80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor Datasheet Product Features ■ ■ ■ ■ ■ Code Compatible with all 80960Jx Processors High-Performance Embedded Architecture — One Instruction/Clock Execution — Core Clock Rate is: 1x the Bus Clock for 80960JA/JF/JS 2x the Bus Clock for 80960JD/JC 3x the Bus Clock for 80960JT — Load/Store Programming Model — Sixteen 32-Bit Global Registers — Sixteen 32-Bit Local Registers (8 sets) — Nine Addressing Modes — User/Supervisor Protection Model Two-Way Set Associative Instruction Cache — 80960JA - 2 Kbyte — 80960JF/JD - 4 Kbyte — 80960JS/JC/JT - 16 Kbyte — Programmable Cache-Locking Mechanism Direct Mapped Data Cache — 80960JA - 1 Kbyte — 80960JF/JD - 2 Kbyte — 80960JS/JC/JT - 4 Kbyte — Write Through Operation On-Chip Stack Frame Cache — Seven Register Sets May Be Saved — Automatic Allocation on Call/Return — 0-7 Frames Reserved for High-Priority Interrupts ■ ■ ■ ■ ■ ■ ■ ■ On-Chip Data RAM — 1 Kbyte Critical Variable Storage — Single-Cycle Access 3.3 V Supply Voltage — 5 V Tolerant Inputs — TTL Compatible Outputs High Bandwidth Burst Bus — 32-Bit Multiplexed Address/Data — Programmable Memory Configuration — Selectable 8-, 16-, 32-Bit Bus Widths — Supports Unaligned Accesses — Big or Little Endian Byte Ordering High-Speed Interrupt Controller — 31 Programmable Priorities — Eight Maskable Pins plus NMI# — Up to 240 Vectors in Expanded Mode Two On-Chip Timers — Independent 32-Bit Counting — Clock Prescaling by 1, 2, 4 or 8 — Internal Interrupt Sources Halt Mode for Low Power IEEE 1149.1 (JTAG) Boundary Scan Compatibility Packages — 132-Lead Pin Grid Array (PGA) — 132-Lead Plastic Quad Flat Pack (PQFP) — 196-Ball Mini Plastic Ball Grid Array (MPBGA) Order Number: 273159-006 August 2004 INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, life sustaining applications. Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The 80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request. Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order. Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling 1-800-548-4725 or by visiting Intel’s website at http://www.intel.com. AlertVIEW, AnyPoint, AppChoice, BoardWatch, BunnyPeople, CablePort, Celeron, Chips, CT Connect, CT Media, Dialogic, DM3, EtherExpress, ETOX, FlashFile, i386, i486, i960, iCOMP, InstantIP, Intel, Intel logo, Intel386, Intel486, Intel740, IntelDX2, IntelDX4, IntelSX2, Intel Create & Share, Intel GigaBlade, Intel InBusiness, Intel Inside, Intel Inside logo, Intel NetBurst, Intel NetMerge, Intel NetStructure, Intel Play, Intel Play logo, Intel SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel TeamStation, Intel Xeon, Intel XScale, IPLink, Itanium, LANDesk, LanRover, MCS, MMX, MMX logo, Optimizer logo, OverDrive, Paragon, PC Dads, PC Parents, PDCharm, Pentium, Pentium II Xeon, Pentium III Xeon, Performance at Your Command, RemoteExpress, Shiva, SmartDie, Solutions960, Sound Mark, StorageExpress, The Computer Inside., The Journey Inside, TokenExpress, Trillium, VoiceBrick, Vtune, and Xircom are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries. *Other names and brands may be claimed as the property of others. Copyright © Intel Corporation, 2002, 2004 2 Datasheet Contents Contents 1.0 Introduction.................................................................................................................................... 7 2.0 80960Jx Overview.......................................................................................................................... 9 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 3.0 Packaging Information................................................................................................................15 3.1 3.2 4.0 80960JS/JC/JT Device Identification Register....................................................................60 80960JD Device Identification Register ..............................................................................61 80960JA/JF Device Identification Register .........................................................................62 Thermal Specifications ...............................................................................................................63 6.1 7.0 Absolute Maximum Ratings ................................................................................................35 Operating Conditions ..........................................................................................................35 Connection Recommendations...........................................................................................36 VCC5 Pin Requirements (VDIFF) .......................................................................................36 VCCPLL Pin Requirements ................................................................................................37 D.C. Specifications .............................................................................................................38 A.C. Specifications..............................................................................................................42 4.7.1 A.C. Test Conditions and Derating Curves ............................................................45 4.7.1.1 Output Delay or Hold vs. Load Capacitance..........................................46 4.7.1.2 TLX vs. AD Bus Load Capacitance.........................................................47 4.7.1.3 ICC Active vs. Frequency ......................................................................49 4.7.2 A.C. Timing Waveforms .........................................................................................53 Device Identification....................................................................................................................59 5.1 5.2 5.3 6.0 Available Processors and Packages ..................................................................................15 Pin Descriptions ..................................................................................................................16 3.2.1 Functional Pin Definitions ......................................................................................16 3.2.2 80960Jx 132-Lead PGA Pinout .............................................................................23 3.2.3 80960Jx 132-Lead PQFP Pinout ...........................................................................27 3.2.4 80960Jx 196-Ball MPBGA Pinout ..........................................................................30 Electrical Specifications .............................................................................................................35 4.1 4.2 4.3 4.4 4.5 4.6 4.7 5.0 80960 Processor Core........................................................................................................ 10 Burst Bus ............................................................................................................................11 Timer Unit ...........................................................................................................................11 Priority Interrupt Controller..................................................................................................11 Instruction Set Summary ....................................................................................................12 Faults and Debugging.........................................................................................................12 Low Power Operation ......................................................................................................... 12 Test Features......................................................................................................................12 Memory-Mapped Control Registers ....................................................................................13 Data Types and Memory Addressing Modes......................................................................13 Thermal Management Accessories ....................................................................................68 6.1.1 Heatsinks ...............................................................................................................68 Bus Functional Waveforms ........................................................................................................69 7.1 7.2 Datasheet Basic Bus States.................................................................................................................79 Boundary-Scan Register.....................................................................................................80 3 Contents Figures 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 80960Jx Microprocessor Package Options .................................................................................. 7 80960Jx Block Diagram.............................................................................................................. 10 132-Lead Pin Grid Array Top View-Pins Facing Down............................................................... 23 132-Lead Pin Grid Array Bottom View-Pins Facing Up .............................................................. 24 132-Lead PQFP - Top View ....................................................................................................... 27 196-Ball Mini Plastic Ball Grid Array Top View-Balls Facing Down ............................................ 30 196-Ball Mini Plastic Ball Grid Array Bottom View-Balls Facing Up ........................................... 31 VCC5 Current-Limiting Resistor ................................................................................................. 36 VCCPLL Lowpass Filter ............................................................................................................. 37 A.C. Test Load............................................................................................................................ 45 Output Delay or Hold vs. Load Capacitance–80960JS/JC/JT (3.3 V Signals) .......................... 46 Output Delay or Hold vs. Load Capacitance–80960JS/JC/JT (5 V Signals) ............................. 46 Output Delay or Hold vs. Load Capacitance–80960JA/JF/JD .................................................... 47 TLX vs. AD Bus Load Capacitance–80960JS/JC/JT (3.3 V Signals) ......................................... 47 TLX vs. AD Bus Load Capacitance–80960JS/JC/JT (5 V Signals) ............................................ 48 TLX vs. AD Bus Load Capacitance–80960JA/JF/JD................................................................... 48 ICC Active (Power Supply) vs. Frequency–80960JA/JF ............................................................. 49 80960JA/JF ICC Active (Thermal) vs. Frequency ....................................................................... 49 80960JD ICC Active (Power Supply) vs. Frequency ................................................................... 50 80960JD ICC Active (Thermal) vs. Frequency ............................................................................ 50 80960JC ICC Active (Power Supply) vs. Frequency ................................................................... 51 80960JC ICC Active (Thermal) vs. Frequency ............................................................................ 51 80960JS ICC Active (Power Supply) vs. Frequency ................................................................... 52 80960JS ICC Active (Thermal) vs. Frequency ............................................................................ 52 CLKIN Waveform........................................................................................................................ 53 TOV1 Output Delay Waveform .................................................................................................... 53 TOF Output Float Waveform ....................................................................................................... 54 TIS1 and TIH1 Input Setup and Hold Waveform .......................................................................... 54 TIS2 and TIH2 Input Setup and Hold Waveform .......................................................................... 54 TIS3 and TIH3 Input Setup and Hold Waveform .......................................................................... 55 TIS4 and TIH4 Input Setup and Hold Waveform .......................................................................... 55 TLX, TLXL and TLXA Relative Timings Waveform ........................................................................ 56 DT/R# and DEN# Timings Waveform......................................................................................... 56 TCK Waveform ........................................................................................................................... 57 TBSIS1 and TBSIH1 Input Setup and Hold Waveforms................................................................. 57 TBSOV1 and TBSOF1 Output Delay and Output Float Waveform ................................................. 57 TBSOV2 and TBSOF2 Output Delay and Output Float Waveform ................................................. 58 TBSIS2 and TBSIH2 Input Setup and Hold Waveform................................................................... 58 80960JS/JC/JT Device Identification Register Fields ................................................................. 60 80960JD Device Identification Register Fields ........................................................................... 61 80960JA/JF Device Identification Register Fields ...................................................................... 62 Non-Burst Read and Write Transactions Without Wait States, 32-Bit Bus................................. 69 Burst Read and Write Transactions Without Wait States, 32-Bit Bus ........................................ 70 Burst Write Transactions With 2,1,1,1 Wait States, 32-Bit Bus .................................................. 71 Burst Read and Write Transactions Without Wait States, 8-Bit Bus .......................................... 72 Burst Read and Write Transactions With 1, 0 Wait States and Extra Tr State on Read, 16-Bit Bus ..................................................................................... 73 47 Double Word Read Bus Request, Misaligned One Byte From Quad Word Boundary, 32-Bit Bus, Little Endian ........................................................................ 74 4 Datasheet Contents 48 49 50 51 52 53 54 HOLD/HOLDA Waveform For Bus Arbitration ............................................................................75 Cold Reset Waveform.................................................................................................................76 Warm Reset Waveform ..............................................................................................................77 Entering the ONCE State............................................................................................................78 Bus States with Arbitration..........................................................................................................80 Summary of Aligned and Unaligned Accesses (32-Bit Bus).......................................................84 Summary of Aligned and Unaligned Accesses (32-Bit Bus) (Continued) ...................................85 Tables 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 80960Jx 3.3-V Microprocessor Family ......................................................................................... 