HOLTEK HT1647A_11

HT1647A
64´16 LCD Controller for I/O MCU
PATENTED
PAT No. : TW 099352
Technical Document
· Application Note
Features
· Operating voltage: 2.7V~5.2V
· Eight kinds of time base/WDT selection
· Built-in 32kHz RC oscillator
· Time base or WDT overflow output
· External 32.768kHz crystal oscillator or 32kHz
· R/W address auto increment
frequency source input
· Built-in buzzer driver (2kHz/4kHz)
· Standby current: <1mA at 3V, <2mA at 5V
· Power down command reduces power consumption
· Internal resistor type: 1/5 bias or 1/4 bias, 1/16 duty
· Software configuration feature
· Two selectable LCD frame frequencies: 89Hz or
· Data mode and Command mode instructions
170Hz
· Three data accessing modes
· Max. 64´16 patterns, 64 segments and 16 commons
· Provides VLCD pin to adjust LCD operating voltage
· Built-in bit-map display RAM: 1024 bits
· Provides three kinds of bias current programming
(=64´16 bits)
· Control of TN-type, STN-type LCDs and
· Built-in internal resistor type bias generator
ECB-type LCDs
· Six-wire interface (four data wires)
· 100-pin LQFP package and in chip form
Applications
· Leisure products
· Cellular phone
· Games
· Global positioning system
· Personal digital assistant
· Consumer electronics
General Description
HT1647A is a peripheral device specially designed for
I/O type MCU used to expand the display capability. The
max. display segment of the device are 1024 patterns
(64 segments and 16 commons). It also supports four
data bits interface, buzzer sound, Watchdog Timer or
time base timer functions. The HT1647A is a memory
mapping and multi-function LCD controller. Since the
HT1647A can control ECB-type (Electrically Controlled
Rev. 1.40
Birefringence) LCDs in addition to current TN-type
(Twisted Nematic) or STN-type (Super Twisted Nematic) LCDs. The software configuration feature of the
HT1647A make it suitable for multiple LCD applications
including LCD modules and display subsystems. Only
six lines (CS, WR, DB0~DB3) are required for the interface between the host controller and the HT1647A.
1
April 29, 2011
PATENTED
HT1647A
Block Diagram
O S C O
D is p la y R A M
O S C I
C S
C o n tro l
&
T im in g
C ir c u it
R D
W R
D B 0
C O M 0
C O M 1 5
L C D D r iv e r /
B ia s C ir c u it
S E G 0
D B 3
S E G 6 3
V D D
V L C D
V S S
B Z
W a tc h d o g T im e r
&
T im e B a s e G e n e r a to r
T o n e F re q u e n c y
G e n e ra to r
B Z
N o te : C S : C h ip s
B Z , B Z : T o
W R , R D : W
D B 0 ~ D B 3 :
C O M 0 ~ C O
IR Q : T im e
IR Q
e le c tio n
n e o u tp u ts
R IT E c lo c k , R E A D c lo c k
D a ta b u s
M 1 5 , S E G 0 ~ S E G 6 3 : L C D o u tp u ts
b a s e o r W D T o v e r flo w o u tp u t
Pin Assignment
S E G
S E G
S E G
S E G
S E G
S E G
S E G
S E G
S E G
S E G
S E G
S E G
S E G
S E G
S E G
S E G
S E G
S E G
S E G
S E G
S E G
S E G
S E G
S E G
S E G
3 9
4 0
4 1
4 2
4 3
4 4
4 5
4 6
4 7
4 8
4 9
5 0
5 1
5 2
5 3
5 4
5 5
5 6
5 7
5 8
5 9
6 0
6 1
6 2
6 3
C S
R D
W R
D B 0
D B 1
D B 2
D B 3
V S S
O S C I
O S C O
V D D
V L C D
IR Q
B Z
B Z
T 1
T 2
T 3
T 4
N C
C O M 0
C O M 1
C O M 2
C O M 3
C O M 4
1 0 0 9 9 9 8 9 7 9 6 9 5 9 4 9 3 9 2 9 1 9 0 8 9 8 8 8 7 8 6 8 5 8 4 8 3 8 2 8 1 8 0 7 9 7 8 7 7 7 6
1
2
7 5
7 4
7 3
3
7 2
4
5
6
7
8
9
1 0
1 1
1 2
H T 1 6 4 7 A
1 0 0 L Q F P -A
1 3
1 4
1 5
1 6
1 7
1 8
1 9
2 0
2 1
2 2
2 3
2 4
2 5
2 6 2 7 2 8 2 9 3 0 3 1 3 2 3 3 3 4 3 5 3 6 3 7 3 8 3 9 4 0 4 1 4 2 4 3 4 4 4 5 4 6 4 7 4 8 4 9 5 0
7 1
7 0
6 9
6 8
6 7
6 6
6 5
6 4
6 3
6 2
6 1
6 0
5 9
5 8
5 7
5 6
5 5
5 4
5 3
5 2
5 1
S E G
S E G
S E G
S E G
S E G
S E G
S E G
S E G
S E G
S E G
S E G
S E G
S E G
S E G
S E G
S E G
S E G
S E G
S E G
S E G
S E G
S E G
S E G
S E G
S E G
3 8
3 7
3 6
3 5
3 4
3 3
3 2
3 1
3 0
2 9
2 8
2 7
2 6
2 5
2 4
2 3
2 2
2 1
2 0
1 9
1 8
1 7
1 6
1 5
1 4
S E G
S E G
S E G
S E G
S E G
S E G
S E G
S E G
S E G
S E G
S E G
S E G
S E G
S E G
C O M
C O M
C O M
C O M
C O M
C O M
C O M
C O M
C O M
C O M
C O M
1 3
1 2
1 1
1 0
9
8
7
6
5
4
1 5
2
3
2
1
0
1 4
1 3
1 2
1 1
1 0
9
8
7
6
5
Rev. 1.40
April 29, 2011
PATENTED
HT1647A
Pad Assignment
S E G 3 7
S E G 3 6
S E G 3 5
S E G 3 4
S E G 3 3
S E G 3 2
S E G 3 1
S E G 3 0
S E G 2 9
S E G 2 8
S E G 2 7
S E G 2 6
S E G 2 5
S E G 2 4
S E G 2 3
S E G 2 2
S E G 2 1
S E G 2 0
S E G 1 9
S E G 1 8
S E G 1 7
1 0 2 1 0 1 1 0 0
S E G 3 8
S E G 3 9
S E G 4 1
S E G 4 0
S E G 4 2
1
9 9
9 8
9 7
9 6
9 5
9 4
9 3
9 2
9 1
9 0
8 9
8 8
8 7
8 6
8 5
8 4
8 3
8 2
8 1
8 0
7 9
7 8
7 7
S E G 1 6
7 6
S E G 1 5
7 5
S E G 1 4
7 4
S E G 1 3
S E G 4 3
2
7 3
S E G 1 2
S E G 4 4
3
7 2
S E G 1 1
4
7 1
S E G 1 0
5
7 0
S E G 9
S E G 4 7
6
6 9
S E G 8
S E G 4 8
7
6 8
S E G 7
S E G 4 9
8
6 7
S E G 6
S E G 5 0
9
6 6
S E G 5
S E G 5 1
1 0
6 5
S E G 4
1 1
6 4
S E G 3
6 3
S E G 2
S E G 1
S E G 0
S E G 4 5
S E G 4 6
S E G 5 2
(0 ,0 )
1 2
S E G 5 3
S E G 5 4
1 3
6 2
S E G 5 5
1 4
6 1
S E G 5 6
1 5
6 0
S E G 5 7
1 6
5 9
S E G 5 8
1 7
5 8
S E G 5 9
1 8
5 7
S E G 6 0
1 9
5 6
S E G 6 1
2 0
5 5
S E G 6 2
2 1
5 4
S E G 6 3
2 2
5 3
C S
2 3
R D
2 4
W R
2 5
2 6
2 7
2 8
2 9
3 1
3 0
3 2
3 4
3 3
3 5
3 6
3 7
3 9
3 8
4 0
4 1
4 2
4 3
C O M 1 5
C O M 1 4
C O M 1 3
C O M 1 2
C O M 1 1
C O M 1 0
C O M 9
C O M 8
4 4
4 6
4 7
4 8
4 9
5 0
5 1
5 2
C O M 0
C O M 1
C O M 2
C O M 3
C O M 4
C O M 5
C O M 6
C O M 7
T 4
T 3
T 2
T 1
B Z
B Z
IR Q
V L C D
V D D
O P 1
O S C O
O S C I
O P 2
O P 3
V S S
D B 3
D B 2
D B 1
D B 0
4 5
Chip size: 3255 ´ 3050 (mm)2
* The IC substrate should be connected to VSS in the PCB layout artwork.
