TI SE370C702

TMS370Cx0x
8-BIT MICROCONTROLLER
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
D
D
D
D
D
FZ AND FN PACKAGES
( TOP VIEW )
V CC
A7
D7
D6
D3
RESET
D4
CMOS/ EEPROM/ EPROM Technologies on
a Single Device
– Mask-ROM Devices for High-Volume
Production
– One-Time-Programmable (OTP) EPROM
Devices for Low Volume Production
– Reprogrammable EPROM Devices for
Prototyping Purposes
Internal System Memory Configurations
– On-Chip Program Memory Versions
– ROM: 8K Bytes
– EPROM: 8K Bytes
– Data EEPROM: 256 Bytes
– Static RAM: 256 Bytes Usable as
Registers
Flexible Operating Features
– Low-Power Modes: STANDBY and HALT
– Commercial, Industrial, and Automotive
Temperature Ranges
– Clock Options
– Divide-by-4 (0.5 to 5 MHz SYSCLK)
– Divide-by-1 (2 to 5 MHz SYSCLK)
Phase-Locked Loop (PLL)
– Supply Voltage (VCC) 5 V ±10%
16-Bit General-Purpose Timer
– Software Configurable as
a 16-Bit Event Counter, or
a 16-Bit Pulse Accumulator, or
a 16-Bit Input Capture Functions, or
Two Compare Registers, or a
Self-Contained Pulse-Width-Modulation
(PWM) Function
– Software Programmable Input Polarity
– Eight-Bit Prescaler, Providing a 24-Bit
Real-Time Timer
On-Chip 24-Bit Watchdog Timer
– EPROM / OTP Devices: Standard
Watchdog
– Mask-ROM Devices: Hard Watchdog,
Simple Counter, or Standard Watchdog
Flexible Interrupt Handling
– Two Software-Programmable Interrupt
Levels
– Global- and Individual-Interrupt Masking
– Programmable Rising or Falling Edge
Detect
– Individual Interrupt Vectors
4 3 2 1 28 27 26
XTAL2 / CLKIN
XTAL1
A6
A5
A4
A3
A2
5
6
7
8
9
10
11
25
24
23
22
21
20
19
12 13 14 15 16 1718
SCITXD
SCICLK
SCIRXD
T1IC / CR
T1PWM
T1EVT
MC
VSS
A1
A0
D5
INT1
INT2
INT3
D
D
D
D
D
Serial Communications Interface 1 (SCI1)
– Asynchronous Mode: 156K bps
Maximum at 5 MHz SYSCLK
– Isosynchronous Mode: 25M bps
Maximum at 5 MHz SYSCLK
– Full Duplex, Double-Buffered Receiver
(RX) and Transmitter (TX)
– Two Multiprocessor Communication
Formats
TMS370 Series Compatibility
– Register-to-Register Architecture
– 256 General-Purpose Registers
– 14 Powerful Addressing Modes
– Instructions Upwardly Compatible With
All TMS370 Devices
CMOS/ TTL Compatible I / O Pins / Packages
– All Peripheral Function Pins Software
Configurable for Digital I / O
– 21 Bidirectional Pins, 1 Input Pin
– 28-Pin Plastic and Ceramic Leaded Chip
Carrier Packages
Workstation / Personal Computed-Based
Development System
– C Compiler and C Source Debugger
– Real-time In-Circuit Emulation
– Extensive Breakpoint / Trace Capability
– Multi-Window User Interface
– Microcontroller Programmer
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Copyright  1997, Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
1
TMS370Cx0x
8-BIT MICROCONTROLLER
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Pin Descriptions
28 PINS
LCC
NAME
I / O†
DESCRIPTION
NO.
A0
A1
A2
A3
A4
A5
A6
A7
14
13
11
10
9
8
7
3
I/O
Port A is a general-purpose bidirectional I / O port.
D3
D4
D5
D6
D7
28
26
15
1
2
I/O
Port D is a general-purpose bidirectional I / O port. D3 is also configurable as SYSCLK.
INT1
INT2
INT3
16
17
18
I
I/O
I/O
External interrupt (non-maskable or maskable) / general-purpose input pin
External maskable interrupt input / general-purpose bidirectional pin
External maskable interrupt input / general-purpose bidirectional pin
T1IC / CR
T1PWM
T1EVT
22
21
20
I/O
SCITXD
SCIRXD
SCICLK
25
23
24
I/O
RESET
27
I/O
MC
19
I
Mode control input pin; enables EEPROM write protection override (WPO) mode, also EPROM VPP
XTAL2 / CLKIN
XTAL1
5
6
I
O
Internal oscillator crystal input / External clock source input
Internal oscillator output for crystal
Timer1 input capture / counter reset input pin / general-purpose bidirectional pin
Timer1 PWM output pin / general-purpose bidirectional pin
Timer1 external event input pin / general-purpose bidirectional pin
SCI transmit data output pin, general-purpose bidirectional pin‡
SCI receive data input pin / general-purpose bidirectional pin
SCI bidirectional serial clock pin / general-purpose bidirectional pin
System reset bidirectional pin; as input pin, RESET initializes the microcontroller; as open-drain output,
RESET indicates that an internal failure was detected by watchdog or oscillator fault circuit.
VCC
4
Positive supply voltage
VSS
12
Ground reference
† I = input, O = output
‡ The three-pin SCI configuration is referred to as SCI1.
2
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
TMS370Cx0x
8-BIT MICROCONTROLLER
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
functional block diagram
INT1
INT2
INT3
Interrupts
XTAL1
XTAL2/
CLKIN
Clock Options:
Divide-By-4 Or
Divide-By-1 (PLL)
CPU
Program Memory
ROM: 8K Bytes
EPROM: 8K Bytes
RESET
MC
System
Control
Serial
Communications
Interface 1
RAM
256 Bytes
SCIRXD
SCITXD
SCICLK
Data EEPROM
0 or 256 Bytes
Timer 1
T1IC/CR
T1EVT
T1PWM
Watchdog
VCC
Port A
Port D
8
VSS
5
description
The TMS370C002, TMS370C302, TMS370C702, and SE370C702 devices are members of the TMS370 family
of single-chip 8-bit microcontrollers. Unless otherwise noted, the term TMS370Cx0x refers to these devices.
The TMS370 family provides cost-effective real-time system control through integration of advanced peripheral
function modules and various on-chip memory configurations.
The TMS370Cx0x family of devices is implemented using high-performance silicon-gate CMOS EPROM and
EEPROM technologies. Low-operating power, wide-operating temperature range, and noise immunity of
CMOS technology coupled with the high performance and extensive on-chip peripheral functions make the
TMS370Cx0x devices attractive in system designs for automotive electronics, industrial motors, computer
peripheral controls, telecommunications, and consumer applications.
All TMS370Cx0x devices contain the following on-chip peripheral modules:
D
D
D
Serial communications interface 1 (SCI1)
One 16-bit general-purpose timer with an 8-bit prescaler
One 24-bit general-purpose watchdog timer
Table 1 provides a memory configuration overview of the TMS370Cx0x devices.
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
3
TMS370Cx0x
8-BIT MICROCONTROLLER
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
description (continued)
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
Table 1. Memory Configurations
DEVICE
PROGRAM MEMORY
(BYTES)
ROM
EPROM
TMS370C002A
8K
TMS370C302A
TMS370C702
SE370C702†
DATA MEMORY
(BYTES)
RAM
EEPROM
—
256
8K
—
—
8K
—
8K
28-PIN PACKAGE
256
FN – PLCC
256
—
FN – PLCC
256
256
FN – PLCC
256
256
FZ – CLCC
† System evaluators and development are for use only in prototype environment and their reliability has not been characterized.
The suffix letter (A) appended to the device name (shown in the first column of Table 1) indicates the
configuration of the device. ROM and EPROM devices have different configurations as indicated in Table 2.
ROM devices with the suffix letter A are configured through a programmable contact during manufacture.
Table 2. Suffix Letter Configuration
DEVICE
WATCHDOG TIMER
CLOCK
LOW-POWER MODE
EPROM without A
Standard
Divide-by-4 (standard oscillator)
Enabled
Di id b 4 or
Divide-by-4
Divide-by-1 (PLL)
Enabled or disabled
Standard
ROM A
Hard
Simple
The 8K bytes of mask-programmable ROM in the associated TMS370Cx0x devices are replaced in the
TMS370C702 with 8K bytes of EPROM. All other available memory and on-chip peripherals are identical, with
the exception of no data EEPROM on the TMS370C302 devices. The one-time programmable (OTP)
(TMS370C702) device and reprogrammable device (SE370C702) are available.
TMS370C702 OTP devices are available in plastic packages. This microcontroller is effective to use for
immediate production updates for other members of the TMS370Cx0x family or for low-volume production runs
when the mask charge or cycle time for low-cost mask ROM devices is not practical.
The SE370C702 has a windowed ceramic package to allow reprogramming of the program EPROM memory
during the development-prototyping phase of design. The SE370C702 devices allow quick updates to
breadboards and prototype systems while iterating initial designs.
The TMS370Cx0x family provides two low-power modes (STANDBY and HALT) for applications where
low-power consumption is critical. Both modes stop all CPU activity (that is, no instructions are executed). In
the STANDBY mode, the internal oscillator and the general purpose timer remain active. In the HALT mode,
all device activity is stopped. The device retains all RAM data and peripheral configuration bits throughout both
low-power modes.
The TMS370Cx0x features advanced register-to-register architecture that allows direct arithmetic and logical
operations without requiring an accumulator (for example, ADD R24, R47; add the contents of register 24 to
the contents of register 47 and store the result in register 47). The TMS370Cx0x family is fully
instruction-set-compatible, providing easy transition between members of the TMS370 8-bit microcontroller
family.
The TMS370Cx0x devices have two operational modes of serial communications provided by the SCI1 module.
The SCI1 allows standard RS-232-C communications with other common data transmission equipment.
4
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
TMS370Cx0x
8-BIT MICROCONTROLLER
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
description (continued)
The TMS370Cx0x family provides the system designer with an economical, efficient solution to real-time control
applications. The TMS370 family compact development tool (CDT) solves the challenge of efficiently
developing the software and hardware required to design the TMS370Cx0x into an ever-increasing number of
complex applications. The application source code can be written in assembly and C-language, and the output
code can be generated by the linker. The TMS370 family CDT development tool can communicate through a
standard RS-232-C interface with an existing personal computer. This allows the use of the personal computer
editors and software utilities already familiar to the designer. The TMS370 family CDT emphasizes ease-of-use
through extensive menus and screen windowing so that a system designer with minimal training can begin
developing software. Precise real-time in-circuit emulation and extensive symbolic debug and analysis tools
ensure efficient software and hardware implementation as well as reduced time-to-market cycle.
The TMS370Cx0x family together with the TMS370 family CDT370, design kit, starter kit, software tools, the
SE370C712 reprogrammable devices, comprehensive product documentation, and customer support provide
a complete solution to the needs of the system designer.
central processing unit (CPU)
The CPU used on the TMS370Cx0x device is the high-performance 8-bit TMS370 CPU module. The ’x0x
implements an efficient register-to-register architecture that eliminates the conventional accumulator
bottleneck. The complete ’x0x instruction map is shown in Table 15 in the TMS370Cx0x instruction set overview
section.
The ’370Cx0x CPU architecture provides the following components:
CPU registers:
D
D
D
A stack pointer that points to the last entry in the memory stack
A status register that monitors the operation of the instructions and contains the global interrupt enable bits
A program counter (PC) that points to the memory location of the next instruction to be executed
Figure 1 illustrates the CPU registers and memory blocks.
CDT is a trademark of Texas Instruments Incorporated.
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
5
TMS370Cx0x
8-BIT MICROCONTROLLER
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
central processing unit (CPU) (continued)
Program Counter
15
Stack Pointer (SP)
7
Legend:
C=Carry
N=Negative
Z=Zero
V=Overflow
IE2=Level 2 interrupts Enable
IE1=Level 1 interrupts Enable
0
Status Register (ST)
C
N
Z
V
7
6
5
4
IE2 IE1
3
2
1
0
0
RAM (Includes 256-Byte Registers File)
0000h
256-Byte RAM (0000h - 00FFh)
R0(A)
Reserved†
0001h
R1(B)
Peripheral File
0002h
R2
0003h
R3
Reserved
256-Byte Data EEPROM
Not Available‡
007Fh
0000h
00FFh
0100h
100Fh
1010h
105Fh
1060h
R127
1EFFh
1F00h
1FFFh
2000h
5FFFh
6000h
8K-Byte ROM/EPROM (6000h – 7FFFh)
R255
00FFh
† Reserved means the address space is reserved for future expansion.
‡ Not available means the address space is not accessible.