7 80960Jx Instruction Set ..............................................................................................................14 80960Jx Processors Available in 132-Pin PGA Package...........................................................15 80960Jx Processors Available in 132-Pin PQFP Package.........................................................15 80960Jx Processors Available in Extended Temperature .........................................................16 80960Jx Processors Available in 196-Ball MPBGA Package.....................................................16 Pin Description Nomenclature ....................................................................................................17 Pin Description—External Bus Signals.......................................................................................18 Pin Description—Processor Control Signals, Test Signals, and Power .....................................21 Pin Description—Interrupt Unit Signals ......................................................................................22 132-Lead PGA Pinout—In Signal Order .....................................................................................25 132-Lead PGA Pinout—In Pin Order..........................................................................................26 132-Lead PQFP Pinout—In Signal Order...................................................................................28 132-Lead PQFP Pinout—In Pin Order........................................................................................29 196-Ball MPBGA Pinout—In Signal Order..................................................................................32 196-Ball MPBGA Pinout—In Pin Order ......................................................................................33 Absolute Maximum Ratings ........................................................................................................35 80960Jx Operating Conditions ...................................................................................................35 VDIFF Parameters......................................................................................................................37 80960Jx D.C. Characteristics .....................................................................................................38 80960Jx ICC Characteristics .......................................................................................................39 80960Jx A.C. Characteristics .....................................................................................................42 Note Definitions for Table 22, 80960Jx AC Characteristics........................................................45 80960Jx Device Type and Stepping Reference .........................................................................59 80960JS/JC/JT Device ID Register Field Definitions..................................................................60 80960JS/JC/JT Device ID Model Types .....................................................................................60 80960JD Device ID Field Definitions ..........................................................................................61 80960JD Device ID Model Types ...............................................................................................61 80960JA/JF Device ID Field Definitions .....................................................................................62 80960JA/JF Device ID Model Types ..........................................................................................62 Thermal Resistance for qCA and qJC Reference Table ..............................................................63 Maximum Ambient Temperature Reference Table.....................................................................63 132-Lead PGA Package Thermal Characteristics ......................................................................64 80960JA/JF/JD 196-Ball MPBGA Package Thermal Characteristics .........................................64 80960JS/JC/JT 196-Ball MPBGA Package Thermal Characteristics .........................................65 132-Lead PQFP Package Thermal Characteristics....................................................................65 Maximum TA at Various Airflows in °C (80960JT) ......................................................................66 Maximum TA at Various Airflows in °C (80960JC)......................................................................66 Maximum TA at Various Airflows in °C (80960JD)......................................................................67 Maximum TA at Various Airflows in °C (80960JS) ......................................................................67 Maximum TA at Various Airflows in °C (80960JA/JF) .................................................................68 Datasheet 5 Contents 42 43 44 45 46 Boundary-Scan Register—Bit Order .......................................................................................... 81 Natural Boundaries for Load and Store Accesses...................................................................... 81 Summary of Byte Load and Store Accesses .............................................................................. 82 Summary of Short Word Load and Store Accesses ................................................................... 82 Summary of n-Word Load and Store Accesses (n = 1, 2, 3, 4) .................................................. 83 Revision History Date August 2004 Revision 006 Description To address the fact that many of the package prefix variables have changed, all package prefix variables in this document are now indicated with an "x". Removed reference to A80960JF-16 from Table 3 on page 15. Removed reference to NG80960JC-40, NG80960JC-33, NG80960JS-16, and NG80960JF-16 from Table 4 on page 15. Removed reference to GD80960JC-40, GD80960JC-33, and 80960JS-16 in Table 6 on page 16. September 2002 005 Removed reference to 80960JC-40, 80960JC-33, 80960JS-16, and 80960JF-16 in Table 18 on page 35. Removed reference to 80960JC-40, 80960JC-33, 80960JS-16, and 80960JF-16 from Table 21 on page 39. Removed reference to 80960JC-40, 80960JC-33, 80960JS-16 and 80960JF-16 from Table 22 on page 42. Added new extended temp device offerings. See Table 5 on page 16. September 1999 June 1999 004 003 Removed PGA package availability from JS/JC/JT processors. Changed AC timing parameter TOV1 (min) for extended temp devices only. See Table 22 on page 42. Merged the 80960JS/JC datasheet information into this datasheet (previously named 80960JA/JF/JD/JT 3.3 V Embedded 32-Bit Microprocessor datasheet). Updated ICC values for the 80960JS/JC/JT processors. Increased TIH1 specification for the 80960JS/JC/JT processors. Updated MPBGA thermal specifications. Corrected orientation of MPBGA package diagrams (Figure 6 on page 30 and Figure 7 on page 31). December 1998 002 Added Figure 11 on page 46, Figure 12 on page 46, Figure 14 on page 47, and Figure 15 on page 48 to distinguish 80960JT 3.3-V and 5-V signal derating curves from the 80960JA/JF/JD derating curves. This datasheet supersedes revisions to the following 80960Jx datasheets: #273109 (JT), #272971-002 (JD), and #276146-001 (JA/JF). In addition to combining the documents into one, the following content was changed: March 1998 001 Figure 1 on page 7: Added MPBGA package to diagram. Section 3.2.4, “80960Jx 196-Ball MPBGA Pinout” on page 30: Added new Figures 6 and 7, Tables 10, 11 and 13. Figure 16 on page 48: Added with the note that follows the figure. 6 Datasheet 80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor 1.0 Introduction This document contains information for the 80960Jx microprocessors, including electrical characteristics and package pinout information. Detailed functional descriptions, other than parametric performance, are published in the i960® Jx Microprocessor Developer’s Manual (272483) and may be viewed online at http://developer.intel.com/design/i960/Techinfo/80960JX/. Figure 1. 80960Jx Microprocessor Package Options i x80960JX i960 XXXXXXXXSS M © 19xx i ® i x80960JX XXXXXXXSS M © 19xx x80960JX XXXXXXXX SS M © 19xx 196-Ball MPBGA 132-Pin PQFP 132-Pin PGA Throughout this datasheet, references to ‘80960Jx’ indicate features that apply to the 3.3-V Jx processors only: NOTE: To address the fact that many of the package prefix variables have changed, all package prefix variables in this document are now indicated with an "x". Table 1. Datasheet 80960Jx 3.3-V Microprocessor Family Processor Voltage Instruction Cache Data Cache Core Clock 80960JA 3.3 V (5 V Tolerant) 2 Kbyte 1 Kbyte 1x 80960JF 3.3 V (5 V Tolerant) 4 Kbyte 2 Kbyte 1x 80960JD 3.3 V (5 V Tolerant) 4 Kbyte 2 Kbyte 2x 80960JS 3.3 V (5 V Tolerant) 16 Kbyte 4 Kbyte 1x 80960JC 3.3 V (5 V Tolerant) 16 Kbyte 4 Kbyte 2x 80960JT 3.3 V (5 V Tolerant) 16 Kbyte 4 Kbyte 3x 7 80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor This page intentionally left blank. 8 Datasheet 80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor 2.0 80960Jx Overview The 80960Jx processor offers high performance to cost-sensitive 32-bit embedded applications. The 80960Jx is object code compatible with the 80960 core architecture and is capable of sustained execution at the rate of one instruction per clock. This processor’s features include generous instruction cache, data cache, and data RAM. It also boasts a fast interrupt mechanism and dual-programmable timer units. The 80960Jx processor’s clock multiplication operates the processor core at two or three times the bus clock rate to improve execution performance without increasing the complexity of board designs. Memory subsystems for cost-sensitive embedded applications often impose substantial wait state penalties. The 80960Jx integrates considerable storage resources on-chip to decouple CPU execution from the external bus. The 80960Jx rapidly allocates and de-allocates local register sets during context switches. The processor must flush a register set to the stack only when it saves more than seven sets to its local register cache. A 32-bit multiplexed burst bus provides a high-speed interface to system memory and I/O. A full complement of control signals simplifies the connection of the 80960Jx to external components. The user programs physical and logical memory attributes through memory-mapped control registers (MMRs), an extension not found on the i960® Kx, Sx or Cx processors. Physical and logical configuration registers enable the processor to operate with all combinations of bus width and data object alignment. The processor supports a homogeneous byte ordering model. This processor integrates two important peripherals: a timer unit and an interrupt controller. These and other hardware resources are programmed through memory-mapped control registers, an extension to the familiar i960 processor architecture. The timer unit (TU) offers two independent 32-bit timers for use as real-time system clocks and general-purpose system timing. These operate in either single-shot or auto-reload mode and may generate interrupts. The interrupt controller unit (ICU) provides a flexible, low-latency means for requesting interrupts. The ICU provides full programmability of up to 240 interrupt sources into 31 priority levels. The ICU takes advantage of a cached priority table and optional routine caching to minimize interrupt latency. Clock doubling on the 80960JD/JC processors reduces interrupt latency by 40% compared to the 80960JA/JF, and clock tripling on the 80960JT reduces interrupt latency by 20% compared to the 80960JD/JC. Local registers may be dedicated to high-priority interrupts to further reduce latency. Acting independently from the core, the ICU compares the priorities of posted interrupts with the current process priority, off-loading this task from the core. The ICU also supports the integrated timer interrupts. The 80960Jx features a Halt mode designed to support applications where low power consumption is critical. The halt instruction shuts down instruction execution, resulting in a power savings of up to 90 percent. The 80960Jx’s testability features, including ONCE (On-Circuit Emulation) mode and Boundary Scan (JTAG), provide a powerful environment for design debug and fault diagnosis. Datasheet 9 80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor The Solutions960® program features a wide variety of development tools which support the i960 processor family. Many of these tools are developed by partner companies; some are developed by Intel, such as profile-driven optimizing compilers. For more information on these products, contact your local Intel representative. Figure 2. 80960Jx Block Diagram CLKIN 32-bit buses address / data PLL, Clocks, Power Mgmt Instruction Cache Bus Control Unit 80960JA - 2K 80960JF/JD - 4K TAP 5 Boundary Scan Controller Execution and Address Generation Unit DEST 32-bit Address 32-bit Data DEST SRC2 SRC1 DEST effective address Memory Interface Unit SRC1 Multiply Divide Unit SRC2 SRC2 DEST 3 Independent 32-Bit SRC1, SRC2, and DEST Buses 2.1 32 Programmable Interrupt Controller SRC1 SRC1 Address/ Data Bus Control 8-Set Local Register Cache Global / Local Register File 21 Two 32-Bit Timers Instruction Sequencer 128 Control Bus Request Queues 80960JS/JC/JT - 16K Constants Physical Region Configuration Interrupt Port 9 Memory-Mapped Register Interface 1K Data RAM Direct Mapped Data Cache 80960JA - 1K 80960JF/JD - 2K 80960JS/JC/JT - 80960 Processor Core The 80960Jx family is a scalar implementation of the 80960 core architecture. Intel designed this processor core as a very high performance device that is also cost-effective. Factors that contribute to the core’s performance include: • Core operates at the bus speed with the 80960JA/JF/JS • Core operates at two or three times the bus speed with the 80960JD/JC and 80960JT, respectively • • • • • • • • 10 Single-clock execution of most instructions Independent Multiply/Divide Unit Efficient instruction pipeline minimizes pipeline break latency Register and resource scoreboarding allow overlapped instruction execution 128-bit register bus speeds local register caching Two-way set associative, integrated instruction cache Direct-mapped, integrated data cache 1-Kbyte integrated data RAM delivers zero wait state program data Datasheet 80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor 2.2 Burst Bus A 32-bit high-performance Bus Controller Unit (BCU) interfaces the 80960Jx to external memory and peripherals. The BCU fetches instructions and transfers data at the rate of up to four 32-bit words per six clock cycles. The external address/data bus is multiplexed. Users may configure the 80960Jx’s bus controller to match an application’s fundamental memory organization. Physical bus width is register-programmed for up to eight regions. Byte ordering and data caching are programmed through a group of logical memory templates and a defaults register. The BCU’s features include: • Multiplexed external bus to minimize pin count • 32-, 16-, and 8-bit bus widths to simplify I/O interfaces • External ready control for address-to-data, data-to-data and data-to-next-address wait state types • Support for big or little endian byte ordering to facilitate the porting of existing program code • Unaligned bus accesses performed transparently • Three-deep load/store queue to decouple the bus from the core Upon reset, the 80960Jx conducts an internal self-test. Then, before executing its first instruction, it performs an external bus confidence test by performing a checksum on the first words of the initialization boot record (IBR). 