Pad Coordinates
Unit: mm
Pad No.
X
Y
Pad No.
X
Y
Pad No.
X
Y
1
-1379.40
1407.45
35
-336.80
-1310.40
69
1512.50
593.85
2
-1512.50
956.25
36
-233.40
-1310.40
70
1512.50
688.85
3
-1512.50
861.25
37
-125.00
-1310.40
71
1512.50
783.85
4
-1512.50
766.25
38
72
1512.50
878.85
-1512.50
671.25
39
-28.00
77.60
-1310.40
5
-1310.40
73
1512.50
973.85
6
-1512.50
576.25
40
172.60
-1310.40
74
1512.50
1068.85
7
-1512.50
481.25
41
295.20
-1310.40
75
1512.50
1163.85
8
-1512.50
386.25
42
408.80
-1310.40
76
1512.50
1258.85
9
-1512.50
291.25
43
522.40
-1310.40
77
1512.50
1353.85
10
-1512.50
196.25
44
636.00
-1310.40
78
995.60
1407.45
Rev. 1.40
3
April 29, 2011
PATENTED
HT1647A
Pad No.
X
Y
Pad No.
X
Y
Pad No.
X
Y
11
-1512.50
101.25
45
781.30
-1410.00
79
900.60
1407.45
12
-1512.50
6.25
46
876.30
-1410.00
80
805.60
1407.45
13
-1512.50
-88.75
47
971.30
-1410.00
81
710.60
1407.45
14
-1512.50
-183.75
48
1066.30
-1410.00
82
615.60
1407.45
15
-1512.50
-278.75
49
1161.30
-1410.00
83
520.60
1407.45
16
-1512.50
-373.75
50
1256.30
-1410.00
84
425.60
1407.45
17
-1512.50
-468.75
51
1351.30
-1410.00
85
330.60
1407.45
18
-1512.50
-563.75
52
1446.30
-1410.00
86
235.60
1407.45
19
-1512.50
-658.75
53
1512.50
-949.55
87
140.60
1407.45
20
-1512.50
-753.75
54
1512.50
-845.55
88
45.60
1407.45
21
-1512.50
-848.75
55
1512.50
-759.55
89
-49.40
1407.45
22
-1512.50
-943.75
56
1512.50
-664.55
90
-144.40
1407.45
23
-1441.90
-1095.00
57
1512.50
-569.55
91
-239.40
1407.45
24
-1441.90
-1190.00
58
1512.50
-474.55
92
-334.40
1407.45
25
-1441.90
-1295.60
59
1512.50
-379.55
93
-429.40
1407.45
26
-1240.80
-1310.40
60
1512.50
-284.55
94
-524.40
1407.45
27
-1145.80
-1310.40
61
1512.50
-166.15
95
-619.40
1407.45
28
-1040.20
-1310.40
62
1512.50
96
-714.40
1407.45
29
-945.20
-1310.40
63
1512.50
-71.15
23.85
97
-809.40
1407.45
30
-842.00
-1310.40
64
1512.50
118.85
98
-904.40
1407.45
31
-743.30
-1310.40
65
1512.50
213.85
99
-999.40
1407.45
32
-637.70
-1310.40
66
1512.50
308.85
100
-1094.40
1407.45
33
-542.70
-1310.40
67
1512.50
403.85
101
-1189.40
1407.45
34
-437.10
-1310.40
68
1512.50
498.85
102
-1284.40
1407.45
Pad Description
Pad No.
23
Pad Name
CS
I/O
Description
I
Chip selection input with pull-high resistor. When the CS is logic high, the data
and command read from or write to the HT1647A are disabled. The serial interface circuit is also reset. But if the CS is at a logic low level and is input to the CS
pad, the data and command transmission between the host controller and the
HT1647A are all enabled.
24
RD
I
READ clock input with pull-high resistor. Data in the RAM of the HT1647A are
clocked out on the rising edge of the RD signal. The clocked out data will appear
on the data line. The host controller can use the next falling edge to latch the
clocked out data.
25
WR
I
WRITE clock input with pull-high resistor. Data on the DATA line are latched into
the HT1647A on the rising edge of the WR signal.
26~29
DB0~DB3
I/O Parallel data input/output with a pull-high resistor
30
VSS
¾
31
OP1
I
Used to select D3, D1 or D2, D0; OP1 input with pull-low resistor.
32
OP2
I
OP2 and OP3 are used to select two of four level gray scale; OP2 input with
pull-high resistor.
33
OSCI
I
34
OSCO
O
35
OP3
I
Rev. 1.40
Negative power supply for logic circuit, ground
The OSCI and OSCO pads are connected to a 32.768kHz crystal in order to generate a system clock. If the system clock comes from an external clock source, the
external clock source should be connected to the OSCI pad. But if an on-chip RC
oscillator is selected, the OSCI and OSCO pads can be left open.
OP2 and OP3 are used to select two of four level gray scale ; OP3 input with
pull-high resistor.
4
April 29, 2011
PATENTED
Pad No.
Pad Name
I/O
HT1647A
Description
36
VDD
¾
37
VLCD
I
Power supply for LCD driver circuit
38
IRQ
O
Time base or Watchdog Timer overflow flag, NMOS open drain output.
