010
www.ti.com
7.15 DMM Timings
7.15.1 DMMCLK Timing
t(DMM)l
tr
tf
t(DMM)h
t(DMM)cyc
Figure 7-24. DMMCLK Timing
Table 7-23. DMMCLK Timing
PRODUCT PREVIEW
Parameter
Minimum
Description
t(DMM)cyc
tc(HCLK * 2
Clock period (depending on HCLK divide
ratio)
t(DMM)h
(t(DMM)cyc/2) - ((tr+tf)/2)
High pulse width (depending on HCLK divide
ratio)
t(DMM)l
(t(DMM)cyc/2) - ((tr+tf)/2)
Low pulse width (depending on HCLK divide
ratio)
7.15.2 DMMDATA Timing
t(DMM) ssu
t(DMM) sho
DMMSYNC
DMMCLK
DMMDATA
t(DMM) dsu
t(DMM)dho
Figure 7-25. DMMDATA Timing
Table 7-24. DMMDATA Timing
90
Parameter
Minimum
Description
t(DMM)ssu
2 ns
SYNC active to clk falling edge setup time
t(DMM)sho
3ns
clk falling edge to SYNC deactive hold time
t(DMM)dsu
2ns
DATA to clk falling edge setup time
t(DMM)dho
3ns
clk falling edge to DATA hold time
Peripheral and Electrical Specifications
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
www.ti.com
SPNS141 – MARCH 2010
7.15.3 DMMENA Timing
HCLK
DMMCLK
DMMSYNC
DMMDATA
D00
D01
D10
D11
D20
D21
D30
D31
D40
D41
D50
DMMENA
The above figure shows a case with 1 DMM packet per 2 DMMCLK cycles (Mode = Direct Data Mode,
data width = 8, portwidth = 4) where none of the packets received by the DMM are sent out, leading to
filling up of the internal buffers. The DMMENA signal is shown asserted, after the first two packets have
been received and synchronized to the HCLK domain. Here, the DMM has the capacity to accept packets
D4, D5, D6, D7. Packet D8 would result in an overflow. Once DMMENA is asserted, the DMM expects to
stop receiving packets after 4 HCLK cycles; once DMMENA is de-asserted, the DMM can handle packets
immediately (after 0 HCLK cycles).
7.16 MibADC
7.16.1 MibADC
The multibuffered A-to-D converter (MibADC) has a separate power bus for its analog circuitry that
enhances the A-to-D performance by preventing digital switching noise on the logic circuitry which could
be present on VSS and VCC from coupling into the A-to-D analog stage. All A-to-D specifications are
given with respect to ADREFLO unless otherwise noted.
Table 7-25. MibADC
Resolution
12 bits (4096 values)
Monotonic
Assured
00h to FFFh [00 for VAI ≤ADREFLO; FFF for VAI ≥ ADREFHI]
Output conversion fcode
7.16.2 MibADC Recommended Operating Conditions
Table 7-26. MibADC Recommended Operating Conditions (1)
MIN
MAX
UNIT
ADREFHI
A-to-D high-voltage reference source
3
3.6
V
ADREFLO
A-to-D low-voltage reference source
0
0.3
V
VAI
Analog input voltage
ADREFLO
ADREFHI
V
-2
2
mA
IAIC
(1)
(2)
(2)
Analog input clamp current
(VAI < VSSAD – 0.3 or VAI > VCCAD +
0.3)
For VCCAD and VSSAD recommended operating conditions, see the "device recommended operating conditions" table.
Input currents into any ADC input channel outside the specified limits could affect conversion results of other channels.