2.3 Timer Unit The timer unit (TU) contains two independent 32-bit timers that are capable of counting at several clock rates and generating interrupts. Each is programmed by use of the TU registers. These memory-mapped registers are addressable on 32-bit boundaries. The timers have a single-shot mode and auto-reload capabilities for continuous operation. Each timer has an independent interrupt request to the 80960Jx’s interrupt controller. The TU may generate a fault when unauthorized writes from user mode are detected. Clock prescaling is supported. 2.4 Priority Interrupt Controller A programmable interrupt controller manages up to 240 external sources through an 8-bit external interrupt port. Alternatively, the interrupt inputs may be configured for individual edge- or leveltriggered inputs. The interrupt unit (IU) also accepts interrupts from the two on-chip timer channels and a single Non-Maskable Interrupt (NMI#) pin. Interrupts are serviced according to their priority levels relative to the current process priority. Low interrupt latency is critical to many embedded applications. As part of its highly flexible interrupt mechanism, the 80960Jx exploits several techniques to minimize latency: • • • • Datasheet Interrupt vectors and interrupt handler routines may be reserved on-chip. Register frames for high-priority interrupt handlers may be cached on-chip. The interrupt stack may be placed in cacheable memory space. Interrupt microcode executes at two or three times the bus frequency for the 80960JD/JC and 80960JT, respectively. 11 80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor 2.5 Instruction Set Summary The 80960Jx adds several new instructions to the i960 processor core architecture. The new instructions are: • • • • • • • Conditional Move Conditional Add Conditional Subtract Byte Swap Halt Cache Control Interrupt Control Table 2 identifies the instructions that the 80960Jx supports. Refer to the i960® Jx Microprocessor Developer’s Manual (272483) for a detailed description of each instruction. 2.6 Faults and Debugging The 80960Jx employs a comprehensive fault model. The processor responds to faults by making implicit calls to a fault handling routine. Specific information collected for each fault allows the fault handler to diagnose exceptions and recover appropriately. The processor also has built-in debug capabilities. In software, the 80960Jx may be configured to detect as many as seven different trace event types. Alternatively, mark and fmark instructions may generate trace events explicitly in the instruction stream. Hardware breakpoint registers are also available to trap on execution and data addresses. 2.7 Low Power Operation Intel fabricates the 80960Jx using an advanced sub-micron manufacturing process. The processor’s sub-micron topology provides the circuit density for optimal cache size and high operating speeds while dissipating modest power. The processor also uses dynamic power management to turn off clocks to unused circuits. Users may program the 80960Jx to enter Halt mode for maximum power savings. In Halt mode, the processor core stops completely while the integrated peripherals continue to function, reducing overall power requirements up to 90 percent. Processor execution resumes from internally or externally generated interrupts. 2.8 Test Features The 80960Jx incorporates numerous features that enhance the user’s ability to test both the processor and the system to which it is attached. These features include ONCE (On-Circuit Emulation) mode and Boundary Scan (JTAG). 12 Datasheet 80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor The 80960Jx provides testability features compatible with IEEE Standard Test Access Port and Boundary Scan Architecture (IEEE Std. 1149.1). One of the boundary scan instructions, HIGHZ, forces the processor to float all its output pins (ONCE mode). ONCE mode may also be initiated at reset without using the boundary scan mechanism. ONCE mode is useful for board-level testing. This feature allows a mounted 80960Jx to electrically “remove” itself from a circuit board. This allows for system-level testing in which a remote tester, such as an in-circuit emulator, may exercise the processor system. The provided test logic does not interfere with component or circuit board behavior and ensures that components function correctly, connections between various components are correct, and various components interact correctly on the printed circuit board. The JTAG Boundary Scan feature is an attractive alternative to conventional “bed-of-nails” testing. It may examine connections that might otherwise be inaccessible to a test system. 2.9 Memory-Mapped Control Registers The 80960Jx, although compliant with the i960 processor core, has the added advantage of memory-mapped, internal control registers not found on the i960 Kx, Sx or Cx processors. These registers give software the interface to easily read and modify internal control registers. Each of these registers is accessed as a memory-mapped, 32-bit register. Access is accomplished through regular memory-format instructions. The processor ensures that these accesses do not generate external bus cycles. 2.10 Data Types and Memory Addressing Modes As with all i960 processors, the 80960Jx instruction set supports several data types and formats: • • • • • • Bit Bit fields Integer (8-, 16-, 32-, 64-bit) Ordinal (8-, 16-, 32-, 64-bit unsigned integers) Triple word (96 bits) Quad word (128 bits) The 80960Jx provides a full set of addressing modes for C and assembly programming: • • • • Datasheet Two Absolute modes Five Register Indirect modes Index with displacement IP with displacement 13 80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor Table 2. 80960Jx Instruction Set Data Movement Arithmetic Logical Bit, Bit Field and Byte Add Subtract Multiply And Divide Not And Remainder And Not Load Modulo Or Store Shift Exclusive Or Move Extended Shift Not Or Conditional Select† Extended Multiply Or Not Load Address Extended Divide Nor Add with Carry Exclusive Nor Subtract with Carry Not Conditional Add† Nand Set Bit Clear Bit Not Bit Alter Bit Scan For Bit Span Over Bit Extract Modify Scan Byte for Equal Byte Swap† Conditional Subtract† Rotate Comparison Branch Compare Conditional Compare Compare and Increment Compare and Decrement Test Condition Code Fault Call Unconditional Branch Call Extended Conditional Branch Call System Compare and Branch Return Conditional Fault Synchronize Faults Branch and Link Check Bit Debug Call/Return Processor Management Atomic Flush Local Registers Modify Arithmetic Controls Modify Trace Controls Mark Force Mark Modify Process Controls Atomic Add Halt† Atomic Modify System Control Cache Control† Interrupt Control† † Denotes new 80960 instructions unavailable on 80960CA/CF, 80960KA/KB and 80960SA/SB processors. 14 Datasheet 80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor 3.0 Packaging Information 3.1 Available Processors and Packages The 80960Jx is offered in various speed grades and three package types. The 132-pin Pin Grid Array (PGA) device is specified for operation at VCC = 3.3 V ± 0.15 V over a case temperature range of 0° C to 100° C. The following processor versions are available in the PGA package: Table 3. 80960Jx Processors Available in 132-Pin PGA Package Processor Core Speed Bus Speed x80960JD-66 66 MHz 33 MHz x80960JD-33 33 MHz 16 MHz x80960JA/JF-33 33 MHz 33 MHz x80960JF-25 25 MHz 25 MHz For pinout diagrams for the PGA package, see Section 3.2.2, “80960Jx 132-Lead PGA Pinout” on page 23. The 132-pin Plastic Quad Flatpack (PQFP) devices are specified for operation at VCC = 3.3 V ± 0.15 V over a case temperature range of 0° C to 100° C. Table 4 presents 80960Jx processor versions that are available in the 132-pin PQFP package: Table 4. 80960Jx Processors Available in 132-Pin PQFP Package Processor Core Speed Bus Speed x80960JT-100 100 MHz 33 MHz x80960JC-66 66 MHz 33 MHz x80960JC-50 50 MHz 25 MHz x80960JS-33 33 MHz 33 MHz x80960JS-25 25 MHz 25 MHz x80960JD-66 66 MHz 33 MHz x80960JD-40 40 MHz 20 MHz x80960JA/JF-33 33 MHz 33 MHz x80960JA/JF-25 25 MHz 25 MHz x80960JA-16 16 MHz 16 MHz For pinout diagrams of the PQFP package, see Section 3.2.3, “80960Jx 132-Lead PQFP Pinout” on page 27. Extended temperature devices are specified for operation at VCC = 3.3 V ± 0.15 V over a case temperature range of -40° C to 100° C. Table 5 presents 80960Jx processor versions that are available in the extended temperature 132-pin PQFP package and MPBGA package: NOTE: To address the fact that many of the package prefix variables have changed, all package prefix variables in this document are now indicated with an "x". Datasheet 15 80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor Table 5. 80960Jx Processors Available in Extended Temperature Processor Core Speed Bus Speed Package Type x80960JA-25 25 MHz 25 MHz PQFP x80960JS-25 25 MHz 25 MHz PQFP x80960JS-33 33 MHz 33 MHz PQFP x80960JC-66 66 Mhz 33 MHz PQFP x80960JT-100 100 MHz 33 MHz PQFP x80960JC-66ET 66 MHz 33 MHz MPBGA The 196-ball Mini Plastic Ball Grid Array (MPBGA) device is specified for operation at VCC = 3.3 V ± 0.15 V over a case temperature range of 0° C to 100° C. Table 6 presents the 80960Jx processor versions that are available in the 196-ball MPBGA package: Table 6. 80960Jx Processors Available in 196-Ball MPBGA Package Processor Core Speed Bus Speed x80960JT-100 100 MHz 33 MHz x80960JC-66 66 MHz 33 MHz x80960JS-33 33 MHz 33 MHz x80960JS-25 25 MHz 25 MHz x80960JD-50 50 MHz 25 MHz x80960JA/JF-33 33 MHz 33 MHz For pinout diagrams of the PQFP package, see Section 3.2.4, “80960Jx 196-Ball MPBGA Pinout” on page 30. For additional package specifications and information, refer to the Intel Packaging Databook, available in individual chapters, at http://www.intel.com. NOTE: To address the fact that many of the package prefix variables have changed, all package prefix variables in this document are now indicated with an "x". 3.2 Pin Descriptions This section describes the pins for the 80960Jx processors. For a description of pin function, see Section 3.2.1, “Functional Pin Definitions” on page 16. Refer to the following sections for pinout information for the three package types: • Section 3.2.2, “80960Jx 132-Lead PGA Pinout” on page 23. • Section 3.2.3, “80960Jx 132-Lead PQFP Pinout” on page 27. • Section 3.2.4, “80960Jx 196-Ball MPBGA Pinout” on page 30. 3.2.1 Functional Pin Definitions Table 7 presents the legend for interpreting the three pin description tables that follow. These tables define the pins associated with the bus interface, basic control and test functions, and the Interrupt Unit. 16 Datasheet 80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor Table 7. Pin Description Nomenclature Symbol Description I Input pin only. O Output pin only. I/O Pin may be either an input or output. – Pin must be connected as described. Synchronous. Inputs must meet setup and hold times relative to CLKIN for proper operation. S S(E) Edge sensitive input S(L) Level sensitive input Asynchronous. Inputs may be asynchronous relative to CLKIN. A (...) A(E) Edge sensitive input A(L) Level sensitive input While the processor’s RESET# pin is asserted, the pin: R (...) R(1) is driven to VCC R(0) is driven to VSS R(Q) is a valid output R(X) is driven to unknown state R(H) is pulled up to VCC While the processor is in the hold state, the pin: H (...) H(1) is driven to VCC H(0) is driven to VSS H(Q) Maintains previous state or continues to be a valid output H(Z) Floats While the processor is halted, the pin: P (...) Datasheet P(1) is driven to VCC P(0) is driven to VSS P(Q) Maintains previous state or continues to be a valid output 17 80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor Table 8. Pin Description—External Bus Signals (Sheet 1 of 4) NAME TYPE DESCRIPTION ADDRESS / DATA BUS carries 32-bit physical addresses and 8-, 16- or 32-bit data to and from memory. During an address (Ta) cycle, bits 31:2 contain a physical word address (bits 0-1 indicate SIZE; see below). During a data (Td) cycle, read or write data is present on one or more contiguous bytes, comprising AD[31:24], AD[23:16], AD[15:8] and AD[7:0]. During write operations, unused pins are driven to determinate values. SIZE, which comprises bits 0-1 of the AD lines during a Ta cycle, specifies the number of data transfers during the bus transaction. AD[31:0] I/O S(L) R(X) H(Z) P(Q) AD1 AD0 Bus Transfers 0 0 1 Transfer 0 1 2 Transfers 1 0 3 Transfers 1 1 4 Transfers When the processor enters Halt mode, if the previous bus operation was a: • write — AD[31:2] are driven with the last data value on the AD bus. • read — AD[31:4] are driven with the last address value on the AD bus; AD[3:2] are driven with the value of A[3:2] from the last data cycle. Typically, AD[1:0] reflect the SIZE information of the last bus transaction (either instruction fetch or load/store) that was executed before entering Halt mode. ALE O R(0) H(Z) P(0) ADDRESS LATCH ENABLE indicates the transfer of a physical address. ALE is asserted during a Ta cycle and deasserted before the beginning of the Td state. It is active HIGH and floats to a high impedance state during a hold cycle (Th). ALE# O R(1) H(Z) P(1) ADDRESS LATCH ENABLE indicates the transfer of a physical address. ALE# is the inverted version of ALE. This signal gives the 80960Jx a high degree of compatibility with existing 80960Kx systems. ADS# O R(1) H(Z) P(1) ADDRESS STROBE indicates a valid address and the start of a new bus access. The processor asserts ADS# for the entire Ta cycle. External bus control logic typically samples ADS# at the end of the cycle. ADDRESS[3:2] comprise a partial demultiplexed address bus. 32-bit memory accesses: the processor asserts address bits A[3:2] during Ta. The partial word address increments with each assertion of RDYRCV# during a burst. A[3:2] O R(X) H(Z) P(Q) 16-bit memory accesses: the processor asserts address bits A[3:1] during Ta with A1 driven on the BE1# pin. The partial short word address increments with each assertion of RDYRCV# during a burst. 8-bit memory accesses: the processor asserts address bits A[3:0] during Ta, with A[1:0] driven on BE[1:0]#. The partial byte address increments with each assertion of RDYRCV# during a burst. 