NJU72040 Ground Referenced Stereo Headphone Amplifier ■ PACKAGE OUTLINE GENERAL DESCRIPTION The NJU72040 is an audio headphone amplifier . Ground-referenced outputs eliminate output coupling capacitor. The pop noise suppression circuit removes a pop noise at the power-on and power-off. It is suitable for audio headphone amplifer application NJU72040V APPLICATIONS ● Audio applications which have audio headphone interface FEATURES ● Operating Voltage ● Operating Current ● ● ● ● ● +2.7 to +3.6V IDD=10.5mA typ. + at V =3.3V, No load, No Signal Output Coupling Capacitor-less Pop Noise Suppression Circuit Gain Select C-MOS Technology Package Outline SSOP14 BLOCK DIAGRAM V+ inverted phase INL- INRV+ INL+ OUTL 32Ω Headphone Reg Pop Noise Suppression V+ INR+ Pop Noise Suppression V+ Bias GAIN 100kΩ Ver. 1.2E OUTR GND CP CN Regulator inverted phase MUTE 3MΩ 32Ω Headphone V+ V- REF Gain Select –1– NJU72040 PIN CONFIGURATION 1 14 INL- INR- INL+ INR+ OUTL OUTR NJU72040 V+ CP MUTE CN V- GAIN REF 7 No. 1 2 3 4 5 6 7 –2– GND Symbol Function INLLch Inverted Input INL+ Lch Noninverted Input OUTL Lch Output V+ V+ Power Supply CP Flying Capacitor Positive Terminal CN Flying Capacitor Negative Terminal GAIN Gain Select 8 No. 8 9 10 11 12 13 14 Symbol REF VMUTE GND OUTR INR+ INR- Function Reference Voltage Input V- Power Supply MUTE / Pop Noise Suppression Ground Rch Output Rch Inverted Input Rch Noninverted Input NJU72040 ABSOLUTE MAXIMUM RATING (Ta=25°C) PARAMETER SYMBOL Supply Voltage V Power Dissipation RATING + UNIT +4 V (Note1) PD SSOP14 : 550 mW + Maximum Input Voltage VIM V +0.3 V Operating Temperature Range Topr -40 ~ +85 °C Storage Temperature Range Tstg -40 ~ +125 °C (Note1) EIA/JEDEC STANDARD Test board (76.2x114.3x1.6mm, 2layer, FR-4) mounting ■ RECOMMENDED OPERATING CONDITIONS (Ta=25°C unless otherwise specified) PARAMETER SYMBOL TEST CONDITION + Operating Voltage V MIN. TYP. MAX. UNIT 2.7 3.3 3.6 V ELECTRICAL CHARACTERISTICS + (Ta=25°C, V =3.3V, f=1kHz, Vin=0.1Vrms[differential input], Gv=6.4dB, MUTE=OFF, RL=32Ω unless otherwise specified) PARAMETER SYMBOL TEST CONDITION MIN. TYP. MAX. UNIT - 10.5 15.5 mA Operating Current IDD No signal, No load Input Resistance1 Rin1 INL-, INR- 49 61 73 kΩ Input Resistance2 Rin2 INL+, INR+ 103 129 155 kΩ Voltage Gain1 GV1 Gain Terminal=Low 5.4 6.4 7.4 dB Voltage Gain2 GV2 Gain Terminal=High 11.4 12.4 13.4 dB Voltage Gain3 GV3 Gain Terminal=Low, RL=10kΩ 6.6 7.1 7.6 dB Voltage Gain4 GV4 Gain Terminal=High, RL=10kΩ 12.6 13.1 13.6 dB - 80 - mW - 55 - mW THD=3%, RL=32Ω Input=Lch or Rch THD=3%, RL =32Ω Input=Lch and Rch Maximum Output Power1 POMAX1 Maximum Output Power2 POMAX2 Maximum Output Voltage Level VOMAX