39, 40
BZ, BZ
O
2kHz or 4kHz frequency output pair (tristate output buffer)
41~44
T1~T4
I
Not connected
45~60
COM0~COM15
O
LCD common outputs
O
LCD segment outputs
61~102,
SEG0~SEG63
1~22
Positive power supply for logic circuit
Absolute Maximum Ratings
Supply Voltage ...........................VSS-0.3V to VSS+5.5V
Storage Temperature ............................-50°C to 125°C
Input Voltage.............................VSS-0.3V to VDD+0.3V
Operating Temperature...........................-25°C to 75°C
Note: These are stress ratings only. Stresses exceeding the range specified under ²Absolute Maximum Ratings² may
cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed
in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.
D.C. Characteristics
Symbol
Parameter
VDD
Operating Voltage
IDD1
Operating Current
Ta=25°C
Test Conditions
VDD
Conditions
¾
¾
3V
5V
IDD2
3V
Operating Current
5V
IDD11
3V
Operating Current
5V
IDD22
3V
Operating Current
5V
ISTB
3V
Standby Current
5V
VIL
No load/LCD ON
On-chip RC oscillator
No load/LCD ON
Crystal oscillator
No load/LCD OFF
On-chip RC oscillator
No load/LCD OFF
Crystal oscillator
No load,
Power down mode
3V
Input Low Voltage
3V
Input High Voltage
IOH1
Rev. 1.40
Max.
Unit
2.7
¾
5.2
V
¾
150
250
mA
¾
250
370
mA
¾
135
200
mA
¾
200
300
mA
¾
15
30
mA
¾
50
70
mA
¾
2
10
mA
¾
3
10
mA
¾
¾
1
mA
¾
¾
2
mA
0
¾
0.6
V
0
¾
1.0
V
2.4
¾
3
V
4.0
¾
5
V
DB0~DB3, WR, CS, RD
5V
IOL1
Typ.
DB0~DB3, WR, CS, RD
5V
VIH
Min.
3V
VOL=0.3V
1.2
2.5
¾
mA
5V
VOL=0.5V
3
6
¾
mA
3V
VOH=2.7V
-0.9
-1.8
¾
mA
5V
VOH=4.5V
-2
-4
¾
mA
BZ, BZ, IRQ Sink Current
BZ, BZ Source Current
5
April 29, 2011
PATENTED
Symbol
IOL2
IOH2
IOL3
IOH3
IOL4
IOH4
RPH1
Parameter
Test Conditions
VDD
Conditions
Typ.
Max.
Unit
VOL=0.3V
1.2
2.5
¾
mA
5V
VOL=0.5V
3
6
¾
mA
3V
VOH=2.7V
-0.9
-1.8
¾
mA
5V
VOH=4.5V
-2
-4
¾
mA
3V
VOL=0.3V
80
160
¾
mA
5V
VOL=0.5V
180
360
¾
mA
3V
VOH=2.7V
-40
-80
¾
mA
5V
VOH=4.5V
-90
-180
¾
mA
3V
VOL=0.3V
50
100
¾
mA
5V
VOL=0.5V
120
240
¾
mA
3V
VOH=2.7V
-30
-60
¾
mA
5V
VOH=4.5V
-70
-140
¾
mA
150
250
410
kW
60
125
210
kW
150
250
410
kW
60
125
210
kW
150
250
410
kW
60
125
210
kW
DB0~DB3 Source Current
LCD Common Sink Current
LCD Common Source Current
LCD Segment Sink Current
LCD Segment Source Current
3V
Pull-high Resistor
DB0~DB3, WR, CS, RD
3V
Pull-high Resistor
OP2, OP3
5V
RPL
Min.
3V
DB0~DB3 Sink Current
5V
RPH2
HT1647A
3V
Pull-low Resistor
OP1
5V
A.C. Characteristics
Symbol
fSYS1
Parameter
Ta=25°C
Test Conditions
VDD
Conditions
3V
System Clock
3V
System Clock
Crystal oscillator
5V
3V
fSYS3
System Clock
External clock source
5V
fLCD1
3V
LCD Frame Frequency
3V
LCD Frame Frequency
Crystal oscillator
5V
3V
fLCD3
LCD Frame Frequency
External clock source
5V
tCOM
LCD Common Period
fCLK1
4-Bit Data Clock (WR Pin)
¾
n: Number of COM
3V
Duty cycle 50%
5V
Rev. 1.40
Max.
Unit
22
32
40
kHz
24
32
40
kHz
¾
32.768
¾
kHz
¾
32.768
¾
kHz
¾
32
¾
kHz
¾
32
¾
kHz
61/117 89/170 111/213
Hz
61/117 89/170 111/213
Hz
On-chip RC oscillator
5V
fLCD2
Typ.
On-chip RC oscillator
5V
fSYS2
Min.
6
¾
64
¾
Hz
¾
64
¾
Hz
¾
64
¾
Hz
¾
64
¾
Hz
¾
n/fLCD
¾
sec
¾
¾
150
kHz
¾
¾
300
kHz
April 29, 2011
PATENTED
Symbol
HT1647A
Test Conditions
Parameter
VDD
Conditions
Min.
Typ.
Max.
Unit
¾
¾
75
kHz
¾
¾
150
kHz
¾
250
¾
ns
¾
¾
ms
¾
¾
ms
3V
fCLK2
4-Bit Data Clock (RD Pin)
Duty cycle 50%
5V
4-Bit Interface Reset Pulse Width
(Figure 3)
tCS
¾
CS
Write mode
3.34
Read mode
6.67
Write mode
1.67
Read mode
3.34
3V
tCLK
WR, RD Input Pulse Width (Figure 1)
5V
tr, tf
Rise/Fall Time Serial Data Clock 3V
Width (Figure 1)
5V
¾
¾
120
¾
ns
tsu
Setup Time for DB to WR, RD Clock 3V
Width (Figure 2)
5V
¾
¾
120
¾
ns
th
Hold Time for DB to WR, RD Clock 3V
Width (Figure 2)
5V
¾
¾
120
¾
ns
tsu1
Setup Time for CS to WR, RD Clock 3V
Width (Figure 3)
5V
¾
¾
100
¾
ns
th1
Hold Time for CS to WR, RD Clock 3V
Width (Figure 3)
5V
¾
¾
100
¾
ns
20
¾
¾
ms
0.05
¾
¾
V/ms
tOFF
VDD OFF Times (Figure 4)
¾
VDD drop down to 0V
tSR
VDD Rising Slew Rate (Figure 4)
¾
¾
Note:
1. If the conditions of Power-on Reset timing are not satisfied in power On/Off sequence, the internal
Power-on Reset (POR) circuit will not operate normally.
2. If the VDD drops below the minimum voltage of operating voltage spec. during operating, the conditions
of Power-on Reset timing must be satisfied also. That is, the VDD must drop to 0V and keep at 0V for
20ms (min.) before rising to the normal operating voltage.