18 Datasheet 80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor Table 8. Pin Description—External Bus Signals (Sheet 2 of 4) NAME TYPE DESCRIPTION BYTE ENABLES select which of up to four data bytes on the bus participate in the current bus access. Byte enable encoding is dependent on the bus width of the memory region accessed: 32-bit bus: BE3# enables data on AD[31:24] BE2# enables data on AD[23:16] BE1# enables data on AD[15:8] BE0# enables data on AD[7:0] BE[3:0]# O R(1) H(Z) P(1) 16-bit bus: BE3# becomes Byte High Enable (enables data on AD[15:8]) BE2# is not used (state is high) BE1# becomes Address Bit 1 (A1) BE0# becomes Byte Low Enable (enables data on AD[7:0]) 8-bit bus: BE3# is not used (state is high) BE2# is not used (state is high) BE1# becomes Address Bit 1 (A1) BE0# becomes Address Bit 0 (A0) The processor asserts byte enables, byte high enable and byte low enable during Ta. Since unaligned bus requests are split into separate bus transactions, these signals do not toggle during a burst. They remain active through the last Td cycle. For accesses to 8- and 16-bit memory, the processor asserts the address bits in conjunction with A[3:2] described above. WIDTH/HALTED signals denote the physical memory attributes for a bus transaction: WIDTH/ HLTD[1:0] O R(0) H(Z) P(1) WIDTH/ HLTD1 WIDTH/ HLTD0 0 0 8 Bits Wide 0 1 16 Bits Wide 1 0 32 Bits Wide 1 1 Processor Halted The processor floats the WIDTH/HLTD pins whenever it relinquishes the bus in response to a HOLD request, regardless of prior operating state. D/C# W/R# DT/R# Datasheet O R(X) H(Z) P(Q) O R(0) H(Z) P(Q) O R(0) H(Z) P(Q) DATA/CODE indicates that a bus access is a data access (1) or an instruction access (0). D/C# has the same timing as W/R#. 0 = instruction access 1 = data access WRITE/READ specifies, during a Ta cycle, whether the operation is a write (1) or read (0). It is latched on-chip and remains valid during Td cycles. 0 = read 1 = write DATA TRANSMIT / RECEIVE indicates the direction of data transfer to and from the address/data bus. It is low during Ta and Tw/Td cycles for a read; it is high during Ta and Tw/Td cycles for a write. DT/R# never changes state when DEN# is asserted. 0 = receive 1 = transmit 19 80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor Table 8. Pin Description—External Bus Signals (Sheet 3 of 4) NAME TYPE DEN# O R(1) H(Z) P(1) BLAST# O R(1) H(Z) P(1) DESCRIPTION DATA ENABLE indicates data transfer cycles during a bus access. DEN# is asserted at the start of the first data cycle in a bus access and deasserted at the end of the last data cycle. DEN# is used with DT/R# to provide control for data transceivers connected to the data bus. 0 = data cycle 1 = not data cycle BURST LAST indicates the last transfer in a bus access. BLAST# is asserted in the last data transfer of burst and non-burst accesses. BLAST# remains active as long as wait states are inserted through the RDYRCV# pin. BLAST# becomes inactive after the final data transfer in a bus cycle. 0 = last data transfer 1 = not last data transfer READY/RECOVER indicates that data on AD lines may be sampled or removed. When RDYRCV# is not asserted during a Td cycle, the Td cycle is extended to the next cycle by inserting a wait state (Tw). 0 = sample data 1 = don’t sample data RDYRCV# I S(L) The RDYRCV# pin has another function during the recovery (Tr) state. The processor continues to insert additional recovery states until it samples the pin HIGH. This function gives slow external devices more time to float their buffers before the processor begins to drive address again. 0 = insert wait states 1 = recovery complete BUS LOCK indicates that an atomic read-modify-write operation is in progress. The LOCK# output is asserted in the first clock of an atomic operation and deasserted in the last data transfer of the sequence. The processor does not grant HOLDA while it is asserting LOCK#. This prevents external agents from accessing memory involved in semaphore operations. LOCK#/ ONCE# I/O S(L) R(H) H(Z) P(1) 0 = Atomic read-modify-write in progress 1 = Atomic read-modify-write not in progress ONCE MODE: The processor samples the ONCE# input during reset. When it is asserted LOW at the end of reset, the processor enters ONCE mode. In ONCE mode, the processor stops all clocks and floats all output pins. The pin has a weak internal pullup which is active during reset to ensure normal operation when the pin is left unconnected. 0 = ONCE mode enabled 1 = ONCE mode not enabled HOLD I S(L) HOLD: A request from an external bus master to acquire the bus. When the processor receives HOLD and grants bus control to another master, it asserts HOLDA, floats the address/data and control lines and enters the Th state. When HOLD is deasserted, the processor deasserts HOLDA and enters either the Ti or Ta state, resuming control of the address/data and control lines. 0 = no hold request 1 = hold request 20 Datasheet 80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor Table 8. Pin Description—External Bus Signals (Sheet 4 of 4) NAME TYPE HOLDA O R(Q) H(1) P(Q) BSTAT Table 9. O R(0) H(Q) P(0) DESCRIPTION HOLD ACKNOWLEDGE indicates to an external bus master that the processor has relinquished control of the bus. The processor may grant HOLD requests and enter the Th state during reset and while halted as well as during regular operation. 0 = hold not acknowledged 1 = hold acknowledged BUS STATUS indicates that the processor may soon stall unless it has sufficient access to the bus; see i960® Jx Microprocessor Developer’s Manual (272483). Arbitration logic may examine this signal to determine when an external bus master should acquire/relinquish the bus. 0 = no potential stall 1 = potential stall Pin Description—Processor Control Signals, Test Signals, and Power (Sheet 1 of 2) NAME TYPE DESCRIPTION CLKIN I CLOCK INPUT provides the processor’s fundamental time base; both the processor core and the external bus run at the CLKIN rate. All input and output timings are specified relative to a rising CLKIN edge. RESET initializes the processor and clears its internal logic. During reset, the processor places the address/data bus and control output pins in their idle (inactive) states. RESET# I A(L) During reset, the input pins are ignored with the exception of LOCK#/ONCE#, STEST and HOLD. The RESET# pin has an internal synchronizer. To ensure predictable processor initialization during power up, RESET# must be asserted a minimum of 10,000 CLKIN cycles with VCC and CLKIN stable. On a warm reset, RESET# should be asserted for a minimum of 15 cycles. STEST I S(L) SELF TEST enables or disables the processor’s internal self-test feature at initialization. STEST is examined at the end of reset. When STEST is asserted, the processor performs its internal self-test and the external bus confidence test. When STEST is deasserted, the processor performs only the external bus confidence test. 0 = self test disabled 1 = self test enabled FAIL# O R(0) H(Q) P(1) FAIL indicates a failure of the processor’s built-in self-test performed during initialization. FAIL# is asserted immediately upon reset and toggles during self-test to indicate the status of individual tests: • When self-test passes, the processor deasserts FAIL# and begins operation from user code. • When self-test fails, the processor asserts FAIL# and then stops executing. 0 = self test failed 1 = self test passed Datasheet TCK I TEST CLOCK is a CPU input which provides the clocking function for IEEE 1149.1 Boundary Scan Testing (JTAG). State information and data are clocked into the processor on the rising edge; data is clocked out of the processor on the falling edge. TDI I S(L) TEST DATA INPUT is the serial input pin for JTAG. TDI is sampled on the rising edge of TCK, during the SHIFT-IR and SHIFT-DR states of the Test Access Port. 21 80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor Table 9. Pin Description—Processor Control Signals, Test Signals, and Power (Sheet 2 of 2) NAME TYPE DESCRIPTION TDO O R(Q) HQ) P(Q) TEST DATA OUTPUT is the serial output pin for JTAG. TDO is driven on the falling edge of TCK during the SHIFT-IR and SHIFT-DR states of the Test Access Port. At other times, TDO floats. TDO does not float during ONCE mode. TRST# I A(L) TEST RESET asynchronously resets the Test Access Port (TAP) controller function of IEEE 1149.1 Boundary Scan testing (JTAG). When using the Boundary Scan feature, connect a pull-down resistor between this pin and VSS. When TAP is not used, this pin must be connected to VSS; however, no resistor is required. See Section 4.3, “Connection Recommendations” on page 36. TMS I S(L) TEST MODE SELECT is sampled at the rising edge of TCK to select the operation of the test logic for IEEE 1149.1 Boundary Scan testing. VCC – POWER pins intended for external connection to a VCC board plane. VCCPLL – PLL POWER is a separate VCC supply pin for the phase lock loop clock generator. It is intended for external connection to the VCC board plane. In noisy environments, add a simple bypass filter circuit to reduce noise-induced clock jitter and its effects on timing relationships. VCC5 – 5 V REFERENCE VOLTAGE input is the reference voltage for the 5 V-tolerant I/O buffers. This signal should be connected to +5 V for use with inputs which exceed 3.3 V. When all inputs are from 3.3 V components, this pin should be connected to 3.3 V. VSS – GROUND pins intended for external connection to a VSS board plane. NC – NO CONNECT pins. Do not make any system connections to these pins. Table 10. Pin Description—Interrupt Unit Signals NAME TYPE DESCRIPTION EXTERNAL INTERRUPT pins are used to request interrupt service. The XINT[7:0]# pins may be configured in three modes: Dedicated Mode: Each pin is assigned a dedicated interrupt level. Dedicated inputs may be programmed to be level (low) or edge (falling) sensitive. XINT[7:0]# I A(E/L) Expanded Mode: All eight pins act as a vectored interrupt source. The interrupt pins are level sensitive in this mode. Mixed Mode: The XINT[7:5]# pins act as dedicated sources and the XINT[4:0]# pins act as the five most significant bits of a vectored source. The least significant bits of the vectored source are set to 0102 internally. Unused external interrupt pins should be connected to VCC. NMI# 22 I A(E) NON-MASKABLE INTERRUPT causes a non-maskable interrupt event to occur. NMI# is the highest priority interrupt source and is falling edge-triggered. when NMI# is unused, it should be connected to VCC. Datasheet 80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor 3.2.2 80960Jx 132-Lead PGA Pinout Figure 3. 132-Lead Pin Grid Array Top View-Pins Facing Down 14 13 12 11 10 9 8 7 6 5 4 3 2 1 P P AD6 AD11 AD13 VCC VCC VCC VCC VCC VCC VCC AD18 AD19 AD22 AD25 AD3 AD7 AD10 VSS VSS VSS VSS VSS VSS VSS AD20 AD24 AD26 AD27 AD0 AD4 AD8 AD9 AD12 AD16 AD17 VCC AD1 VCC VCC N N M L K J H G M CLKIN D C AD30 AD5 AD28 BE3# BE2# VSS AD2 AD31 VSS VCC VSS NC BE1# VSS VCC B BE0# VSS VCC i x80960Jx M © 19xx VCC BSTAT VSS VCC VSS RESET# DEN# VSS VCC VSS DT/R# NC VCC VSSRDYRCV# VCC VCC ALE XXXXXXXX SS TDI STESTTRST# XINT0#XINT1# HOLD TCK XINT3#XINT4# XINT6# VSS NC VCC5 FAIL# A2 VSS VSS VSS NC VCC VCC VCC 8 7 6 A TMS XINT2# XINT5#XINT7# NMI# 14 13 12 11 10 VCC 9 K J VSS VSS NC NC L VSS VCCPLL VCC NC AD21 AD23 AD29 F E AD14 AD15 A3 VSS BLAST# HOLDA LOCK#/ ONCE# TDO WIDTH/ D/C# HLTD0 NC NC 5 4 VCC W/R# ALE# WIDTH/ ADS# HLTD1 3 2 H G F E D C B A 1 NOTE: To address the fact that many of the package prefix variables have changed, all package prefix variables in this document are now indicated with an "x". Datasheet 23 80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor Figure 4. 132-Lead Pin Grid Array Bottom View-Pins Facing Up 1 2 3 4 5 6 7 8 9 10 11 12 13 14 P P AD25 AD22 AD19 AD18 VCC VCC VCC VCC VCC VCC VCC AD13 AD11 AD6 AD27 AD26 AD24 AD20 VSS VSS VSS VSS VSS VSS VSS AD10 AD7 AD3 AD30 AD29 AD23 AD21 AD17 AD16 AD12 AD9 AD8 AD4 AD0 BE2# BE3# AD28 AD5 AD1 VCC N N M M NC AD15 AD14 L L K K VCC VSS AD31 AD2 VSS VCC VCC VSS BE1# NC VSS VCC VCC VSS BE0# VCC VSS ALE VCC J J H H VCCPLL VSS CLKIN G G NC VSS VCC VSS BSTAT RDYRCV#VSS VCC VCC VSS DEN# RESET# VSS VCC VCC VSS VSS VCC F F E E D D DT/R# TDI C C LOCK#/ HOLDA BLAST# ONCE# A3 A2 FAIL# VCC5 NC HOLD XINT1# XINT0# TRST#STEST NC VSS VSS VSS VSS VCC VCC VCC VCC 6 7 8 NC B B W/R# D/C# WIDTH/ TDO HLTD0 XINT6#XINT4# XINT3# TCK NC A A ADS# WIDTH/ ALE# HLTD1 1 24 2 3 NC NC 4 5 9 NMI# XINT7#XINT5# XINT2# TMS 10 11 12 13 14 Datasheet 80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor Table 11. 132-Lead PGA Pinout—In Signal Order Signal Pin Signal Pin Signal A2 A3 Pin Signal C5 AD31 K3 C4 ADS# A1 AD0 M14 ALE AD1 L13 Pin TDO B4 VSS B9 TMS A14 VSS D2 G3 TRST# C12 VSS D13 ALE# A3 VCC A6 VSS E2 AD2 K12 BE0# H3 VCC A7 VSS E13 AD3 N14 BE1# J3 VCC A8 VSS F2 AD4 M13 BE2# L1 VCC A9 VSS F13 AD5 L12 BE3# L2 VCC D1 VSS G2 AD6 P14 BLAST# C3 VCC D14 VSS G13 AD7 N13 BSTAT F3 VCC E1 VSS H2 AD8 M12 CLKIN H14 VCC E14 VSS H13 AD9 M11 D/C# B2 VCC F1 VSS J2 AD10 N12 DEN# E3 VCC F14 VSS J13 AD11 P13 DT/R# D3 VCC G1 VSS K2 AD12 M10 FAIL# C6 VCC G14 VSS K13 AD13 P12 HOLD C9 VCC H1 VSS N5 AD14 M9 HOLDA C2 VCC J1 VSS N6 AD15 M8 LOCK#/ONCE# C1 VCC J14 VSS N7 AD16 M7 NC A4 VCC K1 VSS N8 AD17 M6 NC A5 VCC K14 VSS N9 AD18 P4 NC B5 VCC L14 VSS N10 AD19 P3 NC B14 VCC P5 VSS N11 AD20 N4 NC C8 VCC P6 W/R# B1 AD21 M5 NC C14 VCC P7 WIDTH/HLTD0 B3 AD22 P2 NC G12 VCC P8 WIDTH/HLTD1 A2 AD23 M4 NC J12 VCC P9 XINT0# C11 AD24 N3 NC M3 VCC P10 XINT1# C10 AD25 P1 NMI# A10 VCC P11 XINT2# A13 AD26 N2 RDYRCV# F12 VCCPLL H12 XINT3# B12 AD27 N1 RESET# E12 VCC5 C7 XINT4# B11 AD28 L3 STEST C13 VSS B6 XINT5# A12 AD29 M2 TCK B13 VSS B7 XINT6# B10 AD30 M1 TDI D12 VSS B8 XINT7# A11 NOTE: Do not connect any external logic to pins marked NC (no connect pins). Datasheet 25 80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor Table 12. 132-Lead PGA Pinout—In Pin Order Pin Signal Pin Signal Pin Signal Pin Signal A1 ADS# C6 FAIL# H1 VCC M10 AD12 A2 WIDTH/HLTD1 C7 VCC5 H2 VSS M11 AD9 A3 ALE# C8 NC H3 BE0# M12 AD8 A4 NC C9 HOLD H12 VCCPLL M13 AD4 A5 NC C10 XINT1# H13 VSS M14 AD0 A6 VCC C11 XINT0# H14 CLKIN N1 AD27 A7 VCC C12 TRST# J1 VCC N2 AD26 A8 VCC C13 STEST J2 VSS N3 AD24 A9 VCC C14 NC J3 BE1# N4 AD20 A10 NMI# D1 VCC J12 NC N5 VSS A11 XINT7# D2 VSS J13 VSS N6 VSS A12 XINT5# D3 DT/R# J14 VCC N7 VSS A13 XINT2# D12 TDI K1 VCC N8 VSS A14 TMS D13 VSS K2 VSS N9 VSS B1 W/R# D14 VCC K3 AD31 N10 VSS B2 D/C# E1 VCC K12 AD2 N11 VSS B3 WIDTH/HLTD0 E2 VSS K13 VSS N12 AD10 B4 TDO E3 DEN# K14 VCC N13 AD7 B5 NC E12 RESET# L1 BE2# N14 AD3 B6 VSS E13 VSS L2 BE3# P1 AD25 B7 VSS E14 VCC L3 AD28 P2 AD22 B8 VSS F1 VCC L12 AD5 P3 AD19 B9 VSS F2 VSS L13 AD1 P4 AD18 B10 XINT6# F3 BSTAT L14 VCC P5 VCC B11 XINT4# F12 RDYRCV# M1 AD30 P6 VCC B12 XINT3# F13 VSS M2 AD29 P7 VCC B13 TCK F14 VCC M3 NC P8 VCC B14 NC G1 VCC M4 AD23 P9 VCC C1 LOCK#/ONCE# G2 VSS M5 AD21 P10 VCC C2 HOLDA G3 ALE M6 AD17 P11 VCC C3 BLAST# G12 NC M7 AD16 P12 AD13 C4 A3 G13 VSS M8 AD15 P13 AD11 C5 A2 G14 VCC M9 AD14 P14 AD6 NOTE: Do not connect any external logic to pins marked NC (no connect pins). 26 Datasheet 80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor 3.2.3 80960Jx 132-Lead PQFP Pinout Figure 5. 