THD=1%, RL=10kΩ - 2.2 - Vrms Mute Level VMUTE Rg=0Ω , Mute=ON - -90 -80 dB VNI Rg=0Ω , BW:400Hz-22kHz - -100 -95 dBV Total Harmonic Distortion1 THD1 BW:400Hz-22kHz, RL=32Ω - 0.08 0.3 % Total Harmonic Distortion2 THD2 BW:400Hz-22kHz, RL=10kΩ - 0.007 0.05 % Equivalent Input Noise Voltage Channel Separation1 CS1 Rg=600Ω , (*1) 65 75 - dB Channel Separation2 CS2 Rg=600Ω , f=10kHz, (*1) 55 65 - dB Output Offset Voltage VOS Rg=0Ω , Gv=12.4Db, No load - 1 5 mV (*1)OUTL(measured terminal): 20log(OUTR/OUTL) , OUTR(measured terminal): 20log(OUTL/OUTR) CONTROL CHARACTERISTICS + (Ta=25°C, V =3.3V, Gv=6.4dB, MUTE=OFF, RL=32Ω unless otherwise specified) PARAMETER Mute terminal High Mute terminal Low Gain terminal High Gain terminal Low SYMBOL MuteH MuteL GainH GainL TEST CONDITION Mute=OFF Mute=ON Gv=12.4dB Gv=6.4dB MIN. 0.8 V + 0 0.8 V 0 TYP. - + - MAX. + V UNIT V + 0.2 V + V V V + 0.2 V V –3– NJU72040 TEST CIRCUIT (IDD) V+ Regulator INL- INR- C1=1uF C10=1uF INL+ INR+ C2=1uF C8=1uF OUTL OUTR Pop Noise Suppression V+ A Pop Noise Suppression V+ GND CP (*2) Negative Voltage Regulator C4=1uF CN Bias 3MΩ MUTE (*2) V- C6=10uF GAIN 100kΩ REF Gain Select (*2): Monolithic Ceramic Capacitors TEST CIRCUIT (GV1, GV2, GV3, GV4, POMAX1, VOMAX) V+ inverted phase Regulator INL- INR- C1=1uF C10=1uF INL+ INR+ C2=1uF Gv1,2,POMAX1 RL=32Ω Gv3,4,VOMAX RL=10kΩ C8=1uF OUTL OUTR Pop Noise Suppression V Pop Noise Suppression V+ GND Gv1,2,POMAX1 RL=32Ω Gv3,4,VOMAX RL=10kΩ V+ (*2) CP C4=1uF CN Negative Voltage Regulator Bias 3MΩ MUTE V- (*2) C6=10uF GAIN 100kΩ (*2): Monolithic Ceramic Capacitors –4– REF Gain Select NJU72040 TEST CIRCUIT (POMAX2) V+ inverted phase Regulator INL- C1=1uF C10=1uF INL+ INR+ C2=1uF C8=1uF OUTL RL=32Ω OUTR Pop Noise Suppression V inverted phase INR- Pop Noise Suppression V+ RL=32Ω GND V+ CP (*2) Negative Voltage Regulator C4=1uF CN Bias MUTE 3MΩ (*2) V- C6=10uF GAIN 100kΩ REF Gain Select (*2): Monolithic Ceramic Capacitors TEST CIRCUIT (VMUTE) V+ inverted phase Regulator INR- INL- C1=1uF C10=1uF INR+ INL+ C2=1uF C8=1uF OUTR OUTL RL=32Ω Pop Noise Suppression V Pop Noise Suppression GND V+ (*2) CP C4=1uF CN RL=32Ω Negative Voltage Regulator Bias 3MΩ MUTE V- (*2) C6=10uF GAIN 100kΩ REF Gain Select (*2): Monolithic Ceramic Capacitors –5– NJU72040 TEST CIRCUIT (VNI) VNI=(measurement)-Gv1 V+ Regulator INL- INR- C1=1uF C10=1uF INL+ INR+ C2=1uF C8=1uF OUTL RL=32Ω OUTR Pop Noise Suppression V Pop Noise Suppression V+ GND CP (*2) RL=32Ω V Negative Voltage Regulator C4=1uF CN Bias 3MΩ MUTE V+ (*2) V- C6=10uF GAIN 100kΩ REF Gain Select (*2): Monolithic Ceramic Capacitors TEST CIRCUIT (THD1, THD2) V+ inverted phase Regulator INR- INL- C1=1uF INR+ INL+ Ex) AudioPrecision