TI TMS77C82

TMS370Cx7x
8-BIT MICROCONTROLLER
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
D
D
D
D
D
D
D
D
D
FN / FZ PACKAGE
( TOP VIEW )
VSS1
C2
C1
MC
C0
B7
B6
B5
B4
B3
B2
B1
B0
D0
VCC2
VSS2
VCC1
CMOS/EEPROM/EPROM Technologies on a
Single Device
– Mask-ROM Devices for High-Volume
Production
– One-Time-Programmable (OTP) EPROM
Devices for Low-Volume Production
– Reprogrammable EPROM Devices for
Prototyping Purposes
Internal System Memory Configurations
– On-Chip Program Memory Versions
– ROM: 24K Bytes
– EPROM: 24K Bytes
– Data EEPROM: 256 Bytes
– Static RAM: 512 Bytes
Flexible Operating Features
– Low-Power Modes: STANDBY and HALT
– Commercial, Industrial, and Automotive
Temperature Ranges
– Clock Options:
– Divide-by-4 (0.5 MHz – 5 MHz SYSCLK)
– Divide-by-1 (2 MHz – 5 MHz SYSCLK)
Phase-Locked Loop (PLL)
– Supply Voltage (VCC): 5 V ± 10%
Eight-Channel 8-Bit Analog-to-Digital
Converter 1 (ADC1)
TMS370 Series Compatibility
– Instructions Upwardly Compatible With
All TMS370 Devices
– Register-to-Register Architecture
– 256 General-Purpose Registers
– 14 Powerful Addressing Modes
Two 16-Bit General-Purpose Timers
On-Chip 24-Bit Watchdog Timer
Flexible Interrupt Handling
CMOS/Package /TTL-Compatible I / O Pins
– 64-Pin Plastic and Ceramic Shrink
Dual-In-Line Packages / 44 Bidirectional,
9 Input Pins
– 68-Pin Plastic and Ceramic Leaded Chip
Carrier Packages / 46 Bidirectional,
9 Input Pins
– All Peripheral Function Pins Are
Software Configurable for Digital I / O
Workstation/PC-Based Software
Development System
– C Compiler and C Source Debugger
C3
C4
C5
C6
C7
VCC2
VSS2
A0
A1
A2
A3
A4
A5
A6
A7
T2AEVT
T2AIC2/PWM
10
11
12
13
14
15
16
9 8 7 6 5 4 3 2 1 68 67 66 65 64 63 62 61
60
59
58
57
56
55
54
17
53
18
52
19
51
20
50
21
49
22
48
23
47
24
46
25
45
26
44
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
D1
D2
D3/SYSCLK
D4
D5
D6
D7
RESET
INT1 / NMI
INT2
INT3
G5
G4
G3
T1IC/CR
T1PWM
T1EVT
T2AIC1/CR
G0
G1
G2
XTAL2/CLKIN
XTAL1
V CC1
V CC3
V SS3
AN0 / E0
AN1 / E1
AN2 / E2
AN3 / E3
AN4 / E4
AN5 / E5
AN6 / E6
AN7 / E7
D
JN / NM PACKAGE
( TOP VIEW )
B5
B6
B7
C0
MC
C1
C2
VSS1
C3
C4
C5
C6
C7
AN0 / E0
A0
A1
A2
A3
A4
A5
A6
A7
T2AEVT
T2AIC2 / PWM
T2AIC1 / CR
G0
G1
G2
XTAL2 / CLKIN
XTAL1
VCC1
VCC3
–
–
–
–
–
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
B4
B3
B2
B1
B0
D0
VSS1
VCC1
D1
D3/SYSCLK
D4
D6
D7
RESET
INT1 / NMI
INT2
INT3
G5
G4
G3
T1IC / CR
T1PWM
AN7 / E7
T1EVT
VSS1
AN6 / E6
AN5 / E5
AN4 / E4
AN3 / E3
AN2 / E2
AN1 / E1
VSS3
Real-Time In-Circuit Emulation
Extensive Breakpoint / Trace Capability
Software Performance Analysis
Multi-Window User Interface
Microcontroller Programmer
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Copyright  1997, Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
1
TMS370Cx7x
8-BIT MICROCONTROLLER
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
ÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Pin Descriptions
PIN
I/O†
DESCRIPTION
SDIP
(64)
LCC
(68)
A0
A1
A2
A3
A4
A5
A6
A7
15
16
17
18
19
20
21
22
17
18
19
20
21
22
23
24
I/O
Port A is a general-purpose bidirectional I/O port.
B0
B1
B2
B3
B4
B5
B6
B7
60
61
62
63
64
1
2
3
65
66
67
68
1
2
3
4
I/O
Port B is a general-purpose bidirectional I/O port.
C0
C1
C2
C3
C4
C5
C6
C7
4
6
7
9
10
11
12
13
5
7
8
10
11
12
13
14
I/O
Port C is a general-purpose bidirectional I/O port.
INT1/NMI
INT2
INT3
50
49
48
52
51
50
I
I/O
I/O
External (nonmaskable or maskable) interrupt/general-purpose input pin
External maskable interrupt input/general-purpose bidirectional pin
External maskable interrupt input/general-purpose bidirectional pin
AN0/E0
AN1/E1
AN2/E2
AN3/E3
AN4/E4
AN5/E5
AN6/E6
AN7/E7
14
34
35
36
37
38
39
42
36
37
38
39
40
41
42
43
I
VCC3
VSS3
32
33
34
35
RESET
51
53
I/O
MC
5
6
I
Mode control (MC) pin. MC enables EEPROM write-protection-override (WPO) mode, also EPROM
VPP.
XTAL2/CLKIN
XTAL1
29
30
31
32
I
O
Internal oscillator crystal input / external clock source input
Internal oscillator output for crystal
NAME
VCC1
31, 57
VCC2
—
† I = input, O = output
2
ADC1 analog input (AN0 – AN7) or positive reference pins (AN1 – AN7)
Port E can be programmed individually as general-purpose input pins if not used as ADC1 analog input
or positive reference input.
ADC1 positive-supply voltage and optional positive-reference input pin
ADC1 ground reference pin
System reset bidirectional pin. As an input, RESET initializes the microcontroller; as open-drain output, RESET indicates that an internal failure was detected by the watchdog or oscillator fault circuit.
33, 61
Positive supply voltage
15,63
Positive supply voltage for digital I/O
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
TMS370Cx7x
8-BIT MICROCONTROLLER
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
ÁÁÁÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁ
ÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁ
Pin Descriptions (Continued)
PIN
NAME
VSS1
SDIP
(64)
LCC
(68)
8,
58,40
9
I/O†
DESCRIPTION
Ground reference for digital logic
VSS2
D0
D1
D2
D3/SYSCLK
D4
D5
D6
D7
—
16,62
59
56
—
55
54
—
53
52
64
60
59
58
57
56
55
54
Ground reference for digital I / O logic
I/O
Port D is a general-purpose bidirectional I / O port. D3 also can be configured as SYSCLK.
G0
G1
G2
G3
G4
G5
26
27
28
45
46
47
28
29
30
47
48
49
I/O
Port G is a general-purpose bidirectional I/O port.
T1IC/CR
T1PWM
T1EVT
44
43
41
46
45
44
I/O
Timer1 input capture / counter-reset input pin / general-purpose bidirectional pin
Timer1 pulse-width-modulation (PWM) output pin / general-purpose bidirectional pin
Timer1 external event input pin / general-purpose bidirectional pin
T2AIC1/CR
T2AIC2/PWM
T2AEVT
25
24
23
27
26
25
I/O
Timer2A input capture 1 / counter reset input pin / general-purpose bidirectional pin
Timer2A input capture 2 / PWM output pin / general-purpose bidirectional pin
Timer2A external event input pin / general-purpose bidirectional pin
† I = input, O = output
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
3
TMS370Cx7x
8-BIT MICROCONTROLLER
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
functional block diagram
INT1
INT2
INT3 XTAL1 XTAL2/
CLKIN
MC
E0 – E7
or
AN0 – AN7
RESET
VCC3
Clock Options:
System Control
Divide-by-4 or
Divide-by-1(PLL)
Interrupts
A-to-D Converter 1
VSS3
Timer 2A
T2AIC1 / CR
T2AEVT
T2AIC2 / PWM
Timer 1
T1IC / CR
T1EVT
T1PWM
RAM
512 Bytes
CPU
Data EEPROM
256 Bytes
Program Memory
ROM: 24K Bytes
EPROM: 24K Bytes
Watchdog
Port A
Port B
Port C
Port D†
Port G
8
8
8
8/6
6
VCC1
VSS1
VSS2‡
VCC2‡
† For the 64-pin devices, there are only six pins for port D.
‡ For the 64-pin devices, omit these power pins
description
The TMS370C077, TMS370C777, and SE370C777 devices are members of the TMS370 family of single-chip
8-bit microcontrollers. Unless otherwise noted, the term TMS370Cx7x refers to these devices. The TMS370
family provides cost-effective real-time system control through integration of advanced peripheral function
modules and various on-chip memory configurations.
The TMS370Cx7x family is implemented using high-performance silicon-gate CMOS EPROM and EEPROM
technologies. The low-operating power, wide-operating temperature range, and noise immunity of CMOS
technology, coupled with the high performance and extensive on-chip peripheral functions make the
TMS370Cx7x devices attractive in system designs for automotive electronics, industrial motor control,
computer peripheral control, telecommunications, and consumer application.
All TMS370Cx7x devices contain the following on-chip peripheral modules:
D
D
D
4
Eight-channel, 8-bit analog-to-digital converter 1 (ADC1)
One 24-bit general-purpose watchdog timer
Two 16-bit general-purpose timers (one with an 8-bit prescaler)
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
TMS370Cx7x
8-BIT MICROCONTROLLER
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
description (continued)
Table 1 provides a memory configuration overview of the TMS370Cx7x devices.
Table 1. Memory Configurations
DEVICE
PROGRAM
MEMORY
(BYTES)
DATA MEMORY
(BYTES)
PACKAGES
68-PIN PLCC/CLCC, OR
64 PIN PSDIP/CSDIP
64-PIN
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ROM
EPROM
RAM
EEPROM
TMS370C077A
24K
—
512
256
FN – PLCC / NM – PSDIP
TMS370C777A
SE370C777A†
—
24K
512
256
FN – PLCC / NM – PSDIP
—
24K
512
256
FZ – CLCC / JN – CSDIP
† System evaluators and development tools are for use only in a prototype environment, and their reliability has not been characterized.
The suffix letter A appended to the device names shown in the device column of Table 1 indicates the
configuration of the device. ROM and EPROM devices have a different configuration as indicated in Table 2.
ROM devices with the suffix letter A are configured through a programmable contact during manufacture.
Table 2. Suffix Letter Configuration
DEVICE‡
EPROM A
WATCHDOG TIMER
CLOCK
LOW-POWER MODE
Standard
Divide by 4 (Standard oscillator)
Divide-by-4
Enabled
Divide-by-4 or Divide-by-1 (PLL)
Enabled or disabled
Standard
ROM A
Hard
Simple
‡ Refer to the “device numbering conventions” section for device nomenclature and the “device part numbers” section for ordering.
The 24K bytes of mask-programmable ROM in the associated TMS370C077 device are replaced with
24K bytes of EPROM in the TMS370C777 while all other available memory and on-chip peripherals are
identical. A one-time-programmable device (OTP) (TMS370C777) and a reprogrammable device
(SE370C777) are available.
The TMS370C777 OTP device is available in a plastic package. This microcontroller is effective for use as an
immediate production update for the TMS370C077 ROM device or for low-volume production runs when the
mask charge or cycle time for the low-cost mask-ROM device is not practical.
The SE370C777 has a windowed ceramic package that allows reprogramming of the program EPROM memory
during the development / prototyping design phase. The SE370C777 device allows quick updates to
breadboards and prototype systems while iterating initial designs.
The TMS370Cx7x family provides two low-power modes (STANDBY and HALT) for applications where
low-power consumption is critical. Both modes stop all CPU activity (that is, no instructions are executed). In
the STANDBY mode, the internal oscillator and the general-purpose timer remain active. In the HALT mode,
all device activity is stopped. The device retains all RAM data and peripheral configuration bits throughout both
low-power modes.
The TMS370Cx7x features advanced register-to-register architecture that allows direct arithmetic and logical
operations without requiring an accumulator (for example, ADD R24, R47; add the contents of register 24 to
the contents of register 47 and store the result in register 47). The TMS370Cx7x family is fully
instruction-set-compatible, allowing easy transition between members of the TMS370 8-bit microcontroller
family.
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
5
TMS370Cx7x
8-BIT MICROCONTROLLER
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
description (continued)
The TMS370Cx7x family provides the system designer with very economical, efficient solutions to real-time
control applications. The TMS370 family compact development tool (CDT) solves the challenge of efficiently
developing the software and hardware required to design the TMS370Cx7x into an ever-increasing number of
complex applications. The application source code can be written in assembly and C language, and the output
code can be generated by the linker. The TMS370 family CDT development tool can communicate through a
standard RS-232-C interface with an existing personal computer. This allows the use of personal-computer
editors and software utilities already familiar to the designer. The TMS370 family CDT emphasizes ease-of-use
through extensive use of menus and screen windowing so that a system designer with minimal training can
begin developing software. Precise real-time in-circuit emulation and extensive symbolic debug and analysis
tools ensure efficient software and hardware implementation as well as a reduced time-to-market cycle.
The TMS370Cx7x family, together with the TMS370 family CDT370, starter kit, software tools, the SE370C777
reprogrammable device, comprehensive product documentation, and customer support, provide a complete
solution to the needs of the system designer.