Interrupts and Reset Vectors;
Trap Vectors
7FBFh
7FC0h
7FFFh
Figure 1. Programmer’s Model
A memory map that includes:
D
D
D
D
256-byte general-purpose RAM that can be used for data memory storage, program instructions,
general-purpose register, or the stack
A peripheral file that provides access to all internal peripheral modules, system-wide control functions and
EEPROM/ EPROM programming control
256-byte EEPROM module that provides in-circuit programmability and data retention in power-off
conditions
8K-byte ROM or 8K-byte EPROM program memory
stack pointer (SP)
The SP is an 8-bit CPU register. Stack operates as a last-in, first-out, read / write memory. The stack is used
typically to store the return address on subroutine calls as well as the status-register contents during interrupt
sequences.
The SP points to the last entry or top of the stack. The SP is incremented automatically before data is pushed
onto the stack and decremented after data is popped from the stack. The stack can be placed anywhere in the
on-chip RAM memory.
6
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
TMS370Cx0x
8-BIT MICROCONTROLLER
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
central processing unit (CPU) (continued)
status register (ST)
The ST monitors the operation of the instructions and contains the global-interrupt-enable bits. The ST register
includes four status bits (condition flags) and two interrupt-enable bits:
D
D
The four status bits indicate the outcome of the previous instruction; conditional instructions (for example,
the conditional jump instructions) use the status bits to determine program flow.
The two interrupt enable bits control the two interrupt levels.
The ST register, status-bit notation, and status-bit definitions are shown in Table 3.
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
Table 3. Status Registers (ST)
7
6
5
4
3
2
1
0
C
N
Z
V
IE2
IE1
Reserved
Reserved
RW-0
RW-0
RW-0
RW-0
RW-0
RW-0
R = read, W = write, 0 = value after reset
program counter (PC)
The contents of the PC point to the memory location of the next instruction to be executed. The PC consists
of two 8-bit registers in the CPU: the program counter high (PCH) and program counter low (PCL). These
registers contain the most significant byte and least significant byte of a 16-bit address.
During reset, the contents of the reset vector (7FFEh, 7FFFh) are loaded into the program counter. The PCH
(MSbyte of the PC) is loaded with the contents of memory location 7FFEh, and the PCL (LSbyte of the PC) is
loaded with the contents of memory location 7FFFh. Figure 2 shows this operation using an example value of
6000h as the contents of the reset vector.
Program Counter (PC)
Memory
0000h
7FFEh
60
7FFFh
00
PCH
PCL
60
00
Figure 2. Program Counter After Reset
memory map
The TMS370Cx0x architecture is based on the Von Neuman architecture, where the program memory and data
memory share a common address space. All peripheral input / output is memory mapped in this same common
address space. As shown in Figure 3, the TMS370Cx0x provides memory-mapped RAM, ROM, Data
EEPROM, input / output pins, peripheral functions, and system interrupt vectors.
The peripheral file contains all input / output port control, peripheral status and control, EEPROM, EPROM, and
system-wide control functions. The peripheral file is located between 1010h to 105Fh and is divided logically
into five peripheral-file frames of 16 bytes each. Each on-chip peripheral is assigned to a separate frame through
which peripheral control and data information is passed.
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
7
TMS370Cx0x
8-BIT MICROCONTROLLER
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
central processing unit (CPU) (continued)
Peripheral File Control Registers
0000h
256-Byte RAM
(Register File / Stack)
00FFh
0100h
Reserved†
System Control
1010h – 101Fh
Digital Port Control
1020h – 102Fh
Reserved†
1030h – 103Fh
Timer 1 Peripheral Control
1040h – 104Fh
SCI1 Peripheral Control
1050h – 105Fh
100Fh
1010h
Peripheral File
105Fh
1060h
Reserved†
1EFFh
1F00h
256-Byte Data EEPROM
Vectors
Trap 15 – 0
7FC0h – 7FDFh
Not Available‡
Reserved†
7FE0h – 7FEFh
Serial Communications Interface TX
7FF0h – 7FF1h
Serial Communications Interface RX
7FF2h – 7FF3h
Timer 1
7FF4h – 7FF5h
Reserved†
7FF6h – 7FF7h
Interrupts and Reset Vectors;
Trap Vectors
Interrupt 3
7FF8h – 7FF9h
Interrupt 2
7FFAh – 7FFBh
Not Available‡
Interrupt 1
7FFCh – 7FFDh
Reset
7FFEh – 7FFFh
1FFFh
2000h
5FFFh
6000h
6FFFh
7000h
77FFh
7800h
7FBFh
7FC0h
7FFFh
8000h
8K-Byte ROM / EPROM
(6000h – 7FFFh)
FFFFh
† Reserved means the address space is reserved for future expansion.
‡ Not available means the address space is not accessible.
Figure 3. TMS370Cx0x Memory Map
RAM/ register file (RF)
Locations within the RAM address space can serve as the RF, general-purpose read / write memory, program
memory, or the stack instructions. The TMS370Cx0x devices contain 256 bytes of internal memory-mapped
RAM beginning at location 0000h (R0) and continuing through location 00FFh (R255) which is shown in
Figure 1.
The first two registers, R0 and R1, are also called register A and B, respectively. Some instructions implicitly
use register A or B; for example, the instruction LDSP (load SP) assumes that the value to be loaded into the
stack pointer is contained in register B. Registers A and B are the only registers cleared on reset.
peripheral file (PF)
The TMS370Cx0x control registers contain all the registers necessary to operate the system and peripheral
modules on the device. The instruction set includes some instructions that access the PF directly. These
instructions designate the register by the number of the PF relative to 1000h, preceded by P0 for a hexadecimal
designator or P for a decimal designator. For example, the system control register 0 (SCCR0) is located at
address 1010h; its peripheral file hexadecimal designator is P010, and its decimal designator is P16. Table 4
shows the TMS370Cx0x PF address map.
8
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
TMS370Cx0x
8-BIT MICROCONTROLLER
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
peripheral file (PF) (continued)
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Table 4. TMS370Cx0x Peripheral File Address Map
ADDRESS RANGE
PERIPHERAL FILE
DESIGNATOR
1000h – 100Fh
P000 – P00F
Reserved
1010h – 101Fh
P010 – P01F
System and EPROM / EEPROM control registers
1020h – 102Fh
P020 – P02F
Digital I / O port control registers
1030h – 103Fh
P030 – P03F
Reserved
1040h – 104Fh
P040 – P04F
Timer 1 registers
1050h – 105Fh
P050 – P05F
Serial communications interface registers
1060h – 10FFh
P060 – P0FF
Reserved
DESCRIPTION
data EEPROM
The TMS370Cx0x devices, containing 256 bytes of data EEPROM, have their memory mapped beginning at
location 1F00h and continuing through location 1FFFh. Writing to the data EEPROM module is controlled by
the data EEPROM control register (DEECTL) and the write-protection register (WPR). Programming algorithm
examples are available in the TMS370 Family User’s Guide (literature number SPNU127) or the TMS370
Family Data Manual (literature number SPNS014B). The data EEPROM features include the following:
D
D
D
Programming:
–
Bit-, byte-, and block-write / erase modes
–
Internal charge pump circuitry. No external EEPROM programming voltage supply is needed.
–
Control register: Data EEPROM programming is controlled by the DEECTL located in the PF frame
beginning at location P01A. See Table 5.
–
In-circuit programming capability. There is no need to remove the device to program.
Write protection. Writes to the data EEPROM are disabled during the following conditions.
–
Reset. All programming of the data EEPROM module is halted.
–
Write protection active. There is one write-protect bit per 32-byte EEPROM block.
–
Low-power mode operation
Write protection can be overridden by applying 12 V to MC.
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
Table 5. Data EEPROM and Program EPROM Control Registers Memory Map
ADDRESS
SYMBOL
P01A
DEECTL
P01B
—
P01C
EPCTL
POST OFFICE BOX 1443
NAME
Data EEPROM control register
Reserved
Program EPROM control register
• HOUSTON, TEXAS 77251–1443
9
TMS370Cx0x
8-BIT MICROCONTROLLER
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
program EPROM
The TMS370C702 device contains 8K bytes of EPROM, mapped, at location 6000h and continuing through
location 7FFFh as shown in Figure 3. Memory addresses 7FF0h through 7FFFh are reserved for interrupt and
reset vectors. Trap vectors, used with TRAP0 through TRAP15 instructions, are located between addresses
7FC0h and 7FDFh. Reading the program EPROM modules is identical to reading other internal memory. During
programming, the EPROM is controlled by the EPROM control register (EPCTL). The program EPROM module
features include:
D
D
Programming
–
In-circuit programming capability if VPP is applied to MC
–
Control register: EPROM programming is controlled by the EPROM control register (EPCTL) located in
the peripheral file (PF) frame at location P01Ch as shown in Table 5.
Write protection: Writes to the program EPROM are disabled under the following conditions:
–
Reset halts all programming to the EPROM module.
–
Low-power modes
–
13 V not applied to MC
program ROM
The program read-only memory (ROM) consists of 8K bytes of mask-programmable ROM. The program ROM
is used for permanent storage of data or instructions. Memory addresses 7FF0h through 7FFFh are reserved
for interrupt and reset vectors. Trap vectors, used with TRAP0 through TRAP15 instructions, are located
between addresses 7FC0h and 7FDFh. Programming of the mask ROM is performed at the time of device
fabrication. Refer to Figure 3 for ROM memory map.
system reset
The system reset operation ensures an orderly start-up sequence for the TMS370Cx0x CPU-based device.
There are up to three different actions that can cause a system reset to the device. Two of these actions are
internally generated, while one (RESET pin) is controlled externally. These actions are as follows:
D
D
D
External RESET pin. A low-level signal can trigger an external reset. To ensure a reset, the external signal
should be held low for one SYSCLK cycle. Signals of less than one SYSCLK can generate a reset. See the
TMS370 Family User’s Guide (literature number SPNU127) for more information.
Watchdog (WD) timer. A watchdog-generated reset occurs if an improper value is written to the WD key
register, or if the re-initialization does not occur before the watchdog timer times out . See the TMS370
Family User’s Guide (literature number SPNU127) for more information.
Oscillator reset. Reset occurs when the oscillator operates outside the recommended operating range. See
the TMS370 Family User’s Guide (literature number SPNU127) for more information.
Once a reset source is activated, the external RESET pin is driven (active) low for a minimum of eight SYSCLK
cycles. This allows the ’x0x device to reset external system components. Additionally, if a cold start (VCC is off
for several hundred milliseconds) condition or oscillator failure occurs or the RESET pin is held low, then the
reset logic holds the device in a reset state for as long as these actions are active.
After a reset, the program can check the oscillator fault flag (OSC FLT FLAG, SCCR0.4), the cold start flag
(COLD START, SCCR0.7), and the watchdog reset (WD OVRFL INT FLAG, T1CTL2.5) to determine the source
of the reset. A reset does not clear these flags. Table 6 lists the reset sources.
10
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
TMS370Cx0x
8-BIT MICROCONTROLLER
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
system reset (continued)
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
Table 6. Reset Sources
REGISTER
ADDRESS
PF
BIT NO.
CONTROL BIT
SOURCE OF RESET
SCCR0
1010h
P010
7
COLD START
Cold (power-up)
SCCR0
1010h
P010
4
OSC FLT FLAG
Oscillator out of range
T1CTL2
104Ah
P04A
5
WD OVRFL INT FLAG
Watchdog timer timeout
Once a reset is activated, the following sequence of events occurs:
1. The CPU registers are initialized: ST = 00h, SP = 01h (reset state).
2. Registers A and B are initialized to 00h (no other RAM is changed).
3. The contents of the LSbyte of the reset vector (07FFh) are read and stored in the PCL.
4. The contents of the MSbyte of the reset vector (07FEh) are read and stored in the PCH.
5. Program execution begins with an opcode fetch from the address pointed to the PC.
The reset sequence takes 20 SYSCLK cycles from the time the reset pulse is released until the first opcode
fetch. During a reset, RAM contents (except for registers A and B) remain unchanged, and the module control
register bits are initialized to their reset state.
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
11
TMS370Cx0x
8-BIT MICROCONTROLLER
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
interrupts
The TMS370 family software programmable interrupt structure permits flexible on-chip and external interrupt
configurations to meet real-time interrupt-driven application requirements. The hardware interrupt structure
incorporates two priority levels as shown in Figure 4. Interrupt level 1 has a higher priority than interrupt
level 2. The two priority levels can be masked independently by the global-interrupt mask bits (IE1 and IE2) of
the status register.
EXT INT 3
INT 3
EXT INT 2
INT 2
TIMER1
INT3 PRI
Overflow
INT2 PRI
Compare1
EXT INT1
Ext Edge
CPU
INT1
Compare2
NMI
Input Capture
Watchdog
Priority
INT1 PRI
Logic
T1 PRI
STATUS REG
IE1
Level 1 INT
IE2
Level 2 INT
Enable
SCI INT
TX
RX
TXRDY
TXPRI
RXPRI
BRKDT
RXRDY
Figure 4. Interrupt Control
Each system interrupt is configured independently to either the high- or low-priority chain by the application
program during system initialization. Within each interrupt chain, the interrupt priority is fixed by the position of
the system interrupt. However, since each system interrupt is configured selectively on either the high- or
low-priority interrupt chain, the application program can elevate any system interrupt to the highest priority.