aux-0025 C2=1uF C8=1uF OUTR OUTL Filter V C10=1uF Pop Noise Suppression THD1 RL=32Ω THD2 RL=10kΩ Pop Noise Suppression GND V+ V+ (*2) CP C4=1uF CN Negative Voltage Regulator Bias 3MΩ MUTE V- THD1 RL=32Ω THD2 RL=10kΩ (*2) C6=10uF GAIN 100kΩ REF Gain Select (*2): Monolithic Ceramic Capacitors (*3): Connect a low-pass filter circuit with the corner frequency of more than 20kHz in front of an analyzer for rejecting the switching noise generated from NJU72040. Otherwise, the characteristic result may change because of the switching noise. –6– NJU72040 TEST CIRCUIT (CS1, CS2) OUTL (measured terminal) : CS1=CS2=20log(OUTR/OUTL) OUTR (measured terminal) : CS1=CS2=20log(OUTL/OUTR) V+ inverted phase Regulator C1=1uF C10=1uF Rg=600Ω INR+ INL+ C2=1uF C8=1uF OUTR OUTL Pop Noise Suppression RL=32Ω Rg=600Ω INR- INL- Pop Noise Suppression RL=32Ω V GND V+ CP Negative Voltage Regulator C4=1uF CN Bias 3MΩ MUTE V+ VC6=10uF GAIN 100kΩ REF Gain Select (*2): Monolithic Ceramic Capacitors TEST CIRCUIT (VOS) V+ Regulator INR- INLC1=1uF C10=1uF INR+ INL+ C2=1uF C8=1uF OUTR OUTL Pop Noise Suppression V Pop Noise Suppression CP C4=1uF CN V GND V+ Negative Voltage Regulator Bias 3MΩ MUTE V+ VC6=10uF GAIN 100kΩ REF Gain Select (*2): Monolithic Ceramic Capacitors –7– NJU72040 APPLICATION CIRCUIT (Single-end input) V+ Regulator INR- INLC1=1uF C10=1uF INR+ INL+ C2=1uF C8=1uF OUTR OUTL 32Ω Headphone Pop Noise Suppression V+ Pop Noise Suppression 32Ω Headphone GND V+ V+ CP Negative Voltage Regulator C4=1uF CN Bias 3MΩ MUTE R2=100kΩ C7=1uF V- V+ C6=10uF GAIN 100kΩ REF Gain Select (Differential input) V+ inverted phase Regulator INL- C1=1uF C10=1uF INL+ INR+ C2=1uF C8=1uF OUTL OUTR Pop Noise Suppression 32Ω Headphone V+ Pop Noise Suppression V+ C4=1uF CN 32Ω Headphone GND CP Negative Voltage Regulator Bias 3MΩ MUTE R2=100kΩ C7=1uF V- V+ C6=10uF GAIN 100kΩ REF Gain Select (*2): Monolithic Ceramic Capacitors (*3): V- terminal (8pin) shouldn’t be tied to V+ terminal (4pin) –8– inverted phase INR- V+ NJU72040 APPLICATION NOTE The NJU72040 is an audio headphone amplifier that eliminates the need for external dc-blocking output capacitors. The NJU72040 has built-in pop suppression circuitry to eliminate disturbing pop noise during power-on, power-off and mute-control. 1. Operating Principle The NJU72040 has the built-in differential input operational amplifiers, voltage inverter, pop noise suppression circuitry, gain selectable circuitry and thermal-overload protection circuitry (Fig.1). For single-ended input signals, connect inverted terminal (INL-, INR-) or non-inverted terminal (INL+, INR+) to ground through the capacitor. The voltage gain is selectable. In the differential