132-Lead PQFP - Top View AD8 AD7 AD6 AD5 AD4 VCC (I/O) VSS (I/O) AD3 AD2 AD1 AD0 VCC (I/O) VSS (I/O) VCC (Core) VSS (Core) V (Core) C C VSS (Core) CLKIN VSS (CLK) VCCPLL VCC (CLK) NC NC VCC (Core) VSS (Core) RESET# NC NC STEST VCC (I/O) TDI VSS(I/O) RDYRCV# 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 i960 ® i x80960Jx XXXXXXXX SS M © 19xx 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 AD9 VCC (I/O) VSS (I/O) AD10 AD11 VCC (I/O) VSS (I/O) VCC (Core) VSS (Core) AD12 AD13 AD14 AD15 VCC (I/O) VSS (I/O) AD16 AD17 AD18 AD19 VCC (I/O) VSS (I/O) AD20 AD21 AD22 AD23 VCC (Core) VSS (Core) VCC (I/O) VSS (I/O) AD24 AD25 AD26 NC 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 TRST# TCK TMS HOLD XINT0# XINT1# XINT2# XINT3# VCC (I/O) VSS (I/O) XINT4# XINT5# XINT6# XINT7# NMI# VCC (Core) VSS (Core) NC NC VCC5 NC NC FAIL# ALE# TDO VCC (I/O) VSS(I/O) WIDTH/HLTD1 VCC(Core) VSS (Core) WIDTH/HLTD0 A2 A3 BLAST# AD27 VCC (I/O) VSS (I/O) AD28 AD29 AD30 AD31 VCC (Core) VSS (Core) VCC (I/O) VSS (I/O) BE3# BE2# BE1# BE0# BSTAT LOCK#/ONCE# VCC (I/O) VSS (I/O) VCC (Core) VSS (Core) ALE HOLDA DEN# DT/R# VCC (I/O) VSS (I/O) VCC (Core) VSS (Core) W/R# ADS# D/C# NOTE: To address the fact that many of the package prefix variables have changed, all package prefix variables in this document are now indicated with an "x". Datasheet 27 80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor Table 13. 132-Lead PQFP Pinout—In Signal Order Signal Pin Signal Pin Signal Pin Signal Pin AD31 60 ALE# 24 VCC (Core) 47 VSS (Core) 124 AD30 61 ADS# 36 VCC (Core) 59 VSS (I/O) 10 AD29 62 A3 33 VCC (Core) 74 VSS (I/O) 27 AD28 63 A2 32 VCC (Core) 92 VSS (I/O) 40 AD27 66 BE3# 55 VCC (Core) 113 VSS (I/O) 48 AD26 68 BE2# 54 VCC (Core) 115 VSS (I/O) 56 AD25 69 BE1# 53 VCC (Core) 123 VSS (I/O) 64 AD24 70 BE0# 52 VCC (I/O) 9 VSS (I/O) 71 AD23 75 WIDTH/HLTD1 28 VCC (I/O) 26 VSS (I/O) 79 AD22 76 WIDTH/HLTD0 31 VCC (I/O) 41 VSS (I/O) 85 AD21 77 D/C# 35 VCC (I/O) 49 VSS (I/O) 93 AD20 78 W/R# 37 VCC (I/O) 57 VSS (I/O) 97 AD19 81 DT/R# 42 VCC (I/O) 65 VSS (I/O) 106 AD18 82 DEN# 43 VCC (I/O) 72 VSS (I/O) 112 AD17 83 BLAST# 34 VCC (I/O) 80 VSS (I/O) 131 AD16 84 RDYRCV# 132 VCC (I/O) 86 NC 18 AD15 87 LOCK#/ONCE# 50 VCC (I/O) 94 NC 19 AD14 88 HOLD 4 VCC (I/O) 98 NC 21 AD13 89 HOLDA 44 VCC (I/O) 105 NC 22 AD12 90 BSTAT 51 VCC (I/O) 111 NC 67 AD11 95 CLKIN 117 VCC (I/O) 129 NC 121 AD10 96 RESET# 125 VCCPLL 119 NC 122 AD9 99 STEST 128 VCC5 20 NC 126 AD8 100 FAIL# 23 VSS (CLK) 118 NC 127 AD7 101 TCK 2 VSS (Core) 17 XINT7# 14 AD6 102 TDI 130 VSS (Core) 30 XINT6# 13 AD5 103 TDO 25 VSS (Core) 38 XINT5# 12 AD4 104 TRST# 1 VSS (Core) 46 XINT4# 11 AD3 107 TMS 3 VSS (Core) 58 XINT3# 8 AD2 108 VCC (CLK) 120 VSS (Core) 73 XINT2# 7 AD1 109 VCC (Core) 16 VSS (Core) 91 XINT1# 6 AD0 110 VCC (Core) 29 VSS (Core) 114 XINT0# 5 ALE 45 VCC (Core) 39 VSS (Core) 116 NMI# 15 NOTE: Do not connect any external logic to pins marked NC (no connect pins). 28 Datasheet 80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor Table 14. 132-Lead PQFP Pinout—In Pin Order Pin Signal Pin Signal Pin Signal Pin Signal 1 TRST# 34 BLAST# 2 TCK 35 D/C# 67 NC 100 AD8 68 AD26 101 AD7 3 TMS 36 ADS# 69 AD25 102 AD6 4 HOLD 37 W/R# 70 AD24 103 AD5 5 XINT0# 38 VSS (Core) 71 VSS (I/O) 104 AD4 6 XINT1# 39 VCC (Core) 72 VCC (I/O) 105 VCC (I/O) 7 XINT2# 40 VSS (I/O) 73 VSS (Core) 106 VSS (I/O) 8 XINT3# 41 VCC (I/O) 74 VCC (Core) 107 AD3 9 VCC (I/O) 42 DT/R# 75 AD23 108 AD2 10 VSS (I/O) 43 DEN# 76 AD22 109 AD1 11 XINT4# 44 HOLDA 77 AD21 110 AD0 12 XINT5# 45 ALE 78 AD20 111 VCC (I/O) 13 XINT6# 46 VSS (Core) 79 VSS (I/O) 112 VSS (I/O) 14 XINT7# 47 VCC (Core) 80 VCC (I/O) 113 VCC (Core) 15 NMI# 48 VSS (I/O) 81 AD19 114 VSS (Core) 16 VCC (Core) 49 VCC (I/O) 82 AD18 115 VCC (Core) 17 VSS (Core) 50 LOCK#/ONCE# 83 AD17 116 VSS (Core) 18 NC 51 BSTAT 84 AD16 117 CLKIN 19 NC 52 BE0# 85 VSS (I/O) 118 VSS (CLK) 20 VCC5 53 BE1# 86 VCC (I/O) 119 VCCPLL 21 NC 54 BE2# 87 AD15 120 VCC (CLK) 22 NC 55 BE3# 88 AD14 121 NC 23 FAIL# 56 VSS (I/O) 89 AD13 122 NC 24 ALE# 57 VCC (I/O) 90 AD12 123 VCC (Core) 25 TDO 58 VSS (Core) 91 VSS (Core) 124 VSS (Core) 26 VCC (I/O) 59 VCC (Core) 92 VCC (Core) 125 RESET# 27 VSS (I/O) 60 AD31 93 VSS (I/O) 126 NC 28 WIDTH/HLTD1 61 AD30 94 VCC (I/O) 127 NC 29 VCC (Core) 62 AD29 95 AD11 128 STEST 30 VSS (Core) 63 AD28 96 AD10 129 VCC (I/O) 31 WIDTH/HLTD0 64 VSS (I/O) 97 VSS (I/O) 130 TDI 32 A2 65 VCC (I/O) 98 VCC (I/O) 131 VSS (I/O) 33 A3 66 AD27 99 AD9 132 RDYRCV# NOTE: Do not connect any external logic to pins marked NC (no connect pins). Datasheet 29 80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor 3.2.4 80960Jx 196-Ball MPBGA Pinout Figure 6. 196-Ball Mini Plastic Ball Grid Array Top View-Balls Facing Down 1 2 3 4 5 6 7 8 9 10 11 12 13 14 NC AD28 VCC NC VCC AD22 VCC VCC AD15 AD13 VCC AD8 NC VCC AD30 AD27 AD29 VCC AD23 AD20 AD17 AD14 AD12 AD10 AD9 AD7 AD4 NC AD31 NC AD26 AD25 AD24 AD21 AD19 AD16 VCC VCC AD11 AD6 AD2 NC NC NC VSS VSS VSS VSS VSS VSS VSS AD3 AD5 AD0 AD1 NC NC VCC VSS VSS VSS VSS VSS VSS VSS VSS VCC VCC VCC NC NC VCC VSS VSS VSS VSS VSS VSS VSS VSS VCC VCC VCCPLL NC NC VCC VSS VSS VSS VSS VSS VSS VSS VSS NC CLKIN NC BE1# BE2# BE3# VSS VSS VSS VSS VSS VSS VSS VSS NC VCC NC VCC BE0# BSTAT VSS VSS VSS VSS VSS VSS VSS VSS TDI NC RESET# VCC VSS VSS VSS VSS VSS VSS VSS VSS NC VCC HOLDA DEN# VCC VSS VSS VSS VSS VSS VSS VSS VSS NC NC RDYRCV# DT/R# VCC NC NC A3 VCC ALE# VCC5 VCC W/R# D/C# NC NC A2 VCC TDO NC XINT4# ADS# BLAST# VCC WIDTH0 WIDTH1 FAIL# NC NC 8 9 A A AD18 B B C C D D E E F F G G H H J J K K ALE LOCK#/ ONCE# STEST L L M M XINT2# XINT0# TMS TRST# TCK N N NC XINT6#XINT1#XINT3# HOLD P P NC 1 30 2 3 4 5 6 7 NMI# XINT7#XINT5# VCC 10 11 12 13 NC 14 Datasheet 80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor Figure 7. 196-Ball Mini Plastic Ball Grid Array Bottom View-Balls Facing Up 14 13 12 11 10 9 8 7 6 5 4 3 2 1 NC AD8 VCC AD13 AD15 VCC AD18 VCC AD22 VCC NC VCC AD28 NC AD4 AD7 AD9 AD10 AD12 AD14 AD17 AD20 AD23 VCC AD29 AD27 AD30 VCC AD2 AD6 AD11 VCC VCC AD16 AD19 AD21 AD24 AD25 AD26 NC AD31 NC AD1 AD0 AD5 AD3 VSS VSS VSS VSS VSS VSS VSS NC NC NC VCC VCC VCC VSS VSS VSS VSS VSS VSS VSS VSS VCC NC NC VCCPLL VCC VCC VSS VSS VSS VSS VSS VSS VSS VSS VCC NC NC A A B B C C D D E E F F G G NC CLKIN NC VSS VSS VSS VSS VSS VSS VSS VSS VCC NC NC NC VCC NC VSS VSS VSS VSS VSS VSS VSS VSS BE3# BE2# BE1# RESET# NC TDI VSS VSS VSS VSS VSS VSS VSS VSS STEST VCC NC VSS VSS VSS VSS VSS VSS VSS VSS VCC RDYRCV# NC NC VSS VSS VSS VSS VSS VSS VSS VSS VCC VCC VCC5 ALE# VCC A3 NC NC VCC DT/R# NC TDO VCC A2 NC NC D/C# W/R# H H J J BSTAT BE0# VCC K K LOCK#/ ONCE# ALE L L DEN# HOLDA M M TCK TRST# TMS XINT0# XINT2# N N HOLD XINT3# XINT1# XINT6# NC XINT4# P P NC 14 Datasheet VCC XINT5# XINT7# NMI# 13 12 11 10 NC NC 9 8 FAIL# WIDTH1 WIDTH0 VCC BLAST# ADS# 7 6 5 4 3 2 NC 1 31 80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor Table 15. 196-Ball MPBGA Pinout—In Signal Order (Sheet 1 of 2) Signal Pin Signal Pin Signal Pin Signal Pin A2 N5 BE0# J2 NC M4 VCC J1 A3 M5 BE1# H1 NC N3 VCC K3 AD0 D13 BE2# H2 NC N4 VCC K13 AD1 D14 BE3# H3 NC N8 VCC L3 AD2 C14 BLAST# P3 NC N10 VCC M2 AD3 D11 BSTAT J3 NC P1 VCC M6 AD4 B14 CLKIN G13 NC P8 VCC M9 AD5 D12 DEN# L2 NC P9 VCC N6 AD6 C13 D/C# N2 NC P14 VCC P4 AD7 B13 DT/R# M1 NMI# P10 VCC P13 AD8 A13 FAIL# P7 RDYRCV# L14 VCCPLL F14 AD9 B12 HOLD N14 RESET# J14 VSS D4 AD10 B11 HOLDA L1 STEST K14 VSS D5 AD11 C12 LOCK#/ONCE# K2 TCK M14 VSS D6 AD12 B10 NC A1 TDI J12 VSS D7 AD13 A11 NC A4 TDO N7 VSS D8 AD14 B9 NC A14 TMS M12 VSS D9 AD15 A10 NC C1 TRST# M13 VSS D10 AD16 C9 NC C3 VCC5 M8 VSS E4 AD17 B8 NC D1 VCC A3 VSS E5 AD18 A8 NC D2 VCC A5 VSS E6 AD19 C8 NC D3 VCC A7 VSS E7 AD20 B7 NC E1 VCC A9 VSS E8 AD21 C7 NC E2 VCC A12 VSS E9 AD22 A6 NC F1 VCC B1 VSS E10 AD23 B6 NC F2 VCC B5 VSS E11 AD24 C6 NC G1 VCC C10 VSS F4 AD25 C5 NC G2 VCC C11 VSS F5 AD26 C4 NC G12 VCC E3 VSS F6 AD27 B3 NC G14 VCC E12 VSS F7 AD28 A2 NC H12 VCC E13 VSS F8 AD29 B4 NC H14 VCC E14 VSS F9 AD30 B2 NC J13 VCC F3 VSS F10 AD31 C2 NC K12 VCC F12 VSS F11 ADS# P2 NC L12 VCC F13 VSS G4 ALE K1 NC L13 VCC G3 VSS G5 ALE# M7 NC M3 VCC H13 VSS G6 NOTE: Do not connect any external logic to pins marked NC (no connect pins). 32 Datasheet 80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor Table 15. 196-Ball MPBGA Pinout—In Signal Order (Sheet 2 of 2) Signal Pin Signal Pin Signal Pin Signal Pin VSS G7 VSS VSS G8 VSS H11 VSS J4 VSS K7 VSS L11 K8 WIDTH0 P5 VSS G9 VSS J5 VSS K9 WIDTH1 P6 VSS G10 VSS J6 VSS K10 W/R# N1 VSS G11 VSS J7 VSS K11 XINT0# M11 VSS H4 VSS J8 VSS L5 XINT1# N12 VSS H5 VSS J9 VSS L6 XINT2# M10 VSS H6 VSS J10 VSS L7 XINT3# N13 VSS H7 VSS J11 VSS L8 XINT4# N9 VSS H8 VSS K4 VSS L9 XINT5# P12 VSS H9 VSS K5 VSS L10 XINT6# N11 VSS H10 VSS K6 VSS L4 XINT7# P11 NOTE: Do not connect any external logic to pins marked NC (no connect pins). Table 16. 196-Ball MPBGA Pinout—In Pin Order (Sheet 1 of 2) Pin Signal Pin Signal Pin Signal Pin Signal A1 NC C11 VCC F7 VSS J3 BSTAT A2 AD28 C12 AD11 F8 VSS J4 VSS A3 VCC C13 AD6 F9 VSS J5 VSS A4 NC C14 AD2 F10 VSS J6 VSS A5 VCC D1 NC F11 VSS J7 VSS A6 AD22 D2 NC F12 VCC J8 VSS A7 VCC D3 NC F13 VCC J9 VSS A8 AD18 D4 VSS F14 VCCPLL J10 VSS A9 VCC D5 VSS G1 NC J11 VSS A10 AD15 D6 VSS G2 NC J12 TDI A11 AD13 D7 VSS G3 VCC J13 NC A12 VCC D8 VSS G4 VSS J14 RESET# A13 AD8 D9 VSS G5 VSS K1 ALE A14 NC D10 VSS G6 VSS K2 LOCK#/ONCE# B1 VCC D11 AD3 G7 VSS K3 VCC B2 AD30 D12 AD5 G8 VSS K4 VSS B3 AD27 D13 AD0 G9 VSS K5 VSS B4 AD29 D14 AD1 G10 VSS K6 VSS B5 VCC E1 NC G11 VSS K7 VSS B6 AD23 E2 NC G12 NC K8 VSS NOTE: Do not connect any external logic to pins marked NC (no connect pins). Datasheet 33 80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor Table 16. 196-Ball MPBGA Pinout—In Pin Order (Sheet 2 of 2) Pin Signal Pin Signal Pin Signal Pin Signal B7 AD20 E3 VCC G13 B8 AD17 E4 VSS G14 CLKIN K9 VSS NC K10 VSS B9 AD14 E5 VSS H1 BE1# K11 VSS B10 AD12 E6 VSS H2 BE2# K12 NC B11 AD10 E7 VSS H3 BE3# K13 VCC B12 AD9 E8 VSS H4 VSS K14 STEST B13 AD7 E9 VSS H5 VSS L1 HOLDA B14 AD4 E10 VSS H6 VSS L2 DEN# C1 NC E11 VSS H7 VSS L3 VCC C2 AD31 E12 VCC H8 VSS L4 VSS C3 NC E13 VCC H9 VSS L5 VSS C4 AD26 E14 VCC H10 VSS L6 VSS C5 AD25 F1 NC H11 VSS L7 VSS C6 AD24 F2 NC H12 NC L8 VSS C7 AD21 F3 VCC H13 VCC L9 VSS C8 AD19 F4 VSS H14 NC L10 VSS C9 AD16 F5 VSS J1 VCC L11 VSS C10 VCC F6 VSS J2 BE0# L12 NC L13 NC M10 XINT2# N7 TDO P4 VCC L14 RDYRCV# M11 XINT0# N8 NC P5 WIDTH0 M1 DT/R# M12 TMS N9 XINT4# P6 WIDTH1 M2 VCC M13 TRST# N10 NC# P7 FAIL# M3 NC M14 TCK N11 XINT6# P8 NC M4 NC N1 W/R# N12 XINT1# P9 NC M5 A3 N2 D/C# N13 XINT3# P10 NMI# M6 VCC N3 NC N14 HOLD P11 XINT7# M7 ALE# N4 NC P1 NC P12 XINT5# M8 VCC5 N5 A2 P2 ADS# P13 VCC M9 VCC N6 VCC P3 BLAST# P14 NC NOTE: Do not connect any external logic to pins marked NC (no connect pins). 34 Datasheet 80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor 4.0 Electrical Specifications 4.1 Absolute Maximum Ratings This document contains information on products in the production phase of development. The specifications within this datasheet are subject to change without prior notice. Verify with your local Intel sales office or the world wide web to ensure that you have the latest datasheet and device specification update before finalizing a design. Warning: Stressing the device beyond the Absolute Maximum Ratings may cause permanent damage. These are stress ratings only. Table 17 presents the absolute maximum ratings. Table 17. Absolute Maximum Ratings Parameter 4.2 Warning: Maximum Rating o Storage Temperature –65 C to +150o C Case Temperature Under Bias –65o C to +110o C Supply Voltage wrt. VSS –0.5 V to + 4.6 V Voltage on VCC5 wrt. VSS –0.5 V to + 6.5 V Voltage on Other Pins wrt. VSS –0.5 V to VCC + 0.5 V Operating Conditions Operation beyond the “Operating Conditions” is not recommended and extended exposure beyond the “Operating Conditions” may affect device reliability. Table 18 presents the operating conditions for the 80960Jx 3.3 V processors. Table 18. 80960Jx Operating Conditions Symbol Min Max Units Notes Supply Voltage 3.15 Input Protection Bias 3.15 Input Clock Frequency 80960JT-100 15 80960JC-66 15 80960JC-50 15 80960JS-33 15 80960JS-25 15 fCLKIN 80960JD-66 12 80960JD-50 12 80960JD-40 12 80960JD-33 12 80960JA/JF-33 12 80960JA/JF-25 12 80960JA-16 12 Operating Case Temperature PGA, MPBGA, and PQFP 0 TC Extended temp PQFP and MPBGA -40 † See Section 4.4, “VCC5 Pin Requirements (VDIFF)” on page 36. 3.45 5.5 V V (†) VCC VCC5 Datasheet Parameter 33.3 33.3 25 33 25 33.3 25 20 16.67 33.3 25 16 100 100 MHz °C 35 80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor 4.3 Connection Recommendations For clean on-chip power distribution, VCC and VSS pins separately feed the device’s functional units. Power and ground connections must be made to all 80960Jx power and ground pins. On the circuit board, every VCC pin should connect to a power plane and every VSS pin should connect to a ground plane. Place liberal decoupling capacitance near the 80960Jx, since the processor may cause transient power surges. The 80960JS/JC/JT processors are produced on Intel’s advanced CMOS process. Proper bulk decoupling must be used to prevent device damage during initial power up and during transitions from low power mode to normal processor operation. Power supply behavior during these transitions may cause the power supply to exceed the maximum VCC specification and may cause device damage. Pay special attention to the Test Reset (TRST#) pin. It is essential that the JTAG Boundary Scan Test Access Port (TAP) controller initializes to a known state whether it may be used or not. When the JTAG Boundary Scan function may be used, connect a pull-down resistor between the TRST# pin and VSS. When the JTAG Boundary Scan function may not be used (even for board-level testing), connect the TRST# pin to VSS. Do not connect the TDI, TDO, and TCK pins when the TAP Controller may not be used. Note: 4.4 Pins identified as NC must not be connected in the system. VCC5 Pin Requirements (VDIFF) In 3.3 V only systems where the 80960Jx input pins are driven from 3.3 V logic, connect the VCC5 pin directly to the 3.3 V VCC plane. In mixed voltage systems where the processor is powered by 3.3 V and interfaces with 5 V components, VCC5 must be connected to 5 V. This allows proper 5 V tolerant buffer operation, and prevents damage to the input pins. The voltage differential between the 80960Jx VCC5 pin and its 3.3 V VCC pins must not exceed 2.25 V. When this requirement is not met, current flow through the pin may exceed the value at which the processor is damaged. Instances when the voltage may exceed 2.25 V is during power up or power down, where one source reaches its level faster than the other, briefly causing an excess voltage differential. Another instance is during steady-state operation, where the differential voltage of the regulator (provided a regulator is used) cannot be maintained within 2.25 V. Two methods are possible to prevent this from happening: • Use a regulator that is designed to prevent the voltage differential from exceeding 2.25 V. or: • As shown in Figure 8, place a 100 Ω resistor in series with the VCC5 pin to limit the current through VCC5. Figure 8. VCC5 Current-Limiting Resistor VCC5 Pin +5 V (±0.25 V) 100 Ω (±5%, 0.5 W) 36 Datasheet 80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor When the regulator cannot prevent the 2.25 V differential, the addition of the resistor is a simple and reliable method for limiting current. The resistor may also prevent damage in the case of a power failure, where the 5 V supply remains on and the 3.3 V supply goes to zero. Table 19. VDIFF Parameters 4.5 Symbol Parameter VDIFF VCC5-VCC Difference Min Max Units Notes 2.25 V VCC5 input should not exceed VCC by more than 2.25 V during power-up and power-down, or during steadystate operation. VCCPLL Pin Requirements To reduce clock skew on the 80960Jx processor, the VCCPLL pin for the Phase Lock Loop (PLL) circuit is isolated on the pinout. The lowpass filter, as shown in Figure 9, reduces noise induced clock jitter and its effects on timing relationships in system designs. The 4.7 µF capacitor must be low ESR solid tantalum; the 0.01 µF capacitor must be of the type X7R and the node connecting VCCPLL must be as short as possible. When the voltage on the VCCPLL power supply pin exceeds the VCC pin voltage by 0.5 V at any time, including the power up and power down sequences, excessive currents may permanently damage on-chip electrostatic discharge (ESD) protection diodes. The damage may accumulate over multiple episodes. In actual applications, this problem occurs only when the VCCPLL and VCC pins are driven by separate power supplies or voltage regulators. Applications that use one power supply for VCCPLL and VCC are not typically at risk. Verify that your application does not allow the VCCPLL voltage to exceed VCC by 0.5 V. The VCCPLL low-pass filter recommendation does not promote this problem. Figure 9. VCCPLL Lowpass Filter 100 Ω (80960JA/JF/JD) 10 Ω (80960JS/JC/JT) VCC (Board Plane) + 4.7 µF 0.01 µF VCCPLL (On 80960Jx) F_CA078A Datasheet 37 80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor 4.6 D.C. Specifications Table 20. 