Arbitration between the two priority levels is performed within the CPU. Arbitration within each of the priority
12
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
TMS370Cx0x
8-BIT MICROCONTROLLER
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
interrupts (continued)
chains is performed within the peripheral modules to support interrupt expansion for future modules.
Pending-interrupts are serviced upon completion of current instruction execution, depending on their interrupt
mask and priority conditions.
The TMS370Cx0x has six hardware system interrupts (plus RESET) as shown in Table 7. Each system interrupt
has a dedicated vector located in program memory through which control is passed to the interrupt service
routines. A system interrupt can have multiple interrupt sources. All of the interrupt sources are individually
maskable by local interrupt enable control bits in the associated peripheral file. Each interrupt source FLAG bit
is individually readable for software polling or for determining which interrupt source generated the associated
system interrupt.
Three of the system interrupts are generated by on-chip peripheral functions, and three external interrupts are
supported. Software configuration of the external interrupts is performed through the INT1, INT2, and INT3
control registers in peripheral file frame 1. Each external interrupt is individually software configurable for input
polarity (rising or falling edge) for ease of system interface. External interrupt INT1 is software configurable as
either a maskable or non-maskable interrupt. When INT1 is configured as non-maskable, it cannot be masked
by the individual- or global-enable-mask bits. The INT1 NMI bit is protected during non-privileged operation and,
therefore, should be configured during the initialization sequence following reset. To maximize pin flexibility,
external interrupts INT2 and INT3 can be software-configured as general-purpose input / output pins if the
interrupt function is not required (INT1 can be similarly configured as an input pin).
Table 7. Hardware System Interrupts
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
INTERRUPT SOURCE
INTERRUPT FLAG
SYSTEM
INTERRUPT
VECTOR
ADDRESS
PRIORITY†
RESET‡
7FFEh, 7FFFh
1
7FFCh, 7FFDh
2
7FFAh, 7FFBh
3
External RESET
Watchdog Overflow
Oscillator Fault Detect
COLD START
WD OVRFL INT FLAG
OSC FLT FLAG
External INT1
INT1 FLAG
External INT2
INT2 FLAG
INT1‡
INT2‡
External INT3
INT3 FLAG
INT3‡
7FF8h, 7FF9h
4
Timer 1 Overflow
Timer 1 Compare 1
Timer 1 Compare 2
Timer 1 External Edge
Timer 1 Input Capture 1
Watchdog Overflow
T1 OVRFL INT FLAG
T1C1 INT FLAG
T1C2 INT FLAG
T1EDGE INT FLAG
T1IC1 INT FLAG
WD OVRFL INT FLAG
T1INT§
7FF4h, 7FF5h
5
SCI RX Data Register Full
SCI RX Break Detect
RXRDY FLAG
BRKDT FLAG
RXINT‡
7FF2h, 7FF3h
6
TXINT
7FF0h, 7FF1h
7
SCI TX Data Register Empty
TXRDY FLAG
† Relative priority within an interrupt level
‡ Release microcontroller from STANDBY and HALT low-power modes.
§ Release microcontroller from STANDBY low-power mode.
privileged operation and EEPROM write protection override
The TMS370Cx0x family has significant flexibility to enable the designer to software configure the system and
peripherals to meet the requirements of a variety of applications. The nonprivileged mode of operation ensures
the integrity of the system configuration, once it is defined for an application. Following a hardware reset, the
TMS370Cx0x operates in the privileged mode, where all peripheral file registers have unrestricted read / write
access, and the application program configures the system during the initialization sequence following reset.
As the last step of system initialization, the PRIVILEGE DISABLE bit (SCCR2.0) is set to 1 to enter the
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
13
TMS370Cx0x
8-BIT MICROCONTROLLER
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
privileged operation and EEPROM WPO (continued)
nonprivileged mode, thus disabling write operations to specific configuration control bits within the peripheral
file. Table 8 lists the system configuration bits which are write-protected during the nonprivileged mode and must
be configured by software prior to exiting the privileged mode.
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
Table 8. Privileged Bits
REGISTER†
NAME
LOCATION
CONTROL BIT
SCCR0
P010.5
P010.6
PF AUTO WAIT
OSC POWER
SCCR1
P011.2
P011.4
MEMORY DISABLE
AUTOWAIT DISABLE
SCCR2
P012.0
P012.1
P012.3
P012.4
P012.6
P012.7
PRIVILEGE DISABLE
INT1 NMI
CPU STEST
BUS STEST
PWRDWN / IDLE
HALT / STANDBY
SCIPRI
P05F.4
P05F.5
P05F.6
P05F.7
SCI ESPEN
SCIRX PRIORITY
SCITX PRIORITY
SCI STEST
T1PRI
P04F.6
P04F.7
T1 PRIORITY
T1 STEST
† The privileged bits are shown in a bold typeface in Table 10.
The write protect override (WPO) mode is an external hardware method of overriding the write protection
registers (WPR) of data EEPROM on the TMS370Cx0x. WPO mode is entered by applying a 12-V input to the
MC pin after the RESET pin input goes high (logic 1). The high voltage (+ 12 V) on the MC pin during the WPO
mode is not the programming voltage for the data EEPROM or program EPROM. All EEPROM programming
voltages are generated on-chip. The WPO mode provides hardware system level capability to modify the
content of data EEPROM while the device remains in the application but only while requiring a 12-V external
input on the MC pin (normally not available in the end application except in a service or diagnostic environment).
low-power and IDLE modes
The TMS370Cx0x devices have two low-power modes (STANDBY and HALT) and an IDLE mode. For
mask-ROM devices, low-power modes can be disabled permanently through a programmable contact at the
time the mask is manufactured.
The STANDBY and HALT low-power modes significantly reduce power consumption by reducing or stopping
the activity of the various on-chip peripherals when processing is not required. Each of the low-power modes
is entered by executing the IDLE instruction when the PWRDWN / IDLE bit in SCCR2 has been set to 1. The
HALT / STANDBY bit in SCCR2 controls the low-power mode selection.
In the STANDBY mode (HALT / STANDBY = 0), all CPU activity and most peripheral module activity stops;
however, the oscillator, internal clocks, timer 1 and the receive-start bit detection circuit of the serial
communications interface remain active. System processing is suspended until a qualified interrupt (hardware
RESET, external interrupt on INT1, INT2, INT3, timer 1 interrupt, or low level on the receive pin of the SCI1) is
detected.
14
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
TMS370Cx0x
8-BIT MICROCONTROLLER
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
low-power and IDLE modes (continued)
In the HALT mode (HALT / STANDBY = 1), the TMS370Cx0x is placed in its lowest power-consumption mode.
The oscillator and internal clocks are stopped, causing all internal activity to be halted. System activity is
suspended until a qualified interrupt (hardware RESET, external interrupt on the INT1, INT2, INT3, or low level
on the receive pin of the SCI1) is detected. The power-down mode selection bits are summarized in Table 9.
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
Table 9. Low-Power / Idle Control Bits
POWER-DOWN CONTROL BITS
PWRDWN / IDLE
(SCCR2.6)
HALT / STANDBY
(SCCR2.7)
1
0
1
1
X†
0
† Don’t care
MODE SELECTED
STANDBY
HALT
IDLE
When low-power modes are disabled through a programmable contact in the mask-ROM devices, writing to the
SCCR2.6-7 bits are ignored. In addition, if an idle instruction executes when low-power modes are disabled
through a programmable contact, the device always enters the IDLE mode.
To provide a method of always exiting low-power modes for mask-ROM devices, INT1 is enabled automatically
as a nonmaskable interrupt (NMI) during low-power modes when the hard watchdog mode is selected. This
means that the NMI is generated always, regardless of the interrupt enable flags.
The following information is preserved throughout both the STANDBY and HALT modes: RAM (register file),
CPU registers (stack pointer, program counter, and status register), I / O pin direction and output data, and status
registers of all on-chip peripheral functions. Since all CPU instruction processing stops during the STANDBY
and HALT modes, the clocking of the watchdog timer is inhibited.
clock modules
The ’x0x family provides two clock options that are referred to as divide-by-1 (phase-locked loop) and
divide-by-4 (standard oscillator). Both the divide-by-1 and divide-by-4 options are configurable during the
manufacturing process of a TMS370 microcontroller. The ’x0x ROM-masked devices offer both options to meet
system engineering requirements. Only one of the two clock options is allowed on each ROM device. The ’702A
EPROM has only the divide-by-4.
The divide-by-1 clock module option provides the capability for reduced electromagnetic interference (EMI) with
no added cost.
The divide-by-1 clock module option provides a one-to-one match of the external resonator frequency (CLKIN)
to the internal system clock (SYSCLK) frequency, whereas the divide-by-4 option produces a SYSCLK which
is one-fourth of the frequency of the external resonator. Inside of the divide-by-1 module, the frequency of the
external resonator is multiplied by four, and the clock module then divides the resulting signal by four to provide
the four-phased internal system clock signals. The resulting SYSCLK is equal to the resonator frequency.
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
15
TMS370Cx0x
8-BIT MICROCONTROLLER
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
clock modules (continued)
These are formulated as follows:
Divide-by-4 : SYSCLK
frequency
+ external resonator
+ CLKIN
4
4
Divide-by-1 : SYSCLK
+ external resonator4 frequency
4
+ CLKIN
The main advantage of choosing a divide-by-1 oscillator is the improved EMI performance. The harmonics of
low-speed resonators extend through less of the emissions spectrum than the harmonics of faster resonators.
The divide-by-1 option provides the capability of reducing the resonator speed by four times, resulting in a
steeper decay of emissions produced by the oscillator.
system configuration registers
Table 10 contains system configuration and control functions and registers for controlling EEPROM
programming. The privileged bits are shown in a bold typeface and shaded areas.
ÁÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
Á
ÁÁÁÁÁ
ÁÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
Á
ÁÁÁÁÁ
ÁÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
Á
ÁÁÁÁÁ
ÁÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
Table 10. Peripheral File Frame 1: System Configuration Registers
PF
BIT 7
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
BIT 0
P010
COLD
START
OSC
POWER
PF AUTO
WAIT
OSC FLT
FLAG
MC PIN
WPO
MC PIN
DATA
—
µP / µC
MODE
SCCR0
P011
—
—
—
AUTO
WAIT
DISABLE
—
MEMORY
DISABLE
—
—
SCCR1
P012
HALT /
STANDBY
PWRDWN /
IDLE
—
BUS
STEST
CPU
STEST
—
INT1
NMI
PRIVILEGE
DISABLE
SCCR2
P013
to
P016
Reserved
P017
INT1
FLAG
INT1
PIN DATA
—
—
—
INT1
POLARITY
INT1
PRIORITY
INT1
ENABLE
INT1
P018
INT2
FLAG
INT2
PIN DATA
—
INT2
DATA DIR
INT2
DATA OUT
INT2
POLARITY
INT2
PRIORITY
INT2
ENABLE
INT2
P019
INT3
FLAG
INT3
PIN DATA
—
INT3
DATA DIR
INT3
DATA OUT
INT3
POLARITY
INT3
PRIORITY
INT3
ENABLE
INT3
P01A
BUSY
—
—
—
—
AP
W1W0
EXE
DEECTL
BUSY
VPPS
—
—
—
—
W0
EXE
EPCTL
P01B
P01C
P01D
P01E
P01F
16
REG
Reserved
Reserved
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
TMS370Cx0x
8-BIT MICROCONTROLLER
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
digital port control registers
Peripheral file frame 2 contains the digital I/O pin configuration and control registers. Table 11 shows the specific
addresses, registers, and control bits within this peripheral file frame.
ÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
Á
ÁÁÁÁÁ
ÁÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
Á
ÁÁÁÁÁ
ÁÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
Á
ÁÁÁÁÁ
ÁÁÁÁ
Á
ÁÁÁÁÁ
ÁÁÁÁ
Á
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Table 11. Peripheral File Frame 2: Digital Port Control Registers
PF
BIT 7
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
BIT 0
REG
P020
Reserved
APORT1
P021
Port A Control Register 2 (must be 0)
APORT2
P022
Port A Data
P023
Port A Direction
P024
to
P02B
Reserved
ADATA
ADIR
P02C
Port D Control Register 1 (must be 0)
—
—
—
DPORT1
P02D
Port D Control Register 2 (must be 0)†
—
—
—
DPORT2
P02E
Port D Data
—
—
—
DDATA
P02F
Port D Direction
—
—
—
DDIR
† To configure pin D3 as SYSCLK, set port D control register 2 = 08h.
Table 12. Port Configuration Register Setup
PORT
PIN
abcd
00q1
abcd
00y0
A
0–7
Data OUT q
Data In y
D
3–7
Data OUT q
Data In y
a = Port x Control Register 1
b = Port x Control Register 2
c = Data
d = Direction
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
17
TMS370Cx0x
8-BIT MICROCONTROLLER
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
programmable timer 1
The programmable Timer 1 (T1) module of the TMS370Cx0x provides the designer with the enhanced timer
resources required to perform real-time system control. The T1 module contains the general-purpose timer and
the watchdog (WD) timer. The two independent 16-bit timers (T1 and WD) allow program selection of input clock
sources (real-time, external event, or pulse accumulate) with multiple 16-bit registers (input capture and
compare) for special timer function control. The timer 1 module includes three external device pins that can be
used for multiple counter functions (operation mode dependent) or used as general-purpose I/O pins. The T1
module block diagram is shown in Figure 5.