circuitry, the setting gain is +6.4dB or +12.4dB for the RL=32Ω. In the single-end input circuitry, the setting gain is +0.4dB or +6.4dB for the RL=32Ω. The voltage inverter for NJU72040 eliminates the need for external dc-blocking output capacitors. The pop suppression circuitry for NJU72040 eliminates the pop noise during power-on, power-off and mute-control. V+ inverted phase Regulator C10 C1 INR+ INL+ C2 C8 OUTR OUTL 32Ω Headphone Pop Noise Suppression V+ inverted phase INR- INL- Pop Noise Suppression V+ 32Ω Headphone GND V+ CP Negative Voltage Regulator C4 CN Bias MUTE 3MΩ R2 C7 V- V+ C6 GAIN 100kΩ REF Gain Select Fig.1 The NJU72040 functional block diagram 1.1 External parts 1.1.1 Input coupling capacitors Ci (C1, C2, C8, C10) The input coupling capacitor (Ci) and the input resistance (Rin=61kΩ typ.) for the inverted terminal form a high-pass filter with the corner frequency determined in [fc=1/(2π x 61kΩ x Ci)]. It is necessary to adjust 1uF or more. –9– NJU72040 1.1.2 Flying capacitor (C4) Use capacitors with a low-ESR (ex. ceramic capacitors) for optimum performance. Design to provide low impedance for the wiring between CP terminal (5pin), CN terminal (6pin), and the flying capacitor (C4). CP(5pin) C4=1uF CN(6pin) Fig.2 The NJU72040 block diagram (5pin, 6pin) 1.1.3 Hold capacitor (C6) Use capacitors with a low-ESR (ex. ceramic capacitors) for optimum performance. Design to provide low impedance for the wiring between the hold capacitor (C6), V- terminal (9pin) and the GND on the PCB. Separate the GND pattern connecting to the hold capacitor (C6) from that connecting to the REF terminal (8pin), thus suppressing the influence of switching noise by removing the common impedance of the GND wiring. Design no short-circuits of V- terminal (9pin) and V+ terminal (4pin) on the PCB pattern. V-(9pin) C6 REF(8pin) Fig.3 The NJU72040 block diagram (8pin, 9pin) 1.1.4 Mute terminal pop noise countermeasures (C7, R2) Mute terminal needs time constant more than R2 x C7=0.1. It is necessary to adjust 100kΩ or less. MUTE(10pin) R2=100kΩ Vcnt 3MΩ C7=1uF Fig.4 The NJU72040 block diagram (10pin) – 10 – NJU72040 1.2 Control of V+ terminal and Mute terminal 1.2.2 Power-on procedure 1. Turn on the V+. 2. After 5msec from power on, change the control voltage of MUTE terminal (Vcnt) from "Low" to "High". * It is necessary to stabilize an IC for 5msec. By releasing the MUTE function, the output terminal output the signal. 1.2.3 Power-off procedure 1. Change the control voltage of MUTE terminal (Vcnt) from "High" to "Low". By the MUTE function, the output signals are stopped from output terminal. 