CPU
The CPU used on TMS370Cx7x devices is the high-performance 8-bit TMS370 CPU module. The ’x7x
implements an efficient register-to-register architecture that eliminates the conventional accumulator
bottleneck. The complete ’x7x instruction set is summarized in Table 17. Figure 1 illustrates the CPU registers
and memory blocks.
CDT is a trademark of Texas Instruments Incorporated.
6
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
TMS370Cx7x
8-BIT MICROCONTROLLER
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
CPU (continued)
Program Counter (PC)
15
Stack Pointer (SP)
7
0
Status Register (ST)
C
N
Z
V
7
6
5
4
0
Legend:
C=Carry
N=Negative
Z=Zero
V=Overflow
IE2=Level2 interrupts Enable
IE1=Level1 interrupts Enable
IE2 IE1
3
2
1
0
0000h
512-Byte RAM (0000h – 01FFh)
0100h
0200h
Reserved†
Peripheral File
Reserved†
1000h
Reserved†
1100h
Data EEPROM, 256 Bytes (1F00h – 1FFFh)
10C0h
1F00h
2000h
24K-Byte ROM / EPROM (2000h – 7FFFh)
RAM (Includes 256-Byte Registers File)
0000h
0001h
0002h
0003h
R0(A)
R1(B)
R2
R3
007Fh
R127
00FFh
R255
Interrupts and Reset Vectors; Trap Vectors
7FC0h
8000h
Not Available‡
FFFFh
† Reserved means that the address space is reserved for future expansion.
‡ Not available means that the address space is not accessible.
Figure 1. Programmer’s Model
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
7
TMS370Cx7x
8-BIT MICROCONTROLLER
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
CPU (continued)
The ’x7x CPU architecture provides the following components:
D
CPU registers:
D
–
A stack pointer that points to the last entry in the memory stack
–
A status register that monitors the operation of the instructions and contains the global-interrupt-enable
bits
–
A program counter (PC) that points to the memory location of the next instruction to be executed
A memory map that includes:
–
512 bytes of general-purpose RAM that can be data memory storage, program instructions,
general-purpose register, or the stack (can be located only in the first 256 bytes)
–
A peripheral file that provides access to all internal peripheral modules, system-wide control functions,
and EEPROM/EPROM programming control
–
A 256-byte EEPROM module that provides in-circuit programmability and data retention in power-off
conditions
–
24K-bytes of ROM or 24K-bytes of EPROM program memory
stack pointer (SP)
The SP is an 8-bit CPU register. Stack operates as a last-in, first-out, read/write memory. The stack is used
typically to store the return address on subroutine calls as well as the status register contents during interrupt
sequences.
The SP points to the last entry or to the top of the stack. The SP increments automatically before data is pushed
onto the stack and decrements after data is popped from the stack. The stack can be located only in the first
256 bytes of the on-chip RAM memory.
status register (ST)
The ST monitors the operation of the instructions and contains the global-interrupt-enable bits. The ST includes
four status bits (condition flags) and two interrupt-enable bits:
D
The four status bits indicate the outcome of the previous instruction; conditional instructions (for example,
the conditional jump instructions) use these status bits to determine program flow.
D
The two interrupt-enable bits control the two interrupt levels.
The ST register and status-bit notation are shown in Table 3.
ÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁ
ÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
Á
ÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
Á
Table 3. Status Register
7
6
5
4
3
2
1
0
C
N
Z
V
IE2
IE1
Reserved
Reserved
RW-0
RW-0
RW-0
RW-0
RW-0
RW-0
R = read, W = write, 0 = value after reset
8
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
TMS370Cx7x
8-BIT MICROCONTROLLER
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
CPU (continued)
program counter (PC)
The contents of the PC point to the memory location of the next instruction to be executed. The PC consists
of two 8-bit registers in the CPU: the program counter high (PCH) and program counter low (PCL). These
registers contain the most-significant byte (MSbyte) and least-significant byte (LSbyte) of a 16-bit address.
The contents of the reset vector (7FFEh, 7FFFh) are loaded into the program counter during reset. The PCH
(MSbyte of the PC) is loaded with the contents of memory location 7FFEh, and the PCL (LSbyte of the PC) is
loaded with the contents of memory location 7FFFh. Figure 2 shows this operation using an example value of
2000h as the contents of memory locations 7FFEh and 7FFFh (reset vector).
Program Counter (PC)
Memory
0000h
7FFEh
20
7FFFh
00
PCH
PCL
20
00
Figure 2. Program Counter After Reset
memory map
The TMS370Cx7x architecture is based on the Von Neuman architecture, where the program memory and data
memory share a common address space. All peripheral input/output is memory-mapped in this same common
address space. As shown in Figure 3, the TMS370Cx7x provides a memory-mapped RAM, ROM, data
EEPROM, EPROM, input/output pins, peripheral functions, and system-interrupt vectors.
The peripheral file contains all input/output port control, peripheral status and control, EPROM, EEPROM
programming, and system-wide control functions. The peripheral file consists of 256 contiguous addresses
located from 1000h to 10FFh. The 256 contiguous addresses are divided logically into 16 peripheral file frames
of 16 bytes each. Each on-chip peripheral is assigned to a separate frame through which peripheral control and
data information is passed. The TMS370Cx7x has its on-chip peripherals and system control assigned to
peripheral file frames 1 through 7, addresses 1010h through 107Fh.
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
9
TMS370Cx7x
8-BIT MICROCONTROLLER
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
memory map (continued)
Peripheral File Control Registers
0000h
512-Byte RAM
(0000h–01FFh)
0200h
Reserved†
Reserved†
1000h–100Fh
System Control
1010h–101Fh
Digital Port Control
1020h–102Fh
Reserved†
1030h–103Fh
Timer 1 Peripheral Contr.
1040h–104Fh
Reserved†
1050h–105Fh
Timer 2A Peripheral Contr.
1060h–106Fh
ADC1 Peripheral Contr.
1070h–107Fh
Reserved†
1080h–10BFh
1000h
Peripheral File
10C0h
Reserved†
1100h
Reserved†
Vectors
1F00h
256-Byte Data EEPROM
(1F00h–1FFFh)
2000h
24K-Byte ROM
(2000h–7FFFh)
7FC0h
Interrupts and Reset
Vectors; Trap Vectors
8000h
Not Available‡
Trap 15 – 0
7FC0h–7FDFh
Reserved†
7FE0h–7FEBh
ADC1
7FECh–7FEDh
Timer 2A
7FEEh–7FEFh
Reserved†
7FF0h–7FF1h
Reserved†
7FF2h–7FF3h
Timer 1
7FF4h–7FF5h
Reserved†
7FF6h–7FF7h
Interrupt 3
7FF8h–7FF9h
Interrupt 2
7FFAh–7FFBh
Interrupt 1
7FFCh–7FFDh
Reset
7FFEh–7FFFh
FFFFh
† Reserved = the address space is reserved for future expansion.
‡ Not available = address space is unavailable in the mode illustrated.
Figure 3. TMS370Cx7x Memory Map
RAM/register file (RF)
Locations within RAM address space can serve as either register file or general-purpose read/write memory,
program memory, or stack instructions. The TMS370Cx7x device contains 512 bytes of internal RAM mapped
beginning at location 0000h and continuing through location 01FFh which is shown in Figure 3. The first
256 bytes of RAM (0000h – 00FFh) are the register files, R0 through R255.
The first two registers, R0 and R1, are also called registers A and B, respectively. Some instructions implicitly
use register A or B; for example, the instruction LDSP (load SP) assumes that the value to be loaded into the
stack pointer is contained in register B. Registers A and B are the only registers cleared on reset.
10
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
TMS370Cx7x
8-BIT MICROCONTROLLER
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
peripheral file (PF)
The TMS370Cx7x control registers contain all the registers necessary to operate the system and peripheral
modules on the device. The instruction set includes some instructions that access the peripheral file (PF)
directly. These instructions designate the register by the number of the PF relative to 1000h, preceded by P0
for a hexadecimal designator, or by P for a decimal designator. For example, the system control register 0
(SCCR0) is located at address 1010h; its peripheral file hexadecimal designator is P010, and its decimal
designator is P16. Table 4 shows the TMS370Cx7x peripheral files.
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Table 4. TMS370Cx7x Peripheral File Address Map
ADDRESS RANGE
PERIPHERAL FILE
DESIGNATOR
1000h – 100Fh
P000 – P00F
Reserved for factory test
1010h – 101Fh
P010 – P01F
System and EEPROM/EPROM control registers
1020h – 103Fh
P020 – P03F
Digital I/O port control registers
1040h – 104Fh
P040 – P04F
Timer 1 registers
1050h – 105Fh
P050 – P05F
Reserved
1060h – 106Fh
P060 – P06F
Timer 2A registers
1070h – 107Fh
P070 – P07F
Analog-to-digital converter 1 registers
1080h – 10FFh
P080 – P0FF
Reserved
DESCRIPTION
data EEPROM
The TMS370Cx7x devices contain 256 bytes of data EEPROM, and have a memory map beginning at location
1F00h, and continuing through location 1FFFh. Writing to the data EEPROM module is controlled by the data
EEPROM control register (DEECTL) and the write-protection register (WPR). Programming algorithm
examples are available in the TMS370 Family User’s Guide (literature number SPNU127), or the TMS370
Family Data Manual (SPNS014B). The data EEPROM features include the following:
D
D
D
Programming:
–
Bit, byte, and block write/erase modes
–
Internal charge pump circuitry: No external EEPROM programming voltage supply is needed.
–
Control register: Data EEPROM programming is controlled by the data EEPROM control register
(DEECTL) located in the PF frame beginning at location P01A.
–
In-circuit programming capability: There is no need to remove the device to program.
Write-protection: Writes to the data EEPROM are disabled during the following conditions:
–
Reset: All programming of the data EEPROM module is halted.
–
Write protection active: There is one write-protect bit per 32-byte EEPROM block.
–
Low-power mode operation
Write protection can be overridden by applying 12 V to MC.
Table 5 shows the memory map of the control registers.
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
11
TMS370Cx7x
8-BIT MICROCONTROLLER
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
data EEPROM (continued)
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Table 5. Data EEPROM and Program EPROM Control Registers Memory Map
ADDRESS
SYMBOL
101Ah (P01A)
DEECTL
NAME†
Data EEPROM control register
101Bh (P01B)
101Ch (P01C)
Reserved
EPCTLM
Program EPROM control register – middle array
101Dh (P01D)
Reserved
101Eh (P01E)
EPCTLL
Program EPROM control register – low array
† For the 24K-byte EPROM device, the program memory is controlled by P01C and P01E.
program EPROM
The TMS370C777 contains 24K bytes of program EPROM made up of one 16K-byte array and one 8K-byte
array. The 16K-byte array is located at address locations 2000h through 5FFFh, and the 8K-byte array is located
at address locations 6000h through 7FFFh, as shown in Table 6.
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
Table 6. TMS370C777 EPROM Memory Map
PARAMETER
VALUE
EPROM size
24K Bytes
Memory mapped
16K Bytes at 2000h – 5FFFh
8K Bytes at 6000h – 7FFFh
Control registers
EPCTLL (P01E)
EPCTLM (P01C)
As shown in Table 6 for the two EPROM areas, the 16K-byte array is controlled by register EPCTLL located at
101Eh (P01E), and the 8K-byte array is controlled by register EPCTLM located at 101Ch (P01C).
Reading the program-EPROM modules is identical to reading other internal memory. During programming, the
EPROM is controlled by the program EPROM control registers EPCTLL and EPCTLM. The program EPROM
modules’ features include:
D
D
Programming
–
In-circuit programming capability if VPP is applied to the MC pin
–
Control register: Program EPROM programming is controlled by the program EPROM control registers
EPCTLL and EPCTLM, located at the addresses in PF frame 1 as shown in Table 5.
–
Programming one EPROM module while executing the other
Write-protection: Writes to the program EPROM are disabled under the following conditions:
–
Reset: All programming to the EPROM module is halted.
–
Low-power modes
–
13 V not applied to MC
program ROM
The program ROM consists of 24K bytes of mask-programmable ROM. The program ROM is used for
permanent storage of data or instructions. Programming of the mask ROM is performed at the time of device
fabrication. Memory addresses 7FE0h – 7FEBh is reserved for Texas Instruments (TI). 7FECh to 7FFFh are
reserved for interrupt and reset vectors. Trap vectors, used with TRAP0 through TRAP15 instructions, are
located between addresses 7FC0h and 7FDFh.
TI is a trademark of Texas Instruments Incorporated.
12
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
TMS370Cx7x
8-BIT MICROCONTROLLER
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
system reset
The system-reset operation ensures an orderly start-up sequence for the TMS370Cx7x CPU-based device.
There are up to three different actions that can cause a system reset to the device. Two of these actions are
generated internally, while one (RESET) is controlled externally. These actions are as follows:
D
D
D
External RESET pin. A low-level signal can trigger an external reset. To ensure a reset, the external signal
should be held low for one SYSCLK cycle (it is possible, however, that a signal of less than one SYSCLK
could cause a reset). See the TMS370 Family User’s Guide (literature number SPNU127) or the TMS370
Family Data Manual (SPNS014B) for more information.
Watchdog (WD) timer. A watchdog-generated reset occurs when an improper value is written to the WD
key register or when the re-initialization does not occur before the watchdog timer timeout. See the TMS370
Family User’s Guide (literature number SPNU127) or the TMS370 Family Data Manual (SPNS014B) for
more information.