T1IC/CR
MUX
T1EVT
Edge
Select
16-Bit
Capt/Comp
Register
16-Bit
Counter
16
16-Bit
Compare
Register
8-Bit
Prescaler
16-Bit
Watchdog Counter
(Aux. Timer)
MUX
PWM
Toggle
T1PWM
Interrupt
Logic
Interrupt
Logic
Figure 5. Timer 1 Block Diagram
D
D
D
D
D
D
D
18
Three T1 I/O pins
–
T1IC/CR: Timer 1 input capture / counter reset input pin, or general-purpose bidirectional I/O pin
–
T1PWM: Timer 1 pulse-width-modulation (PWM) output pin, or general-purpose bidirectional I/O pin
–
T1EVT: Timer 1 event input pin, or general-purpose bidirectional I/O pin
Two operation modes:
–
Dual-compare mode: Provides PWM signal
–
Capture/compare mode: Provides input capture pin
One 16-bit general-purpose resettable counter
One 16-bit compare register with associated compare logic
One 16-bit capture/compare register, which, depending on the mode of operation, operates as either a
capture or compare register.
One 16-bit watchdog counter can be used as an event counter, a pulse accumulator, or an interval timer
if watchdog feature is not needed.
Prescaler/clock sources that determine one of eight clock sources for general-purpose timer
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
TMS370Cx0x
8-BIT MICROCONTROLLER
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
programmable timer 1 (continued)
D
D
D
Selectable edge-detection circuitry that, depending on the mode of operation, senses active transitions on
the input capture pins (T1IC1/CR)
Interrupts that can be generated on the occurrence of:
–
A capture
–
A compare equal
–
A counter overflow
–
An external edge detection
Sixteen timer 1 module control registers located in the PF frame beginning at address P040.
The T1 module control registers are illustrated in Table 13.
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
19
TMS370Cx0x
8-BIT MICROCONTROLLER
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
programmable timer 1 (continued)
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
Á
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
Table 13. Timer 1 Module Register Memory Map
PF
BIT 7
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
BIT 0
REG
Modes: Dual-Compare and Capture / Compare
P040 Bit 15
T1Counter MSbyte
Bit 8
P041 Bit 7
T1 Counter LSbyte
Bit 0
P042 Bit 15
Compare Register MSbyte
Bit 8
P043 Bit 7
Compare Register LSbyte
Bit 0
P044 Bit 15
Capture/Compare Register MSbyte
Bit 8
P045 Bit 7
Capture/Compare Register LSbyte
Bit 0
P046 Bit 15
Watchdog Counter MSbyte
Bit 8
P047 Bit 7
Watchdog Counter LSbyte
Bit 0
P048 Bit 7
Watchdog Reset Key
P049
WD OVRFL
TAP SEL†
WD INPUT
SELECT2†
WD INPUT
SELECT1†
WD INPUT
SELECT0†
P04A
WD OVRFL
RST ENA†
WD OVRFL
INT ENA
WD OVRFL
INT FLAG
Bit 0
T1CNTR
T1C
T1CC
WDCNTR
WDRST
—
T1 INPUT
SELECT2
T1 INPUT
SELECT1
T1 INPUT
SELECT0
T1CTL1
T1 OVRFL
INT ENA
T1 OVRFL
INT FLAG
—
—
T1
SW RESET
T1CTL2
Mode: Dual-Compare
P04B
T1EDGE
INT FLAG
T1C2
INT FLAG
T1C1
INT FLAG
—
—
T1EDGE
INT ENA
T1C2
INT ENA
T1C1
INT ENA
T1CTL3
P04C
T1
MODE=0
T1C1
OUT ENA
T1C2
OUT ENA
T1C1
RST ENA
T1CR
OUT ENA
T1EDGE
POLARITY
T1CR
RST ENA
T1EDGE
DET ENA
T1CTL4
Mode: Capture / Compare
P04B
T1EDGE
INT FLAG
—
T1C1
INT FLAG
—
—
T1EDGE
INT ENA
—
T1C1
INT ENA
T1CTL3
P04C
T1
MODE = 1
T1C1
OUT ENA
—
T1C1
RST ENA
—
T1EDGE
POLARITY
—
T1EDGE
DET ENA
T1CTL4
Modes: Dual-Compare and Capture / Compare
P04D
—
—
—
—
T1EVT
DATA IN
T1EVT
DATA OUT
T1EVT
FUNCTION
T1EVT
DATA DIR
T1PC1
P04E
T1PWM
DATA IN
T1PWM
DATA OUT
T1PWM
FUNCTION
T1PWM
DATA DIR
T1IC/CR
DATA IN
T1IC/CR
DATA OUT
T1IC/CR
FUNCTION
T1IC/CR
DATA DIR
T1PC2
P04F
T1 STEST
T1
PRIORITY
—
—
—
—
—
—
T1PRI
† Once the WD OVRFL RST ENA bit is set, these bits cannot be changed until a reset; this applies only to the standard
watchdog and to the simple counter. In the hard watchdog, these bits can be modified at any time; the WD INPUT SELECT2
bits are ignored.
20
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
TMS370Cx0x
8-BIT MICROCONTROLLER
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
programmable timer 1 (continued)
Figure 6 shows the timer 1 capture/compare mode block diagram. The annotations on the diagram identify the
register and the bit(s) in the peripheral frame. For example, the actual address of T1CTL2.0 is 104Ah, bit 0, in
the T1CTL2 register.
16-Bit
LSB
Capt/Comp
Register MSB
Prescale
Clock
Source
T1C1
OUT ENA
T1CTL4.6
Toggle
T1CC.15-0
T1PC2.7-4
T1PWM
T1CNTR.15-0
LSB 16-Bit
MSB Counter
16
T1C1 INT FLAG
Compare=
T1CTL3.5
Reset
T1 PRIORITY 0
T1PRI.6
Level 1 Int
1
Level 2 Int
T1CTL3.0
T1C.15-0
T1 SW
RESET
T1C1
RST ENA
T1CTL2.0
T1C1 INT ENA
16-Bit LSB
Compare
Register MSB
T1 OVRFL INT FLAG
T1CTL2.3
T1CTL4.4
T1CTL2.4
T1 OVRFL INT ENA
T1PC2.3-0
T1EDGE DET ENA
T1IC/CR
Edge
Select
T1EDGE INT FLAG
T1CTL3.7
T1CTL4.0
T1CTL3.2
T1EDGE INT ENA
T1CTL4.2
T1EDGE POLARITY
Figure 6. Capture/Compare Mode
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
21
TMS370Cx0x
8-BIT MICROCONTROLLER
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
programmable timer 1 (continued)
Figure 7 shows the timer 1 dual-compare mode block diagram. The annotations on the diagram identify the
register and the bit(s) in the peripheral frame. For example, the actual address of T1CTL2.0 is 104Ah, bit 0, in
the T1CTL2 register.
T1CC.15-0
16-Bit LSB
Capt/Comp
Register MSB
MSB
T1CTL2.0
Compare=
T1CTL4.4
T1CTL4.5
T1PC2.7-4
16
T1C1 INT FLAG
T1CTL3.5
Compare=
T1C1
RST ENA
Output
Enable
T1C2 OUT ENA
16-Bit
Counter
Reset
T1 SW
RESET
T1CTL3.6
T1CTL3.1
T1C2 INT ENA
T1CNTR.15-0
LSB
T1C2 INT FLAG
T1CTL3.0
T1CTL4.6
Toggle
Prescaler
Clock
Source
T1PWM
T1C1 OUT ENA
T1CTL4.3
T1C.15-0
T1C1 INT ENA
16-Bit LSB
Compare
Register MSB
T1CR OUT ENA
T1 OVRFL INT FLAG
T1PC2.3-0
T1IC/CR
T1CTL4.1
T1CR
RST ENA
T1CTL2.3
T1CTL2.4
T1 OVRFL INT ENA
Edge
Select
T1 PRIORITY
T1CTL4.0
T1EDGE DET ENA
T1EDGE INT FLAG
T1CTL4.2
T1EDGE POLARITY
T1CTL3.7
T1CTL3.2
T1EDGE INT ENA
Figure 7. Dual-Compare Mode
22
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
T1PRI.6
0
1
Level 1 Int
Level 2 Int
TMS370Cx0x
8-BIT MICROCONTROLLER
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
programmable timer 1 (continued)
The TMS370Cx0x device includes a 24-bit watchdog (WD) timer, contained in the timer 1 module, which can
be programmed as an event counter, pulse accumulator, or interval timer if the watchdog function is not used.
The WD function is to monitor software and hardware operation and to implement a system reset when the WD
counter is not properly serviced (WD counter overflow or WD counter is re-initialized by an incorrect value). The
WD can be configured as one of three mask options as follows:
D
Standard watchdog configuration (see Figure 8) – for EPROM and mask-ROM devices:
–
–
Watchdog mode
–
Ten different WD overflow rates ranging from 6.55 ms to 3.35 s at 5-MHz SYSCLK
–
A WD reset key (WDRST) register is used to clear the watchdog counter (WDCNTR) when a correct
value is written.
–
Generates a system reset if an incorrect value is written to the watchdog reset key or if the counter
overflows
–
A watchdog overflow flag (WD OVRFL INT FLAG) bit that indicates whether the WD timer initiated a
system reset
Non-watchdog mode
–
Watchdog timer can be configured as an event counter, a pulse accumulator, or an interval timer
WDCNTR.15-0
WD OVRFL
INT FLAG
16-Bit
WatchdogCounter
T1CTL2.6
T1CTL2.5
Reset
Clock
Prescaler
Interrupt
WD OVRFL
INT ENA
T1CTL2.7
T1CTL1.7
WD OVRFL
TAP SEL
System Reset
WD OVRFL
RST ENA
Watchdog Reset Key
WDRST.7-0
Figure 8. Standard watchdog
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
23
TMS370Cx0x
8-BIT MICROCONTROLLER
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
programmable timer 1 (continued)
D
Hard watchdog configuration (see Figure 9) – for mask-ROM devices:
–
Eight different WD overflow rates ranging from 26.2 ms to 3.35 s at 5-MHz SYSCLK
–
A WD reset key (WDRST) register is used to clear the watchdog counter (WDCNTR) when a correct
value is written.
–
Generates a system reset if an incorrect value is written to the watchdog reset key or if the counter
overflows.
–
Automatic activation of the WD timer upon power-up reset
–
INT1 is enabled as a nonmaskable interrupt during low-power modes.
–
A watchdog overflow flag (WD OVRFL INT FLAG) bit that indicates whether the WD timer initiated a
system reset
WDCNTR.15-0
WD OVRFL
INT FLAG
16-Bit
Watchdog Counter
T1CTL2.5
Reset
Clock
Prescaler
T1CTL1.7
WD OVRFL
TAP SEL
System Reset
Watchdog Reset Key
WDRST.7-0
Figure 9. Hard Watchdog
D
Simple counter configuration – for mask-ROM devices only (see Figure 10)
–
24
Simple counter can be configured as an event counter, pulse accumulator, or an internal timer.
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
TMS370Cx0x
8-BIT MICROCONTROLLER
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
programmable timer 1 (continued)
WDCNTR.15-0
WD OVFL
INT FLAG
16-Bit
Watchdog Counter
T1CTL2.6
T1CTL2.5
Interrupt
WD OVRFL
INT ENA
Reset
Clock
Prescaler
T1CTL1.7
WD OVRFL
TAP SEL
Watchdog Reset Key
WDRST.7-0
Figure 10. Simple Counter
serial communications interface 1 (SCI1) module
The TMS370Cx0x devices include a serial communications interface 1 (SCI1) module. The SCI1 module
supports digital communications between the TMS370 devices and other asynchronous peripherals and uses
the standard non-return-zero format (NRZ) format. The SCI1’s receiver and transmitter are double buffered, and
each has its own separate enable and interrupt bits. Both can be operated independently or simultaneously in
the full duplex mode. To ensure data integrity, the SCI1 checks received data for break detection, parity, overrun,
and framing errors. The speed of bit rate (baud) is programmable to over 65,000 different speeds through a
16-bit baud-select register.