V A L ID
tf
W R , R D
C lo c k
9 0 %
5 0 %
1 0 %
tr
tC
V
tC
L K
ts
G N D
L K
5 0 %
W R , R D
C lo c k
S
V
D D
5 0 %
th
u 1
G N D
V D D
1
V
5 0 %
F ir s t C lo c k
L a s t C lo c k
D D
0 V
tS
tO
R
F F
G N D
Figure 3
Rev. 1.40
G N D
Figure 2
tC
ts
D D
G N D
th
u
W R , R D
C lo c k
Figure 1
C S
V
5 0 %
D B
D D
D A T A
Figure 4. Power-on Reset Timing
7
April 29, 2011
PATENTED
HT1647A
Functional Description
System Oscillator
source of 32kHz to the OSCI pin. In this case, the system fails to enter the power down mode, similar to the
case in the external 32kHz clock source operation. At
the initial system power on, the HT1647A is at the SYS
DIS state.
The HT1647A system clock is used to generate the time
base/Watchdog Timer (WDT) clock frequency, LCD
driving clock, and tone frequency. The clock source
may be from an on-chip RC oscillator (32kHz), a crystal
oscillator (32.768kHz), or an external 32kHz clock by
the S/W setting. The configuration of the system oscillator is as shown. After the SYS DIS command is executed, the system clock will stop and the LCD bias
generator will turn off. That command is available only
for the on-chip RC oscillator or for the crystal oscillator.
Once the system clock stops, the LCD display will become blank, and the time base/WDT loses its function
as well.
O S C I
O S C O
E x te r n a l C lo c k S o u r c e
3 2 k H z
008H
COM0
D0 or D1
COM1
D2 or D3
001H
009H
COM2
D0 or D1
D0 or D1
COM3
D2 or D3
D2 or D3
002H
00AH
COM4
D0 or D1
COM5
D2 or D3
003H
00BH
COM6
D0 or D1
D0 or D1
COM7
D2 or D3
D2 or D3
004H
00CH
COM8
D0 or D1
COM9
D2 or D3
005H
00DH
COM10
D0 or D1
D0 or D1
COM11
D2 or D3
D2 or D3
006H
00EH
COM12
D0 or D1
D0 or D1
COM13
D2 or D3
D2 or D3
007H
00FH
COM14
D0 or D1
COM15
D2 or D3
SEG0
SEG1
S y s te m
C lo c k
O n - c h ip R C O s c illa to r
3 2 k H z
System Oscillator Configuration
The LCD OFF command is used to turn the LCD bias
generator off. After the LCD bias generator switches off
by issuing the LCD OFF command, using the SYS DIS
command reduces power consumption, thus serving as
a system power down command. But if the external
clock source is chosen as the system clock, using the
SYS DIS command can neither turn the oscillator off nor
carry out the power down mode. The crystal oscillator
option can be applied to connect an external frequency
000H
C r y s ta l O s c illa to r
3 2 7 6 8 H z
Display Memory - RAM Structure
The static display RAM is organized into 512´2 bits and
stores the display data. The contents of the RAM are directly mapped to the contents of the LCD driver. Data in
the RAM can be accessed by the READ, WRITE and
READ-MODIFY-WRITE commands. The following is a
mapping from the RAM to the LCD patterns.
010H ------------------------------1E8H
1F0H
1F8H
D0 or D1
D0 or D1
D0 or D1
D2 or D3
D2 or D3
D2 or D3
011H ------------------------------1E9H
012H ------------------------------1EAH
1F1H
1F9H
D0 or D1
D0 or D1
D2 or D3
D2 or D3
1F2H
1FAH
D0 or D1
D0 or D1
D0 or D1
D2 or D3
D2 or D3
D2 or D3
013H ------------------------------1EBH
1F3H
1FBH
D0 or D1
D0 or D1
D2 or D3
D2 or D3
1F4H
1FCH
D0 or D1
D0 or D1
D0 or D1
D2 or D3
D2 or D3
D2 or D3
014H ------------------------------1ECH
015H ------------------------------1EDH
016H ------------------------------1EEH
1F5H
1FDH
D0 or D1
D0 or D1
D2 or D3
D2 or D3
1F6H
1FEH
D0 or D1
D0 or D1
D2 or D3
D2 or D3
1F7H
1FFH
D0 or D1
D0 or D1
D0 or D1
D2 or D3
D2 or D3
D2 or D3
SEG62
SEG63
017H ------------------------------1EFH
SEG2 --------------------------- SEG61
Note: One bit of RAM maps to LCD¢s one pixel and decide 2-level gray scale.
RAM structure depends on OP1, OP2 and OP3 option.
Rev. 1.40
8
April 29, 2011
PATENTED
HT1647A
Write Data Mapping to RAM for Pad Option
Pad Option
OP1
0
(Select D2
and D0)
1
(Select D3
and D1)
OP2
OP3
0
0
0
1
1
0
1
1
0
0
0
1
1
0
1
1
Level Selected
RAM Data
Level2 (1,0)
0
Level3 (0,1)
1
Level4 (0,0)
0
Level3 (0,1)
1
Level2 (1,0)
0
Level1 (1,1)
1
Level4 (0,0)
0
Level1 (1,1)
1
Level3 (0,1)
0
Level2 (1,0)
1
Level4 (0,0)
0
Level2 (1,0)
1
Level3 (0,1)
0
Level1 (1,1)
1
Level4 (0,0)
0
Level1 (1,1)
1
Note
Level1 and Level4 are not used
Level1 and Level2 are not used
Level3 and Level4 are not used
Level2 and Level3 are not used
Level1 and Level4 are not used
Level1 and Level3 are not used
Level2 and Level4 are not used
Level2 and Level3 are not used
Note: OP1 is used to select D3, D1 or D2, D0.
OP2 and OP3 are used to select two of four level gray scale.
The default value of OP1, OP2 and OP3 are (0,1,1).
Gray Scale Level Decision
Gray Scale Display
HT1647A uses PWM technique to provide gray scale
display and only two of four level gray scale can be displayed simultaneously by setting OP1~OP3 pads. OP1
is used to select D3, D1 or D2, D0 and OP2 and OP3 are
used to select two of four level gray scale. The four level
gray scale are defined below table ²RAM Data Defined
Gray Scale Level². MCU write two bits data and only
one bit data is written to internal display RAM. The
OP1~OP3 pads setting is shown as following table
²Write Data Mapping to RAM for Pad Option².
If the user choose 89Hz frame frequency, a max. of 24
sections can be programmed to suit a satisfactory gray
scale in every level. Similarly, if the user choose 170Hz
frame frequency, a max. of 13 sections can be programmed to suit a satisfactory gray scale in every level.