Peripheral and Electrical Specifications
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
Copyright © 2010, Texas Instruments Incorporated
91
PRODUCT PREVIEW
Figure 7-26. DMMENA Timing
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
SPNS141 – MARCH 2010
www.ti.com
7.16.3 Operating Characteristics Over Full Ranges Of Recommended Operating Conditions
Table 7-27. Operating Characteristics Over Full Ranges Of Recommended Operating Conditions (1)
Parameter
Analog input mux on-resistance
Rsamp
ADC sample switch
on-resistance
Cmux
Input mux capacitance
Csamp
ADC sample capacitance
IAIL
TYP
150
11
12
Max
Unit
250
Ω
250
Ω
16
pF
13
pF
–200
200
nA
5
mA
3
3.6
V
Input leakage per ADC input pin
ADREFHI input current
ADREFHI = 3.6 V, ADREFLO = VSSAD
Conversion range over which
specified accuracy is maintained
ADREFHI - ADREFLO
EDNL
Differential nonlinearity error
Difference between the actual step width and the
ideal value.
±2
LSB
EINL
Integral nonlinearity error
Maximum deviation from the best straight line
through the MibADC. MibADC transfer
characteristics, excluding the quantization error.
±2
LSB
ETOT
Total error/Absolute accuracy
Maximum value of the difference between an
analog value and the ideal midstep value.
±4
LSB
CR
PRODUCT PREVIEW
92
Min
Analog input leakage current
IADREFHI
(1)
Description/Conditions
Rmux
1 LSB = (ADREFHI – ADREFLO)/ 212 for the MibADC
Peripheral and Electrical Specifications
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
www.ti.com
SPNS141 – MARCH 2010
7.16.4 MibADC Input Model
External
Internal
Mux
Switch
Rs0
Rmux
ADIN[0]
Vsrc0
IAIL
Mux
Switch
Rs1
Rmux
ADIN[1]
PRODUCT PREVIEW
Vsrc1
IAIL
Mux
Switch
RsX
Rmux
Sample
Switch
Rsamp
To ADC
Comparator
ADIN[X]
Cmux
IAIL
VsrcX
Csamp
Figure 7-27. MibADC Input Equivalent Circuit
Peripheral and Electrical Specifications
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
Copyright © 2010, Texas Instruments Incorporated
93
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
SPNS141 – MARCH 2010
www.ti.com
7.16.5 MibADC Timings
Table 7-28. MibADC Timings
Min
NOm
MAX
Unit
tc(ADCLK)
Cycle time, MibADC clock
33
ns
td(SH)
Delay time, sample and hold time
200
ns
td©)
Delay time, conversion time
400
ns
Delay time, total sample/hold and conversion time
600
ns
td(SHC)
(1)
(1)
This is the minimum sample/hold and conversion time that can be achieved. These parameters are dependent on many factors, e.g the
prescale settings.
PRODUCT PREVIEW
94
Peripheral and Electrical Specifications
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
www.ti.com
SPNS141 – MARCH 2010
7.16.6 MibADC Nonlinearity Error
The differential nonlinearity error shown in the figure below (sometimes referred to as differential linearity)
is the difference between an actual step width and the ideal value of 1 LSB.
0 ... 110
Digital Output Code
0 ... 101
0 ... 100
0 ... 011
Differential
Linearity Error (1/2 LSB)
1 LSB
0 ... 010
0 ... 001
Differential Linearity
Error (–1/2 LSB)
1 LSB
0
1
2
3
4
Analog Input Value (LSB)
5
Figure 7-28. Differential Nonlinearity (DNL)
The integral nonlinearity error shown in the figure below (sometimes referred to as linearity error) is the
deviation of the values on the actual transfer function from a straight line.
0 ... 111
Digital Output Code
0 ... 110
Ideal
Transition
0 ... 101
Actual
Transition
0 ... 100
At Transition
011/100
(– 1/2 LSB)
0 ... 011
At Transition
011/100
(–1/2 LSB)
0 ... 010
End-Point Lin. Error
0 ... 001
At Transition
001/010 (– 1/4 LSB)
0 ... 000
0
1
2
3
4
5
6
7
Analog Input Value (LSB)
Figure 7-29. Integral Nonlinearity (INL) Error
Peripheral and Electrical Specifications
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
Copyright © 2010, Texas Instruments Incorporated
95
PRODUCT PREVIEW
0 ... 000
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
SPNS141 – MARCH 2010
www.ti.com
7.16.7 MibADC Total Error
The absolute accuracy or total error of an MibADC as shown in the figure below is the maximum value of
the difference between an analog value and the ideal midstep value.