Features of the SCI1 module include:
D
D
D
Three external pins:
–
SCITXD: SCI transmit-output pin or general-purpose bidirectional I/O pin
–
SCIRXD: SCI receive-input pin or general-purpose bidirectional I/O pin
–
SCICLK: SCI bidirectional serial-clock pin, or general-purpose bidirectional I/O pin
Two communications modes: asynchronous and isosynchronous†
Baud rate: 64K different programmable rates
–
Asynchronous mode: 3 bps to 156K bps at 5-MHz SYSCLK
ASYNCHRONOUS BAUD
–
+ (BAUD SYSCLK
REG ) 1)
32
Isosynchronous mode: 39 bps to 2.5M bps at 5-MHz SYSCLK
ISOSYNCHRONOUS BAUD
+ (BAUDSYSCLK
REG ) 1)
2
† Isosynchronous = Isochronous
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
25
TMS370Cx0x
8-BIT MICROCONTROLLER
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
serial communications interface 1 (SCI1) module (continued)
D
D
D
D
D
D
D
26
Data word format:
–
One start bit
–
Data word length programmable from one to eight bits
–
Optional even / odd / no parity bit
–
One or two stop bits
Four error-detection flags: parity, overrun, framing, and break detection
Two wake-up multiprocessor modes: Idle-line and address bit
Half or full-duplex operation
Double-buffered receiver and transmitter operations
Transmitter and receiver operations can be accomplished through either interrupt-driven or
polled-algorithms with status flags:
–
Transmitter: TXRDY flag (transmitter buffer register is ready to receive another character) and TX
EMPTY flag (Transmitter shift register is empty)
–
Receiver: RXRDY flag (receive buffer register ready to receive another character), BRKDT flag (break
condition occurred), and RX ERROR monitoring four interrupt conditions
–
Separate enable bits for transmitter and receiver interrupts
–
NRZ (non return-to-zero) format
Eleven SCI1 module control registers, located in control register frame beginning at address P050h
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
TMS370Cx0x
8-BIT MICROCONTROLLER
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
serial communications interface 1 (SCI1) module (continued)
The SCI1 module control registers are illustrated in Table 14.
ÁÁÁ
Á
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
Á
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
Á
Á
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
Á ÁÁÁÁ
Á
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
Á
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
Á
Á
Á
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
Á ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
Á
Á
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
Á
Á
Á
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
Á ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
Á
Á
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
Á
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
Á
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
Á
Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
Á
Á
Á
Á
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
Á
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
Á ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
Á
Á
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
Á
Á
Á
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
Á ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
Á
Á ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
Á
Table 14. SCI1 Module Control Register Memory Map
PF
BIT 7
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
BIT 0
P050
STOP BITS
EVEN/ODD
PARITY
PARITY
ENABLE
ASYNC/
ISOSYNC
ADDRESS/
IDLE WUP
SCI
CHAR2
SCI CHAR1
SCI CHAR0
SCICCR
P051
—
—
SCI SW
RESET
CLOCK
TXWAKE
SLEEP
TXENA
RXENA
SCICTL
P052
BAUDF
(MSB)
BAUDE
BAUDD
BAUDC
BAUDB
BAUDA
BAUD9
BAUD8
BAUD MSB
P053
BAUD7
BAUD6
BAUD5
BAUD4
BAUD3
BAUD2
BAUD1
BAUD0
(LSB)
BAUD LSB
P054
TXRDY
TX EMPTY
—
—
—
—
—
SCI TX
INT ENA
TXCTL
P055
RX
ERROR
RXRDY
BRKDT
FE
OE
PE
RXWAKE
SCI RX
INT ENA
RXCTL
RXDT3
RXDT2
RXDT1
RXDT0
RXBUF
TXDT2
TXDT1
TXDT0
TXBUF
P056
P057
Reserved
RXDT7
RXDT6
RXDT5
RXDT4
P058
P059
REG
Reserved
TXDT7
TXDT6
TXDT5
TXDT4
P05A
P05B
P05C
TXDT3
Reserved
P05D
—
—
—
—
SCICLK
DATA IN
SCICLK
DATA OUT
SCICLK
FUNCTION
SCICLK
DATA DIR
SCIPC1
P05E
SCITXD
DATA IN
SCITXD
DATA OUT
SCITXD
FUNCTION
SCITXD
DATA DIR
SCIRXD
DATA IN
SCIRXD
DATA OUT
SCIRXD
FUNCTION
SCIRXD
DATA DIR
SCIPC2
P05F
SCI STEST
SCITX
PRIORITY
SCIRX
PRIORITY
SCI
ESPEN
—
—
—
—
SCIPRI
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
27
TMS370Cx0x
8-BIT MICROCONTROLLER
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
serial communications interface 1 (SCI1) module (continued)
The SCI1 module block diagram is illustrated in Figure 11.
Frame Format and Mode
TXWAKE
SCICTL.3
PARITY
EVEN / ODD ENABLE
TXBUF.7 – 0
SCI TX Interrupt
Transmit Data
Buffer Reg.
1
TXRDY
TXCTL.7
SCICCR.6 SCICCR.5
WUT
SCITX PRIORITY
SCI TX INT ENA
ÏÏÏÏ
SCIPRI.6
TXCTL.0
8
0
1
Level 1 INT
Level 2 INT
TX EMPTY
TXCTL.6
TXENA
BAUD MSB. 7 – 0
Baud Rate
MSbyte Reg.
TXSHF Reg.
SCIPC2.7 – 4
SCITXD
SCITXD
SCICTL.1
CLOCK
SCIPC1.3 – 0
SYSCLK
BAUD LSB. 7 – 0
SCICLK
SCICTL.4
Baud Rate
LSbyte Reg.
SCIPC2.3 – 0
SCIRXD
RXSHF Reg.
SCIRXD
RXWAKE
RXCTL.1
SCI RX Interrupt
RXENA
RX ERROR
RXCTL.7
RXCTL.4 – 2
ERR
FE OE PE
SCICTL.0
RXRDY
RXCTL.6
8
SCI RX INT ENA
RXCTL.0
Receive Data
Buffer Reg.
ÏÏÏ
ÏÏÏ
SCIRX PRIORITY
SCIPRI.5
0
1
Level 1 INT
Level 2 INT
BRKDT
RXCTL.5
RXBUF.7 – 0
Figure 11. SCI1 Block Diagram
instruction set overview
Table 15 provides an opcode-to-instruction cross-reference of all 73 instructions and 274 opcodes of the
‘370Cx0x instruction set. The numbers at the top of this table represent the most significant nibble of the opcode
while the numbers at the left side of the table represent the least significant nibble. The instructions for these
two opcode nibbles contain the mnemonic, operands, and byte / cycle particular to that opcode.
For example, the opcode B5h points to the CLR A instruction. This instruction contains one byte and executes
in eight SYSCLK cycles.
28
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
Table 15. TMS370 Family Opcode/Instruction Map†
MSN
0
2
3
4
5
6
7
8
INCW
#ra,Rd
3/11
MOV
Ps,A
2/8
0
JMP
#ra
2/7
1
JN
ra
2/5
2
JZ
ra
2/5
MOV
Rs,A
2/7
MOV
#n,A
2/6
MOV
Rs,B
2/7
MOV
Rs,Rd
3/9
MOV
#n,B
2/6
MOV
B,A
1/8
MOV
#n,Rd
3/8
3
JC
ra
2/5
AND
Rs,A
2/7
AND
#n,A
2/6
AND
Rs,B
2/7
AND
Rs,Rd
3/9
AND
#n,B
2/6
AND
B,A
1/8
AND
#n,Rd
3/8
AND
A,Pd
2/9
4
JP
ra
2/5
OR
Rs,A
2/7
OR
#n,A
2/6
OR
Rs,B
2/7
OR
Rs,Rd
3/9
OR
#n,B
2/6
OR
B,A
1/8
OR
#n,Rd
3/8
5
JPZ
ra
2/5
XOR
Rs,A
2/7
XOR
#n,A
2/6
XOR
Rs,B
2/7
XOR
Rs,Rd
3/9
XOR
#n,B
2/6
XOR
B,A
1/8
6
JNZ
ra
2/5
BTJO
Rs,A,ra
3/9
BTJO
#n,A,ra
3/8
BTJO
Rs,B,ra
3/9
BTJO
Rs,Rd,ra
4/11
BTJO
#n,B,ra
3/8
7
JNC
ra
2/5
BTJZ
Rs.,A,ra
3/9
BTJZ
#n,A,ra
3/8
BTJZ
Rs,B,ra
3/9
BTJZ
Rs,Rd,ra
4/11
8
JV
ra
2/5
ADD
Rs,A
2/7
ADD
#n,A
2/6
ADD
Rs,B
2/7
9
JL
ra
2/5
ADC
Rs,A
2/7
ADC
#n,A
2/6
A
JLE
ra
2/5
SUB
Rs,A
2/7
B
JHS
ra
2/5
SBB
Rs,A
2/7
MOV
A,Pd
2/8
MOV
B,Pd
2/8
MOV
Rs,Pd
3/10
9
A
B
C
D
E
F
CLRC /
TST A
1/9
MOV
A,B
1/9
MOV
A,Rd
2/7
TRAP
15
1/14
LDST
n
2/6
MOV
B,Rd
2/7
TRAP
14
1/14
MOV
#ra[SP],A
2/7
MOV
Ps,B
2/7
MOV
Ps,Rd
3/10
DEC
A
1/8
DEC
B
1/8
DEC
Rd
2/6
TRAP
13
1/14
MOV
A,*ra[SP]
2/7
AND
B,Pd
2/9
AND
#n,Pd
3/10
INC
A
1/8
INC
B
1/8
INC
Rd
2/6
TRAP
12
1/14
CMP
*n[SP],A
2/8
OR
A,Pd
2/9
OR
B,Pd
2/9
OR
#n,Pd
3/10
INV
A
1/8
INV
B
1/8
INV
Rd
2/6
TRAP
11
1/14
extend
inst,2
opcodes
XOR
#n,Rd
3/8
XOR
A,Pd
2/9
XOR
B,Pd
2/9
XOR
#n,Pd
3/10
CLR
A
1/8
CLR
B
1/8
CLR
Rn
2/6
TRAP
10
1/14
BTJO
B,A,ra
2/10
BTJO
#n,Rd,ra
4/10
BTJO
A,Pd,ra
3/11
BTJO
B,Pd,ra
3/10
BTJO
#n,Pd,ra
4/11
XCHB
A
1/10
XCHB A /
TST B
1/10
XCHB
Rn
2/8
TRAP
9
1/14
IDLE
BTJZ
#n,B,ra
3/8
BTJZ
B,A,ra
2/10
BTJZ
#n,Rd,ra
4/10
BTJZ
A,Pd,ra
3/10
BTJZ
B,Pd,ra
3/10
BTJZ
#n,Pd,ra
4/11
SWAP
A
1/11
SWAP
B
1/11
SWAP
Rn
2/9
TRAP
8
1/14
MOV
#n,Pd
3/10
ADD
Rs,Rd
3/9
ADD
#n,B
2/6
ADD
B,A
1/8
ADD
#n,Rd
3/8
MOVW
#16,Rd
4/13
MOVW
Rs,Rd
3/12
MOVW
#16[B],Rpd
4/15
PUSH
A
1/9
PUSH
B
1/9
PUSH
Rd
2/7
TRAP
7
1/14
SETC
ADC
Rs,B
2/7
ADC
Rs,Rd
3/9
ADC
#n,B
2/6
ADC
B,A
1/8
ADC
#n,Rd
3/8
JMPL
lab
3/9
JMPL
*Rp
2/8
JMPL
*lab[B]
3/11
POP
A
1/9
POP
B
1/9
POP
Rd
2/7
TRAP
6
1/14
RTS
SUB
#n,A
2/6
SUB
Rs,B
2/7
SUB
Rs,Rd
3/9
SUB
#n,B
2/6
SUB
B,A
1/8
SUB
#n,Rd
3/8
MOV
& lab,A
3/10
MOV
*Rp,A
2/9
MOV
*lab[B],A
3/12
DJNZ
A,#ra
2/10
DJNZ
B,#ra
2/10
DJNZ
Rd,#ra
3/8
TRAP
5
1/14
RTI
1/12
SBB
#n,A
2/6
SBB
Rs,B
2/7
SBB
Rs,Rd
3/9
SBB
#n,B
2/6
SBB
B,A
1/8
SBB
#n,Rd
3/8
MOV
A, & lab
3/10
MOV
A, *Rp
2/9
MOV
A,*lab[B]
3/12
COMPL
A
1/8
COMPL
B
1/8
COMPL
Rd
2/6
TRAP
4
1/14
PUSH
ST
1/8
1/6
1/7
1/9
29
TMS370Cx0x
8-BIT MICROCONTROLLER
† All conditional jumps (opcodes 01–0F), BTJO, BTJZ, and DJNZ instructions use two additional cycles if the branch is taken. The BTJO, BTJZ, and DJNZ
instructions have a relative address as the last operand.