Oscillator reset. Reset occurs when the oscillator operates outside the recommended operating range. See
the TMS370 Family User’s Guide (literature number SPNU127) or the TMS370 Family Data Manual
(SPNS014B) for more information.
Once a reset source is activated, the external RESET pin is driven (active) low for a minimum of eight SYSCLK
cycles. This allows the ’x7x device to reset external system components. Additionally, if a cold-start condition
(e.g., VCC is off for several hundred milliseconds) exists, an oscillator failure occurs, or the RESET pin is held
low, then the reset logic holds the device in a reset state for as long as these actions are active.
After a reset, the program can check the oscillator fault flag (OSC FLT FLAG, SCCR0.4), the cold start flag
(COLD START, SCCR0.7), and the watchdog reset (WD OVRFL INT FLAG, T1CTL2.5) to determine the source
of the reset. A reset does not clear these flags. Table 7 lists the reset sources.
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
Table 7. Reset Sources
REGISTER
ADDRESS
PF
BIT NO.
CONTROL BIT NAME
SOURCE OF RESET
SCCR0
1010h
P010
7
COLD START
Cold (power-up)
SCCR0
1010h
P010
4
OSC FLT FLAG
Oscillator out of range
T1CTL2
104Ah
P04A
5
WD OVRFL INT FLAG
Watchdog timer timeout
Once a reset is activated, the following sequence of events occurs:
1. The CPU registers initialize: ST = 00h, SP = 01h (reset state).
2. Registers A and B initialize to 00h (no other RAM is changed).
3. The contents of the LSbyte of the reset vector (07FFh) are read and stored in the PCL.
4. The contents of the MSbyte of the reset vector (07FEh) are read and stored in the PCH.
5. Program execution begins with an opcode fetch from the address pointed to by the PC.
The reset sequence takes 20 SYSCLK cycles from the time the reset pulse is released until the first opcode
fetch. During a reset, RAM contents (except for registers A and B) remain unchanged, and the module control
register bits are initialized to their reset state.
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
13
TMS370Cx7x
8-BIT MICROCONTROLLER
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
interrupts
The TMS370 family software programmable interrupt structure permits flexible on-chip and external-interrupt
configurations to meet real-time interrupt-driven application requirements. The hardware-interrupt structure
incorporates two priority levels as shown in Figure 4. Interrupt level 1 has a higher priority than interrupt
level 2. The two priority levels can be masked independently by the global-interrupt mask bits (IE1 and IE2) of
the status register.
Each system interrupt is configured independently to either the high- or low-priority chain by the application
program during system initialization. Within each interrupt chain, the interrupt priority is fixed by the position of
the system interrupt. However, since each system interrupt is configured selectively on either the high- or
low-priority interrupt chain, the application program can elevate any system interrupt to the highest priority.
Arbitration between the two priority levels is performed within the CPU. Arbitration within each of the priority
chains is performed within the peripheral modules to support interrupt expansion for future modules. Pending
interrupts are serviced upon completion of current instruction execution, depending on their interrupt mask and
priority conditions.
The TMS370Cx7x has six hardware-system interrupts (plus RESET) as shown in Table 8. Each system
interrupt has a dedicated vector located in program memory through which control is passed to the interrupt
service routines. All of the interrupt sources are maskable individually by local interrupt-enable control bits in
the associated peripheral file (PF). Each interrupt source FLAG bit is readable individually for software polling
or for determining which interrupt source generated the associated system interrupt. The interrupt-control block
diagram is illustrated in Figure 4.
14
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
TMS370Cx7x
8-BIT MICROCONTROLLER
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
interrupts (continued)
EXT INT 3
INT 3
EXT INT 2
TIMER 2A
INT 2
TIMER 1
INT3 PRI
Overflow
Overflow
Compare1
Compare1
Ext Edge
Ext Edge
Compare2
Compare2
Input Capture 1
Input Capture 1
Input Capture 2
Watchdog
INT2 PRI
T2A PRI
EXT INT1
CPU
INT1
NMI
T1 PRI
Priority
INT1 PRI
Logic
STATUS REG
IE1
Level 1 INT
IE2
Level 2 INT
Enable
AD INT
AD PRI
A/D
Figure 4. Interrupt Control
Of the six system interrupts, three are generated by on-chip peripherals (T1INT, T2AINT, and ADINT) and three
are external interrupts (INT1 – INT3). Software configuration of the external interrupts is performed through the
INT1, INT2, and INT3 control registers in PF frame 1.
Each external interrupt is individually software configurable for input polarity (rising or falling edge) for ease of
system interface. External interrupt INT1 is software configurable as either a maskable or non-maskable
interrupt. When INT1 is configured as nonmaskable, it cannot be masked by the individual- or global-enable
mask bits. The INT1 NMI bit is protected during non-privileged operation and therefore should be configured
during the initialization sequence following reset. To maximize pin flexibility, external interrupts INT2 and INT3
can be software configured as general-purpose input/output pins if the interrupt function is not required (INT1
can be configured similarly as an input pin). Table 8 lists the interrupt vector sources, corresponding addresses,
and hardware priorities.
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
15
TMS370Cx7x
8-BIT MICROCONTROLLER
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
interrupts (continued)
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Table 8. Hardware System Interrupts
INTERRUPT SOURCE
INTERRUPT FLAG
SYSTEM
INTERRUPT
VECTOR
ADDRESS
PRIORITY†
RESET‡
7FFEh, 7FFFh
1
External RESET
Watchdog overflow
Oscillator fault detect
COLD START
WD OVRFL INT FLAG
OSC FLT FLAG
External INT1
INT1 FLAG
2
INT2 FLAG
INT1‡
INT2‡
7FFCh, 7FFDh
External INT2
7FFAh, 7FFBh
3
External INT3
INT3 FLAG
INT3‡
7FF8h, 7FF9h
4
Timer 1 overflow
Timer 1 compare 1
Timer 1 compare 2
Timer 1 external edge
Timer 1 input capture 1
Watchdog overflow
T1 OVRFL INT FLAG
T1C1 INT FLAG
T1C2 INT FLAG
T1EDGE INT FLAG
T1IC1 INT FLAG
WD OVRFL INT FLAG
T1INT§
7FF4h, 7FF5h
5
Timer 2A overflow
Timer 2A compare 1
Timer 2A compare 2
Timer 2A external edge
Timer 2A input capture 1
Timer 2A input capture 2
T2A OVRFL INT FLAG
T2AC1 INT FLAG
T2AC2 INT FLAG
T2AEDGE INT FLAG
T2AIC1 INT FLAG
T2AIC2 INT FLAG
T2AINT
7FEEh, 7FEFh
6
ADC1 conversion complete
AD INT FLAG
ADINT
7FECh, 7FEDh
7
† Relative priority within an interrupt level
‡ Releases microcontroller from STANDBY and HALT low-power modes
§ Releases microcontroller from STANDBY low-power mode
privileged operation and EEPROM write-protection override
The TMS370Cx7x family has significant flexibility to enable the designer to software-configure the system and
peripherals to meet the requirements of a broad variety of applications. The nonprivileged mode of operation
ensures the integrity of the system configuration, once it is defined for an application. Following a hardware
reset, the TMS370Cx7x operates in the privileged mode, where all peripheral file registers have unrestricted
read/write access, and the application program configures the system during the initialization sequence
following reset. As the last step of system initialization, the PRIVILEGE DISABLE bit (SCCR2.0) should be set
to 1 to enter the nonprivileged mode, thereby disabling write operations to specific configuration control bits
within the peripheral file. Table 9 lists the system configuration bits that are write-protected during the
nonprivileged mode and must be configured by software prior to exiting the privileged mode.
16
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
TMS370Cx7x
8-BIT MICROCONTROLLER
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
privileged operation and EEPROM write-protection override (continued)
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
Table 9. Privileged Bits
REGISTER†
NAME
LOCATION
CONTROL BIT
SCCRO
P010.5
P010.6
PF AUTOWAIT
OSC POWER
SCCR1
P011.2
P011.4
MEMORY DISABLE
AUTOWAIT DISABLE
SCCR2
P012.0
P012.1
P012.3
P012.4
P012.6
P012.7
PRIVILEGE DISABLE
INT1 NMI
CPU STEST
BUS STEST
PWRDWN/IDLE
HALT/STANDBY
T1PRI
P04F.6
P04F.7
T1 PRIORITY
T1 STEST
T2APRI
P06F.6
P06F.7
T2A PRIORITY
T2A STEST
ADPRI
P07F.5
P07F.6
P07F.7
AD ESPEN
AD PRIORITY
AD STEST
† The privileged bits are shown in a bold typeface in the peripheral file frame 1 section.
The write-protect-override (WPO) mode provides an external hardware method of overriding the
write-protection registers of the data EEPROM on the TMS370Cx7x. To enter the WPO mode apply a 12-V input
to the MC pin after the RESET input goes high (logic 1). The high voltage on MC during the WPO mode is not
the programming voltage for the data EEPROM or program EPROM. All EEPROM programming voltages are
generated on-chip. The WPO mode provides hardware-system-level capability to modify the content of the data
EEPROM while the device remains in the application but only while requiring a 12-V external input on the MC
pin (normally not available in the end application except in a service or diagnostic environment).
low-power and IDLE modes
The TMS370Cx7x devices have two low-power modes (STANDBY and HALT) and an IDLE mode. For
mask-ROM devices, low-power modes can be disabled permanently through a programmable contact at the
time when the mask is manufactured.
The STANDBY and HALT low-power modes significantly reduce power consumption by reducing or stopping
the activity of the various on-chip peripherals when processing is not required. Each of the low-power modes
is entered by executing the idle instruction when the PWRDWN/IDLE bit in register SCCR2 has been set to 1.
The HALT / STANDBY bit in SCCR2 controls which low-power mode is entered.
In the STANDBY mode (HALT/STANDBY = 0), all CPU activity and most peripheral module activity is stopped;
however, the oscillator, internal clocks, and timer 1 remain active. System processing is suspended until a
qualified interrupt (hardware RESET, external interrupt on INT1, INT2, INT3, or timer 1 interrupt) is detected.
In the HALT mode (HALT/STANDBY = 1), the TMS370Cx7x is placed in its lowest power-consumption mode.
The oscillator and internal clocks are stopped, causing all internal activity to be halted. System activity is
suspended until a qualified interrupt (hardware RESET or an external interrupt on INT1, INT2, INT3) is detected.
The low-power mode selection bits are summarized in Table 10.
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
17
TMS370Cx7x
8-BIT MICROCONTROLLER
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
low-power and IDLE modes (continued)
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Table 10. Low-Power/Idle Control Bits
POWER-DOWN CONTROL BITS
PWRDWN/IDLE
(SCCR2.6)
HALT/STANDBY
(SCCR2.7)
MODE SELECTED
1
0
STANDBY
1
1
HALT
0
X
IDLE
X = don’t care
When low-power modes are disabled through a programmable contact in the mask-ROM devices, writing to the
SCCR2.6–7 bits is ignored. In addition, if an IDLE instruction is executed when low-power modes are disabled
through a programmable contact, the device always enters the IDLE mode.
To provide a method of always exiting low-power modes for mask-ROM devices, INT1 is enabled automatically
as a nonmaskable interrupt (NMI) during low-power modes when the hard watchdog is selected. This means
that the NMI always is generated, regardless of the interrupt enable flags.
The following information is preserved throughout both the STANDBY and HALT modes: RAM (register file),
CPU registers (stack pointer, program counter, and status register), I/O pin direction and output data, and status
registers of all on-chip peripheral functions. Since all CPU instruction processing is stopped during the
STANDBY and HALT modes, the clocking of the watchdog timer is inhibited.
clock modules
The ‘370Cx7x family provides two clock options which are referred to as divide-by-1 (PLL) and divide-by-4
(standard oscillator). Both the divide-by-1 and divide-by-4 options are configurable during the manufacturing
process of a TMS370 microcontroller. The ‘370Cx7x ROM-masked devices offer both options to meet system
engineering requirements. Only one of the two clock options is allowed on the ROM device while the EPROM
devices have the divide-by-4 option.
The divide-by-1 clock module option provides the capability for reduced electromagnetic interference (EMI) with
no added cost.
The divide-by-1 provides a 1-to-1 match of the external resonator frequency to the internal system clock
(SYSCLK) frequency. The divide-by-4 produces a SYSCLK which is one-fourth the frequency of the external
resonator. Inside the divide-by-1 module, the frequency of the external resonator is multiplied by four. The clock
module then divides the resulting signal by four to provide the four-phased internal system clock signals. The
resulting SYSCLK is equal to the resonator frequency. The frequencies are formulated as follows:
frequency
+ external resonator
+ CLKIN
4
4
external resonator frequency 4
Divide-by-1 option : SYSCLK +
+ CLKIN
4
Divide-by-4 option : SYSCLK
The main advantage of choosing a divide-by-1 oscillator is the improved EMI performance. The harmonics of
low-speed resonators extend through less of the emissions spectrum than the harmonics of faster resonators.
The divide-by-1 provides the capability of reducing the resonator speed by four times, and this results in a
steeper decay of emissions produced by the oscillator.
18
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
TMS370Cx7x
8-BIT MICROCONTROLLER
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
system configuration registers
Table 11 lists system configuration, control functions, and registers for controlling EEPROM programming. The
privileged bits are bold typefaced and shaded.
ÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
Á
ÁÁÁÁÁ
ÁÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
Á
ÁÁÁÁÁ
ÁÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
Á
ÁÁÁÁÁ
ÁÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
Table 11. Peripheral File Frame 1: System Configuration Registers
PF
P010
BIT 7
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
BIT 0
REG
COLD
START
OSC
POWER
PF AUTO
WAIT
OSC FLT
FLAG
MC PIN
WPO
MC PIN
DATA
—
µP/µC
MODE
SCCR0
—
—
AUTOWAIT
DISABLE
—
MEMORY
DISABLE
—
—
SCCR1
PWRDWN/
IDLE
—
BUS
STEST
CPU
STEST
—
INT1
NMI
PRIVILEGE
DISABLE
SCCR2
P011
P012
HALT/
STANDBY
P013
to
P016
Reserved
P017
INT1
FLAG
INT1
PIN DATA
—
—
—
INT1
POLARITY
INT1
PRIORITY
INT1
ENABLE
INT1
P018
INT2
FLAG
INT2
PIN DATA
—
INT2
DATA DIR
INT2
DATA OUT
INT2
POLARITY
INT2
PRIORITY
INT2
ENABLE
INT2
P019
INT3
FLAG
INT3
PIN DATA
—
INT3
DATA DIR
INT3
DATA OUT
INT3
POLARITY
INT3
PRIORITY
INT3
ENABLE
INT3
P01A
BUSY
—
—
—
—
AP
W1W0
EXE
DEECTL
BUSY
VPPS
—
—
—
—
W0
EXE
EPCTLM
—
—
W0
EXE
EPCTLL
P01B
P01C
Reserved
P01D
P01E
P01F
Reserved
BUSY
VPPS
—
—
Reserved
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
19
TMS370Cx7x
8-BIT MICROCONTROLLER
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
digital port control registers
Peripheral file frame 2 contains the digital I/O pin configuration and control registers. Table 12 lists the specific
addresses, registers, and control bits within this peripheral file frame. Table 13 shows the port-configuration
register setup.
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
Table 12. Peripheral File Frame 2: Digital Port Control Registers
PF
BIT 7
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
BIT 0
P020
Reserved
APORT1
P021
Port A Control Register 2
APORT2
P022
Port A Data
P023
Port A Direction
P024
Reserved
BPORT1
P025
Port B Control Register 2
BPORT2
P026
Port B Data
P027
Port B Direction
P028
Reserved
CPORT1
P029
Port C Control Register 2
CPORT2
ADATA
ADIR
BDATA
BDIR
P02A
Port C Data
P02B
Port C Direction
P02C
P02D
Port D Control Register 1
Port D Control Register 2†
P02E
Port D Data
P02F
Port D Direction
P030
to
P035
Reserved
P036
P037
CDATA
CDIR
DPORT1
DPORT2
DDATA
DDIR
–
–
Port G Data
–
–
Port G Direction
GDATA
GDIR
† To configure pin D3 as SYSCLK, set port D control register 2 = 08h.
Table 13. Port Configuration Register Setup
PORT
PIN
abcd
00y0
abcd
00q1
A
0–7
Data In y
Data Out q
B
0–7
Data In y
Data Out q
C
0–7
Data In y
Data Out q
D
0–7
Data In y
Data Out q
G
0–5
Data In y
Data Out q
a = Port x Control Register 1‡
b = Port x Control Register 2
c = Data
d = Direction
‡ DPORT only
20
REG
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
TMS370Cx7x
8-BIT MICROCONTROLLER
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
timer 1 (T1) module
The programmable timer 1 (T1) module of the TMS370Cx7x provides the designer with the enhanced timer
resources required to perform real-time system control. The T1 module contains the general-purpose timer and
the watchdog (WD) timer. The two independent 16-bit timers, T1 and WD, allow program selection of input clock
sources (real-time, external event, or pulse-accumulate) with multiple 16-bit registers (input capture and
compare) for special timer function control. The T1 module includes three external device pins that can be used
for multiple counter functions (operation-mode dependent) or used as general-purpose I/O pins. The T1 module
block diagram is shown in Figure 5.
T1IC/CR
MUX
T1EVT
Edge
Select
16-Bit
Capt/Comp
Register
16-Bit
Counter
16
16-Bit
Compare
Register
8-Bit
Prescaler
16-Bit
Watchdog Counter
(Aux. Timer)
MUX
PWM
Toggle
T1PWM
Interrupt
Logic
Interrupt
Logic
Figure 5. Timer 1 Block Diagram
D
D
D
D
D
D
D
Three T1 I/O pins:
–
T1IC/CR: Timer 1 input capture / counter reset input pin, or general-purpose bidirectional I/O pin
–
T1PWM: Timer 1 pulse-width-modulation (PWM) output pin, or general-purpose bidirectional I/O pin
–
T1EVT: Timer 1 event input pin, or general-purpose bidirectional I/O pin
Two operation modes:
–
Dual-compare mode: Provides PWM signal
–
Capture/compare mode: Provides input-capture pin
One 16-bit general-purpose resettable counter
One 16-bit compare register with associated compare logic
One 16-bit capture / compare register, which, depending on the mode of operation, operates as either
capture or compare register.
One 16-bit watchdog counter can be used as an event counter, a pulse accumulator, or an interval timer
if watchdog feature is not needed.
Prescaler/ clock sources that determine one of eight clock sources for general-purpose timer
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
21
TMS370Cx7x
8-BIT MICROCONTROLLER
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
timer 1 (T1) module (continued)
D
D
D
Selectable edge-detection circuitry that, depending on the mode of operation, senses active transitions on
the input capture pins (T1IC/CR).
Interrupts that can be generated on the occurrence of:
–
A capture
–
A compare equal
–
A counter overflow
–
An external edge detection
Sixteen T1 module control registers: Located in the PF frame beginning at address P040
Table 14 lists the T1 module control register.
22
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
TMS370Cx7x
8-BIT MICROCONTROLLER
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
timer 1 (T1) module (continued)
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
Table 14. Timer 1 Module Register Memory Map
PF
BIT 7
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
BIT 0
REG
Modes: Capture / Compare and Dual-Compare
P040
Bit 15
T1 Counter MSbyte
Bit 8 T1CNTR
P041
P042
Bit 7
T1 Counter LSbyte
Bit 0
Bit 15
Compare Register MSbyte
Bit 8 T1C
P043
P044
Bit 7
Compare Register LSbyte
Bit 0
Bit 15
Capture/Compare Register MSbyte
Bit 8 T1CC
P045
Bit 7
Capture/Compare Register LSbyte
Bit 0
P046
Bit 15
Watchdog Counter MSbyte
Bit 8 WDCNTR
P047
Bit 7
Watchdog Counter LSbyte
Bit 0
P048
Bit 7
Watchdog Reset Key
P049
WD OVRFL
TAP SEL†
WD
INPUT
SELECT2†
P04A
WD OVRFL
RST ENA†
WD OVRFL
INT ENA
WD
INPUT
SELECT1†
WD
INPUT
SELECT0†
WD OVRFL
INT FLAG
Bit 0 WDRST
—
T1
INPUT
SELECT2
T1
INPUT
SELECT1
T1 INPUT
SELECT0
T1CTL1
T1 OVRFL
INT ENA
T1 OVRFL
INT FLAG
—
—
T1 SW
RESET
T1CTL2
Mode: Dual-Compare
P04B
T1EDGE
INT FLAG
T1C2
INT FLAG
T1C1
INT FLAG
—
—
T1EDGE
INT ENA
T1C2
INT ENA
T1C1
INT ENA
T1CTL3
P04C
T1
MODE = 0
T1C1
OUT ENA
T1C2
OUT ENA
T1C1
RST ENA
T1CR
OUT ENA
T1EDGE
POLARITY
T1CR
RST ENA
T1EDGE
DET ENA
T1CTL4
Mode: Capture/Compare
P04B
T1EDGE
INT FLAG
—
T1C1
INT FLAG
—
—
T1EDGE
INT ENA
—
T1C1
INT ENA
T1CTL3
P04C
T1
MODE = 1
T1C1
OUT ENA
—
T1C1
RST ENA
—
T1EDGE
POLARITY
—
T1EDGE
DET ENA
T1CTL4
Modes: Capture / Compare and Dual-Compare
P04D
—
—
—
—
T1EVT
DATA IN
T1EVT
DATA OUT
T1EVT
FUNCTION
T1EVT
DATA DIR
T1PC1
P04E
T1PWM
DATA IN
T1PWM
DATA OUT
T1PWM
FUNCTION
T1PWM
DATA DIR
T1IC/CR
DATA IN
T1IC/CR
DATA OUT
T1IC/CR
FUNCTION
T1IC/CR
DATA DIR
T1PC2
P04F
T1 STEST
T1
PRIORITY
—
—
—
—
—
—
T1PRI
† Once the WD OVRFL RST ENA bit is set, these bits cannot be changed until a reset; this applies only to the standard
watchdog and to simple counter. In the hard watchdog, these bits can be modified at any time; the WD INPUT SELECT2
bits are ignored.
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
23
TMS370Cx7x
8-BIT MICROCONTROLLER
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
timer 1 (T1) module (continued)
The T1 capture/compare-mode block diagram is illustrated in Figure 6. The annotations on the diagram identify
the register and the bit(s) in the peripheral frame. For example, the actual address of T1CTL2.0 is 104Ah,
bit 0, in the T1CTL2 register.
16-Bit
LSB
Capt/Comp
MSB
Register
Prescale
Clock
Source
T1C1
OUT ENA
T1CTL4.6
Toggle
T1CC.15-0
T1PC2.7-4
T1PWM
T1CNTR.15-0
LSB 16-Bit
MSB Counter
16
Compare=
T1CTL3.5
Reset
T1CTL3.0
T1C.15-0
T1 SW
RESET
T1C1 INT ENA
16-Bit LSB
Compare
Register MSB
T1C1
RST ENA
T1CTL2.0
T1 OVRFL INT FLAG
T1CTL2.3
T1CTL4.4
T1CTL2.4
T1 OVRFL INT ENA
T1PC2.3-0
T1EDGE DET ENA
T1IC/CR
Edge
Select
T1EDGE INT FLAG
T1CTL3.7
T1CTL4.0
T1CTL3.2
T1EDGE INT ENA
T1CTL4.2
T1EDGE POLARITY
Figure 6. Capture/Compare Mode
24
ÏÏÏ
T1 PRIORITY
T1C1 INT FLAG
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
T1PRI.6
0
1
Level 1 Int
Level 2 Int
TMS370Cx7x
8-BIT MICROCONTROLLER
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
timer 1 (T1) module (continued)
The T1 dual-compare mode block diagram is illustrated in Figure 7. The annotations on the diagram identify
the register and the bit(s) in the peripheral frame. For example, the actual address of T1CTL2.0 is 104Ah,
bit 0, in the T1CTL2 register.
T1CC.15-0
16-Bit LSB
Capt/Comp
Register MSB
MSB
T1CTL2.0
Compare=
T1CTL4.4
T1CTL4.5
T1PC2.7-4
16
T1C1 INT FLAG
T1CTL3.5
Compare=
T1C1
RST ENA
Output
Enable
T1C2 OUT ENA
16-Bit
Counter
Reset
T1 SW
RESET
T1CTL3.6
T1CTL3.1
T1C2 INT ENA
T1CNTR.15-0
LSB
T1C2 INT FLAG
T1CTL3.0
T1C.15-0
T1CTL4.6
Toggle
Prescaler
Clock
Source
T1PWM
T1C1 OUT ENA
T1CTL4.3
T1C1 INT ENA
16-Bit LSB
Compare
Register MSB
T1CR OUT ENA
T1 OVRFL INT FLAG
T1PC2.3-0
T1IC/CR
T1CTL4.1
T1CR
RST ENA
T1CTL2.3
T1CTL2.4
T1 OVRFL INT ENA
Edge
Select
T1 PRIORITY
T1CTL4.0
T1EDGE DET ENA
T1EDGE INT FLAG
T1CTL3.7
T1CTL4.2
T1EDGE POLARITY
T1PRI.6
0
1
Level 1 Int
Level 2 Int
T1CTL3.2
T1EDGE INT ENA
Figure 7. Dual-Compare Mode
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
25
TMS370Cx7x
8-BIT MICROCONTROLLER
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
timer 1 (T1) module (continued)
The TMS370Cx7x device includes a 24-bit watchdog (WD) timer, contained in the T1 module, which can be
software programmed as an event counter, pulse accumulator, or interval timer if the WD function is not used.
The WD function is to monitor software and hardware operation, and it implements a system reset when the
WD counter is not serviced properly (WD counter overflow or WD counter is reinitialized by an incorrect value).
The WD can be configured as one of the three mask options: standard WD, hard WD, or simple counter.
D
Standard watchdog configuration for EPROM and mask-ROM devices (see Figure 8)
–
–
Watchdog
–
Ten different WD overflow rates ranging from 6.55 ms to 3.35 s at 5-MHz SYSCLK
–
A WD reset key (WDRST) register is used to clear the watchdog counter (WDCNTR) when a correct
value is written.
–
Generates a system reset if an incorrect value is written to the WD reset key or if the counter
overflows
–
A WD overflow flag (WD OVRFL INT FLAG) bit that indicates whether the WD timer initiated a
system reset
Non-watchdog
–
Watchdog timer can be configured as an event counter, pulse accumulator, or an interval timer
WDCNTR.15-0
WD OVRFL
INT FLAG
16-Bit
Watchdog Counter
T1CTL2.6
T1CTL2.5
Reset
Clock
Prescaler
Interrupt
WD OVRFL
INT ENA
T1CTL1.7
T1CTL2.7
WD OVRFL
TAP SEL
System Reset
WD OVRFL
RST ENA
Watchdog Reset Key
WDRST.7-0
Figure 8. Standard Watchdog
26
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
TMS370Cx7x
8-BIT MICROCONTROLLER
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
timer 1 (T1) module (continued)
D
Hard watchdog configuration for mask-ROM device (see Figure 9)
–
Eight different WD overflow rates ranging from 26.2 ms to 3.35 s at 5-MHz SYSCLK
–
A WD reset key (WDRST) register is used to clear the watchdog counter (WDCNTR) when a correct
value is written.