HT1647A provides 5-bit PWM data to control the length
of the section. In other words, a max. Of 24 gray scales
are generated by 5-bit binary PWM data. At FRAME
89Hz mode, the HT1647A only provides a max. of 24
adjustable gray scales although 32 is the expressed
max. value by 5 bits binary code. When 5 bits binary
code value is more than 23, the PWM control circuit uniformly regards 23. To increase PWM data indicates to
increase the length of the active segment signal. The
varied length of the active segment signal displays varied gray scale in TN-type, STN-type LCDs (refer to table
1). Similarly, it displays varied color in ECB-type LCDs.
The color display is derived from ECB-type LCD specification. At FRAME 170Hz mode, the HT1647A only provides a max. of 13 adjustable gray scales although 32 is
the expressed max. value by 5 bits binary code. When
the 5 bits binary code value is more than 12, the PWM
control circuit uniformly regards 12. The user must appoint four kinds of PWM data to four kinds of different
gray scale level by commanding PWM data (refer to table 2).
RAM Data Code
(D3, D2) or (D1, D0)
Choice Gray Scale Level
(1, 1)
Level 1
(1, 0)
Level 2
(0, 1)
Level 3
(0, 0)
Level 4
RAM Data Defined Gray Scale Level
Frame Frequency
HT1647A provides two kinds of frame frequency option
by command code; 89Hz and 170Hz respectively.
FRAME 89Hz provides 89Hz frame frequency and active segment signal width can be divided into 24 sections concurrently. FRAME 170Hz provides 170Hz
frame frequency and active segment signal width can be
divided into 13 sections concurrently. The 24 sections
display a particularly gray scale more than the 13 sections by PWM data. The default is FRAME 89Hz.
Rev. 1.40
9
April 29, 2011
PATENTED
Name
HT1647A
Command Code
Function
FRAME 170Hz
X100-0001-1000-XXXX
Select 170Hz frame frequency and active segment signal
width can be divided into 13 sections
FRAME 89Hz
X100-0001-1101-XXXX
Select 89Hz frame frequency and active segment signal width
can be divided into 24 sections
Frame Frequency Selection Command Code
Relationship Table between PWM Data and Gray Scale
V a lu e
0
1
2
3
5
4
6
7
8
9
1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
2 0
2 1
2 2
2 3
2 4
3 1
5 b its P W M
B 4 B 3 B 2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
1
0
0
1
0
1
0
0
1
0
0
1
0
0
1
0
0
1
1
0
1
1
0
1
1
0
1
1
1
0
0
1
0
0
1
0
0
1
0
0
1
0
1
1
1
0
1
0
1
1
0
1
1
0
1
1
1
1
d a ta
B 1 B 0
0
0
0
1
1
0
1
1
0
0
0
1
1
0
1
1
0
0
0
1
1
0
1
1
0
0
0
1
1
0
1
1
0
0
0
1
1
0
1
1
0
0
0
1
1
0
1
1
0
0
1
1
(O N
1
1
1
1
1
1
1
1
1
1
2
2
2
P W M
w id th ) G r a y S c a le
V a lu e
0 (0 /2 3 )
1 /2 3
2 /2 3
3 /2 3
4 /2 3
5 /2 3
6 /2 3
7 /2 3
8 /2 3
9 /2 3
0 /2 3
1 /2 3
2 /2 3
3 /2 3
4 /2 3
5 /2 3
6 /2 3
7 /2 3
8 /2 3
9 /2 3
0 /2 3
1 /2 3
2 /2 3
1 (2 3 /2 3 )
1 (2 4 /2 3 )
5 b its P W M
d a ta
1 3
B 4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
B 3
0
0
0
0
0
0
0
0
1
1
1
1
1
1
B 2
0
0
0
0
1
1
1
1
0
0
0
0
1
1
B 1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
B 0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
3 1
1
1
1
1
1
0
1
2
3
4
5
6
7
8
9
1 0
1 1
1 2
(O N
1
1
1
1
P W M
w id
0 (0 /1
1 /1 2
2 /1 2
3 /1 2
4 /1 2
5 /1 2
6 /1 2
7 /1 2
8 /1 2
9 /1 2
0 /1 2
1 /1 2
(1 2 /1
(1 3 /1
th )
2 )
G r a y S c a le
2 )
2 )
1 (3 1 /1 2 )
Table 2: FRAME 170Hz Mode
Note:
The varied PWM data displays various gray
scale in TN-type, STN-type LCDs.
The color display derives from ECB-type LCD¢s
specification.
1 (3 1 /2 3 )
Table 1: FRAME 89Hz Mode
Name
Command Code
Function
GRS LEVEL 1
X100-001 B4-B3 B2 B1 B0-XXXX
Set PWM data in gray scale level 1
GRS LEVEL 2
X100-010 B4-B3 B2 B1 B0-XXXX
Set PWM data in gray scale level 2
GRS LEVEL 3
X100-011 B4-B3 B2 B1 B0-XXXX
Set PWM data in gray scale level 3
GRS LEVEL 4
X100-100 B4-B3 B2 B1 B0-XXXX
Set PWM data in gray scale level 4
Four Kinds of Gray Scale Level Command Code
Rev. 1.40
10
April 29, 2011
PATENTED
1 6
V
1
HT1647A
2
1 6
1
2
L C D
V 1
V 2
C O M
V 3
V 4
V
S S
W
V
W '
L C D
V 1
V 2
S E G
V 3
V
V 4
S S
W '
C O M ~ S E G
V
L C D
3 /5 V
L C D
1 /5 V
L C D
-1 /5 V
L C D
-3 /5 V
L C D
-V
L C D
W
O N
1 fr
N o t e : " W '" R e a l a c t iv e s e g m e n t s ig n a l w
" W " M a x . a c tiv e s e g m e n t s ig n a l w
P W M ( O N w id t h ) : W '/ W , 0 £ W '/ W £
a m
id
id
1
O N
O F F
e
th ( a d ju s ta b le w id th b y P W M
th
( r e fe r to ta b le 1 & ta b e l 2 )
d a ta )
Example of Waveform (B Type) in 1/5 Bias, 1/16 Duty Cycle Drive
Time Base and Watchdog Timer - WDT
curs, the IRQ pin will remain at a logic low level until the
CLR WDT or the IRQ DIS command is issued.
The time base generator and WDT share the same
counter which is divided by 256. The IRQ clock can be programmed as 1Hz, 2Hz, ...., 128Hz output. TIMER
DIS/EN/CLR, WDT DIS/EN/CLR and IRQ EN/DIS are independent from each other. Once the WDT time-out oc-
If an external clock is selected as the system frequency
source, the SYS DIS command turns out invalid and the
power down mode fails to be carried out until the external clock source is removed.
T im e B a s e
C lo c k S o u r c e
V
C L R
IR Q
T IM E R E N /D IS
/2 5 6
T im e r
W D T
/4
W D T E N /D IS
D D
Q
D
C K
IR Q
E N /D IS
R
C L R W D T
Time Base and WDT Configurations
Rev. 1.40
11
April 29, 2011
PATENTED
tion command, a bias current selection command, a
gray scale level selection command, a timer/WDT setting command, and an operating command. The data
mode, on the other hand, includes READ, WRITE, and
READ-MODIFY-WRITE operations.