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251–1443
L
S
N
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
C
JNV
ra
2/5
MPY
Rs,A
2/46
MPY
#n,A
2/45
MPY
Rs,B
2/46
MPY
Rs,Rd
3/48
MPY
#n,B
2/45
MPY
B,A
1/47
MPY
#n,Rs
3/47
BR
lab
3/9
BR
*Rp
2/8
BR
*lab[B]
3/11
RR
A
1/8
RR
B
1/8
RR
Rd
2/6
TRAP
3
1/14
POP
ST
1/8
JGE
ra
2/5
CMP
Rs,A
2/7
CMP
#n,A
2/6
CMP
Rs,B
2/7
CMP
Rs,Rd
3/9
CMP
#n,B
2/6
CMP
B,A
1/8
CMP
#n,Rd
3/8
CMP
& lab,A
3/11
CMP
*Rp,A
2/10
CMP
*lab[B],A
3/13
RRC
A
1/8
RRC
B
1/8
RRC
Rd
2/6
TRAP
2
1/14
LDSP
D
DAC
Rs,A
2/9
DAC
#n,A
2/8
DAC
Rs,B
2/9
DAC
Rs,Rd
3/11
DAC
#n,B
2/8
DAC
B,A
1/10
DAC
#n,Rd
3/10
CALL
lab
3/13
CALL
*Rp
2/12
CALL
*lab[B]
3/15
RL
A
1/8
RL
B
1/8
RL
Rd
2/6
TRAP
1
1/14
STSP
E
JG
ra
2/5
DSB
Rs,A
2/9
DSB
#n,A
2/8
DSB
Rs,B
2/9
DSB
Rs,Rd
3/11
DSB
#n,B
2/8
DSB
B,A
1/10
DSB
#n,Rd
3/10
CALLR
lab
3/15
CALLR
*Rp
2/14
CALLR
*lab[B]
3/17
RLC
A
1/8
RLC
B
1/8
RLC
Rd
2/6
TRAP
0
1/14
NOP
F
JLO
ra
2/5
F4
8
MOVW
*n[Rn]
4/15
DIV
Rn.A
3/14-63
F4
9
JMPL
*n[Rn]
4/16
F4
A
MOV
*n[Rn],A
4/17
F4
B
MOV
A,*n[Rn]
4/16
F4
C
BR
*n[Rn]
4/16
F4
D
CMP
*n[Rn],A
4/18
F4
E
CALL
*n[Rn]
4/20
F4
F
CALLR
*n[Rn]
4/22
L
S
N
Second byte of two-byte instructions (F4xx):
POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251–1443
Legend:
*
= Indirect addressing operand prefix
& = Direct addressing operand prefix
# = immediate operand
#16 = immediate 16-bit number
lab = 16-label
n = immediate
i
di t 8-bit
8 bit number
b
Pd = Peripheral register containing destination type
Pn = Peripheral register
Ps = Peripheral
Peri heral register containing source byte
ra = Relative address
Rd = Register containing destination type
Rn = Register file
Rp = Register pair
Rpd = Destination register pair
Rps = Source Register pair
Rs = Register containing source byte
1/7
1/8
1/7
† All conditional jumps (opcodes 01–0F), BTJO, BTJZ, and DJNZ instructions use two additional cycles if the branch is taken. The BTJO, BTJZ, and DJNZ
instructions have a relative address as the last operand.
Template Release Date: 7–11–94
1
TMS370Cx0x
8-BIT MICROCONTROLLER
MSN
0
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
30
Table 15. TMS370 Family Opcode/Instruction Map† (Continued)
TMS370Cx0x
8-BIT MICROCONTROLLER
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
development system support
The TMS370 family development support tools include an assembler, a C compiler, a linker, and compact
development tool, and an EEPROM / UVEPROM programmer.
D
D
D
Assembler/ linker (Part No. TMDS3740850–02 for PC)
–
Includes extensive macro capability
–
Allows high-speed operation
–
Provides format conversion utilities for popular formats
ANSI C Compiler (Part No. TMDS3740855–02 for PC, Part No. TMDS3740555–09 for HP700, Sun-3
or Sun-4)
–
Generates assembly code for the TMS370 that can be inspected easily
–
Improves code execution speed and reduces code size with optional optimizer pass
–
Enables direct reference to the TMS370’s port registers by using a naming convention
–
Provides flexibility in specifying the storage for data objects
–
Interfaces C functions and assembly functions easily
–
Includes assembler and linker
CDT370 (compact development tool) real-time in-circuit emulation
–
Base (Part Number EDSCDT370 – for PC, requires cable)
–
D
Cable for 28-pin PLCC (Part No. EDSTRG28PLCC02)
–
Includes EEPROM and EPROM programming support
–
Allows inspection and modification of memory locations
–
Allows uploading / downloading program and data memory
–
Executes programs and software routines
–
Includes 1 024 samples trace buffer
–
Provides single-step executable instructions
–
Uses software breakpoints to halt program execution at selected address
Microcontroller programmer
–
Base (Part No. TMDS3760500A – for PC, requires programmer head)
–
–
Single unit head for 28-pin PLCC (Part No. TMDS3780510A)
Personal computer based, window / function-key-oriented user interface for ease of use and rapid
learning environment
HP700 is a trademark of Hewlett-Packard Company.
Sun-3 and Sun-4 are trademarks of Sun Microsystems, Inc.
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
31
TMS370Cx0x
8-BIT MICROCONTROLLER
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
development system support (continued)
D
D
32
Design kit (Part No. TMDS3770110 – for PC)
–
Includes TMS370 Application Board and TMS370 Assembler diskette and documentation
–
Supports quick evaluation of TMS370 functionality
–
Provides capability to upload and download code
–
Provides capability to execute programs and software routines, and to single-step executable
instructions
–
Provides software breakpoints to halt program execution at selected addresses
–
Includes wire-wrap prototype area
–
Includes reverse assembler
Starter Kit (Part No. TMDS37000 – for PC)
–
Includes TMS370 Assembler diskette and documentation
–
Includes TMS370 Simulator
–
Includes programming adapter board and programming software
–
Does not include (to be supplied by the user):
–
+ 5 V power supply
–
ZIF sockets
–
Nine-pin RS232 cable
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
TMS370Cx0x
8-BIT MICROCONTROLLER
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
device numbering conventions
Figure 12 illustrates the numbering and symbol nomenclature for the TMS370Cx0x family.
TMS 370 C 7 0 2
A FN T
Prefix: TMS = Standard prefix for fully qualified devices
SE = System evaluator that is used for
prototyping purpose.
Family:
370 = TMS370 8-Bit Microcontroller Family
Technology:
C = CMOS
Program Memory Types:
0 = Mask ROM
3 = Mask ROM, No Data EEPROM
7 = EPROM
Device Type:
0 = ’x0x devices containing the following modules:
— Timer 1
— Serial Communications Interface 1 (SCI1)
Memory Size:
2 = 8K bytes
Temperature Ranges:
A = –40°C to 85°C
L =
0°C to 70°C
T = –40°C to 105°C
Packages:
ROM and EPROM Option:
FN = Plastic Leaded Chip Carrier
FZ = Ceramic Leaded Chip Carrier
A = For ROM device, the watchdog timer can be configured
as one of the three different mask options:
– A standard watchdog
– A hard watchdog
– A simple watchdog
The clock mask option can be either:
– Divide-by-4 clock
– Divide-by-1 (PLL) clock
The low-power modes can be either:
– Enabled
– Disabled
NONE = For EPROM device, a standard watchdog, a
divide-by-4 clock, and low-power modes are enabled.
Figure 12. TMS370Cx0x Family Nomenclature
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
33
TMS370Cx0x
8-BIT MICROCONTROLLER
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
device part numbers
Table 16 provides all of the ’x0x devices available. The device part number nomenclature is designed to assist
ordering. Upon ordering, the customer must specify not only the device part number, but also the clock and
watchdog timer options desired. Each device can have only one of the three possible watchdog timer options
and one of the two clock options. The options to be specified pertain solely to orders involving ROM devices.
Table 16. Device Part Numbers
DEVICE PART NUMBERS
FOR 28 PINS (LCC)
TMS370C002AFNA
TMS370C002AFNL
TMS370C002AFNT
TMS370C302AFNA
TMS370C302AFNL
TMS370C302AFNT
TMS370C702FNT
SE370C702FZT†
† System evaluators are for use in prototype environment and their
reliability has not been characterized.
34
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
TMS370Cx0x
8-BIT MICROCONTROLLER
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
new code release form
Figure 13 shows a sample of the new code release form.
NEW CODE RELEASE FORM
TEXAS INSTRUMENTS
TMS370 MICROCONTROLLER PRODUCTS
DATE:
To release a new customer algorithm to TI incorporated into a TMS370 family microcontroller, complete this form and submit with the following information:
1. A ROM description in object form on Floppy Disk, Modem XFR, or EPROM (Verification file will be returned via same media)
2. An attached specification if not using TI standard specification as incorporated in TI’s applicable device data book.
Company Name:
Street Address:
Street Address:
City:
Contact Mr./Ms.:
Phone: (
State
Zip
)
Ext.:
Customer Purchase Order Number:
Customer Print Number *Yes:
#
No:
(Std. spec to be followed)
*If Yes: Customer must provide ”print” to TI w/NCRF for approval before ROM
code processing starts.
Customer Part Number:
Customer Application:
TMS370 Device:
TI Customer ROM Number:
(provided by Texas Instruments)
CONTACT OPTIONS FOR THE ’A’ VERSION TMS370 MICROCONTROLLERS
OSCILLATOR FREQUENCY
MIN
TYP
MAX
[] External Drive (CLKIN)
[] Crystal
[] Ceramic Resonator
[] Supply Voltage MIN:
(std range: 4.5V to 5.5V)
Low Power Modes
[] Enabled
[] Disabled
Watchdog counter
[] Standard
[] Hard Enabled
[] Simple Counter
Clock Type
[] Standard (/4)
[] PLL (/1)
NOTE:
Non ’A’ version ROM devices of the TMS370 microcontrollers will have the
“Low-power modes Enabled”, “Divide-by-4” Clock, and “Standard” Watchdog
options. See the TMS370 Family User’s Guide (literature number SPNU127)
or the TMS370 Family Data Manual (literature number SPNS014B).
MAX:
TEMPERATURE RANGE
[] ’L’:
0° to 70°C (standard)
[] ’A’:
–40° to 85°C
[] ’T’:
–40° to 105°C
PACKAGE TYPE
[] ’N’ 28-pin PDIP
[] “FN” 44-pin PLCC
[] “FN” 28-pin PLCC
[] “FN” 68-pin PLCC
[] “N” 40-pin PDIP
[] “NM” 64-pin PSDIP
[] “NJ” 40-pin PSDIP (formerly known as N2)
SYMBOLIZATION
BUS EXPANSION
[] TI standard symbolization
[] TI standard w/customer part number
[] Customer symbolization
(per attached spec, subject to approval)
[] YES
[] NO
NON-STANDARD SPECIFICATIONS:
ALL NON-STANDARDS SPECIFICATIONS MUST BE APPROVED BY THE TI ENGINEERING STAFF: If the customer requires expedited production material
(i.e., product which must be started in process prior to prototype approval and full production release) and non-standard spec issues are not resolved to the
satisfaction of both the customer and TI in time for a scheduled shipment, the specification parameters in question will be processed/tested to the standard
TI spec. Any such devices which are shipped without conformance to a mutually approved spec, will be identified by a ’P’ in the symbolization preceding the
TI part number.
RELEASE AUTHORIZATION:
This document, including any referenced attachments, is and will be the controlling document for all orders placed for this TI custom device. Any changes must
be in writing and mutually agreed to by both the customer and TI. The prototype cycletime commences when this document is signed off and the verification
code is approved by the customer.
1. Customer:
Date:
2. TI: Field Sales:
Marketing:
Prod. Eng.:
Proto. Release:
Figure 13. Sample New Code Release Form
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
35
TMS370Cx0x
8-BIT MICROCONTROLLER
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
Table 17. Peripheral File Frame Compilation
ÁÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
Á
ÁÁÁÁÁ
ÁÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
Á
ÁÁÁÁÁ
ÁÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
Á
ÁÁÁÁÁ
ÁÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
Table 17 is a collection of all the peripheral file frames used in the ’Cx0x (provided for a quick reference).
PF
BIT 7
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
BIT 0
P010
COLD
START
OSC
POWER
PF AUTO
WAIT
OSC FLT
FLAG
P011
—
—
—
P012
HALT /
STANDBY
PWRDWN /
IDLE
—
REG
MC PIN
WPO
MC PIN
DATA
—
µP / µC
MODE
SCCR0
AUTO
WAIT
DISABLE
—
MEMORY
DISABLE
—
—
SCCR1
BUS
STEST
CPU
STEST
—
INT1
NMI
PRIVILEGE
DISABLE
SCCR2
System Configuration Registers
P013
to
P016
Reserved
P017
INT1
FLAG
INT1
PIN DATA
—
—
—
INT1
POLARITY
INT1
PRIORITY
INT1
ENABLE
INT1
P018
INT2
FLAG
INT2
PIN DATA
—
INT2
DATA DIR
INT2
DATA OUT
INT2
POLARITY
INT2
PRIORITY
INT2
ENABLE
INT2
P019
INT3
FLAG
INT3
PIN DATA
—
INT3
DATA DIR
INT3
DATA OUT
INT3
POLARITY
INT3
PRIORITY
INT3
ENABLE
INT3
P01A
BUSY
—
—
—
—
AP
W1W0
EXE
DEECTL
BUSY
VPPS
—
—
—
—
W0
EXE
EPCTL
P01B
P01C
Reserved
P01D
P01E
P01F
Reserved
Digital Port Control Registers
P020
Reserved
APORT1
P021
Port A Control Register 2 (must be 0)
APORT2
P022
Port A Data
P023
Port A Direction
P024
to
P02B
Reserved
ADATA
ADIR
P02C
Port D Control Register 1 (must be 0)
—
—
—
DPORT1
P02D
Port D Control Register 2 (must be 0)†
—
—
—
DPORT2
P02E
Port D Data
—
—
—
DDATA
P02F
Port D Direction
—
—
—
DDIR
Timer Module Register Memory Map
Modes: Dual-Compare and Capture / Compare
P040
Bit 15
T1Counter MSbyte
P041
Bit 7
T1 Counter LSbyte
Bit 0
P042
Bit 15
Compare Register MSbyte
Bit 8
P043
Bit 7
Compare Register LSbyte
Bit 0
† To configure pin D3 as SYSCLK, set port D control register 2 = 08h.