2. Turn off the V+ after “2RC” sec from MUTE. * It is necessary to stabilize a MUTE condition for “2RC” sec. Ex.) R2=100kΩ, C7=1uF -> 2R2 x C7=200msec V+ (4pin) t 5msec 2RC=200msec Vcnt MUTE ON MUTE OFF MUTE ON t MUTE (10pin) t Fig.5 Turn-on / Turn-off timing chart – 11 – NJU72040 TERMINAL DESCRIPTION Terminal SYMBOL FUNCTION EQUIVALENT CIRCUIT V+ 1 2 13 14 INLINL+ INRINR+ V+ VOLTAGE V+ 40k AC Input 0V V- V- V+ 3 12 OUTL OUTR FB AC Output 10 5.5k 0V 20k V- VREF V+ 7 GAIN V+ V+ 2k Gain Select 20k 0V 100k VV+ 10 MUTE 1k MUTE/Pop Noise Suppression V+ 20k 3M V- – 12 – 0V NJU72040 TERMINAL DESCRIPTION Terminal SYMBOL FUNCTION EQUIVALENT CIRCUIT VOLTAGE V+ 5 CP Flying Capacitor Positive Terminal - V- 6 CN Flying Capacitor Positive Terminal - V40k INL+ INR+ V+ 8 REF V- 69k 5.5k 10 Reference Voltage Input OUTL OUTR VV- – 13 – NJU72040 TYPICAL CHARACTERISTICS Supply Current vs Tem perature V+=3.3V, RL=NoLoad, MUTE=H 25 25 20 20 Supply Current[mA] Supply Current[mA] Supply Current vs Tem perature V+=3.3V, RL=NoLoad, MUTE=L 15 GAIN=L,H 10 5 15 GAIN=L,H 10 5 0 0 -50 -25 0 25 50 75 100 125 -50 -25 0 o 50 20 20 Supply Current[mA] 25 15 10 15 10 Ta=85oC Ta=85oC 5 5 Ta=25oC Ta=25oC Ta=-40oC 0 Ta=-40oC 0 1 1.5 2 2.5 3 3.5 4 0 0.5 1 Supply Voltage[V] 2 25 25 20 20 15 10 4 3.5 4 10 5 Ta=25oC Ta=25oC Ta=-40oC 0 Ta=-40oC 0 1.5 2 2.5 Supply Voltage[V] – 14 – 3.5 Ta=85oC 5 1 3 15 Ta=85oC 0.5 2.5 Supply Current vs Supply Voltage RL=NoLoad, MUTE=H, GAIN=H Supply Current[mA] Supply Current[mA] 1.5 Supply Voltage[V] Supply Current vs Supply Voltage RL=NoLoad, MUTE=L, GAIN=H 0 125 Supply Current vs Supply Voltage RL=NoLoad, MUTE=H, GAIN=L 25 0.5 100 Temperature[ C] Supply Current vs Supply Voltage RL=NoLoad, MUTE=L, GAIN=L 0 75 o Temperature[ C] Supply Current[mA] 25 3 3.5 4 0 0.5 1 1.5 2 2.5 Supply Voltage[V] 3 NJU72040 Equivalent Input Noise vs Tem perature V+=3.3V, RL=32Ω, Rg=0Ω, MUTE=H, GAIN=L, INL+=0Vrms , INL-=0Vrms, Measure:OUTL, BW=400Hz - 22kHz 0 Equivalent Input Noise vs Tem perature V+=3.3V, RL=10kΩ, Rg=0Ω, MUTE=H, GAIN=L, INL+=0Vrms INL-=0Vrms, Measure:OUTL, BW=400Hz - 22kHz 0 -20 Equivalent Input Noise[dBV] Equivalent Input Noise[dBV] -20 -40 -60 -80 -100 -40 -60 -80 -100 -120 -120 -50 -25 0 25 50 75 100 125 -50 -25 0 o GAIN=L Ta=-40,25,85oC VoltageGain[dB] VoltageGain[dB] 125 GAIN=H Ta=-40,25,85oC 15 5 10 GAIN=L Ta=-40,25,85oC 5 0 0 10 100 1000 10000 100000 10 100 Frequency[Hz] 0 -20 -40 -40 MuteLevel[dB] -20 -60 -80 1000 10000 100000 Frequency[Hz] MuteLevel vs Frequency V+=3.3V, RL=32Ω, MUTE=H, GAIN=L, INL+=0.1Vrms INL-=0.1Vrms(inverted), Measure=OUTL, Filter=Bandpass 0 MuteLevel[dB] 100 VoltageGain vs Frequency V+=3.3V, RL=10kΩ, MUTE=H, INL+=0.1Vrms INL-=0.1Vrms(inverted), Measure=OUTL 20 GAIN=H Ta=-40,25,85oC 