–
Generates a system reset if an incorrect value is written to the watchdog reset key or if the counter
overflows
–
Automatic activation of the WD timer upon power-up reset
–
INT1 is enabled as nonmaskable interrupt during low-power modes
–
A WD overflow flag (WD OVRFL INT FLAG) bit that indicates whether the WD timer initiated a system
reset
WDCNTR.15-0
WD OVRFL
INT FLAG
16-Bit
Watchdog Counter
T1CTL2.5
Reset
Clock
Prescaler
T1CTL1.7
WD OVRFL
TAP SEL
System Reset
Watchdog Reset Key
WDRST.7-0
Figure 9. Hard Watchdog
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
27
TMS370Cx7x
8-BIT MICROCONTROLLER
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
timer 1 (T1) module (continued)
D
Simple-counter configuration for mask-ROM devices only (see Figure 10)
–
Simple counter can be configured as an event counter, pulse accumulator, or an interval timer.
WDCNTR.15-0
WD OVFL
INT FLAG
16-Bit
Watchdog Counter
T1CTL2.6
Interrupt
T1CTL2.5
WD OVRFL
INT ENA
Reset
Clock
Prescaler
T1CTL1.7
WD OVRFL
TAP SEL
Watchdog Reset Key
WDRST.7-0
Figure 10. Simple Counter
timer 2A (T2A) module
The 16-bit general-purpose timer 2A (T2A) module is composed of a 16-bit resettable counter, 16-bit compare
register with associated compare logic, 16-bit capture register, and a 16-bit register that functions as a capture
register in one mode and as a compare register in the other mode. The T2A module adds an additional timer
that provides event count, input capture, and compare functions. The T2A module includes three external
device pins that can be dedicated as timer functions or used as general-purpose I/O pins. The T2A module block
diagram is shown in Figure 11.
28
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
TMS370Cx7x
8-BIT MICROCONTROLLER
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
timer 2A (T2A) module (continued)
Edge
Detect
T2AIC1/CR
16-Bit
Capt/Comp
Register
Edge
Detect
T2AIC2/PWM
(Dual-Capture Mode)
16-Bit
Capture
Register
INT
Logic
PWM
Toggle
T2AIC2/PWM
(Dual-Compare Mode)
16
T2AEVT
Clock
Select
16-Bit
Compare
Register
16-Bit
Counter
Figure 11. Timer 2A Block Diagram
The T2A module features include the following:
D
D
D
D
D
D
D
Three T2A I/O pins:
–
T2AIC1/CR: T2A input capture 1 / counter reset input pin, or general-purpose bidirectional I/O pin
–
T2AIC2/PWM: T2A input capture 2 / pulse-width-modulation (PWM) output pin, or general-purpose
bidirectional I/O pin
–
T2AEVT: T2A event input pin, or general-purpose bidirectional I/O pin
Two operation modes:
–
Dual-compare mode: Provides PWM signal
–
Dual-capture mode: Provides input capture pin
One 16-bit general-purpose resettable counter
One 16-bit compare register with associated compare logic
One 16-bit capture register with associated capture logic
One 16-bit capture/compare register, which, depending on the mode of operation, operates as either a
capture or compare register
T2A clock sources can be any of the following:
–
System clock
–
No clock (the counter is stopped)
–
External clock synchronized to the system clock (event counter)
–
System clock while external input is high (pulse accumulation)
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
29
TMS370Cx7x
8-BIT MICROCONTROLLER
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
timer 2A (T2A) module (continued)
D
D
D
Selectable edge-detection circuitry that, depending on the mode of operation, senses active transitions on
the input capture pins (T2AIC1/CR)
Interrupts that can be generated on the occurrence of:
–
A compare equal to dedicated-compare register
–
A compare equal to capture-compare register
–
A counter overflow
–
An external edge 1 detection
–
An external edge 2 detection
Fourteen T2A module control registers located in the PF frame beginning at address P060
The T2A module control registers are listed in Table 15.
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
Table 15. Timer 2A Module Register Memory Map
PF
BIT 7
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
BIT 0
REG
Modes: Dual-Compare and Dual-Capture
P060
Bit 15
T2A Counter MSbyte
Bit 8
P061
Bit 7
T2A Counter LSbyte
Bit 0
P062
Bit 15
Compare Register MSbyte
Bit 8
P063
Bit 7
Compare Register LSbyte
Bit 0
P064
Bit 15
Capture/Compare Register MSbyte
Bit 8
P065
Bit 7
Capture/Compare Register LSbyte
Bit 0
P066
Bit 15
Capture Register 2 MSbyte
Bit 8
P067
Bit 7
Capture Register 2 LSbyte
Bit 0
P06A
—
T2ACNTR
T2AC
T2ACC
T2AIC
—
—
T2A
OVRFL INT
ENA
T2A
OVRFL INT
FLAG
T2A
INPUT
SELECT1
T2A INPUT
SELECT0
T2A SW
RESET
T2ACTL1
Mode: Dual-Compare
P06B
T2AEDGE1
INT FLAG
T2AC2
INT FLAG
T2AC1
INT FLAG
—
—
T2AEDGE1
INT ENA
T2AC2
INT ENA
T2AC1
INT ENA
T2ACTL2
P06C
T2A
MODE = 0
T2AC1
OUT ENA
T2AC2
OUT ENA
T2AC1
RST ENA
T2AEDGE1
OUT ENA
T2AEDGE1
POLARITY
T2AEDGE1
RST ENA
T2AEDGE1
DET ENA
T2ACTL3
Mode: Dual-Capture
P06B
T2AEDGE1
INT FLAG
T2AEDGE2
INT FLAG
T2AC1
INT FLAG
—
—
T2AEDGE1
INT ENA
T2AEDGE2
INT ENA
T2AC1
INT ENA
T2ACTL2
P06C
T2A
MODE = 1
—
—
T2AC1
RST ENA
T2AEDGE2
POLARITY
T2AEDGE1
POLARITY
T2AEDGE2
DET ENA
T2AEDGE1
DET ENA
T2ACTL3
Modes: Dual-Compare and Dual-Capture
P06D
—
—
—
—
T2AEVT
DATA IN
T2AEVT
DATA OUT
T2AEVT
FUNCTION
T2AEVT
DATA DIR
T2APC1
P06E
T2AIC2 / PWM
DATA IN
T2AIC2 / PWM
DATA OUT
T2AIC2 / PWM
FUNCTION
T2AIC2 / PWM
DATA DIR
T2AIC1/CR
DATA IN
T2AIC1/CR
DATA OUT
T2AIC1/CR
FUNCTION
T2AIC/CR
DATA DIR
T2APC2
P06F
T2A STEST
T2A
PRIORITY
—
—
—
—
—
—
T2APRI
30
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
TMS370Cx7x
8-BIT MICROCONTROLLER
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
timer 2A (T2A) module (continued)
The timer 2A dual-compare mode block diagram is illustrated in Figure 12. The annotations on the diagram
identify the register and the bit(s) in the peripheral frame. For example, the actual address of T2ACTL2.0 is
106Bh, bit 0, in the T2ACTL2 register.
T2ACC.15-0
16-Bit
Capt/Comp LSB
Register MSB
T2ACNTR.15-0
LSB
MSB
16-Bit
Counter
Reset
T2A SW
RESET
T2ACTL1.0
T2APC2.3-0
T2AIC1/CR
T2AC2 INT FLAG
T2ACTL2.6
T2ACTL2.1
Compare=
Output
Enable
T2ACTL3.5
T2AC2 INT ENA
16
T2AC1 INT FLAG
T2ACTL2.5
Compare=
T2ACTL2.0
T2AC.15-0
T2AC1
RST ENA
16-Bit LSB
T2ACTL3.4
Compare
Register MSB
T2AC1 INT ENA
T2AC2 OUT ENA
T2ACTL3.6
T2APC2.7-4
Toggle
Clock
Source
T2AIC2/PWM
T2AC1 OUT ENA
T2ACTL3.3
T2AEDGE1
OUT ENA
T2A OVRFL INT FLAG
T2ACTL1.3
T2ACTL3.1
T2AEDGE1
RST ENA
T2ACTL1.4
T2A OVRFL INT ENA
Edge 1
Select
T2A PRIORITY
T2ACTL3.0
T2AEDGE1 DET ENA
T2ACTL3.2
T2AEDGE1 POLARITY
T2AEDGE1 INT FLAG
T2ACTL2.7
T2ACTL2.2
T2APRI.6
0
Level 1 Int
1
Level 2 Int
T2AEDGE1 INT ENA
Figure 12. Dual-Compare Mode
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
31
TMS370Cx7x
8-BIT MICROCONTROLLER
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
timer 2A (T2A) module (continued)
The timer 2A dual-capture mode block diagram is illustrated in Figure 13. The annotations on the diagram
identify the register and the bit(s) in the peripheral frame. For example, the actual address of T2ACTL2.0 is
106Bh, bit 0, in the T2ACTL2 register.
T2AIC.15–0
T2ACC.15–0
16-Bit
Capt/Comp
Register 1
Clock
Source
LSB
MSB
16-Bit
Capture
Register 2
LSB
MSB
T2ACNTR.15–0
LSB
MSB
16-Bit
Counter
16
T2A PRIORITY
T2AC1 INT FLAG
T2ACTL2.5
Compare =
Reset
T2ACTL2.0
T2AC1 INT ENA
T2AC.15–0
T2A SW
RESET
T2ACTL1.0
16-Bit
Compare
Register
T2AC1
RST ENA
LSB
MSB
T2A OVRFL INT FLAG
T2ACTL1.3
T2ACTL1.4
T2A OVRFL INT ENA
T2ACTL3.4
T2ACTL3.0
T2AEDGE1 DET ENA
T2APC2.3–0
T2AIC1/CR
Edge1
Select
T2AIC2/PWM
T2ACTL2.7
T2ACTL2.2
T2AEDGE1 INT ENA
T2ACTL3.2
T2AEDGE1 POLARITY
T2ACTL3.1
T2ACTL3.3
T2AEDGE2 DET ENA
T2APC2.7–4
Edge 2
Select
T2AEDGE1 INT FLAG
T2AEDGE2 INT FLAG
T2ACTL2.6
T2AEDGE2 POLARITY
T2ACTL2.1
T2AEDGE2 INT ENA
Figure 13. Dual-Capture Mode
32
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
T2APRI.6
0
Level 1 Int
1
Level 2 Int
TMS370Cx7x
8-BIT MICROCONTROLLER
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
analog-to-digital converter 1 (ADC1) module
The analog-to-digital converter 1 (ADC1) module is an 8-bit, successive approximation converter with internal
sample-and-hold circuitry. The module has eight multiplexed analog input channels that allow the processor to
convert the voltage levels from up to eight different sources. The ADC1 module features include the following:
D
D
D
D
D
Minimum conversion time: 32.8 µs at 5-MHz SYSCLK
Ten external pins:
–
Eight analog input channels (AN0 – AN7), any of which can be software configured as digital inputs
(E0– E7) if not needed as analog channels. AN1 – AN7 also can be configured as positive input voltage
reference.
–
VCC3: ADC1 module high-voltage reference input
–
VSS3: ADC1 module low-voltage reference input
The ADDATA register which contains the digital result of the last ADC1 conversion
ADC1 operations can be accomplished through either interrupt driven or polled algorithms
Six ADC1 module control registers are located in the control register frame beginning at address 1070h.
The ADC1 module control registers are listed in Table 16.
ÁÁÁ
Á
ÁÁÁÁÁ
ÁÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
Á
ÁÁÁÁÁ
ÁÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
Á
ÁÁÁÁÁ
ÁÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
Table 16. ADC1 Module Control Register Memory Map
PF
BIT 7
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
BIT 0
P070
CONVERT
START
SAMPLE
START
REF VOLT
SELECT2
REF VOLT
SELECT1
REF VOLT
SELECT0
AD INPUT
SELECT2
AD INPUT
SELECT1
AD INPUT
SELECT0
ADCTL
P071
—
—
—
—
—
AD READY
AD INT
FLAG
AD INT
ENA
ADSTAT
P072
A / D Conversion Data Register
P073
to
P07C
Reserved
P07D
Port E Data Input Register
P07E
P07F
ADDATA
ADIN
Port E Input Enable Register
AD STEST
AD
PRIORITY
AD ESPEN
—
POST OFFICE BOX 1443
—
REG
ADENA
—
• HOUSTON, TEXAS 77251–1443
—
—
ADPRI
33
TMS370Cx7x
8-BIT MICROCONTROLLER
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
analog-to-digital converter 1 (ADC1) module (continued)
The ADC1 module block diagram is illustrated in Figure 14.