36
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
Bit 8
T1CNTR
T1C
TMS370Cx0x
8-BIT MICROCONTROLLER
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
Table 17. Peripheral File Frame Compilation (Continued)
ÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
Á
ÁÁÁÁÁ
ÁÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
Á
ÁÁÁÁÁ
ÁÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
Á
ÁÁÁÁÁ
ÁÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
Á
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
Á
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
PF
BIT 7
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
BIT 0
REG
Modes: Dual-Compare and Capture / Compare (Continued)
P044
Bit 15
Capture/Compare Register MSbyte
Bit 8
P045
Bit 7
Capture/Compare Register LSbyte
Bit 0
T1CC
P046
Bit 15
Watchdog Counter MSbyte
Bit 8
P047
Bit 7
Watchdog Counter LSbyte
Bit 0
P048
Bit 7
Watchdog Reset Key
Bit 0
P049
WD OVRFL
TAP SEL†
WD INPUT
SELECT2†
WD INPUT
SELECT1†
WD INPUT
SELECT0†
—
T1 INPUT
SELECT2
T1 INPUT
SELECT1
T1 INPUT
SELECT0
T1CTL1
P04A
WD OVRFL
RST ENA†
WD OVRFL
INT ENA
WD OVRFL
INT FLAG
T1 OVRFL
INT ENA
T1 OVRFL
INT FLAG
—
—
T1
SW RESET
T1CTL2
WDCNTR
WDRST
Mode: Dual-Compare
P04B
T1EDGE
INT FLAG
T1C2
INT FLAG
T1C1
INT FLAG
—
—
T1EDGE
INT ENA
T1C2
INT ENA
T1C1
INT ENA
T1CTL3
P04C
T1 MODE=0
T1C1
OUT ENA
T1C2
OUT ENA
T1C1
RST ENA
T1CR
OUT ENA
T1EDGE
POLARITY
T1CR
RST ENA
T1EDGE
DET ENA
T1CTL4
Mode: Capture / Compare
P04B
T1EDGE
INT FLAG
—
T1C1
INT FLAG
—
—
T1EDGE
INT ENA
—
T1C1
INT ENA
T1CTL3
P04C
T1
MODE = 1
T1C1
OUT ENA
—
T1C1
RST ENA
—
T1EDGE
POLARITY
—
T1EDGE
DET ENA
T1CTL4
Modes: Dual-Compare and Capture / Compare
P04D
—
—
—
—
T1EVT
DATA IN
T1EVT
DATA OUT
T1EVT
FUNCTION
T1EVT
DATA DIR
T1PC1
P04E
T1PWM
DATA IN
T1PWM
DATA OUT
T1PWM
FUNCTION
T1PWM
DATA DIR
T1IC/CR
DATA IN
T1IC/CR
DATA OUT
T1IC/CR
FUNCTION
T1IC/CR DATA
DIR
T1PC2
P04F
T1 STEST
T1
PRIORITY
—
—
—
—
—
—
T1PRI
P050
STOP BITS
EVEN/ODD
PARITY
PARITY
ENABLE
ASYNC/
ISOSYNC
ADDRESS/
IDLE WUP
SCI CHAR2
SCI CHAR1
SCI CHAR0
SCICCR
P051
—
—
SCI SW
RESET
CLOCK
TXWAKE
SLEEP
TXENA
RXENA
SCICTL
P052
BAUDF
(MSB)
BAUDE
BAUDD
BAUDC
BAUDB
BAUDA
BAUD9
BAUD8
BAUD MSB
P053
BAUD7
BAUD6
BAUD5
BAUD4
BAUD3
BAUD2
BAUD1
BAUD0 (LSB)
BAUD LSB
TXCTL
SCI1 Module Control Memory Map
P054
TXRDY
TX EMPTY
—
—
—
—
—
SCI TX
INT ENA
P055
RX
ERROR
RXRDY
BRKDT
FE
OE
PE
RXWAKE
SCI RX
INT ENA
RXCTL
RXDT7
RXDT6
RXDT5
RXDT4
RXDT3
RXDT2
RXDT1
RXDT0
RXBUF
P056
P057
P058
Reserved
Reserved
† Once the WD OVRFL RST ENA bit is set, these bits cannot be changed until a reset; this applies only to the standard
watchdog and to simple counter. In the hard watchdog, these bits can be modified at any time; the WD INPUT SELECT2
bits are ignored.
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
37
TMS370Cx0x
8-BIT MICROCONTROLLER
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
Table 17. Peripheral File Frame Compilation (Continued)
ÁÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
Á
ÁÁÁÁÁ
ÁÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
Á
ÁÁÁÁÁ
ÁÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
Á
ÁÁÁÁÁ
ÁÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
PF
BIT 7
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
BIT 0
REG
TXDT2
TXDT1
TXDT0
TXBUF
SCI1 Module Control Memory Map (Continued)
P059
TXDT7
TXDT6
TXDT5
TXDT4
P05A
P05B
P05C
TXDT3
Reserved
P05D
—
—
—
—
SCICLK
DATA IN
SCICLK
DATA OUT
SCICLK
FUNCTION
SCICLK DATA
DIR
SCIPC1
P05E
SCITXD
DATA IN
SCITXD
DATA OUT
SCITXD
FUNCTION
SCITXD
DATA DIR
SCIRXD
DATA IN
SCIRXD
DATA OUT
SCIRXD
FUNCTION
SCIRXD DATA
DIR
SCIPC2
P05F
SCI STEST
SCITX
PRIORITY
SCIRX
PRIORITY
SCI
ESPEN
—
—
—
—
SCIPRI
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Supply voltage range,VCC (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.6 V to 7 V
Input voltage range, All pins except MC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.6 V to 7 V
MC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.6 V to 14 V
Input clamp current, IIK (VI < 0 or VI > VCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 20 mA
Output clamp current, IOK (VO < 0 or VO > VCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 20 mA
Continuous output current per buffer, IO (VO = 0 to VCC)) (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . ± 10 mA
Maximum ICC current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 mA
Maximum ISS current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 170 mA
Continuous power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500 mW
Operating free-air temperature range, TA: L version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C
A version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 40°C to 85°C
T version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 40°C to 105°C
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 65°C to 150°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. Unless otherwise noted, all voltage values are with respect to VSS.
2. Electrical characteristics are specified with all output buffers loaded with specified IO current. Exceeding the specified IO current in
any buffer can affect the levels on other buffers.
38
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
TMS370Cx0x
8-BIT MICROCONTROLLER
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
recommended operating conditions
VCC
VIL
Supply voltage (see Note 1)
RAM data-retention supply voltage (see Note 3)
Low level input voltage
Low-level
All pins except MC
MC, normal operation
All pins except MC, XTAL2 / CLKIN, and
RESET
VIH
Hi h l
l input
i
t voltage
lt
High-level
MC (mode control) voltage
Operating free-air temperature
MAX
5
5.5
V
3
5.5
V
VSS
VSS
0.8
0.3
2
0.8 VCC
RESET
0.7 VCC
UNIT
V
VCC
VCC
VCC
11.7
12
13
EPROM programming voltage (VPP)
13
13.2
13.5
Microcomputer
VSS
0
L version
TA
NOM
4.5
XTAL2 / CLKIN
EEPROM write protect override (WPO)
VMC
MIN
V
V
0.3
70
A version
– 40
85
T version
– 40
105
°C
NOTES: 1. Unless otherwise noted, all voltage values are with respect to VSS.
3. RESET must be activated externally when VCC or SYSCLK is not within the recommended operating range.
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
39
TMS370Cx0x
8-BIT MICROCONTROLLER
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
electrical characteristics over recommended operating free-air temperature range (unless
otherwise noted)
PARAMETER
VOL
Low-level output voltage
VOH
High level output voltage
High-level
II
Input current
IOL
Low-level output current
IOH
High level output current
High-level
TEST CONDITIONS
IOL = 1.4 mA
IOH = – 50 µA
IOH = – 2 mA
0 V ≤ VI ≤ 0.3 V
MC
I / O pins
ICC
0.9 VCC
UNIT
V
V
2.4
10
50
0 V ≤ VI ≤ VCC
± 10
1.4
µA
mA
µA
mA
– 50
µA
–2
mA
20
36
See Notes 5 and 6
SYSCLK = 3 MHz
13
25
See Notes 5 and 6
SYSCLK = 0.5 MHz
5
11
See Notes 5 and 6
SYSCLK = 5 MHz
10
17
See Notes 5 and 6
SYSCLK = 3 MHz
6.5
11
2
3.5
See Notes 5 and 6
SYSCLK = 3 MHz
4.5
8.6
See Notes 5 and 6
SYSCLK = 0.5 MHz
1.5
3.0
1
30
See Note 5
XTAL2 / CLKIN < 0.2 V
Supply current (HALT mode)
0.4
See Note 4
12 V ≤ VI ≤ 13 V
See Notes 5 and 6
SYSCLK = 0.5 MHz
Supply
y current (STANDBY
(
mode))
OSC POWER bit = 1 (see Note 9)
MAX
650
VOH = 2.4 V
See Notes 5 and 6
SYSCLK = 5 MHz
Supply current (STANDBY mode)
OSC POWER bit = 0 (see Note 8)
TYP
0.3 V < VI ≤ 13 V
VOL = 0.4 V
VOH = 0.9 VCC
Supply current (operating mode)
OSC POWER bit = 0 (see Note 7)
MIN
mA
mA
mA
µA
NOTES: 4. Input current IPP is a maximum of 50 mA only when programming EPROM.
5. Single chip mode, ports configured as inputs or outputs with no load. All inputs ≤ 0.2 V or ≥ VCC – 0.2 V.
6. XTAL2/CLKIN is driven with an external square wave signal with 50% duty cycle and rise and fall times less than 10 ns. Current
can be higher with a crystal oscillator. At 5 MHz SYSCLK, this extra current = 0.01 mA x (total load capacitance + crystal capacitance
in pF).
7. Maximum operating current = 5.6 (SYSCLK) + 8 mA.
8. Maximum standby current = 3 (SYSCLK) + 2 mA. (OSC POWER bit = 0).
9. Maximum standby current = 2.24 (SYSCLK) + 1.9 mA. (OSC POWER bit = 1, only valid up to 3 MHz of SYSCLK).
40
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
TMS370Cx0x
8-BIT MICROCONTROLLER
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
XTAL2/CLKIN
XTAL1
XTAL2/CLKIN
XTAL1
C3 (see Note B)
C1
(see Note B)
Crystal/Ceramic
Resonator
(see Note A)
C2 (see Note B)
External
Clock Signal
NOTES: A. The crystal/ceramic resonator frequency is four times the reciprocal of the system clock period.
B. The values of C1 and C2 are typically 15 pF and C3 is typically 50 pF. See the manufacturer’s recommendations for ceramic
resonators.
Figure 14. Recommended Crystal/Clock Connections
Load Voltage
1.2 kΩ
VO
20 pF
Case 1: VO = VOH = 2.4 V; Load Voltage = 0 V
Case 2: VO = VOL = 0.4 V; Load Voltage = 2.1 V
NOTE A: All measurements are made with the pin loading as shown unless otherwise noted. All measurements are made with XTAL2/CLKIN
driven by an external square wave signal with a 50% duty cycle and rise and fall times less than 10 ns unless otherwise stated.
Figure 15. Typical Output Load Circuit (See Note A)
VCC
VCC
300 Ω
30 Ω
Output
Enable
I/O
6 kΩ
Pin Data
INT1
20 Ω
20 Ω
GND
GND
Figure 16. Typical Buffer Circuitry
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
41
TMS370Cx0x
8-BIT MICROCONTROLLER
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
PARAMETER MEASUREMENT INFORMATION
timing parameter symbology
Timing parameter symbols have been created in accordance with JEDEC Standard 100. In order to shorten the
symbols, some of the pin names and other related terminology have been abbreviated as follows:
AR
Array
SC
SYSCLK
B
Byte
SCC
SCICLK
CI
XTAL2/CLKIN
TXD
SCITXD
RXD
SCIRXD
Lowercase subscripts and their meanings are:
c
cycle time (period)
su
setup time
d
delay time
v
valid time
f
fall time
w
pulse duration (width)
r
rise time
The following additional letters are used with these meanings:
H
High
L
Low
V
Valid
All timings are measured between high and low measurement points as indicated in Figure 17 and Figure 18.