80960Jx D.C. Characteristics Symbol Parameter Min Typ Max Units Notes VIL Input Low Voltage -0.3 0.8 V 2.0 VCC5 + 0.3 V 0.4 V IOL = 3 mA V IOH = -1 mA V (1,2) pF fCLKIN = fMIN (2) pF fCLKIN = fMIN (2) pF fCLKIN = fMIN (2) VIH Input High Voltage VOL Output Low Voltage VOH Output High Voltage VOLP Output Ground Bounce 2.4 <0.8 Input Capacitance PGA PQFP MPBGA 15 15 15 COUT I/O or Output Capacitance PGA PQFP MPBGA 15 15 15 CCLK CLKIN Capacitance PGA PQFP MPBGA 15 15 15 CIN NOTES: 1. Typical is measured with VCC = 3.3 V and temperature = 25°C. 2. Not tested. 38 Datasheet 80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor Table 21. 80960Jx ICC Characteristics (Sheet 1 of 3) Symbol ILI1 Input Leakage Current for each pin except TCK, TDI, TRST# and TMS ILI2 Input Leakage Current for TCK, TDI, TRST# and TMS 80960 JA/JF/JD 80960 JS/JC/JT ILO Output Leakage Current Rpu Internal Pull-UP Resistance for ONCE#, TMS, TDI and TRST# ICC Active (Power Supply) ICC Active (Thermal) Datasheet Parameter Typ -140 -250 20 Max Units Notes ±1 µA 0 ≤ VIN ≤ VCC -250 -300 µA VIN = 0.45V (1) ±1 µA 0.4 ≤ VOUT ≤ VCC 30 kΩ 80960JT-100 505 80960JC-66 80960JC-50 360 280 80960JS-33 80960JS-25 240 185 80960JD-66 80960JD-50 80960JD-40 80960JD-33 580 447 367 310 80960JA/JF-33 80960JA/JF-25 80960JA-16 320 241 154 80960JT-100 480 80960JC-66 80960JC-50 345 270 80960JS-33 80960JS-25 221 170 80960JD-66 80960JD-50 80960JD-40 80960JD-33 510 390 320 260 80960JA/JF-33 80960JA/JF-25 80960JA-16 271 215 152 mA (2,3) mA (2,4) 39 80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor Table 21. 80960Jx ICC Characteristics (Sheet 2 of 3) Symbol Parameter Typ Max Units Notes mA (5) Reset mode ICC Test (Power modes) 80960JT-100 380 80960JC-66 80960JC-50 275 210 80960JS-33 80960JS-25 240 182 80960JD-66 80960JD-50 80960JD-40 80960JD-33 475 425 345 300 80960JA/JF-33 80960JA/JF-25 80960JA-16 250 200 150 Halt mode 80960JT-100 52 80960JC-66 80960JC-50 45 34 80960JS-33 80960JS-25 35 30 80960JD-66 80960JD-50 80960JD-40 80960JD-33 50 40 34 29 80960JA/JF-33 80960JA/JF-25 80960JA-16 31 26 21 ONCE mode 40 10 Datasheet 80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor Table 21. 80960Jx ICC Characteristics (Sheet 3 of 3) Symbol Parameter Typ Max Units Notes 200 µA (6) 80960JT-100 80960JC-66 80960JC-50 80960JS-33 80960JS-25 ICC5 Current on the VCC5 Pin 80960JD-66 80960JD-50 80960JD-40 80960JD-33 80960JA/JF-33 80960JA/JF-25 80960JA-16 NOTES: 1. These pins have internal pullup devices. Typical leakage current is not tested. 2. Measured with device operating and outputs loaded to the test condition in Figure 10, “A.C. Test Load” on page 45. 3. ICC Active (Power Supply) value is provided for selecting your system’s power supply. It is measured using one of the worst case instruction mixes with VCC = 3.45 V. This parameter is characterized but not tested. 4. ICC Active (Thermal) value is provided for your system’s thermal management. Typical ICC is measured with VCC =3.3 V and temperature = 25° C. This parameter is characterized but not tested. 5. ICC Test (Power modes) refers to the ICC values that are tested when the 80960JD is in Reset mode, Halt mode or ONCE mode with VCC = 3.45 V. 6. ICC5 is tested at VCC = 3.3 V, VCC5 = 5.25 V. Datasheet 41 80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor 4.7 A.C. Specifications The 80960Jx A.C. timings are based upon device characterization. Table 22. 80960Jx A.C. Characteristics (Sheet 1 of 3) Symbol Parameter Min Max Unit Notes Input Clock Timings CLKIN Frequency TF 80960JT-100 15 33.3 80960JC-66 80960JC-50 15 15 33.3 25 80960JS-33 80960JS-25 15 15 33.3 25 80960JD-66 80960JD-50 80960JD-40 80960JD-33 12 12 12 12 33.3 25 20 16.67 80960JA/JF-33 80960JA/JF-25 80960JA-16 12 12 12 33.3 25 16 80960JT-100 30 66.7 80960JC-66 80960JC-50 30 40 66.7 66.7 80960JS-33 80960JS-25 30 40 66.7 66.7 80960JD-66 80960JD-50 80960JD-40 80960JD-33 30 40 50 60 83.3 83.3 83.3 83.3 30 40 62.5 83.3 83.3 83.3 MHz CLKIN Period TC 80960JA/JF-33 80960JA/JF-25 80960JA-16 ± 250 TCS CLKIN Period Stability TCH CLKIN High Time 8 8 ns ps (1, 2) ns Measured at 1.5 V (1) ns Measured at 1.5 V (1) TCL CLKIN Low Time TCR CLKIN Rise Time 4 ns 0.8 V to 2.0 V (1) TCF CLKIN Fall Time 4 ns 2.0 V to 0.8 V (1) NOTE: See Table 23 on page 45 for note definitions for this table. 42 Datasheet 80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor Table 22. 80960Jx A.C. Characteristics (Sheet 2 of 3) Symbol Parameter Min Max Unit Notes ns (2, 11) Synchronous Output Timings Output Valid Delay, Except ALE/ALE# Inactive and DT/R# for 3.3 V input signals Same as above, but for 5.5 V input signals TOV1 2.5 13.5 2.5 16.5 Extended Temp MPBGA and PQFP (JS/JC/JT only): Output Valid Delay, Except ALE/ALE# Inactive and DT/R# for 3.3 V input signals 1.75 13.5 1.75 16.5 0.5TC + 7 0.5TC + 7 0.5TC + 4 0.5TC + 9 0.5TC + 9 0.5TC + 18 2.5 13.5 Same as above, but for 5.5 V input signals TOV2 Output Valid Delay, DT/R# 80960JS/JC/JT 80960JD 80960JA/JF TOF Output Float Delay ns ns (4) 6 6 9 ns (5) Input Hold from CLKIN — AD[31:0], NMI#, XINT[7:0]# 80960JS/JC/JT 80960JD 80960JA/JF 2.0 1.5 1.0 ns (5) TIS2 Input Setup to CLKIN — RDYRCV# and HOLD 80960JS/JC/JT 80960JD 80960JA/JF 6.5 6.5 10.0 ns (6) TIH2 Input Hold from CLKIN — RDYRCV# and HOLD 1 ns (6) TIS3 Input Setup to CLKIN — RESET# 80960JS/JC/JT 80960JD 80960JA/JF 7 7 8 ns (7) TIH3 Input Hold from CLKIN — RESET# 80960JS/JC/JT 80960JD 80960JA/JF 2 2 1 ns (7) TIS4 Input Setup to RESET# — ONCE#, STEST 80960JS/JC/JT 80960JD 80960JA/JF ns (8) Synchronous Input Timings TIS1 TIH1 Input Setup to CLKIN — AD[31:0], NMI#, XINT[7:0]# 80960JS/JC/JT 80960JD 80960JA/JF 7 7 8 NOTE: See Table 23 on page 45 for note definitions for this table. Datasheet 43 80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor Table 22. 80960Jx A.C. Characteristics (Sheet 3 of 3) Symbol Parameter Min TIH4 Input Hold from RESET# — ONCE#, STEST 80960JS/JC/JT 80960JD 80960JA/JF TLX Address Valid to ALE/ALE# Inactive For 3.3 V Data Input Signals For 5.0 V Data Input Signals Max Unit Notes ns (8) 0.5TC - 5 0.5TC - 8 ns (9) 0.5TC - 7 ns Equal Loading (9) 2 2 1 Relative Output Timings TLXL ALE/ALE# Width TLXA Address Hold from ALE/ALE# Inactive TDXD DT/R# Valid to DEN# Active Boundary Scan Test Signal Timings TBSF TCK Frequency TBSCH TCK High Time 15 15 0.5TF MHz ns Measured at 1.5 V (1) TBSCL TCK Low Time ns Measured at 1.5 V (1) TBSCR TCK Rise Time 5 ns 0.8 V to 2.0 V (1) TBSCF TCK Fall Time 5 ns 2.0 V to 0.8 V (1) TBSIS1 Input Setup to TCK — TDI, TMS 4 ns TBSIH1 Input Hold from TCK — TDI, TMS 6 TBSOV1 TDO Valid Delay 3 30 ns ns (1, 10) TBSOF1 TDO Float Delay 3 30 ns (1, 10) TBSOV2 All Outputs (Non-Test) Valid Delay 3 30 ns (1, 10) TBSOF2 All Outputs (Non-Test) Float Delay 3 30 ns (1, 10) TBSIS2 Input Setup to TCK — All Inputs (Non-Test) 4 ns TBSIH2 Input Hold from TCK — All Inputs (Non-Test) 6 ns NOTE: See Table 23 on page 45 for note definitions for this table. 44 Datasheet 80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor Table 23. Note Definitions for Table 22, 80960Jx AC Characteristics NOTES: 1. Not tested. 2. To ensure a 1:1 relationship between the amplitude of the input jitter and the internal clock, the jitter frequency spectrum should not have any power peaking between 500 KHz and 1/3 of the CLKIN frequency. 3. Inactive ALE/ALE# refers to the falling edge of ALE and the rising edge of ALE#. For inactive ALE/ALE# timings, refer to Relative Output Timings in this table. 4. A float condition occurs when the output current becomes less than IOL. Float delay is not tested, but is designed to be no longer than the valid delay. 5. AD[31:0] are synchronous inputs. Setup and hold times must be met for proper processor operation. NMI# and XINT[7:0]# may be synchronous or asynchronous. Meeting setup and hold time guarantees recognition at a particular clock edge. For asynchronous operation, NMI# and XINT[7:0]# must be asserted for a minimum of two CLKIN periods to ensure recognition. 6. RDYRCV# and HOLD are synchronous inputs. Setup and hold times must be met for proper processor operation. 7. RESET# may be synchronous or asynchronous. Meeting setup and hold time guarantees recognition at a particular clock edge. 8. ONCE# and STEST# must be stable at the rising edge of RESET# for proper operation. 9. Guaranteed by design. May not be 100% tested. 10.Relative to falling edge of TCK. 11. Worst-case TOV condition occurs on I/O pins when pins transition from a floating high input to driving a low output state. The Address/Data Bus pins encounter this condition between the last access of a read, and the address cycle of a following write. 5 V signals take 3 ns longer to discharge than 3.3 V signals at 50 pF loads. 4.7.1 A.C. Test Conditions and Derating Curves The A.C. Specifications in Section 4.7, “A.C. Specifications” are tested with the 50 pF load indicated in Figure 10. Figure 10. A.C. Test Load Output Pin CL CL = 50 pF for all signals Refer to the following sections for the specified derating curves: • Section 4.7.1.1, “Output Delay or Hold vs. Load Capacitance” on page 46 • Section 4.7.1.2, “TLX vs. AD Bus Load Capacitance” on page 47 Datasheet 45 80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor 4.7.1.1 Output Delay or Hold vs. Load Capacitance Figure 11. Output Delay or Hold vs. Load Capacitance–80960JS/JC/JT (3.3 V Signals) AC Timings vs. Load Capacitance (3.3 V Signals) nom + 10 Tov (ns) nom + 8 nom + 6 nom + 4 nom + 2 nom + 0 50 100 150 AD Bus Capacitive Load (pF) Figure 12. Output Delay or Hold vs. Load Capacitance–80960JS/JC/JT (5 V Signals) TOV (ns) AC Timings vs. Load Capacitance (5 V Signals) nom + 16 nom + 14 nom + 12 nom + 10 nom + 8 nom + 6 nom + 4 nom + 2 nom + 0 50 100 150 AD Bus Capacitive Load (pF) 46 Datasheet 80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor Figure 13. Output Delay or Hold vs. Load Capacitance–80960JA/JF/JD AC Timings vs. Load Capacitance nom + 8 nom + 7 Tov (ns) nom + 6 nom + 5 nom + 4 nom + 3 nom + 2 nom + 1 nom + 0 50 100 AD Bus Capacitive Load (pF) Rise and Fall times are identical. 4.7.1.2 150 TLX vs. AD Bus Load Capacitance Figure 14. TLX vs. AD Bus Load Capacitance–80960JS/JC/JT (3.3 V Signals) AC Timings vs. Load Capacitance (3.3 V Signals) nom - 10 Tlx (ns) nom - 8 nom - 6 nom - 4 nom - 2 nom - 0 50 100 150 AD Bus Capacitive Load (pF) Datasheet 47 80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor Note: The TLX Derating curve applies only when an imbalance in the capacitive load occurs between the AD bus and ALE. The TLX derating is based on a 50 pF load on ALE. The derating applies to ALE and ALE#. Figure 15. TLX vs. AD Bus Load Capacitance–80960JS/JC/JT (5 V Signals) AC Timings vs. Load Capacitance (5 V Signals) nom - 20 Tlx (ns) nom - 15 nom - 10 nom - 5 nom - 0 50 100 150 AD Bus Capacitive Load (pF) Note: The TLX Derating curve applies only when an imbalance in the capacitive load occurs between the AD bus and ALE. The TLX derating is based on a 50 pF load on ALE. The derating applies to ALE and ALE#. Figure 16. TLX vs. AD Bus Load Capacitance–80960JA/JF/JD AC Timings vs. Load Capacitance nom - 8 nom - 7 Tlx (ns) nom - 6 nom - 5 nom - 4 nom - 3 nom - 2 nom - 1 nom - 0 50 100 150 AD Bus Capacitive Load (pF) Rise and Fall times are identical. 48 Datasheet 80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor Note: 4.7.1.3 The TLX Derating curve applies only when an imbalance in the capacitive load occurs between the AD bus and ALE. The TLX derating is based on a 50 pF load on ALE. The derating applies to ALE and ALE#. ICC Active vs. Frequency Figure 17. ICC Active (Power Supply) vs. Frequency–80960JA/JF Icc Active (P ow e r S upply) vs Fre q ue ncy Icc Active (Power Supply) (mA) 350 300 250 200 150 100 50 0 12 15 18 21 24 27 30 33 C L KIN Fr e q u e n cy M Hz Figure 18. 80960JA/JF ICC Active (Thermal) vs. Frequency Icc Active (Therm al) vs. Fre quency Icc Active (Thermal) (mA) 300 250 200 150 100 50 0 12 15 18 21 24 27 30 33 CLKIN Fre que ncy M Hz Datasheet 49 80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor Figure 19. 80960JD ICC Active (Power Supply) vs. Frequency Icc Active (P ow e r S upply) vs. Fre que ncy Icc Active (Power Supply) (mA) 600 500 400 300 200 100 0 12 15 18 21 24 27 30 33 C L KIN Fr e q u e n cy (M Hz ) Figure 20. 80960JD ICC Active (Thermal) vs. Frequency Icc Active (The rm a l) vs. Fre que ncy Icc Active (Thermal) (mA) 600 500 400 300 200 100 0 12 15 18 21 24 27 30 33 CL KIN Fr e q ue n cy (M Hz ) 50 Datasheet 80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor Figure 21. 80960JC ICC Active (Power Supply) vs. Frequency Icc Active (Power Supply) vs Frequency 80960 JC Icc Active (Power Supply) (mA) 400 350 300 250 200 150 100 50 0 15 18 21 24 27 30 33 CLKIN Frequency MHz Figure 22. 80960JC ICC Active (Thermal) vs. Frequency Icc Active (Thermal) (mA) Icc Active (Thermal) vs Frequency 80960 JC 400 350 300 250 200 150 100 50 0 15 18 21 24 27 30 33 CLKIN Frequency MHz Datasheet 51 80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor Figure 23. 80960JS ICC Active (Power Supply) vs. Frequency Icc Active (Power Supply) (mA) Icc Active (Power Supply) vs Frequency 80960 JS 300 250 200 150 100 50 0 15 18 21 24 27 30 33 CLKIN Frequency MHz Figure 24. 80960JS ICC Active (Thermal) vs. Frequency Icc Active (Thermal) (mA) Icc Active (Thermal) vs. Frequency 80960 JS 250 200 150 100 50 0 15 18 21 24 27 30 33 CLKIN Frequency MHz 52 Datasheet 80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor 4.7.2 A.C. Timing Waveforms Figure 25. CLKIN Waveform TCR TCF 2.0 V 1. 