0 ... 111
Digital Output Code
0 ... 110
0 ... 101
0 ... 100
Total Error
At Step 0 ... 101
(–1 1/4 LSB)
0 ... 011
0 ... 010
Total Error
At Step
0 ... 001 (1/2 LSB)
0 ... 001
PRODUCT PREVIEW
0 ... 000
0
1
2
3
4
5
Analog Input Value (LSB)
6
7
Figure 7-30. Absolute Accuracy (Total) Error
96
Peripheral and Electrical Specifications
Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
TMS570LS20216, TMS570LS20206, TMS570LS10216
TMS570LS10206, TMS570LS10116, TMS570LS10106
www.ti.com
SPNS141 – MARCH 2010
8 Mechanical Packaging and Orderable Information
The following table(s) show the thermal resistance for the PBGA-ZWT and PQFP-PGE mechanical
packages.
8.1
8.1.1
Thermal Data
PGE (S-PQFP-G144) plastic Quad Flat Pack
Table 8-1. PGE (S-PQFP-G144) Thermal Resistance Characteristics
8.1.2
PARAMETER
°C / W
RQJA
45
RQJC
5
ZWT (S-PBGA-N337) Plastic ball grid array
8.2
PARAMETER
°C / W
RQJA
TBD
RQJC
TBD
Packaging Information
The following packaging information and addendum reflect the most current data available for the
designated device(s). The data is subject to change without notice and without revision of this document.
Mechanical Packaging and Orderable Information
Submit Documentation Feedback
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116
TMS570LS10106
Copyright © 2010, Texas Instruments Incorporated
97
PRODUCT PREVIEW
Table 8-2. ZWT (S-PBGA-N337) Thermal Resistance Characteristics
PACKAGE OPTION ADDENDUM
www.ti.com
5-Mar-2010
PACKAGING INFORMATION
Orderable Device
Status (1)
X5LS20216ASPGEQQ1
ACTIVE
LQFP
PGE
144
1
TBD
Call TI
Call TI
X5LS20216ASZWTQQ1
ACTIVE
NFBGA
ZWT
337
1
TBD
Call TI
Call TI
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
Lead/Ball Finish
MSL Peak Temp (3)
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in
a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check
http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS
compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder
temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited
information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI
to Customer on an annual basis.
Addendum-Page 1
MECHANICAL DATA
MTQF017A – OCTOBER 1994 – REVISED DECEMBER 1996
PGE (S-PQFP-G144)
PLASTIC QUAD FLATPACK
108
73
109
72
0,27
0,17
0,08 M
0,50
144
0,13 NOM
37
1
36
Gage Plane
17,50 TYP
20,20 SQ
19,80
22,20
SQ
21,80
0,25
0,05 MIN
0°– 7°
0,75
0,45
1,45
1,35
Seating Plane
0,08
1,60 MAX
4040147 / C 10/96
NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-026
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products
Applications
Amplifiers
amplifier.ti.com
Audio
www.ti.com/audio
Data Converters
dataconverter.ti.com
Automotive
www.ti.com/automotive
DLP® Products
www.dlp.com
Communications and
Telecom
www.ti.com/communications
DSP
dsp.ti.com
Computers and
Peripherals
www.ti.com/computers
Clocks and Timers
www.ti.com/clocks
Consumer Electronics
www.ti.com/consumer-apps
Interface
interface.ti.com
Energy
www.ti.com/energy
Logic
logic.ti.com
Industrial
www.ti.com/industrial
Power Mgmt
power.ti.com
Medical
www.ti.com/medical
Microcontrollers
microcontroller.ti.com
Security
www.ti.com/security
RFID
www.ti-rfid.com
Space, Avionics &
Defense
www.ti.com/space-avionics-defense
RF/IF and ZigBee® Solutions www.ti.com/lprf
Video and Imaging
www.ti.com/video
Wireless
www.ti.com/wireless-apps
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2010, Texas Instruments Incorporated