Port E Input
ENA 0
ADENA.0
Port E Data
AN 0
ADIN.0
0
SAMPLE
START
CONVERT
START
ADCTL.2 – 0
ADCTL.6
ADCTL.7
2
1
AN0
Port E Input
ENA 1
ADENA.1
Port E Data
AN 1
AD INPUT SELECT
ADIN.1
AN1
Port E Input
ENA 2
ADENA.2
Port E Data
AN 2
ADIN.2
AN2
Port E Input
ENA 3
ADENA.3
Port E Data
AN 3
ADIN.3
AN3
Port E Input
ENA 4
ADENA.4
ADC1
Port E Data
AN 4
ADIN.4
AN4
ADDATA.7 – 0
Port E Input
ENA 5
ADENA.5
Port E Data
AN 5
A/D
Conversion
Data Register
ADIN.5
AN5
Port E Input
ENA 6
ADENA.6
ADIN.6
AN6
Port E Input
ENA 7
ADENA.7
AD READY
Port E Data
AN 6
ADSTAT.2
5
4
3
ADCTL.5 – 3
Port E Data
AN 7
REF VOLTS SELECT
AD PRIORITY
ADPRI.6
0 Level 1 INT
1 Level 2 INT
ADIN.7
AN7
VCC3
AD INT FLAG
VSS3
ADSTAT.1
ADSTAT.0
AD INT ENA
Figure 14. ADC1 Block Diagram
34
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
TMS370Cx7x
8-BIT MICROCONTROLLER
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
instruction set overview
Table 17 provides an opcode-to-instruction cross reference of all 73 instructions and 274 opcodes of the
‘370Cx7x instruction set. The numbers at the top of this table represent the most significant nibble of the opcode
while the numbers at the left side of the table represent the least significant nibble. The instruction of these two
opcode nibbles contains the mnemonic, operands, and byte / cycle particular to that opcode.
For example, the opcode B5h points to the CLR A instruction. This instruction contains one byte and executes
in eight SYSCLK cycles.
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
35
2
3
4
5
6
7
8
INCW
#ra,Rd
3/11
MOV
Ps,A
2/8
0
JMP
#ra
2/7
1
JN
ra
2/5
2
JZ
ra
2/5
MOV
Rs,A
2/7
MOV
#n,A
2/6
MOV
Rs,B
2/7
MOV
Rs,Rd
3/9
MOV
#n,B
2/6
MOV
B,A
1/8
MOV
#n,Rd
3/8
3
JC
ra
2/5
AND
Rs,A
2/7
AND
#n,A
2/6
AND
Rs,B
2/7
AND
Rs,Rd
3/9
AND
#n,B
2/6
AND
B,A
1/8
AND
#n,Rd
3/8
AND
A,Pd
2/9
4
JP
ra
2/5
OR
Rs,A
2/7
OR
#n,A
2/6
OR
Rs,B
2/7
OR
Rs,Rd
3/9
OR
#n,B
2/6
OR
B,A
1/8
OR
#n,Rd
3/8
5
JPZ
ra
2/5
XOR
Rs,A
2/7
XOR
#n,A
2/6
XOR
Rs,B
2/7
XOR
Rs,Rd
3/9
XOR
#n,B
2/6
XOR
B,A
1/8
6
JNZ
ra
2/5
BTJO
Rs,A,ra
3/9
BTJO
#n,A,ra
3/8
BTJO
Rs,B,ra
3/9
BTJO
Rs,Rd,ra
4/11
BTJO
#n,B,ra
3/8
7
JNC
ra
2/5
BTJZ
Rs.,A,ra
3/9
BTJZ
#n,A,ra
3/8
BTJZ
Rs,B,ra
3/9
BTJZ
Rs,Rd,ra
4/11
8
JV
ra
2/5
ADD
Rs,A
2/7
ADD
#n,A
2/6
ADD
Rs,B
2/7
9
JL
ra
2/5
ADC
Rs,A
2/7
ADC
#n,A
2/6
A
JLE
ra
2/5
SUB
Rs,A
2/7
B
JHS
ra
2/5
SBB
Rs,A
2/7
MOV
A,Pd
2/8
MOV
B,Pd
2/8
MOV
Rs,Pd
3/10
9
A
B
C
D
E
F
CLRC /
TST A
1/9
MOV
A,B
1/9
MOV
A,Rd
2/7
TRAP
15
1/14
LDST
n
2/6
MOV
B,Rd
2/7
TRAP
14
1/14
MOV
#ra[SP],A
2/7
MOV
Ps,B
2/7
MOV
Ps,Rd
3/10
DEC
A
1/8
DEC
B
1/8
DEC
Rd
2/6
TRAP
13
1/14
MOV
A,*ra[SP]
2/7
AND
B,Pd
2/9
AND
#n,Pd
3/10
INC
A
1/8
INC
B
1/8
INC
Rd
2/6
TRAP
12
1/14
CMP
*n[SP],A
2/8
OR
A,Pd
2/9
OR
B,Pd
2/9
OR
#n,Pd
3/10
INV
A
1/8
INV
B
1/8
INV
Rd
2/6
TRAP
11
1/14
extend
inst,2
opcodes
XOR
#n,Rd
3/8
XOR
A,Pd
2/9
XOR
B,Pd
2/9
XOR
#n,Pd
3/10
CLR
A
1/8
CLR
B
1/8
CLR
Rn
2/6
TRAP
10
1/14
BTJO
B,A,ra
2/10
BTJO
#n,Rd,ra
4/10
BTJO
A,Pd,ra
3/11
BTJO
B,Pd,ra
3/10
BTJO
#n,Pd,ra
4/11
XCHB
A
1/10
XCHB A /
TST B
1/10
XCHB
Rn
2/8
TRAP
9
1/14
IDLE
BTJZ
#n,B,ra
3/8
BTJZ
B,A,ra
2/10
BTJZ
#n,Rd,ra
4/10
BTJZ
A,Pd,ra
3/10
BTJZ
B,Pd,ra
3/10
BTJZ
#n,Pd,ra
4/11
SWAP
A
1/11
SWAP
B
1/11
SWAP
Rn
2/9
TRAP
8
1/14
MOV
#n,Pd
3/10
ADD
Rs,Rd
3/9
ADD
#n,B
2/6
ADD
B,A
1/8
ADD
#n,Rd
3/8
MOVW
#16,Rd
4/13
MOVW
Rs,Rd
3/12
MOVW
#16[B],Rpd
4/15
PUSH
A
1/9
PUSH
B
1/9
PUSH
Rd
2/7
TRAP
7
1/14
SETC
ADC
Rs,B
2/7
ADC
Rs,Rd
3/9
ADC
#n,B
2/6
ADC
B,A
1/8
ADC
#n,Rd
3/8
JMPL
lab
3/9
JMPL
*Rp
2/8
JMPL
*lab[B]
3/11
POP
A
1/9
POP
B
1/9
POP
Rd
2/7
TRAP
6
1/14
RTS
SUB
#n,A
2/6
SUB
Rs,B
2/7
SUB
Rs,Rd
3/9
SUB
#n,B
2/6
SUB
B,A
1/8
SUB
#n,Rd
3/8
MOV
& lab,A
3/10
MOV
*Rp,A
2/9
MOV
*lab[B],A
3/12
DJNZ
A,#ra
2/10
DJNZ
B,#ra
2/10
DJNZ
Rd,#ra
3/8
TRAP
5
1/14
RTI
1/12
SBB
#n,A
2/6
SBB
Rs,B
2/7
SBB
Rs,Rd
3/9
SBB
#n,B
2/6
SBB
B,A
1/8
SBB
#n,Rd
3/8
MOV
A, & lab
3/10
MOV
A, *Rp
2/9
MOV
A,*lab[B]
3/12
COMPL
A
1/8
COMPL
B
1/8
COMPL
Rd
2/6
TRAP
4
1/14
PUSH
ST
1/8
1/6
1/7
1/9
† All conditional jumps (opcodes 01 – 0F), BTJO, BTJZ, and DJNZ instructions use two additional cycles if the branch is taken. The BTJO, BTJZ, and DJNZ
instructions have a relative address as the last operand.
Template Release Date: 7–11–94
POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251–1443
L
S
N
1
TMS370Cx7x
8-BIT MICROCONTROLLER
MSN
0
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
36
Table 17. TMS370 Family Opcode/Instruction Map†
Table 17. TMS370 Family Opcode/Instruction Map† (Continued)
MSN
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
C
JNV
ra
2/5
MPY
Rs,A
2/46
MPY
#n,A
2/45
MPY
Rs,B
2/46
MPY
Rs,Rd
3/48
MPY
#n,B
2/45
MPY
B,A
1/47
MPY
#n,Rs
3/47
BR
lab
3/9
BR
*Rp
2/8
BR
*lab[B]
3/11
RR
A
1/8
RR
B
1/8
RR
Rd
2/6
TRAP
3
1/14
POP
ST
1/8
JGE
ra
2/5
CMP
Rs,A
2/7
CMP
#n,A
2/6
CMP
Rs,B
2/7
CMP
Rs,Rd
3/9
CMP
#n,B
2/6
CMP
B,A
1/8
CMP
#n,Rd
3/8
CMP
& lab,A
3/11
CMP
*Rp,A
2/10
CMP
*lab[B],A
3/13
RRC
A
1/8
RRC
B
1/8
RRC
Rd
2/6
TRAP
2
1/14
LDSP
D
DAC
Rs,A
2/9
DAC
#n,A
2/8
DAC
Rs,B
2/9
DAC
Rs,Rd
3/11
DAC
#n,B
2/8
DAC
B,A
1/10
DAC
#n,Rd
3/10
CALL
lab
3/13
CALL
*Rp
2/12
CALL
*lab[B]
3/15
RL
A
1/8
RL
B
1/8
RL
Rd
2/6
TRAP
1
1/14
STSP
E
JG
ra
2/5
DSB
Rs,A
2/9
DSB
#n,A
2/8
DSB
Rs,B
2/9
DSB
Rs,Rd
3/11
DSB
#n,B
2/8
DSB
B,A
1/10
DSB
#n,Rd
3/10
CALLR
lab
3/15
CALLR
*Rp
2/14
CALLR
*lab[B]
3/17
RLC
A
1/8
RLC
B
1/8
RLC
Rd
2/6
TRAP
0
1/14
NOP
F
JLO
ra
2/5
F4
8
MOVW
*n[Rn]
4/15
DIV
Rn.A
3/14-63
F4
9
JMPL
*n[Rn]
4/16
F4
A
MOV
*n[Rn],A
4/17
F4
B
MOV
A,*n[Rn]
4/16
F4
C
BR
*n[Rn]
4/16
F4
D
CMP
*n[Rn],A
4/18
F4
E
CALL
*n[Rn]
4/20
F4
F
CALLR
*n[Rn]
4/22
L
S
N
Legend:
*
= Indirect addressing operand prefix
& = Direct addressing operand prefix
# = immediate operand
#16 = immediate 16-bit number
lab = 16-label
n = immediate
i
di t 8-bit
8 bit number
b
Pd = Peripheral register containing destination type
Pn = Peripheral register
Ps = Peripheral
Peri heral register containing source byte
ra = Relative address
Rd = Register containing destination type
Rn = Register file
Rp = Register pair
Rpd = Destination register pair
Rps = Source Register pair
Rs = Register containing source byte
1/8
1/7
37
TMS370Cx7x
8-BIT MICROCONTROLLER
† All conditional jumps (opcodes 01 – 0F), BTJO, BTJZ, and DJNZ instructions use two additional cycles if the branch is taken. The BTJO, BTJZ, and DJNZ
instructions have a relative address as the last operand.
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251–1443
Second byte of two-byte instructions (F4xx):
1/7
TMS370Cx7x
8-BIT MICROCONTROLLER
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
development system support
The TMS370 family development support tools include an assembler, a C compiler, a linker, compact
development tool, and an EEPROM / UVEPROM programmer.
D
D
D
Assembler/ linker (Part No. TMDS3740850–02 for PC)
–
Includes extensive macro capability
–
Provides high-speed operation
–
Provides format conversion utilities for popular formats
ANSI C compiler (Part No. TMDS3740855–02 for PC, Part No. TMDS3740555–09 for HP700, Sun-3,
or Sun-4)
–
Generates assembly code for the TMS370 that can be easily inspected
–
Improves code execution speed and reduces code size with optional optimizer pass
–
Enables direct referencing of the TMS370’s port registers by using a naming convention
–
Provides flexibility in specifying the storage for data objects
–
Interfaces C functions and assembly functions easily
–
Includes assembler and linker
CDT370 (compact development tool) Timer real-time in-circuit emulation
–
D
Base (Part Number EDSCDT37T – for PC, requires cable)
–
Cable for 68-pin PLCC (Part No. EDSTRG68PLCC)
–
Cable for 64-pin SDIP (Part No. EDSTRG64SDIL)
–
Includes EEPROM and EPROM programming support
–
Allows inspection and modification of memory locations
–
Uploads/downloads program and data memory
–
Executes programs and software routines
–
Includes 1 024 samples trace buffer
–
Includes single-step executable instructions
–
Uses software breakpoints to halt program execution at selected address
Microcontroller programmer
–
–
Base (Part No. TMDS3760500A — for PC, requires programmer head)
–
Single unit head for 68-pin PLCC (Part No. TMDS3780510A)
–
Single unit head for 64-pin SDIP (Part No. TMDS3780511A)
Includes PC-based, window / function-key oriented user interface for ease of use and rapid learning
environment
HP700 is a trademark of Hewlett-Packard Company.
Sun-3 and Sun-4 are trademarks of Sun Microsystems, Inc.
38
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
TMS370Cx7x
8-BIT MICROCONTROLLER
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
development system support (continued)
D
Starter Kit (Part No. TMDS37000 — for PC)
–
Includes TMS370 assembler diskette and documentation
–
Includes TMS370 simulator
–
Includes programming adapter board and programming software
–
Not included (to be supplied by the user):
–
+ 5 V power supply
–
ZIF sockets
–
9-pin RS232 cable
device numbering conventions
Figure 15 illustrates the numbering and symbol nomenclature for the TMS370Cx7x family.