Buzzer Tone Output
A simple tone generator is implemented in the
HT1647A. The tone generator can output a pair of differential driving signals on the BZ and BZ which are used
to generate a single tone.
The following are the data mode ID and the command
mode ID:
By executing the TONE 4K and TONE 2K commands
there are two tone frequency outputs selectable that can
turn on the tone output. The TONE 4K and TONE 2K
commands set the tone frequency to 4kHz and 2kHz, respectively. The tone output can be turned off by invoking
the TONE OFF command. The tone outputs, namely BZ
and BZ, are a pair of differential driving outputs used to
drive a piezo buzzer. Once the system is disabled or the
tone output is inhibited, the BZ and the BZ outputs will
remain at low level.
Name
Command Code
HT1647A
Operation
Mode
ID
READ
Data
110
WRITE
Data
101
READ-MODIFY-WRITE
Data
101
Command
100
COMMAND
If successive commands have been issued, the command mode ID can be omitted. While the system is operating in the non-successive command or the
non-successive address data mode, the CS pin should
be set to ²1² and the previous operation mode will also
be reset. The CS pin returns to ²0², so a new operation
mode ID should be issued first.
Function
TONE
X100-0000-1000-XXXX Turn-off tone output
OFF
Turn-on tone output,
TONE
X100-0001-0000-XXXX tone frequency is
4K
4kHz
Bias Generator
Turn-on tone output,
TONE
X100-0001-0001-XXXX tone frequency is
2K
2kHz
The HT1647A bias voltage belongs to internal resistor
type. It provides two kinds of bias option named 1/5 bias
and 1/4 bias respectively. It is recommended to select
1/5 bias to fit TN-type, STN-type LCDs and select 1/4
bias to fit ECB-type LCDs. It also provides three kinds of
bias current option by programming to suitably drive an
LCD panel. The three kinds of bias current are large,
middle, and small, respectively. Usually, large panel
LCD can be excellently displayed by large bias current.
Relatively, it consumes large current when LCD ON
command is used. Small bias current provides low
power consumption during On condition when the LCD
is normally displayed. The following are the reference
value table.
Buzzer Tone Output Command Code
Command Format
The HT1647A can be configured by software setting.
There are two mode commands to configure the
HT1647A resource and to transfer the LCD display data.
The configuration mode of the HT1647A is called command mode, and its command mode ID is 100. The
command mode consists of a system configuration
command, a system frequency selection command, an
LCD configuration command, a tone frequency selec-
VLCD
Bias
Large Bias Current
Middle Bias Current
Small Bias Current
4V
1/5
300mA
100mA
40mA
4V
1/4
375mA
125mA
50mA
Rev. 1.40
12
April 29, 2011
PATENTED
V D D
HT1647A
V D D
*
V L C D
*
V R
V L C D
R
V R
R
V 1
V 1
R
V 2
R
V 2
*V
R
*V
R
L C D
V 3
L C D
V 3
R
R
V 4
V 4
R
R
V S S
V S S
1 /5 b ia s
1 /4 b ia s
* T h e v o lta g e a p p lie d to V L C D p in m u s t b e e q u a l to o r lo w e r th a n V D D .
* A d ju s t V R to fit L C D d is p la y , a t V D D = 5 V , V L C D = 4 V , V R = 1 5 k W ± 2 0 % .
Internal Resistor Type Bias Generator Configurations
Interfacing
ing edge of the RD signal, and the clocked out data will
then appear on the DB0~DB3 lines. It is recommended
that the host controller read correct data during the interval between the rising edge and the next falling edge of
the RD signal. The WR line is the WRITE clock input. The
data, address, and command on the DB0~DB3 lines are
all clocked into the HT1647A on the rising edge of the
WR signal. There is an optional IRQ line to be used as an
interface between the host controller and the HT1647A.
The IRQ pin can be selected as a timer output or a WDT
overflow flag output by the S/W setting. The host controller can perform the time base or the WDT function by
connecting with the IRQ pin of the HT1647A.
Only six lines are required to interface with the
HT1647A. The CS line is used to initialize the serial interface circuit and to terminate the communication between the host controller and the HT1647A. If the CS pin
is set to 1, the data and command issued between the
host controller and the HT1647A are first disabled and
then initialized. Before issuing a mode command or
mode switching, a high level pulse is required to initialize the serial interface of the HT1647A. The DB0~DB3
are the 4-bit parallel data input/output lines. Data to be
read or written or commands to be written have to pass
through the DB0~DB3 lines. The RD line is the READ
clock input. Data in the RAM are clocked out on the fall-
Rev. 1.40
13
April 29, 2011
PATENTED
HT1647A
Timing Diagrams
READ mode (command ID code : 1 1 0)
C S
W R
R D
A 8
A 7
A 3
D 3
D 3
D 3
D 3
D 3
D 3
D 3
D 3
D 3
D 3
D 3
D 3
D 3
D 3
D 3
D 3
D B 2
1
A 6
A 2
D 2
1
A 6
A 2
D 2
D 2
D 2
D 2
D 2
D 2
D 2
D 2
D 2
D 2
D 2
D 2
D 2
D 2
D 2
D 2
A 5
A 1
D 1
A 5
A 1
D 1
D 1
D 1
D 1
D 1
D 1
D 1
D 1
D 1
D 1
D 1
D 1
D 1
D 1
D 1
D 1
0
A 4
A 0
D 0
0
A 4
A 0
D 0
D 0
D 0
D 0
D 0
D 0
D 0
D 0
D 0
D 0
D 0
D 0
D 0
D 0
D 0
D 0