5V 0.8 V TCH TCL TC Figure 26. TOV1 Output Delay Waveform CLKIN 1.5 V 1.5 V TOV1 AD[31:0], ALE (active), ALE# (active), ADS#, A[3:2], BE[3:0]#, WIDTH/HLTD[1:0], D/C#, W/R#, DEN#, BLAST#, LOCK#, HOLDA, BSTAT, FAIL# Datasheet 1.5 V 53 80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor Figure 27. TOF Output Float Waveform 1.5 V CLKIN 1.5 V TOF AD[31:0], ALE, ALE# ADS#, A[3:2], BE[3:0]#, WIDTH/HLTD[1:0], D/C#, W/R#, DT/R#, DEN#, BLAST#, LOCK# Figure 28. TIS1 and TIH1 Input Setup and Hold Waveform CLKIN 1.5 V 1.5 V 1.5 V TIH1 TIS1 AD[31:0] NMI# XINT[7:0]# Valid 1.5 V Figure 29. TIS2 and TIH2 Input Setup and Hold Waveform CLKIN 1.5 V 1.5 V 1.5 V TIH2 TIS2 HOLD, RDYRCV# 54 1.5 V Valid 1.5 V Datasheet 80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor Figure 30. TIS3 and TIH3 Input Setup and Hold Waveform CLKIN 1.5 V 1.5 V TIH3 TIS3 RESET# Figure 31. TIS4 and TIH4 Input Setup and Hold Waveform RESET# TIH4 TIS4 ONCE#, STEST Datasheet Valid 55 80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor Figure 32. TLX, TLXL and TLXA Relative Timings Waveform Ta Tw/Td 1.5 V CLKIN 1.5 V 1.5 V TLXL ALE ALE# 1.5 V Valid 1.5 V TLX AD[31:0] 1.5 V TLXA 1.5 V Valid Figure 33. DT/R# and DEN# Timings Waveform Ta CLKIN Tw/Td 1.5 V 1.5 V 1.5 V TOV2 Valid DT/R# TDXD DEN# TOV1 56 Datasheet 80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor Figure 34. TCK Waveform TBSCR TBSCF 2.0 V 1.5 V 0.8 V TBSCH TBSCL Figure 35. TBSIS1 and TBSIH1 Input Setup and Hold Waveforms TCK 1.5 V 1.5 V TBSIS1 TMS TDI 1.5V 1.5 V TBSIH1 1.5V Valid Figure 36. TBSOV1 and TBSOF1 Output Delay and Output Float Waveform TCK 1.5 V 1.5 V TBSOV1 TDO Datasheet 1.5 V 1.5 V TBSOF1 Valid 57 80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor Figure 37. TBSOV2 and TBSOF2 Output Delay and Output Float Waveform TCK 1.5 V 1.5 V TBSOF2 TBSOV2 Non-Test Outputs 1.5 V Valid 1.5 V Figure 38. TBSIS2 and TBSIH2 Input Setup and Hold Waveform TCK 1.5 V 1.5 V 1.5 V TBSIS2 TBSIH2 Non-Test Inputs 58 1.5 V Valid 1.5 V Datasheet 80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor 5.0 Device Identification 80960Jx processors may be identified electrically, according to device type and stepping (see Figure 39, and Table 25 through Table 30). Table 24 identifies the device type and stepping for all 5 V, 80960Jx processors. Figure 39, and Table 25 through Table 30 identify all 3.3 V to 5 V-tolerant 80960Jx processors. The device ID was enhanced to differentiate between 3.3 V and 5 V supply voltages, and between non-clock-doubled and clock-doubled cores when stepping from the A2 stepping to the C0 stepping. The 32-bit identifier is accessible in several ways: • Upon reset, the identifier is placed into the g0 register. • The identifier may be accessed from supervisor mode at any time by reading the DEVICEID register at address FF008710H. • The IEEE Standard 1149.1 Test Access Port may select the DEVICE ID register through the IDCODE instruction. • The device and stepping letter is also printed on the top side of the product package. Table 24. 80960Jx Device Type and Stepping Reference Datasheet Device and Stepping Version Number Part Number Manufacturer X Complete ID (Hex) 80960JT A0, A1 0000 80960JC A1 0011 0000 1000 0010 1011 0000 0001 001 1 0082B013 0000 1000 0011 0011 0000 0001 001 1 30833013 80960JS A1 0011 0000 1000 0010 0011 0000 0001 001 1 30823013 80960JD C0 0011 0000 1000 0011 0000 0000 0001 001 1 30830013 80960JF C0 0011 0000 1000 0010 0000 0000 0001 001 1 30820013 80960JA C0 0011 0000 1000 0010 0001 0000 0001 001 1 30821013 59 80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor 5.1 80960JS/JC/JT Device Identification Register Figure 39. 80960JS/JC/JT Device Identification Register Fields Part Number Version VCC 0 28 Product Type 0 0 0 1 Gen 0 0 24 0 Model 0 0 0 1 20 16 Manufacturer ID 1 0 1 1 0 12 0 0 0 0 0 0 8 1 0 0 1 4 1 1 0 Table 25. 80960JS/JC/JT Device ID Register Field Definitions Field Value Definition Version See Table 26 Indicates major stepping changes. VCC 0 = 3.3 V device Indicates that a device is 3.3 V. Product Type 000 100 (Indicates i960 CPU) Designates type of product. Generation Type 0001 = J-series Indicates the generation (or series) to which the product belongs. Model D DPCC D = Clock Multiplier (01) Clock-Tripled (P) Product Derivative (0) Jx C = Cache Size (11) 16K I-cache, 4K D-cache Indicates member within a series and specific model information. Manufacturer ID 000 0000 1001 (Indicates Intel) Manufacturer ID assigned by IEEE. Table 26. 80960JS/JC/JT Device ID Model Types Device 80960JT A0, A1 60 Version VCC Product Gen. Model Manufacturer ID ‘1’ 0000 0 000100 0001 01011 00000001001 1 80960JC A1 0000 0 000100 0001 10011 00000001001 1 80960JS A1 0000 0 000100 0001 00011 00000001001 1 Datasheet 80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor 5.2 80960JD Device Identification Register Figure 40. 80960JD Device Identification Register Fields Part Number Version VCC 0 28 Product Type 0 0 0 1 Gen 0 0 24 0 Model 0 0 1 20 1 16 Manufacturer ID 0 0 0 1 0 12 0 0 0 0 0 0 1 8 4 0 0 1 1 1 0 Table 27. 80960JD Device ID Field Definitions Field Value Definition Version See Table 24. Indicates major stepping changes. VCC 0 = 3.3 V device 1 = 5 V device Indicates that a device is 3.3 V. Product Type 00 0100 (Indicates i960 CPU) Designates type of product. Generation Type 0001 = J-series Indicates the generation (or series) to which the product belongs. Model D000C D = Clock Doubled (0) Not Clock-Doubled (1) Clock Doubled C = Cache Size (0) 4K I-cache, 2K D-cache (1) 2K I-cache, 1K D-cache Indicates member within a series and specific model information. Manufacturer ID 000 0000 1001 (Indicates Intel) Manufacturer ID assigned by IEEE. Table 28. 80960JD Device ID Model Types Device 80960JD C0 Datasheet Version VCC Product Gen. Model Manufacturer ID ‘1’ 0011 0 000100 0001 10000 00000001001 1 61 80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor 5.3 80960JA/JF Device Identification Register Figure 41. 80960JA/JF Device Identification Register Fields Part Number Version VCC 0 28 Product Type 0 0 0 1 Gen 0 0 24 0 Model Manufacturer ID 0 0 1 20 0 16 12 0 0 0 0 8 0 0 1 0 0 1 4 1 1 0 Table 29. 80960JA/JF Device ID Field Definitions Field Value Definition Version See Table 30. Indicates major stepping changes. VCC 0 = 3.3 V device 1 = 5 V device Indicates that a device is 3.3 V. Product Type 00 0100 (Indicates i960 CPU) Designates type of product. Generation Type 0001 = J-series Indicates the generation (or series) to which the product belongs. Model 0000C C = Cache Size 0 = 4K I-cache, 2K D-cache 1 = 2K I-cache, 1K D-cache Indicates member within a series and specific model information. Manufacturer ID 000 0000 1001 (Indicates Intel) Manufacturer ID assigned by IEEE. Table 30. 80960JA/JF Device ID Model Types Device 62 Version VCC Product Gen. Model Manufacturer ID ‘1’ 80960JA C0 0011 0 000100 0001 00001 00000001001 1 80960JF C0 0011 0 000100 0001 00000 00000001001 1 Datasheet 80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor 6.0 Thermal Specifications The 80960Jx is specified for operation when TC (case temperature) is within the range of 0° C to 100° C for PGA, MPBGA and PQFP packages. Extended temperature devices are also available in a PQFP package and an MPBGA package with TC = -40° C to 100° C. Case temperature may be measured in any environment to determine whether the 80960Jx is within its specified operating range. The case temperature should be measured at the center of the top surface, opposite the pins. θCA is the thermal resistance from case to ambient. Use the following equation to calculate TA, the maximum ambient temperature to conform to a particular case temperature: TA = TC - P (θCA) Junction temperature (TJ) is commonly used in reliability calculations. TJ may be calculated from θJC (thermal resistance from junction to case) using the following equation: TJ = TC + P (θJC) Similarly, when TA is known, the corresponding case temperature (TC) may be calculated as follows: TC = TA + P (θCA) Compute P by multiplying ICC from Table 21, “80960Jx ICC Characteristics” on page 39 and VCC. See the following tables for θJC and θCA values: Table 31. Thermal Resistance for θCA and θJC Reference Table Package Table PGA package Table 33 on page 64 MPBGA package Table 34 on page 64 and Table 35 on page 65 PQFP package Table 36 on page 65 For high speed operation, the processor’s θJA may be significantly reduced by adding a heatsink and/or by increasing airflow. Refer to the following tables for the maximum ambient temperature (TA) permitted without exceeding TC for the PGA, MPBGA, and PQFP packages. The values are based on typical ICC and VCC of +3.3 V, with a TC of +100° C. Table 32. Maximum Ambient Temperature Reference Table Processor Datasheet Table 80960JT processor Table 37 on page 66 80960JC processor Table 38 on page 66 80960JD processor Table 39 on page 67 80960JS processor Table 40 on page 67 80960JA/JF processor Table 41 on page 68 63 80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor Table 33. 132-Lead PGA Package Thermal Characteristics Thermal Resistance — °C/Watt Airflow — ft./min (m/sec) Parameter 0 (0) 200 (1.01) 400 (2.03) 600 (3.04) 800 (4.06) 1000 (5.08) θJC (Junction-to-Case) 0.7 0.7 0.7 0.7 0.7 0.7 θCA (Case-to-Ambient) (No Heatsink) 25 19 14 12 11 10 θCA (Case-to-Ambient) (Omnidirectional Heatsink) 15 9 6 5 4 4 θCA (Case-to-Ambient) (Unidirectional Heatsink) 16 8 6 5 4 4 800 (4.06) 1000 (5.08) θJA θCA θJC θJ-PIN θJ-CAP NOTES: 1. 2. 3. 4. 5. 6. 7. 8. This table applies to a PGA device plugged into a socket or soldered directly into a board. θJA = θJC + θCA θJ-CAP = 5.6° C/W (approximate) (no heatsink) θJ-PIN = 6.4° C/W (inner pins) (approximate) (no heatsink) θJ-PIN = 6.2° C/W (outer pins) (approximate) (no heatsink) θJ-CAP = 3° C/W (approximate) (with heatsink) θJ-PIN = 3.3° C/W (inner pins) (approximate) (with heatsink) θJ-PIN = 3.3° C/W (outer pins) (approximate) (with heatsink) Table 34. 80960JA/JF/JD 196-Ball MPBGA Package Thermal Characteristics Thermal Resistance — °C/Watt Airflow — ft./min (m/sec) Parameter 0 (0) 200 (1.01) 400 (2.03) 600 (3.04) θJC (Junction-to-Case) 2 2 2 2 2 2 θCA (Case-to-Ambient) (No Heatsink) 30 22 20 19 18 18 θJA θJC θCA NOTES: 1. This table applies to an MPBGA device soldered directly into a board with all VSS connections. 2. θJA = θJC + θCA 64 Datasheet 80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor Table 35. 80960JS/JC/JT 196-Ball MPBGA Package Thermal Characteristics Thermal Resistance — °C/Watt Airflow — ft./min (m/sec) Parameter 0 (0) 200 (1.01) 400 (2.03) 600 (3.04) 800 (4.06) 1000 (5.08) θJC (Junction-to-Case) 2 2 2 2 2 2 θCA (Case-to-Ambient) (No Heatsink) 34 25 23 22 21 20 θJA θCA θJC NOTES: 1. This table applies to an MPBGA device soldered directly into a board with all VSS connections. 2. θJA = θJC + θCA Table 36. 132-Lead PQFP Package Thermal Characteristics Thermal Resistance — °C/Watt Airflow — ft./min (m/sec) Parameter 0 (0) 50 (0.25) 100 (0.50) 200 (1.01) 400 (2.03) 600 (3.04) 800 (4.06) θJC (Junction-to-Case) 4.1 4.3 4.3 4.3 4.3 4.7 4.9 θCA (Case-to-Ambient -No Heatsink) 23 19 18 16 14 11 9 θJA θCA θJC θJB θJL NOTES: 1. This table applies to a PQFP device soldered directly into board. 2. θJA = θJC + θCA 3. θJL = 13° C/W (approx.) 4. θJB = 13.5° C/W (approx.) Datasheet 65 80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor Table 37. Maximum TA at Various Airflows in °C (80960JT) Airflow-ft/min (m/sec) PQFP Package PGA Package MPBGA Package fCLKIN (MHz) 0 (0) 200 (1.01) 400 (2.03) 600 (3.04) 800 (4.06) 1000 (5.07) TA without Heatsink 33 63 74 78 82 86 87 TA without Heatsink 33 60 70 78 81 82 84 TA with Omnidirectional Heatsink1 33 76 86 90 92 94 94 TA with Unidirectional Heatsink2 33 74 87 90 92 94 94 TA without Heatsink 33 46 60 63 65 66 68 NOTES: 1. 0.248 inch high omnidirectional heatsink (AI alloy 6061, 41 mil fin width, 124 mil center-to-center fin spacing). 2. 0.250 inch high unidirectional heatsink (AI alloy 6061, 50 mil fin width, 146 mil center-to-center fin spacing). Table 38. Maximum TA at Various Airflows in °C (80960JC) Airflow-ft/min (m/sec) PQFP Package PGA Package MPBGA Package fCLKIN (MHz) 0 (0) 200 (1.01) 400 (2.03) 600 (3.04) 800 (4.06) 1000 (5.07) TA without Heatsink 33 25 20 16.67 75 79 84 86 82 86 89 90 85 87 90 92 88 90 92 93 90 92 94 95 91 93 94 95 TA without Heatsink 33 25 20 16.67 73 78 83 85 79 83 87 89 85 87 90 92 87 89 92 93 88 90 92 93 89 91 93 94 TA with Omnidirectional Heatsink1 33 25 20 16.67 84 87 90 91 90 92 94 95 93 95 96 96 95 96 97 97 96 96 97 98 96 96 97 98 TA with Unidirectional Heatsink2 33 25 20 16.67 82 86 89 90 91 93 94 95 93 95 96 96 95 96 97 97 96 96 97 98 96 96 97 98 TA without Heatsink 33 25 20 16.67 63 69 76 80 73 78 83 85 75 79 84 86 76 80 85 87 77 81 85 87 78 82 86 88 NOTES: 1. 0.248 inch high omnidirectional heatsink (AI alloy 6061, 41 mil fin width, 124 mil center-to-center fin spacing). 2. 0.250 inch high unidirectional heatsink (AI alloy 6061, 50 mil fin width, 146 mil center-to-center fin spacing). 66 Datasheet 80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor Table 39. Maximum TA at Various Airflows in °C (80960JD) Airflow-ft/min (m/sec) PQFP Package PGA Package MPBGA Package fCLKIN (MHz) 0 (0) 200 (1.01) 400 (2.03) 600 (3.04) 800 (4.06) 1000 (5.07) TA without Heatsink 33 25 20 16.67 61 70 75 79 73 79 82 86 76 82 85 87 81 86 88 90 85 88 90 92 86 90 91 93 TA without Heatsink 33 25 20 16.67 58 68 73 78 68 75 79 83 76 82 85 87 80 84 87 89 81 86 88 90 83 87 89 91 TA with Omnidirectional Heatsink1 33 25 20 16.67 75 81 84 87 85 88 90 92 90 92 93 95 92 94 95 96 93 95 96 96 93 95 96 96 TA with Unidirectional Heatsink2 33 25 20 16.67 73 79 82 86 86 90 91 93 90 92 93 95 92 94 95 96 93 95 96 96 93 96 96 96 25 61 72 74 76 77 77 TA without Heatsink NOTES: 1. 0.248 inch high omnidirectional heatsink (AI alloy 6061, 41 mil fin width, 124 mil center-to-center fin spacing). 2. 0.250 inch high unidirectional heatsink (AI alloy 6061, 50 mil fin width, 146 mil center-to-center fin spacing). Table 40. Maximum TA at Various Airflows in °C (80960JS) Airflow-ft/min (m/sec) PQFP Package PGA Package MPBGA Package fCLKIN (MHz) 0 (0) 200 (1.01) 400 (2.03) 600 (3.04) 800 (4.06) 1000 (5.07) TA without Heatsink 33 25 16.67 84 86 91 89 90 94 90 92 94 92 93 96 94 95 96 94 95 97 TA without Heatsink 33 25 16.67 83 85 90 87 89 92 90 92 94 92 93 95 92 93 96 93 94 96 TA with Omnidirectional Heatsink1 33 25 16.67 90 91 94 94 95 96 96 96 98 97 97 98 97 98 98 97 98 98 TA with Unidirectional Heatsink2 33 25 16.67 89 90 94 94 95 97 96 96 98 97 97 98 97 98 98 97 98 98 TA without Heatsink 33 25 16.67 76 80 86 83 85 90 84 86 91 85 87 91 85 87 92 86 88 92 NOTES: 1. 0.248 inch high omnidirectional heatsink (AI alloy 6061, 41 mil fin width, 124 mil center-to-center fin spacing). 2. 0.250 inch high unidirectional heatsink (AI alloy 6061, 50 mil fin width, 146 mil center-to-center fin spacing). Datasheet 67 80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor Table 41. Maximum TA at Various Airflows in °C (80960JA/JF) Airflow-ft/min (m/sec) PQFP Package fCLKIN (MHz) 0 (0) 200 (1.01) 400 (2.03) 600 (3.04) 800 (4.06) 1000 (5.07) For x80960JA/JF TA without Heatsink 33 25 16 79 84 89 86 89 92 87 90 93 90 92 95 92 94 96 93 94 96 For x80960JA-25 TA without Heatsink 25 84 89 90 92 94 94 TA without Heatsink 33 25 16 78 83 88 83 87 91 87 90 93 89 92 94 90 92 95 91 93 95 33 25 16 87 90 93 92 94 96 95 96 97 96 97 98 96 97 98 96 97 98 33 25 16 86 89 92 93 94 96 95 96 97 96 97 98 96 97 98 96 97 98 33 25 73 79 80 84 82 86 83 87 84 87 84 87 PGA TA with Omnidirectional Package Heatsink1 TA with Unidirectional Heatsink2 MPBGA TA without Heatsink Package NOTES: 1. 