TMS 370 C 7 7 7
A FN T
Prefix: TMS = Standard prefix for fully qualified devices
SE = System evaluator (window EPROM) that is used for
prototyping purpose
Family:
Technology:
Program Memory Types:
Device Type:
Memory Size:
Temperature Ranges:
Packages:
ROM and EPROM Option:
370 = TMS370 8-Bit Microcontroller Family
C = CMOS
0 = Mask ROM
7 = EPROM
7 = ’x7x device containing the following modules:
– Timer 1
– Timer 2A
– Analog-to-Digital Converter 1
7 = 24K bytes
A = – 40°C to 85°C
L =
0°C to 70°C
T = – 40°C to 105°C
FN
FZ
NM
JN
=
=
=
=
Plastic Leaded Chip Carrier
Ceramic Leaded Chip Carrier
Plastic Shrink Dual-In-Line
Ceramic Shrink Dual-in-Line
A = For ROM device, the watchdog timer can be configured
as one of the three different mask options:
– A standard watchdog
– A hard watchdog
– A simple watchdog
The clock can be either:
– Divide-by-4 clock
– Divide-by-1 (PLL) clock
The low-power modes can be either:
– Enabled
– Disabled
A = For EPROM device, standard watchdog, divide-by-4
clock, and low-power modes are enabled
Figure 15. TMS370Cx7x Family Nomenclature
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
39
TMS370Cx7x
8-BIT MICROCONTROLLER
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
device part numbers
Table 18 lists all the TMS370Cx7x devices available. The device part-number nomenclature is designed to
assist ordering. Upon ordering, the customer must specify not only the device part number, but also the clock
and watchdog-timer options desired. Each device can have only one of the three possible watchdog-timer
options and one of the two clock options. The options to be specified pertain solely to orders involving ROM
devices.
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
Table 18. Device Part Numbers
DEVICE PART NUMBERS
FOR 68 PINS (LCC)
DEVICE PART NUMBERS
FOR 64 PINS (DIP)
TMS370C077AFNA
TMS370C077AFNL
TMS370C077AFNT
TMS370C077ANMA
TMS370C077ANML
TMS370C077ANMT
TMS370C777AFNT
SE370C777AFZT†
TMS370C777ANMT
SE370C777AJNT†
† System evaluators are for use only in prototype environment, and their
reliability has not been characterized.
40
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
TMS370Cx7x
8-BIT MICROCONTROLLER
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
new code release form
Figure 16 shows a sample of the new code release form.
NEW CODE RELEASE FORM
TEXAS INSTRUMENTS
TMS370 MICROCONTROLLER PRODUCTS
DATE:
To release a new customer algorithm to TI incorporated into a TMS370 family microcontroller, complete this form and submit with the following information:
1. A ROM description in object form on Floppy Disk, Modem XFR, or EPROM (Verification file will be returned via same media)
2. An attached specification if not using TI standard specification as incorporated in TI’s applicable device data book.
Company Name:
Street Address:
Street Address:
City:
Contact Mr./Ms.:
Phone: (
State
Zip
)
Ext.:
Customer Purchase Order Number:
Customer Print Number *Yes:
#
No:
(Std. spec to be followed)
*If Yes: Customer must provide ”print” to TI w/NCRF for approval before ROM
code processing starts.
Customer Part Number:
Customer Application:
TMS370 Device:
TI Customer ROM Number:
(provided by Texas Instruments)
CONTACT OPTIONS FOR THE ’A’ VERSION TMS370 MICROCONTROLLERS
OSCILLATOR FREQUENCY
MIN
TYP
MAX
[] External Drive (CLKIN)
[] Crystal
[] Ceramic Resonator
[] Supply Voltage MIN:
(std range: 4.5V to 5.5V)
Low Power Modes
[] Enabled
[] Disabled
Watchdog counter
[] Standard
[] Hard Enabled
[] Simple Counter
Clock Type
[] Standard (/4)
[] PLL (/1)
NOTE:
Non ’A’ version ROM devices of the TMS370 microcontrollers will have the
“Low-power modes Enabled”, “Divide-by-4” Clock, and “Standard” Watchdog
options. See the TMS370 Family User’s Guide (literature number SPNU127)
or the TMS370 Family Data Manual (literature number SPNS014B).
MAX:
TEMPERATURE RANGE
[] ’L’:
0° to 70°C (standard)
[] ’A’:
–40° to 85°C
[] ’T’:
–40° to 105°C
PACKAGE TYPE
[] ’N’ 28-pin PDIP
[] “FN” 44-pin PLCC
[] “FN” 28-pin PLCC
[] “FN” 68-pin PLCC
[] “N” 40-pin PDIP
[] “NM” 64-pin PSDIP
[] “NJ” 40-pin PSDIP (formerly known as N2)
SYMBOLIZATION
BUS EXPANSION
[] TI standard symbolization
[] TI standard w/customer part number
[] Customer symbolization
(per attached spec, subject to approval)
[] YES
[] NO
NON-STANDARD SPECIFICATIONS:
ALL NON-STANDARDS SPECIFICATIONS MUST BE APPROVED BY THE TI ENGINEERING STAFF: If the customer requires expedited production material
(i.e., product which must be started in process prior to prototype approval and full production release) and non-standard spec issues are not resolved to the
satisfaction of both the customer and TI in time for a scheduled shipment, the specification parameters in question will be processed/tested to the standard
TI spec. Any such devices which are shipped without conformance to a mutually approved spec, will be identified by a ’P’ in the symbolization preceding the
TI part number.
RELEASE AUTHORIZATION:
This document, including any referenced attachments, is and will be the controlling document for all orders placed for this TI custom device. Any changes must
be in writing and mutually agreed to by both the customer and TI. The prototype cycletime commences when this document is signed off and the verification
code is approved by the customer.
1. Customer:
Date:
2. TI: Field Sales:
Marketing:
Prod. Eng.:
Proto. Release:
Figure 16. Sample New Code Release Form
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
41
TMS370Cx7x
8-BIT MICROCONTROLLER
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
Table 19 is a collection of all the peripheral file frames using the ’Cx7x (provided for a quick reference).
ÁÁÁ
Á
ÁÁÁÁÁ
ÁÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
Á
ÁÁÁÁÁ
ÁÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
Á
ÁÁÁÁÁ
ÁÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
Table 19. Peripheral File Frame Compilation
PF
BIT 7
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
BIT 0
REG
COLD
START
OSC
POWER
PF AUTO
WAIT
OSC FLT
FLAG
MC PIN
WPO
MC PIN
DATA
—
µP/µC
MODE
SCCR0
—
—
AUTOWAIT
DISABLE
—
MEMORY
DISABLE
—
—
SCCR1
PWRDWN/
IDLE
—
BUS
STEST
CPU
STEST
—
INT1
NMI
PRIVILEGE
DISABLE
SCCR2
System Configuration Registers
P010
P011
P012
HALT/
STANDBY
P013
to
P016
Reserved
P017
INT1
FLAG
INT1
PIN DATA
—
—
—
INT1
POLARITY
INT1
PRIORITY
INT1
ENABLE
INT1
P018
INT2
FLAG
INT2
PIN DATA
—
INT2
DATA DIR
INT2
DATA OUT
INT2
POLARITY
INT2
PRIORITY
INT2
ENABLE
INT2
P019
INT3
FLAG
INT3
PIN DATA
—
INT3
DATA DIR
INT3
DATA OUT
INT3
POLARITY
INT3
PRIORITY
INT3
ENABLE
INT3
P01A
BUSY
—
—
—
—
AP
W1W0
EXE
DEECTL
—
—
W0
EXE
EPCTLM
—
—
W0
EXE
EPCTLL
P01B
P01C
Reserved
BUSY
VPPS
—
—
P01D
P01E
Reserved
BUSY
VPPS
P01F
—
—
Reserved
Digital Port Control Registers
P020
Reserved
APORT1
P021
Port A Control Register 2
APORT2
P022
Port A Data
P023
Port A Direction
ADATA
P024
Reserved
BPORT1
P025
Port B Control Register 2
BPORT2
P026
Port B Data
P027
Port B Direction
P028
Reserved
CPORT1
P029
Port C Control Register 2
CPORT2
ADIR
BDATA
BDIR
P02A
Port C Data
P02B
Port C Direction
CDATA
P02C
Port D Control Register 1
DPORT1
P02D
Port D Control Register 2†
DPORT2
P02E
Port D Data
P02F
Port D Direction
P030
to
P035
Reserved
CDIR
DDATA
DDIR
P036
—
—
Port G Data
P037
—
—
Port G Direction
† To configure pin D3 as SYSCLK, set port D control register 2 = 08h.
42
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
GDATA
GDIR
TMS370Cx7x
8-BIT MICROCONTROLLER
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
Table 19. Peripheral File Frame Compilation (Continued)
ÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
Á
ÁÁÁÁÁ
ÁÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
Á
ÁÁÁÁÁ
ÁÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
Á
ÁÁÁÁÁ
ÁÁÁÁ
Á
ÁÁÁÁÁ
ÁÁÁÁ
Á
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
PF
BIT 7
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
BIT 0
REG
Timer 1 Module Register
Modes: Capture / Compare and Dual-Compare
P040
Bit 15
T1 Counter MSbyte
Bit 8
P041
Bit 7
T1 Counter LSbyte
Bit 0
P042
Bit 15
Compare Register MSbyte
Bit 8
P043
Bit 7
Compare Register LSbyte
Bit 0
P044
Bit 15
Capture/Compare Register MSbyte
Bit 8
P045
Bit 7
Capture/Compare Register LSbyte
Bit 0
P046
Bit 15
Watchdog Counter MSbyte
Bit 8
P047
Bit 7
Watchdog Counter LSbyte
Bit 0
P048
Bit 15
Watchdog Reset Key
Bit 0
T1CNTR
T1C
T1CC
WDCNTR
WDRST
P049
WD OVRFL
TAP SEL†
WD
INPUT
SELECT2†
WD
INPUT
SELECT1†
WD
INPUT
SELECT0†
—
T1
INPUT
SELECT2
T1
INPUT
SELECT1
T1 INPUT
SELECT0
T1CTL1
P04A
WD OVRFL
RST ENA†
WD OVRFL
INT ENA
WD OVRFL
INT FLAG
T1 OVRFL
INT ENA
T1 OVRFL
INT FLAG
—
—
T1 SW
RESET
T1CTL2
Mode: Dual-Compare
P04B
T1EDGE
INT FLAG
T1C2
INT FLAG
T1C1
INT FLAG
—
—
T1EDGE
INT ENA
T1C2
INT ENA
T1C1
INT ENA
T1CTL3
P04C
T1
MODE = 0
T1C1
OUT ENA
T1C2
OUT ENA
T1C1
RST ENA
T1CR
OUT ENA
T1EDGE
POLARITY
T1CR
RST ENA
T1EDGE
DET ENA
T1CTL4
Mode: Capture/Compare
P04B
T1EDGE
INT FLAG
—
T1C1
INT FLAG
—
—
T1EDGE
INT ENA
—
T1C1
INT ENA
T1CTL3
P04C
T1
MODE = 1
T1C1
OUT ENA
—
T1C1
RST ENA
—
T1EDGE
POLARITY
—
T1EDGE
DET ENA
T1CTL4
Modes: Capture / Compare and Dual-Compare
P04D
—
—
—
—
T1EVT
DATA IN
T1EVT
DATA OUT
T1EVT
FUNCTION
T1EVT DATA
DIR
T1PC1
P04E
T1PWM
DATA IN
T1PWM
DATA OUT
T1PWM
FUNCTION
T1PWM
DATA DIR
T1IC/CR
DATA IN
T1IC/CR
DATA OUT
T1IC/CR
FUNCTION
T1IC/CR
DATA DIR
T1PC2
P04F
T1 STEST
T1
PRIORITY
—
—
—
—
—
—
T1PRI
T2A Module Register
Modes: Dual-Compare and Dual-Capture
P060
Bit 15
T2A Counter MSbyte
Bit 8
P061
Bit 7
T2A Counter LSbyte
Bit 0
P062
Bit 15
Compare Register MSbyte
Bit 8
P063
Bit 7
Compare Register LSbyte
Bit 0
P064
Bit 15
Capture/Compare Register MSbyte
Bit 8
P065
Bit 7
Capture/Compare Register LSbyte
Bit 0
P066
Bit 15
Capture Register 2 MSbyte
Bit 8
P067
Bit 7
Capture Register 2 LSbyte
Bit 0
T2ACNTR
T2AC
T2ACC
T2AIC
† Once the WD OVRFL RST ENA bit is set, these bits cannot be changed until a reset; this applies only to the standard WD
and to simple counter. The WD input select 2 bits are ignored.