0.8 VCC V (High)
2 V (High)
0.8 V (Low)
0.8 V (Low)
Figure 17. XTAL2/CLKIN Measurement Points
42
POST OFFICE BOX 1443
Figure 18. General Measurement Points
• HOUSTON, TEXAS 77251–1443
TMS370Cx0x
8-BIT MICROCONTROLLER
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
external clocking requirements for divide-by-4 clock (see Note 10 and Figure 19)
NO.
1
2
3
4
MIN
MAX
20
UNIT
tw(Cl)
tr(Cl)
Pulse duration, XTAL2/CLKIN (see Note 11)
Rise time, XTAL2/CLKIN
30
ns
tf(CI)
td(CIH-SCL)
Fall time, XTAL2/CLKIN
30
ns
CLKIN
Crystal operating frequency
Delay time, XTAL2/CLKIN rise to SYSCLK fall
ns
100
ns
20
MHz
2
SYSCLK
Internal system clock operating frequency†
0.5
5
MHz
† SYSCLK = CLKIN/4
NOTES: 10. For VIL and VIH, refer to recommended operating conditions.
11. This pulse can be either a high pulse, which extends from the earliest valid high to the final valid high in an XTAL2/CLKIN cycle, or
a low pulse, which extends from the earliest valid low to the final valid low in an XTAL2/CLKIN cycle.
1
XTAL2/CLKIN
2
3
4
SYSCLK
Figure 19. External Clock Timing for Divide-by-4
external clocking requirements for divide-by-1 clock (PLL) (see Note 10 and Figure 20)
NO.
1
2
3
4
MIN
MAX
20
UNIT
tw(Cl)
tr(Cl)
Pulse duration, XTAL2/CLKIN (see Note 11)
Rise time, XTAL2/CLKIN
30
ns
tf(CI)
td(CIH-SCH)
Fall time, XTAL2/CLKIN
30
ns
100
ns
CLKIN
Crystal operating frequency
2
5
SYSCLK
Internal system clock operating frequency‡
2
5
Delay time, XTAL2/CLKIN rise to SYSCLK rise
ns
MHz
MHz
‡ SYSCLK = CLKIN/1
NOTES: 10. For VIL and VIH, refer to recommended operating conditions.
11. This pulse can be either a high pulse, which extends from the earliest valid high to the final valid high in an XTAL2/CLKIN cycle, or
a low pulse, which extends from the earliest valid low to the final valid low in an XTAL2/CLKIN cycle.
1
XTAL2/CLKIN
2
3
4
SYSCLK
Figure 20. External Clock Timing for Divide-by-1
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
43
TMS370Cx0x
8-BIT MICROCONTROLLER
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
switching characteristics and timing requirements (see Note 12 and Figure 21)
NO.
PARAMETER
MIN
MAX
Divide-by-4
200
2 000
Divide-by-1
200
500
5
tc
Cycle time,
time SYSCLK (system clock)
6
tw(SCL)
tw(SCH)
Pulse duration, SYSCLK low
0.5 tc–20
Pulse duration, SYSCLK high
0.5 tc
7
UNIT
ns
0.5 tc
ns
0.5 tc + 20
ns
NOTE 12: tc = system-clock cycle time = 1 / SYSCLK
5
7
6
SYSCLK
Figure 21. SYSCLK Timing
general purpose output signal switching time requirements (see Figure 22)
MIN
tr
tf
NOM
MAX
UNIT
Rise time
30
ns
Fall time
30
ns
tr
tf
Figure 22. Signal Switching Time
recommended EEPROM timing requirements for programming
MIN
tw(PGM)B
tw(PGM)AR
MAX
UNIT
Pulse duration, programming signal to ensure valid data is stored (byte mode)
10
ms
Pulse duration, programming signal to ensure valid data is stored (array mode)
20
ms
recommended EPROM operating conditions for programming
VCC
VPP
Supply voltage
IPP
Supply current at MC pin during programming (VPP = 13 V)
SYSCLK
Supply voltage at MC pin
System clock operating frequency
MIN
NOM
MAX
4.75
5.5
6
V
13
13.2
13.5
V
30
50
Divide-by-4
0.5
5
Divide-by-1
2
5
UNIT
mA
MHz
recommended EPROM timing requirements for programming
tw(EPGM)
Pulse duration, programming signal (see Note 13)
NOTE 13: Programming pulse is active when both EXE (EPCTL.0) and VPPS (EPCTL.6) are set.
44
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
MIN
NOM
MAX
0.40
0.50
3
UNIT
ms
TMS370Cx0x
8-BIT MICROCONTROLLER
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
SCI1 isosynchronous mode timing characteristics and requirements for internal clock
(see Note 12 and Figure 23)
NO.
24
25
26
27
28
29
MIN
tc(SCC)
tw(SCCL)
Cycle time, SCICLK
2tc
tc – 45
tw(SCCH)
td(SCCL-TXDV)
Pulse duration, SCICLK high
tv(SCCH-TXD)
tsu(RXD-SCCH)
Valid time, SCITXD data valid after SCICLK high
Pulse duration, SCICLK low
tc – 45
– 50
Delay time, SCITXD valid after SCICLK low
Setup time, SCIRXD to SCICLK high
30
tv(SCCH-RXD)
Valid time, SCIRXD data valid after SCICLK high
NOTE 12: tc = system-clock cycle time = 1 / SYSCLK
tw(SCCH) – 50
0.25 tc + 145
0
MAX
UNIT
131 072tc
ns
0.5tc(SCC)+45
0.5tc(SCC)+45
ns
60
ns
ns
ns
ns
ns
24
26
25
SCICLK
28
27
Data Valid
SCITXD
29
30
SCIRXD
Data Valid
Figure 23. SCI1 Isosynchronous Mode Timing for Internal Clock
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
45
TMS370Cx0x
8-BIT MICROCONTROLLER
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
SCI1 isosynchronous mode timing characteristics and requirements for external clock
(see Note 12 and Figure 24)
NO.
31
32
33
34
35
36
MIN
tc(SCC)
tw(SCCL)
Cycle time, SCICLK
tw(SCCH)
td(SCCL-TXDV)
Pulse duration, SCICLK high
tv(SCCH-TXD)
tsu(RXD-SCCH)
Valid time, SCITXD data valid after SCICLK high
MAX
10tc
4.25tc + 120
Pulse duration, SCICLK low
ns
ns
tc + 120
Delay time, SCITXD valid after SCICLK low
ns
4.25tc + 145
Setup time, SCIRXD to SCICLK high
tw(SCCH)
40
37
tv(SCCH-RXD)
Valid time, SCIRXD data after SCICLK high
NOTE 12: tc = system-clock cycle time = 1 / SYSCLK
UNIT
2tc
ns
ns
ns
ns
31
33
32
SCICLK
35
34
Data Valid
SCITXD
36
37
Data Valid
SCIRXD
Figure 24. SCI1 Isosynchronous Timing for External Clock
Table 18 is designed to aid the user in referencing a device part number to a mechanical drawing. The table
shows a cross-reference of the device part number to the TMS370 generic package name and the associated
mechanical drawing by drawing number and name.
Table 18. TMS370Cx0x Family Package Type and Mechanical Cross-Reference
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
PKG TYPE
(mil pin spacing)
TMS370 GENERIC NAME
PKG TYPE NO. AND
MECHANICAL NAME
DEVICE PART NUMBERS
FN – 28 pin
(50-mil pin spacing)
PLASTIC LEADED CHIP CARRIER
(PLCC)
FN(S-PQCC-J**) PLASTIC J-LEADED
CHIP CARRIER
TMS370C002AFNA
TMS370C002AFNL
TMS370C002AFNT
TMS370C302AFNA
TMS370C302AFNL
TMS370C302AFNT
TMS370C702FNT
FZ – 28 pin
(50-mil pin spacing)
CERAMIC LEADED CHIP CARRIER
(CLCC)
FZ(S-CQCC-J**) J-LEADED CERAMIC
CHIP CARRIER
SE370C702FZT
46
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
TMS370Cx0x
8-BIT MICROCONTROLLER
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
MECHANICAL DATA
FN (S-PQCC-J**)
PLASTIC J-LEADED CHIP CARRIER
20 PIN SHOWN
Seating Plane
0.004 (0,10)
0.180 (4,57) MAX
0.120 (3,05)
0.090 (2,29)
D
D1
0.020 (0,51) MIN
3
1
19
0.032 (0,81)
0.026 (0,66)
4
E
18
D2 / E2
E1
D2 / E2
8
14
0.021 (0,53)
0.013 (0,33)
0.007 (0,18) M
0.050 (1,27)
9
13
0.008 (0,20) NOM
D1 / E1
D/E
D2 / E2
NO. OF
PINS
**
MIN
MAX
MIN
MAX
MIN
MAX
20
0.385 (9,78)
0.395 (10,03)
0.350 (8,89)
0.356 (9,04)
0.141 (3,58)
0.169 (4,29)
28
0.485 (12,32)
0.495 (12,57)
0.450 (11,43)
0.456 (11,58)
0.191 (4,85)
0.219 (5,56)
44
0.685 (17,40)
0.695 (17,65)
0.650 (16,51)
0.656 (16,66)
0.291 (7,39)
0.319 (8,10)
52
0.785 (19,94)
0.795 (20,19)
0.750 (19,05)
0.756 (19,20)
0.341 (8,66)
0.369 (9,37)
68
0.985 (25,02)
0.995 (25,27)
0.950 (24,13)
0.958 (24,33)
0.441 (11,20)
0.469 (11,91)
84
1.185 (30,10)
1.195 (30,35)
1.150 (29,21)
1.158 (29,41)
0.541 (13,74)
0.569 (14,45)
4040005 / B 03/95
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-018
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
47
TMS370Cx0x
8-BIT MICROCONTROLLER
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
MECHANICAL DATA
FZ (S-CQCC-J**)
J-LEADED CERAMIC CHIP CARRIER
28 LEAD SHOWN
0.040 (1,02)
45°
Seating Plane
0.180 (4,57)
A
0.155 (3,94)
0.140 (3,55)
B
4
1
0.120 (3,05)
26
25
5
A
B
0.050 (1,27)
C
(at Seating
Plane)
0.032 (0,81)
0.026 (0,66)
0.020 (0,51)
0.014 (0,36)
19
11
18
12
0.025 (0,64) R TYP
0.040 (1,02) MIN
0.120 (3,05)
0.090 (2,29)
B
A
C
JEDEC
NO. OF
OUTLINE
PINS**
MIN
MAX
MIN
MAX
MIN
MAX
MO-087AA
28
0.485
(12,32)
0.495
(12,57)
0.430
(10,92)
0.455
(11,56)
0.410
(10,41)
0.430
(10,92)
MO-087AB
44
0.685
(17,40)
0.695
(17,65)
0.630
(16,00)
0.655
(16,64)
0.610
(15,49)
0.630
(16,00)
MO-087AC
52
0.785
(19,94)
0.795
(20,19)
0.730
(18,54)
0.765
(19,43)
0.680
(17,28)
0.740
(18,79)
MO-087AD
68
0.985
(25,02)
0.995
(25,27)
0.930
(23,62)
0.955
(24,26)
0.910
(23,11)
0.930
(23,62)
4040219 / B 03/95
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a ceramic lid using glass frit.
48
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
PACKAGE OPTION ADDENDUM
www.ti.com
4-May-2009
PACKAGING INFORMATION
Orderable Device
Status (1)
SE370C702FZT
OBSOLETE
JLCC
FZ
28
TBD
Call TI
Call TI
TMS370C702FNT
OBSOLETE
PLCC
FN
28
TBD
Call TI
Call TI
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
Lead/Ball Finish
MSL Peak Temp (3)
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in
a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check
http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS
compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder
temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited
information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI
to Customer on an annual basis.
Addendum-Page 1
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products
Amplifiers
Data Converters
DLP® Products
DSP
Clocks and Timers
Interface
Logic
Power Mgmt
Microcontrollers
RFID
RF/IF and ZigBee® Solutions
amplifier.ti.com
dataconverter.ti.com
www.dlp.com
dsp.ti.com
www.ti.com/clocks
interface.ti.com
logic.ti.com
power.ti.com
microcontroller.ti.com
www.ti-rfid.com
www.ti.com/lprf
Applications
Audio
Automotive
Broadband
Digital Control
Medical
Military
Optical Networking
Security
Telephony
Video & Imaging
Wireless
www.ti.com/audio
www.ti.com/automotive
www.ti.com/broadband
www.ti.com/digitalcontrol
www.ti.com/medical
www.ti.com/military
www.ti.com/opticalnetwork
www.ti.com/security
www.ti.com/telephony
www.ti.com/video
www.ti.com/wireless
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2009, Texas Instruments Incorporated