0.248 inch high omnidirectional heatsink (AI alloy 6061, 41 mil fin width, 124 mil center-to-center fin spacing). 2. 0.250 inch high unidirectional heatsink (AI alloy 6061, 50 mil fin width, 146 mil center-to-center fin spacing). 3. To address the fact that many of the package prefix variables have changed, all package prefix variables in this document are now indicated with an "x". 6.1 Thermal Management Accessories The following is a list of suggested sources for 80960Jx thermal solutions. This is neither an endorsement or a warranty of the performance of any of the listed products and/or companies. 6.1.1 Heatsinks 1. Thermalloy, Inc. 2021 West Valley View Lane Dallas, TX 75234-8993 (972) 243-4321 2. Wakefield Engineering 60 Audubon Road Wakefield, MA 01880 (617) 245-5900 3. Aavid Thermal Technologies, Inc. One Kool Path Laconia, NH 03247-0400 (603) 528-3400 68 Datasheet 80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor 7.0 Bus Functional Waveforms Figure 42 through Figure 47 illustrate typical 80960Jx bus transactions. Figure 48 depicts the bus arbitration sequence. Figure 49 illustrates the processor reset sequence from the time power is applied to the device. Figure 50 illustrates the processor reset sequence when the processor is in operation. Figure 51 illustrates the processor ONCE# sequence from the time power is applied to the device. Figure 53 and Figure 54 also show accesses on 32-bit buses. Table 44 through Table 46 summarize all possible combinations of bus accesses across 8-, 16-, and 32-bit buses according to data alignment. Figure 42. Non-Burst Read and Write Transactions Without Wait States, 32-Bit Bus Ta Td Tr Ti Ti Ta Td Tr Ti Ti CLKIN AD31:0 D In ADDR Invalid DATA Out ADDR ALE ADS# A3:2 BE3:0# WIDTH1:0 10 10 D/C# W/R# BLAST# DT/R# DEN# RDYRCV# F_JF030A Datasheet 69 80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor Figure 43. Burst Read and Write Transactions Without Wait States, 32-Bit Bus TA TD TD TR TA TD TD TD TD TR CLKIN AD31:0 ADDR D In D In ADDR DATA DATA DATA Out Out Out DATA Out ALE ADS# A3:2 00 or 10 01 or 11 00 01 10 11 BE3:0# WIDTH1:0 10 10 D/C# W/R# BLAST# DT/R# DEN# RDYRCV# 70 Datasheet 80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor Figure 44. Burst Write Transactions With 2,1,1,1 Wait States, 32-Bit Bus TA TW TW TD TW TD TW TD TW TD TR CLKIN AD31:0 ADDR DATA Out DATA Out DATA Out 01 10 DATA Out ALE ADS# A3:2 00 11 BE3:0# WIDTH1:0 10 D/C# W/R# BLAST# DT/R# DEN# RDYRCV# F_JF032A Datasheet 71 80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor Figure 45. Burst Read and Write Transactions Without Wait States, 8-Bit Bus TA TD TD TR TA TD TD TD TD TR CLKIN AD31:0 ADDR D In D In ADDR DATA DATA DATA Out Out Out DATA Out ALE ADS# A3:2 BE1#/A1 BE0#/A0 WIDTH1:0 00,01,10 or 11 00,01,10 or 11 00 or 10 01 or 11 00 00 01 10 11 00 D/C# W/R# BLAST# DT/R# DEN# RDYRCV# F_JF033A 72 Datasheet 80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor Figure 46. Burst Read and Write Transactions With 1, 0 Wait States and Extra Tr State on Read, 16-Bit Bus TA TW TD TD TR TR TA TW TD TD TR CLKIN AD31:0 D In ADDR D In DATA Out ADDR DATA Out ALE ADS# BE1#/A1 00,01,10, or 11 00,01,10, or 11 A3:2 0 1 0 1 BE3#/BHE BE0#/BLE WIDTH1:0 01 01 D/C# W/R# BLAST# DT/R# DEN# RDYRCV# Datasheet F_JF034A 73 80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor Figure 47. Double Word Read Bus Request, Misaligned One Byte From Quad Word Boundary, 32-Bit Bus, Little Endian TA TD TR TA TD TR TA TD TR TA TD TR CLKIN AD31:0 D In A D In A D In A D In A ALE ADS# A3:2 00 00 BE3:0# 1101 0011 WIDTH1:0 D/C# 01 0000 10 1110 10 Valid W/R# BLAST# DT/R# DEN# RDYRCV# 74 Datasheet 80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor Figure 48. HOLD/HOLDA Waveform For Bus Arbitration TH TH TI or TA ~ TI or TR ~ Valid ~ ~ Valid ~ Outputs: AD31:0, ALE, ALE#, ADS#, A3:2, BE3:0#, WIDTH/HLTD1:0, D/C#, W/R#, DT/R#, DEN#, BLAST#, LOCK# ~ ~ CLKIN ~ HOLD (Note) ~ HOLDA NOTE: HOLD is sampled on the rising edge of CLKIN. The processor asserts HOLDA to grant the bus on the same edge in which it recognizes HOLD when the last state was Ti or the last Tr of a bus transaction. Similarly, the processor deasserts HOLDA on the same edge in which it recognizes the deassertion of HOLD. Datasheet 75 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ Valid ~ ~ ~ ~ (Output) ~ ~ (Input) RESET# ~ ~ ~ ~ Valid Output (Note 3) ~ ~ ~ ~ Valid Input (Note 3) ~ ~ ~ ~ ~ ~ STEST Idle (Note 2) ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ HOLDA LOCK#/ ONCE# ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ HOLD (Note 1) ~ ~ ~ ~ AD31:0, A3:2,D/C# ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ FAIL# ~ ~ ALE#, ADS#, BE3:0#, DEN#, BLAST# ALE#,W/R#,DT/R# WIDTH/HLTD1:0 Figure 49. Cold Reset Waveform VCC VCC and CLKIN stable to RESET High, minimum 10,000 CLKIN periods, for PLL stabilization. Built-in self-test (Note 4) First Bus Activity Notes: 1. The processor asserts FAIL# during built-in self-test. When self- test passes, the FAIL# pin is deasserted.The processor also asserts FAIL# during the bus confidence test. When the bus confidence test passes, FAIL# is deasserted and the processor begins user program execution. 2. If the processor fails built-in self-test, it initiates one dummy load bus access. The load address indicates the point of self-test failure. Datasheet 3. Since the bus is idle, hold requests are honored during reset and built-in self-test. 4. When selected, built-in self test requires approximately (in CLKIN periods): 393,000 for 80960JT, 580,012 for the 80960JC, 1,176,025 for the 80960JS, 207,000 for 80960JD, and 414,000 for 80960JA/JF. 80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor 76 CLKIN ~ ~ ~ ~ ~ ~ ~ ~ ALE#, ADS#, BE3:0#, DEN#, BLAST# ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ FAIL# LOCK#/ONCE# ~ ~ ~ ~ ~ ~ ~ ~ HOLDA ~ ~ ~ ~ ~ ~ ~ ~~ ~ ~ ~ ~ ~~ ~ HOLD ~ ~ ~ ~ ~ ~ ~ ~~ ~ ~ ~ AD31:0, A3:2, D/C# ~ ~ ~ ~ Valid STEST ~ ~ Maximum RESET# Low to Reset State 4 CLKIN Cycles ~ ~ ~ ~ ~ ~ RESET# Minimum RESET# Low Time 15 CLKIN Cycles RESET# High to First Bus Activity: (CLKIN cycles) 80960JT - 26 80960JC - 40 80960JS - 60 80960JD - 46 80960JA/JF - 92 77 80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor ALE, W/R#,DT/R#, BSTAT, WIDTH/HLTD1:0 Figure 50. Warm Reset Waveform Datasheet CLKIN ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~ HOLD ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ FAIL# AD31:0, A3:2, D/C# ~ ~ ~ ~ ALE,W/R,# DT/R#, WIDTH/HLTD1:0 ~ ~ ALE#, ADS#, BE3:0#, DEN#, BLAST# ~ ~ VCC ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ STEST (Input) ~ ~ ~ ~ LOCK#/ ONCE# ~ ~ HOLDA RESET# (Note 1) VCC and CLKIN stable to RESET# High, minimum 10,000 CLKIN periods, for PLL stabilization. NOTES: 1. ONCE# mode may be entered prior to the rising edge of RESET#: ONCE# input is not latched until the rising edge of RESET#. Datasheet 2. The ONCE# input may be removed after the processor enters ONCE# Mode. Figure 51. Entering the ONCE State CLKIN 80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor 78 CLKIN may not be allowed to float. It must be driven high or low or continue to run. 80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor 7.1 Basic Bus States The bus has five basic bus states: idle (Ti), address (Ta), wait/data (Tw/Td), recovery (Tr), and hold (Th). During system operation, the processor continuously enters and exits different bus states. Figure 52 shows the five bus states. The bus occupies the idle (Ti) state when no address/data transactions are in progress and when RESET# is asserted. When the processor needs to initiate a bus access, it enters the Ta state to transmit the address. Following a Ta state, the bus enters the Tw/Td state to transmit or receive data on the address/data lines. Assertion of the RDYRCV# input signal indicates completion of each transfer. When data is not ready, the processor may wait as long as necessary for the memory or I/O device to respond. After the data transfer, the bus exits the Tw/Td state and enters the recovery (Tr) state. In the case of a burst transaction, the bus exits the Td state and re-enters the Td/Tw state to transfer the next data word. The processor asserts the BLAST# signal during the last Tw/Td states of an access. Once all data words transfer in a burst access (up to four), the bus enters the Tr state to allow devices on the bus to recover. The processor remains in the Tr state until RDYRCV# is deasserted. When the recovery state completes, the bus enters the Ti state when no new accesses are required. When an access is pending, the bus enters the Ta state to transmit the new address. Datasheet 79 80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor Figure 52. Bus States with Arbitration (READY AND BURST) OR NOT READY Tw/Td Ta RECOVERED AND REQUEST PENDING AND (NO HOLD OR LOCKED) READY AND NO BURST REQUEST PENDING AND (NO HOLD OR LOCKED) NOT RECOVERED REQUEST PENDING AND NO HOLD NO REQUEST AND (NO HOLD OR LOCKED) RECOVERED AND NO REQUEST AND (NO HOLD OR LOCKED) Tr Ti ONCE & RESET DEASSERTION NO REQUEST AND NO HOLD To RESET HOLD AND NOT LOCKED Ti — IDLE STATE Ta — ADDRESS STATE Tw / Td — WAIT/DATA STATE Tr — RECOVERY STATE Th — HOLD STATE To — ONCE STATE 7.2 Th RECOVERED AND HOLD AND NOT LOCKED READY NOT READY BURST NO BURST RECOVERED NOT RECOVERED REQUEST PENDING NO REQUEST HOLD NO HOLD LOCKED NOT LOCKED RESET ONCE HOLD — RDYRCV# ASSERTED — RDYRCV# NOT ASSERTED — BLAST# NOT ASSERTED — BLAST# ASSERTED — RDYRCV# NOT ASSERTED — RDYRCV# ASSERTED — NEW TRANSACTION — NO NEW TRANSACTION — HOLD REQUEST ASSERTED — HOLD REQUEST NOT ASSERTED — ATOMIC EXECUTION (ATADD, ATMOD) IN PROGRESS — NO ATOMIC EXECUTION IN PROGRESS — RESET# ASSERTED — ONCE# ASSERTED Boundary-Scan Register The Boundary-Scan register contains a cell for each pin as well as cells for control of I/O and HIGHZ pins. Table 42 shows the bit order of the 80960Jx processor Boundary-Scan register. All table cells that contain ‘CTL’ select the direction of bidirectional pins or HIGHZ output pins. When a 1 is loaded into the control cell, the associated pin(s) are HIGHZ or selected as input. 80 Datasheet 80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor Table 42. Boundary-Scan Register—Bit Order Bit Signal Input/ Output Bit Signal Input/ Output Bit Signal Input/ Output 0 RDYRCV# (TDI) I 24 DEN# O 48 AD17 I/O 1 HOLD I 25 HOLDA O 49 AD16 I/O 2 XINT0# I 26 ALE O 50 AD15 I/O Enable cell† 51 AD14 I/O 3 XINT1# I 27 LOCK#/ ONCE# cell 4 XINT2# I 28 LOCK#/ ONCE# I/O 52 AD13 I/O 5 XINT3# I 29 BSTAT O 53 AD12 I/O 6 XINT4# I 30 BE0# O 54 AD cells Enable cell† 7 XINT5# I 31 BE1# O 55 AD11 I/O 8 XINT6# I 32 BE2# O 56 AD10 I/O 9 XINT7# I 33 BE3# O 57 AD9 I/O 10 NMI# I 34 AD31 I/O 58 AD8 I/O 11 FAIL# I 35 AD30 I/O 59 AD7 I/O 12 ALE# O 36 AD29 I/O 60 AD6 I/O 13 WIDTH/HLTD1 O 37 AD28 I/O 61 AD5 I/O 14 WIDTH/HLTD0 O 38 AD27 I/O 62 AD4 I/O 15 A2 O 39 AD26 I/O 63 AD3 I/O 16 A3 O 40 AD25 I/O 64 AD2 I/O 17 CONTROL1 Enable cell† 41 AD24 I/O 65 AD1 I/O 18 CONTROL2 Enable cell† 42 AD23 I/O 66 AD0 I/O 19 BLAST# O 43 AD22 I/O 67 CLKIN I 20 D/C# O 44 AD21 I/O 68 RESET# I 21 ADS# O 45 AD20 I/O 69 STEST (TDO) I 22 W/R# O 46 AD19 I/O 23 DT/R# O 47 AD18 I/O † Enable cells are active low. Table 43. Natural Boundaries for Load and Store Accesses Data Width Datasheet Natural Boundary (Bytes) Byte 1 Short Word 2 Word 4 Double Word 8 Triple Word 16 Quad Word 16 81 80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor Table 44. Summary of Byte Load and Store Accesses Address Offset from Natural Boundary (in Bytes) +0 (aligned) Accesses on 8-Bit Bus (WIDTH1:0=00) Byte access Accesses on 16 Bit Bus (WIDTH1:0=01) Byte access Accesses on 32 Bit Bus (WIDTH1:0=10) Byte access Table 45. Summary of Short Word Load and Store Accesses Address Offset from Natural Boundary (in Bytes) 82 Accesses on 8-Bit Bus (WIDTH1:0=00) Accesses on 16 Bit Bus (WIDTH1:0=01) Accesses on 32 Bit Bus (WIDTH1:0=10) +0 (aligned) Burst of 2 bytes Short-word access Short-word access +1 Two byte accesses Two byte accesses Two byte accesses Datasheet 80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor Table 46. Summary of n-Word Load and Store Accesses (n = 1, 2, 3, 4) Address Offset from Natural Boundary in Bytes Accesses on 8-Bit Bus (WIDTH1:0=00) Accesses on 16 Bit Bus (WIDTH1:0=01) Accesses on 32 Bit Bus (WIDTH1:0=10) • Case n=1: burst of 2 short words +0 (aligned) (n =1, 2, 3, 4) • Case n=2: burst of 4 short words • n burst(s) of 4 bytes • Case n=3: burst of 4 short words burst of 2 short words • Burst of n word(s) • Case n=4: 2 bursts of 4 short words +1 (n =1, 2, 3, 4) +5 (n = 2, 3, 4) +9 (n = 3, 4) +13 (n = 3, 4) +2 (n =1, 2, 3, 4) +6 (n = 2, 3, 4) +10 (n = 3, 4) +14 (n = 3, 4) +3 (n =1, 2, 3, 4) +7 (n = 2, 3, 4) +11 (n = 3, 4) +15 (n = 3, 4) +4 (n = 2, 3, 4) +8 (n = 3, 4) +12 (n = 3, 4) Datasheet • Byte access • Burst of 2 bytes • n-1 burst(s) of 4 bytes • Byte access • Burst of 2 bytes • n-1 burst(s) of 4 bytes • Burst of 2 bytes • Byte access • n-1 burst(s) of 4 bytes • Burst of 2 bytes • Byte access • n burst(s) of 4 bytes • Byte access • Byte access • Short-word access • Short-word access • n-1 burst(s) of 2 short words • n-1 word access(es) • Byte access • Byte access • Short-word access • Short-word access • n-1 burst(s) of 2 short words • n-1 word access(es) • Short-word access • Short-word access • • Byte access Byte access • n-1 burst(s) of 2 short words • n-1 word access(es) • Short-word access • Short-word access • Byte access • Byte access • n burst(s) of 2 short words • n word access(es) 83 80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor Figure 53. Summary of Aligned and Unaligned Accesses (32-Bit Bus) 0 4 8 12 16 20 24 Word Offset 0 1 2 3 4 5 6 Byte Offset Short Access (Aligned) Byte, Byte Accesses Short-Word Load/Store Short Access (Aligned) Byte, Byte Accesses Word Access (Aligned) Byte, Short, Byte, Accesses Word Load/Store Short, Short Accesses Byte, Short, Byte Accesses One Double-Word Burst (Aligned) Byte, Short, Word, Byte Accesses Short, Word, Short Accesses Double-Word Load/Store Byte, Word, Short, Byte Accesses Word, Word Accesses One Double-Word Burst (Aligned) 84 Datasheet 80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor Figure 54. Summary of Aligned and Unaligned Accesses (32-Bit Bus) (Continued) 0 4 8 12 16 20 24 1 2 3 4 5 6 Byte Offset Word Offset 0 One Three-Word Burst (Aligned) Byte, Short, Word, Word, Byte Accesses Triple-Word Load/Store Short, Word, Word, Short Accesses Byte, Word, Word, Short, Byte Accesses Word, Word, Word Accesses Word, Word, Word Accesses Word, Word, Word Accesses One Four-Word Burst (Aligned) Byte, Short, Word, Word, Word, Byte Accesses Quad-Word Load/Store Short, Word, Word, Word, Short Accesses Byte, Word, Word, Word, Short, Byte Accesses Word, Word, Word, Word Accesses Word, Word, Word, Word, Accesses Datasheet 85 80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor This page intentionally left blank. 86 Datasheet