10 75 Temperature[ C] VoltageGain vs Frequency V+=3.3V, RL=32Ω, MUTE=H, INL+=0.1Vrms INL-=0.1Vrms(inverted), Measure=OUTL 15 50 o Temperature[ C] 20 25 MuteLevel vs Frequency V+=3.3V, RL=10kΩ, MUTE=H, GAIN=L, INL+=0.1Vrms INL-=0.1Vrms(inverted), Measure=OUTL, Filter=Bandpass -60 -80 Ta=-40,25,85oC -100 Ta=-40,25,85oC -100 -120 -120 10 100 1000 Freauency[Hz] 10000 100000 10 100 1000 10000 100000 Freauency[Hz] – 15 – NJU72040 100 ChannelSeparation vs Frequency V+=3.3V, RL=32Ω, Rg=600Ω , MUTE=H, GAIN=L, INL+=0.1Vrms, INL-=0.1Vrms(inverted), Measure=OUTR Filter=Bandpass ChannelSeparation vs Frequency V+=3.3V, RL=10kΩ, Rg=600Ω, MUTE=H, GAIN=L, INL+=0.1Vrms, INL-=0.1Vrms(inverted), Measure=OUTR Filter=Bandpass 100 Ta=85oC 80 Ta=-40oC Ta=25oC ChannelSeparation[dB] ChannelSeparation[dB] 80 60 40 20 Ta=85oC Ta=-40oC 1000 10000 60 40 20 0 0 10 100 1000 10000 100000 10 100 Freauency[Hz] 100 Ta=25oC 100000 Freauency[Hz] ChannelSeparation vs Frequency V+=3.3V, RL=32Ω, Rg=600Ω, MUTE=H, GAIN=L INR+=0.1Vrms, INR-=0.1Vrms(inverted), Measure=OUTL Filter=Bandpass ChannelSeparation vs Frequency V+=3.3V, RL=10kΩ, Rg=600Ω, MUTE=H, GAIN=L INR+=0.1Vrms, INR-=0.1Vrms(inverted), Measure=OUTL Filter=Bandpass 100 Ta=85oC o Ta=25 C Ta=-40oC ChannelSeparation[dB] ChannelSeparation[dB] Ta=25oC 80 80 60 40 20 Ta=-40oC Ta=85oC 60 40 20 0 0 10 100 1000 10000 100000 10 100 Freauency[Hz] 1000 10000 100000 Freauency[Hz] PSRR vs Frequency V+=3.3V, RL=32Ω, MUTE=H, GAIN=L, Vripple=0.1Vrms INL+=INR+=0Vrms, INL-=INR-=0Vrms, Measure=OUTL,OUTR Filter=Bandpass 100 PSRR vs Frequency V+=3.3V, RL=10kΩ, MUTE=H, GAIN=L, Vripple=0.1Vrms INL+=INR+=0Vrms, INL-=INR-=0Vrms, Measure=OUTL,OUTR Filter=Bandpass 100 Ta=-40oC 80 60 Ta=25oC PSRR[dB] PSRR[dB] 80 Ta=85oC 40 20 Ta=25oC 60 Ta=85oC 40 20 0 0 10 100 1000 Freauency[Hz] – 16 – Ta=-40oC 10000 100000 10 100 1000 Freauency[Hz] 10000 100000 NJU72040 CMRR vs Frequency V+=3.3V, RL=32Ω, MUTE=H, GAIN=L, INL+(INR+)=0.1Vrms INL-(INR-)=0.1Vrms, Measure=OUTL(OUTR), BW=Bandpass 100 100 80 CMRR vs Frequency V+=3.3V, RL=10kΩ , MUTE=H , GAIN=L,INL+(INR+)=0.1Vrms INL-(INR-)=0.1Vrms, Measure=OUTL(OUTR), BW=Bandpass 80 OUTR Ta=-40,25,85oC 60 CMRR[dB] CMRR[dB] OUTR Ta=-40,25,85oC OUTL Ta=-40,25,85oC 40 20 60 OUTL Ta=-40,25,85oC 40 20 0 0 10 100 1000 10000 100000 10 100 Freauency[Hz] 10000 100000 Freauency[Hz] Pow er Dissipation vs Output Pow er V+=3.3V, RL=16Ω, MUTE=H, GAIN=L, Ta=25oC f=1kHz, Measure=OUTL, BW=400Hz to 22kHz 300 1000 Pow er Dissipation vs Output Pow er V+=3.3V, RL=32Ω, MUTE=H, GAIN=L, Ta=25oC f=1kHz, Measure=OUTL, BW=400Hz to 22kHz 300 THD+N=3% 250 250 Power Dissipation [mW] Power Dissipation [mW] THD+N=3% Input=Lch,Rch 200 150 Input=Lch 