C o m m a n d ID
A d d re s s (M A )
M e m o ry
D a ta (M A )
C o m m a n d ID
A d d re s s (M A )
M e m o ry
D a ta (M A )
D a ta (M A + 1 )
D a ta (M A + 2 )
D a ta (M A + 3 )
D a ta (M A + 9 )
D a ta (M A + 1 5 )
1
D B 1
D B 0
1
D a ta (M A + 1 0 )
D a ta (M A + 1 1 )
D a ta (M A + 1 2 )
D a ta (M A + 1 3 )
D a ta (M A + 1 4 )
A 7
A 3
D 3
A 8
A 7
A 3
D 3
D 3
D 3
D 3
D 3
D 3
D 3
D 3
D 3
D 3
D 3
D 3
D 3
D 3
D 3
D 3
D B 2
1
A 6
A 2
D 2
1
A 6
A 2
D 2
D 2
D 2
D 2
D 2
D 2
D 2
D 2
D 2
D 2
D 2
D 2
D 2
D 2
D 2
D 2
A 5
A 1
D 1
A 5
A 1
D 1
D 1
D 1
D 1
D 1
D 1
D 1
D 1
D 1
D 1
D 1
D 1
D 1
D 1
D 1
D 1
A 4
A 0
D 0
1
A 4
A 0
D 0
D 0
D 0
D 0
D 0
D 0
D 0
D 0
D 0
D 0
D 0
D 0
D 0
D 0
D 0
D 0
M e m o ry
D a ta (M A )
C o m m a n d ID
A d d re s s (M A )
M e m o ry
D a ta (M A )
D a ta (M A + 1 )
D a ta (M A + 2 )
D a ta (M A + 3 )
D a ta (M A + 4 )
D a ta (M A + 5 )
D a ta (M A + 6 )
D a ta (M A + 7 )
D a ta (M A + 8 )
D a ta (M A + 9 )
D a ta (M A + 1 0 )
D a ta (M A + 1 1 )
D a ta (M A + 1 2 )
D a ta (M A + 1 3 )
D a ta (M A + 1 4 )
D a ta (M A + 1 5 )
c o d e
A 8
c o d e
D B 3
A d d re s s (M A )
D a ta (M A + 8 )
D 3
D a ta (M A + 7 )
A 3
D a ta (M A + 6 )
A 7
D a ta (M A + 5 )
A 8
D a ta (M A + 4 )
D B 3
( S in g le a d d r e s s r e a d in g )
( S u c c e s s iv e a d d r e s s r e a d in g )
WRITE mode (command ID code : 1 0 1)
C S
W R
R D
0
D B 1
1
D B 0
0
C o m m a n d ID
c o d e
c o d e
( S in g le a d d r e s s w r itin g )
Rev. 1.40
( S u c c e s s iv e a d d r e s s w r itin g )
14
April 29, 2011
PATENTED
HT1647A
READ-MODIFY-WRITE mode (command ID code : 1 0 1)
C S
W R
R D
D 3
D 3
D 3
D 3
D 3
D 3
D 3
D 3
D 3
D 3
D 3
D 3
D 3
D 3
D B 2
1
A 6
A 2
D 2
D 2
1
A 6
A 2
D 2
D 2
D 2
D 2
D 2
D 2
D 2
D 2
D 2
D 2
D 2
D 2
D 2
D 2
D B 1
0
A 5
A 1
D 1
D 1
A 5
A 1
D 1
D 1
D 1
D 1
D 1
D 1
D 1
D 1
D 1
D 1
D 1
D 1
D 1
D 1
D B 0
1
A 4
A 0
D 0
D 0
1
A 4
A 0
D 0
D 0
D 0
D 0
D 0
D 0
D 0
D 0
D 0
D 0
D 0
D 0
D 0
D 0
C o m m a n d ID c o d e
A d d re s s (M A )
M e m o ry
D a ta (M A )
D a ta (M A )
C o m m a n d ID c o d e
A d d re s s (M A )
M e m o ry
D a ta (M A )
D a ta (M A )
D a ta (M A + 5 )
D a ta (M A + 6 )
D a ta (M A + 6 )
C 8
C 4
C 0
0
( S in g le a d d r e s s a c c e s s in g )
D a ta (M A + 5 )
A 3
D a ta (M A + 4 )
A 7
D a ta (M A + 4 )
A 8
D a ta (M A + 3 )
D 3
D a ta (M A + 3 )
D 3
D a ta (M A + 2 )
A 3
D a ta (M A + 2 )
A 7
D a ta (M A + 1 )
A 8
D a ta (M A + 1 )
D B 3
( S u c c e s s iv e a d d r e s s a c c e s s in g )
Command mode (command ID code : 1 0 0)
C S
W R
R D
D B 3
X
C 8
1
D B 2
0
D B 1
D B 0
0
C 4
C 0
C 7
C 3
X
C 6
C 2
C 5
C 1
X
1
0
X
X
0
C 8
C 4
C 0
C 8
C 4
C 7
C 3
X
C 7
C 3
C 6
C 2
X
C 6
C 2
C 5
C 1
X
C 5
C 1
C 0
C 8
C 4
C 0
C 8
C 4
C 0
C 8
C 4
C 0
X
C 7
C 3
X
C 7
C 3
X
C 7
C 3
X
C 7
C 3
X
C 6
C 2
X
C 6
C 2
X
C 6
C 2
X
C 6
C 2
X
X
C 5
C 1
X
C 5
C 1
X
C 5
C 1
X
C 5
C 1
X
X
C o m m a n d 6
C o m m a n d 5
C o m m a n d 4
C o m m a n d 3
C o m m a n d 2
C o m m a n d 1
C o m m a n d ID
C o m m a n d
c o d e
C o m m a n d ID c o d e
( S in g le c o m m a n d )
( S u c c e s s iv e c o m m a n d )
Note: ²X² stands for don¢t care
Rev. 1.40
15
April 29, 2011
PATENTED
HT1647A
Application Circuits
Host Controller with an HT1647A Display System
C S
*
V D D
R D
*V R
W R
D B 0 ~ D B 3
M C U
V L C D
H T 1 6 4 7 A
*R
B Z
P ie z o
IR Q
B Z
O S C I
C lo c k O u t
O S C O
C O M 0 ~ C O M 1 5
S E G 0 ~ S E G 6 3
E x te r n a l C lo c k 1 ( 3 2 k H z )
E x te r n a l C lo c k 2 ( 3 2 k H z )
* 1 /5 B ia s ( o r 1 /4 B ia s ) , 1 /1 6 D u ty
O n - c h ip O S C
L C D
P a n e l
C ry s ta l
3 2 7 6 8 H z
*Note: The connection of IRQ and RD pin can be selected depending on the MCU.
The voltage applied to VLCD pin must be equal to or lower than VDD.
Adjust VR to fit LCD display, at VDD=5V, VLCD=4V, VR=15kW ± 20%.
It is recommended to select 1/5 bias to fit TN-type, STN-type LCDs and select 1/4 bias to fit ECB-type LCDs.
Adjust R (external pull high resistance) to fit user¢s time base clock.
Instruction Set Summary
Command Code
D/C
READ
Name
A8110-A7A6A5A4A3A2A1A0D3D2D1D0
D
Read data from the RAM
WRITE
A8101-A7A6A5A4A3A2A1A0D3D2D1D0
D
Write data to the RAM
READ-MODIFYA8101-A7A6A5A4A3A2A1A0D3D2D1D0
WRITE
D
Read and Write data to the RAM
SYS DIS
X100-0000-0000-XXXX
C
Turn Off both system oscillator and LCD bias
Yes
generator
SYS EN
X100-0000-0001-XXXX
C
Turn On system oscillator
LCD OFF
X100-0000-0010-XXXX
C
Turn Off LCD display
LCD ON
X100-0000-0011-XXXX
C
Turn On LCD display
TIMER DIS
X100-0000-0100-XXXX
C
Disable time base output
Yes
WDT DIS
X100-0000-0101-XXXX
C
Disable WDT time-out flag output
Yes
TIMER EN
X100-0000-0110-XXXX
C
Enable time base output
WDT EN
X100-0000-0111-XXXX
C
Enable WDT time-out flag output
TONE OFF
X100-0000-1000-XXXX
C
Turn Off tone outputs
CLR TIMER
X100-0000-1101-XXXX
C
Clear the contents of the time base generator
CLR WDT
X100-0000-1111-XXXX
C
Clear the contents of the WDT stage
TONE 4K
X100-0001-0000-XXXX
C
Turn on tone output, tone frequency output:
4kHz
TONE 2K
X100-0001-0001-XXXX
C
Turn on tone output, tone frequency output:
2kHz
Rev. 1.40
16
Function
Def.
Yes
Yes
April 29, 2011
PATENTED
Name
Command Code
D/C
HT1647A
Function
Def.
IRQ DIS
X100-0001-0010-XXXX
C
Disable IRQ output
IRQ EN
X100-0001-0011-XXXX
C
Enable IRQ output
RC 32K
X100-0001-0100-XXXX
C
System clock source, on-chip RC oscillator
EXT (XTAL)
X100-0001-0101-XXXX
C
System clock source, external 32kHz clock
source or crystal oscillator 32.768kHz
LARGE BIAS
X100-0001-0110-XXXX
C
Large bias current option
MIDDLE BIAS
X100-0001-0111-XXXX
C
Middle bias current option
SMALL BIAS
X100-0001-1000-XXXX
C
Small bias current option
BIAS 1/5
X100-0001-1001-XXXX
C
LCD 1/5 bias option
BIAS 1/4
X100-0001-1010-XXXX
C
LCD 1/4 bias option
FRAME 170Hz
X100-0001-1100-XXXX
C
Selects 170Hz frame frequency and active
segment signal width can be divided into 13
sections
FRAME 89Hz
X100-0001-1101-XXXX
C
Selects 89Hz frame frequency and active
segment signal width can be divided into 24 Yes
sections
GRS LEVEL1
X100-001 B4-B3 B2 B1 B0-XXXX
C
Sets PWM data in gray scale level 1
GRS LEVEL2
X100-010 B4-B3 B2 B1 B0-XXXX
C
Sets PWM data in gray scale level 2
GRS LEVEL3
X100-011 B4-B3 B2 B1 B0-XXXX
C
Sets PWM data in gray scale level 3
GRS LEVEL4
X100-100 B4-B3 B2 B1 B0-XXXX
C
Sets PWM data in gray scale level 4
F1
X100-1010-0000-XXXX
C
Time base clock output: 1Hz
The WDT time-out flag after: 4s
F2
X100-1010-0001-XXXX
C
Time base clock output: 2Hz
The WDT time-out flag after: 2s
F4
X100-1010-0010-XXXX
C
Time base clock output: 4Hz
The WDT time-out flag after: 1s
F8
X100-1010-0011-XXXX
C
Time base clock output: 8Hz
The WDT time-out flag after: 1/2s
F16
X100-1010-0100-XXXX
C
Time base clock output: 16Hz
The WDT time-out flag after: 1/4s
F32
X100-1010-0101-XXXX
C
Time base clock output: 32Hz
The WDT time-out flag after: 1/8s
F64
X100-1010-0110-XXXX
C
Time base clock output: 64Hz
The WDT time-out flag after: 1/16s
F128
X100-1010-0111-XXXX
C
Time base clock output: 128Hz
The WDT time-out flag after: 1/32s
TEST
X100-1111-1111-XXXX
C
Test mode, user don¢t use.
NORMAL
X100-1111-1110-XXXX
C
Normal mode
Note:
Yes
Yes
Yes
Yes
Yes
Yes
²X² stands for don¢t care
A8~A0: RAM address
D3~D0: RAM data
B4~B0: PWM data
D/C: Data/Command mode
Def.: Power-on reset default
All the bold forms, namely 1 1 0, 1 0 1, and 1 0 0, are mode commands. Of these, 1 0 0 indicates the command
mode ID. If successive commands have been issued, the command mode ID except for the first command will
be omitted. The tone frequency source and the time base/WDT clock frequency source can be derived from an
on-chip 32kHz RC oscillator, a 32.768kHz crystal oscillator, or an external 32kHz clock. Calculation of the frequency is based on the system frequency sources as stated above. It is recommended that the host controller
should initialize the HT1647A after power-on reset, otherwise, power on reset may fail, which in turn leads to
the malfunctioning of the HT1647A.
Rev. 1.40
17
April 29, 2011
PATENTED
HT1647A
Package Information
100-pin LQFP (14mm´14mm) Outline Dimensions
C
D
7 5
G
5 1
H
I
5 0
7 6
F
A
B
E
1 0 0
2 6
K
a
J
2 5
1
Symbol
Nom.
Max.
A
0.626
¾
0.634
B
0.547
¾
0.555
C
0.626
¾
0.634
D
0.547
¾
0.555
E
¾
0.020
¾
F
¾
0.008
¾
G
0.053
¾
0.057
H
¾
¾
0.063
I
¾
0.004
¾
J
0.018
¾
0.030
K
0.004
¾
0.008
a
0°
¾
7°
Symbol
A
Rev. 1.40
Dimensions in inch
Min.
Dimensions in mm
Min.
Nom.
Max.
15.90
¾
16.10
B
13.90
¾
14.10
C
15.90
¾
16.10
D
13.90
¾
14.10
E
¾
0.50
¾
F
¾
0.20
¾
G
1.35
¾
1.45
H
¾
¾
1.60
I
¾
0.10
¾
J
0.45
¾
0.75
K
0.10
¾
0.20
a
0°
¾
7°
18
April 29, 2011
PATENTED
HT1647A
Holtek Semiconductor Inc. (Headquarters)
No.3, Creation Rd. II, Science Park, Hsinchu, Taiwan
Tel: 886-3-563-1999
Fax: 886-3-563-1189
http://www.holtek.com.tw
Holtek Semiconductor Inc. (Taipei Sales Office)
4F-2, No. 3-2, YuanQu St., Nankang Software Park, Taipei 115, Taiwan
Tel: 886-2-2655-7070
Fax: 886-2-2655-7373
Fax: 886-2-2655-7383 (International sales hotline)
Holtek Semiconductor Inc. (Shenzhen Sales Office)
5F, Unit A, Productivity Building, No.5 Gaoxin M 2nd Road, Nanshan District, Shenzhen, China 518057
Tel: 86-755-8616-9908, 86-755-8616-9308
Fax: 86-755-8616-9722
Holtek Semiconductor (USA), Inc. (North America Sales Office)
46729 Fremont Blvd., Fremont, CA 94538, USA
Tel: 1-510-252-9880
Fax: 1-510-252-9885
http://www.holtek.com
Copyright Ó 2011 by HOLTEK SEMICONDUCTOR INC.
The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used
solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable
without further modification, nor recommends the use of its products for application that may present a risk to human life
due to malfunction or otherwise. Holtek¢s products are not authorized for use as critical components in life support devices
or systems. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information,
please visit our web site at http://www.holtek.com.tw.
Rev. 1.40
19
April 29, 2011