100 50 200 Input=Lch,Rch 150 100 Input=Lch 50 0 0 0 20 40 60 80 100 Output Pow er [mW/ch] 0 20 40 60 80 100 Output Pow er [mW/ch] Therm al Shut Dow n(SupplyCurrent) V+=3.3V , RL=32Ω , MUTE=H , GAIN=L 14 12 SupplyCurrent [mA] 10 8 6 120oC ->160oC 160oC ->120oC 4 2 0 120 130 140 150 160 o Temperature[ C] – 17 – NJU72040 10 THD+N vs Output Pow er V+=3.3V, RL=16Ω, MUTE=H , GAIN=L Input=INL+,INL-(inverted), AC_GND=INR+,INR-, f=1kHz Measure=OUTL, BW=400Hz to 22kHz 10 1 THD+N[%] THD+N[%] 1 o Ta=-40 C 0.1 0.01 0.1 1 10 100 Ta=-40,25,85oC 0.1 Ta=25,85oC 0.01 0.001 10 THD+N vs Output Pow er V+=3.3V, RL=32Ω, MUTE=H, GAIN=L Input=INL+,INL-(inverted), AC_GND=INR+,INR-, f=1kHz Measure=OUTL, BW=400Hz to 22kHz 1000 0.01 0.001 0.01 0.1 1 10 100 Output Pow er[mW] Output Pow er[mW] THD+N vs Output Pow er V+=3.3V, RL=16Ω, MUTE=H, GAIN=L, Ta=25oC Input=INL+,INL-(inverted), AC_GND=INR+,INR-, f=1kHz Measure=OUTL, BW=22Hz to 22kHz THD+N vs Output Pow er V+=3.3V, RL=32Ω, MUTE=H, GAIN=L, Ta=25oC Input=INL+,INL-(inverted), AC_GND=INR+,INR-, f=1kHz Measure=OUTL, BW=22Hz to 22kHz 1 10 1 f=100Hz,1kHz THD+N[%] THD+N[%] f=100Hz,1kHz 0.1 1000 0.1 f=10kHz f=10kHz 0.01 0.001 10 0.01 0.1 1 10 100 1000 0.01 0.1 1 10 100 1000 Output Pow er[mW] Output Pow er[mW] THD+N vs Output Pow er V+=3.3V, RL=16Ω, MUTE=H , GAIN=L Input=INL+/R+,INL-/R-(inverted), f=1kHz, Measure=OUTL, BW=400Hz to 22kHz THD+N vs Output Pow er V+=3.3V, RL=32Ω, MUTE=H, GAIN=L Input=INL+/R+,INL-/R-(inverted), f=1kHz, Measure=OUTL BW=400Hz to 22kHz 1 10 1 THD+N[%] THD+N[%] Input=Lch , Rch 0.1 0.01 0.001 0.01 0.1 1 10 100 Input=Lch , Rch 0.1 Input=Lch Output Pow er[mW] – 18 – 0.01 0.001 Input=Lch 1000 0.01 0.001 0.01 0.1 1 10 Output Pow er[mW] 100 1000 NJU72040 10 THD+N vs Output Voltage V+=3.3V, RL=10kΩ, MUTE=H , GAIN=L Input=INL+,INL-(inverted), AC_GND=INR+,INR-, f=1kHz Measure=OUTL, BW=400Hz to 22kHz 10 1 THD+N[%] 1 THD+N[%] THD+N vs Output Voltage V+=3.3V, RL=10kΩ, MUTE=H, GAIN=L, Ta=25oC Input=INL+,INL-(inverted), AC_GND=INR+,INR-, f=1kHz Measure=OUTL, BW=22Hz to 22kHz 0.1 Ta=-40,25,85oC 0.1 f=100,1k,10kHz 0.01 0.01 0.001 0.01 0.1 1 10 0.001 0.01 Output Voltage[Vrms] 10 0.1 1 10 Output Voltage[Vrms] THD+N vs Output Voltage V+=3.3V, RL=10kΩ, MUTE=H, GAIN=L Input=INL+/R+,INL-/R-(inverted), f=1kHz, Measure=OUTL BW=400Hz to 22kHz 10 THD+N vs Output Voltage V+=3.3V, MUTE=H, GAIN=L, Ta=25oC Input=INL+,INL-(inverted), f=1kHz, Measure=OUTL , BW=400Hz to 22kHz RL=16 1 1 0.1 THD+N[%] THD+N[%] RL=32 Input=Lch , Rch Input=Lch 0.01 RL=64 0.1 RL=1k 0.01 RL=10k 0.001 0.01 0.1 1 10 0.001 0.01 0.1 1 Output Voltage[Vrms] 10 Output Voltage[Vrms] [CAUTION] The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights. – 19 –