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
43
TMS370Cx7x
8-BIT MICROCONTROLLER
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
Table 19. Peripheral File Frame Compilation (Continued)
ÁÁÁ
Á
ÁÁÁÁÁ
ÁÁÁÁ
Á
ÁÁÁÁÁ
ÁÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
Á
ÁÁÁÁÁ
ÁÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
Á
ÁÁÁÁÁ
ÁÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
PF
BIT 7
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
BIT 0
REG
T2A Module Register (Continued)
P06A
—
—
—
T2A OVRFL
INT ENA
T2A OVRFL
INT FLAG
T2A
INPUT
SELECT1
T2A INPUT
SELECT0
T2A SW
RESET
T2ACTL1
Mode: Dual-Compare
P06B
T2AEDGE1
INT FLAG
T2AC2
INT FLAG
T2AC1
INT FLAG
—
—
T2AEDGE1
INT ENA
T2AC2
INT ENA
T2AC1
INT ENA
T2ACTL2
P06C
T2A
MODE = 0
T2AC1
OUT ENA
T2AC2
OUT ENA
T2AC1
RST ENA
T2AEDGE1
OUT ENA
T2AEDGE1
POLARITY
T2AEDGE1
RST ENA
T2AEDGE1
DET ENA
T2ACTL3
Mode: Dual-Capture
P06B
T2AEDGE1
INT FLAG
T2AEDGE2
INT FLAG
T2AC1
INT FLAG
—
—
T2AEDGE1
INT ENA
T2AEDGE2
INT ENA
T2AC1
INT ENA
T2ACTL2
P06C
T2A
MODE = 1
—
—
T2AC1
RST ENA
T2AEDGE2
POLARITY
T2AEDGE1
POLARITY
T2AEDGE2
DET ENA
T2AEDGE1
DET ENA
T2ACTL3
Modes: Dual- Compare and Dual-Capture
P06D
—
—
—
—
T2AEVT
DATA IN
T2AEVT
DATA OUT
T2AEVT
FUNCTION
T2AEVT
DATA DIR
T2APC1
P06E
T2AIC2 / PWM
DATA IN
T2AIC2 / PWM
DATA OUT
T2AIC2 / PWM
FUNCTION
T2AIC2 / PWM
DATA DIR
T2AIC1/CR
DATA IN
T2AIC1/CR
DATA OUT
T2AIC1/CR
FUNCTION
T2AIC1/CR
DATA DIR
T2APC2
P06F
T2A STEST
T2A
PRIORITY
—
—
—
—
—
—
T2APRI
P070
CONVERT
START
SAMPLE
START
REF VOLT
SELECT2
REF VOLT
SELECT1
REF VOLT
SELECT0
AD INPUT
SELECT2
AD INPUT
SELECT1
AD INPUT
SELECT0
ADCTL
P071
—
—
—
—
—
AD READY
AD INT
FLAG
AD INT ENA
ADSTAT
ADC1 Module Control Register
P072
A/D Conversion Data Register
P073
to
P07C
Reserved
P07D
Port E Data Input Register
P07E
P07F
44
ADDATA
ADIN
Port E Input Enable Register
AD STEST
AD
PRIORITY
AD ESPEN
—
POST OFFICE BOX 1443
—
ADENA
—
• HOUSTON, TEXAS 77251–1443
—
—
ADPRI
TMS370Cx7x
8-BIT MICROCONTROLLER
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Supply voltage range‡ VCC1, VCC2, VCC3 (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.6 V to 7 V
Input voltage range, All pins except MC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.6 V to 7 V
MC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.6 V to 14 V
Input clamp current, IIK (VI < 0 or VI > VCC1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 20 mA
Output clamp current, IOK (VO < 0 or VO > VCC1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 20 mA
Continuous output current per buffer, IO (VO = 0 to VCC1)§ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 10 mA
Maximum ICC current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 mA
Maximum ISS current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 170 mA
Continuous power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 W
Operating free-air temperature range, TA: L version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C
A version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 40°C to 85°C
T version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 40°C to 105°C
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 65°C to 150°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
‡ VCC1 = VCC
§ Electrical characteristics are specified with all output buffers loaded with specified IO current. Exceeding the specified IO current in any buffer
can affect the levels on other buffers.
NOTE 1: Unless otherwise noted, all voltage values are with respect to VSS1.
recommended operating conditions
VCC1
Supply voltage (see Note 1)
RAM data-retention supply voltage (see Note 2)
MIN
NOM
MAX
4.5
5
5.5
3
5.5
UNIT
V
VCC2
VCC3
Digital I/O supply voltage (see Note 1)
4.5
5
5.5
Analog supply voltage (see Note 1)
4.5
5
5.5
VSS2
VSS3
Digital I/O supply ground
– 0.3
0
0.3
V
– 0.3
0
VIL
Analog supply ground
Low level input voltage
Low-level
All pins except MC
MC, normal operation
All pins except MC, XTAL2 / CLKIN, and
RESET
VIH
High-level
g
input voltage
g
MC (non-WPO mode)
XTAL2 / CLKIN
MC ((mode control)) voltage
g
(see Note 3)
EPROM programming voltage (VPP)
Microprocessor
Microcomputer
TA
Operating free-air temperature
V
0.8
V
0.3
V
2
VCC
VCC1 + 0.3
VCC1
0.7 VCC1
EEPROM write protect override (WPO)
VMC
0.3
VSS1
VSS1
VCC1 – 0.3
0.8 VCC1
RESET
V
11.7
12
VCC1
13
13
13.2
13.5
VCC1 – 0.3
VSS1
VCC1 + 0.3
0.3
L version
0
A version
– 40
85
T version
– 40
105
V
V
70
°C
NOTES: 1. Unless otherwise noted, all voltage values are with respect to VSS1.
2. RESET must be activated externally when VCC1 or SYSCLK is out of the recommended operating range.
3. The basic microcomputer and microprocessor operating modes are selected by the voltage level applied to the dedicated MC pin
two system clock cycles (tc) before RESET goes inactive (high). The WPO mode can be selected anytime a sufficient voltage is
present on MC.
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
45
TMS370Cx7x
8-BIT MICROCONTROLLER
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
electrical characteristics over recommended operating free-air temperature range (unless
otherwise noted)
PARAMETER
VOL
Low-level output voltage
VOH
High level output voltage
High-level
II
TEST CONDITIONS
IOL = 1.4 mA
IOH = – 50 µA
Input current
IOL
Low-level output current
IOH
High level output current
High-level
ICC
0.9 VCC1
50
VCC1–0.3 V ≤ VI ≤ VCC1+0.3 V
VCC1 + 0.3 V < VI ≤ 13 V
10
Supply current (HALT mode)
µA
650
See Note 4
50
0 V ≤ VI ≤ VCC1
± 10
1.4
mA
µA
mA
– 50
µA
–2
mA
SYSCLK = 5 MHz
See Notes 5 and 6
35
56
SYSCLK = 3 MHz
See Notes 5 and 6
25
36
SYSCLK = 0.5 MHz
See Notes 5 and 6
13
18
SYSCLK = 5 MHz
See Notes 5 and 6
12
17
SYSCLK = 3 MHz
See Notes 5 and 6
8
11
2.5
3.5
SYSCLK = 3 MHz
See Notes 5 and 6
6
8.6
SYSCLK = 0.5 MHz
See Notes 5 and 6
2
3
XTAL2 / CLKIN < 0.2 V
See Note 5
2
30
SYSCLK = 0.5 MHz
See Notes 5 and 6
(
Supplyy current (STANDBY
mode))
OSC POWER bit = 1 (see Note 9)
V
10
VOH = 2.4 V
Supply current (STANDBY mode)
OSC POWER bit = 0 (see Note 8)
UNIT
V
2.4
VOL = 0.4 V
VOH = 0.9 VCC1
Supply
y current ((operating
g mode))
OSC POWER bit = 0 (see Note 7)
MAX
0.3 V < VI < VCC1–0.3 V
12 V ≤ VI ≤ 13 V
I / O pins
TYP
0.4
IOH = – 2 mA
0 V < VI ≤ 0.3 V
MC
MIN
mA
mA
mA
µA
NOTES: 4. Input current IPP is a maximum of 50 mA only when programming EPROM.
5. In single chip mode, ports are configured as inputs or outputs with no load. All inputs ≤ 0.2 V or ≥ VCC1 – 0.2V.
6. XTAL2/CLKIN is driven with an external square wave signal with 50% duty cycle and rise and fall times less than 10 ns. Current
can be higher with a crystal oscillator. At 5 MHz SYSCLK, this extra current = 0.01 mA x (total load capacitance + crystal capacitance
in pF).
7. Maximum operating current for TMS370Cx7x = 10 (SYSCLK) + 5.8 mA.
8. Maximum standby current for TMS370Cx7x = 3 (SYSCLK) + 2 mA. (OSC POWER bit = 0).
9. Maximum standby current for TMS370Cx7x = 2.24 (SYSCLK) + 1.9 mA. (OSC POWER bit =1, only valid up to 3 MHz SYSCLK).
46
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
TMS370Cx7x
8-BIT MICROCONTROLLER
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
PARAMETER MEASUREMENT INFORMATION
XTAL2/CLKIN
XTAL1
XTAL2/CLKIN
XTAL1
C3
(see Note B)
C1
(see Note B)
Crystal/Ceramic
Resonator
(see Note A)
C2
(see Note B)
External
Clock Signal
NOTES: A. The crystal/ceramic resonator frequency is four times the reciprocal of the system clock period.
B. The values of C1 and C2 are typically 15 pF and C3 is typically 50 pF. See the manufacturer’s recommendations for ceramic
resonators.
Figure 17. Recommended Crystal/Clock Connections
Load Voltage
1.2 kΩ
VO
20 pF
Case 1: VO = VOH = 2.4 V; Load Voltage = 0 V
Case 2: VO = VOL = 0.4 V; Load Voltage = 2.1 V
NOTE A: All measurements are made with the pin loading as shown unless otherwise noted. All measurements are made with XTAL2/CLKIN
driven by an external square wave signal with a 50% duty cycle and rise and fall times less than 10 ns unless otherwise stated.
Figure 18. Typical Output Load Circuit (see Note A)
VCC2
VCC2
300 Ω
Pin Data
30 Ω
Output
Enable
I/O
6 kΩ
INT1
20 Ω
20 Ω
GND
GND
Figure 19. Typlcal Buffer Circuitry
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
47
TMS370Cx7x
8-BIT MICROCONTROLLER
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
PARAMETER MEASUREMENT INFORMATION
timing parameter symbology
Timing parameter symbols have been created in accordance with JEDEC Standard 100. In order to shorten the
symbols, some of the pin names and other related terminology have been abbreviated as follows:
A
Address
PGM
Program
AR
Array
R
Read
B
Byte
SC
SYSCLK
CI
XTAL2/CLKIN
W
Write
D
Data
Lowercase subscripts and their meanings are:
c
d
f
h
cycle time (period)
delay time
fall time
hold time
r
su
v
w
rise time
setup time
valid time
pulse duration (width)
The following additional letters are used with these meanings:
H
L
V
Z
High
Low
Valid
High impedance
All timings are measured between high and low measurement points as indicated in Figure 20 and Figure 21.
0.8 VCC V (High)
2 V (High)
0.8 V (Low)
0.8 V (Low)
Figure 20. XTAL2/CLKIN Measurement Points
48
POST OFFICE BOX 1443
Figure 21. General Measurement Points
• HOUSTON, TEXAS 77251–1443
TMS370Cx7x
8-BIT MICROCONTROLLER
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
external clocking requirements for clock divided by 4† (see Figure 22)
NO.
1
2
3
4
PARAMETER
MIN
MAX
20
UNIT
tw(Cl)
tr(Cl)
Pulse duration, XTAL2/CLKIN (see Note 10)
Rise time, XTAL2/CLKIN
30
ns
tf(CI)
td(CIH-SCL)
Fall time, XTAL2/CLKIN
30
ns
CLKIN
Crystal operating frequency
System clock‡
Delay time, XTAL2/CLKIN rise to SYSCLK fall
2
ns
100
ns
20
MHz
SYSCLK
0.5
5
MHz
† For VIL and VIH, refer to recommended operating conditions.
‡ SYSCLK = CLKIN/4
NOTE 10: This pulse can be either a high pulse, which extends from the earliest valid high to the final valid high in an XTAL2/CLKIN cycle, or a
low pulse, which extends from the earliest valid low to the final valid low in an XTAL2/CLKIN cycle.
1
XTAL2/CLKIN
2
3
4
SYSCLK
Figure 22. External Clock Timing for Divide-by-4
external clocking requirements for clock divided by 1 (PLL)† (see Figure 23)
NO.
1
2
3
4
PARAMETER
MIN
MAX
20
UNIT
tw(Cl)
tr(Cl)
Pulse duration, XTAL2/CLKIN (see Note 10)
Rise time, XTAL2/CLKIN
30
ns
tf(CI)
td(CIH-SCH)
Fall time, XTAL2/CLKIN
30
ns
CLKIN
Crystal operating frequency
System clock§
Delay time, XTAL2/CLKIN rise to SYSCLK rise
ns
100
2
5
ns
MHz
SYSCLK
2
5
MHz
† For VIL and VIH, refer to recommended operating conditions.
§ SYSCLK = CLKIN/1
NOTE 10: This pulse can be either a high pulse, which extends from the earliest valid high to the final valid high in an XTAL2/CLKIN cycle, or a
low pulse, which extends from the earliest valid low to the final valid low in an XTAL2/CLKIN cycle.
1
XTAL2/CLKIN
2
3
4
SYSCLK
Figure 23. External Clock Timing for Divide-by-1
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
49
TMS370Cx7x
8-BIT MICROCONTROLLER
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
general-purpose output signal switching time requirements (see Figure 24)
MIN
tr
tf
NOM
MAX
UNIT
Rise time
30
ns
Fall time
30
ns
tr
tf
Figure 24. Signal Switching Timing
recommended EEPROM timing requirements for programming
MIN
tw(PGM)B
tw(PGM)AR
MAX
UNIT
Pulse duration, programming signal to ensure valid data is stored (byte mode)
10
ms
Pulse duration, programming signal to ensure valid data is stored (array mode)
20
ms
recommended EPROM operating conditions for programming
VCC1
VPP
Supply voltage
IPP
Supply current at MC pin during programming (VPP = 13 V)
SYSCLK
System clock
Supply voltage at MC pin
MIN
NOM
MAX
4.75
5.5
6
13
13.2
13.5
30
50
Divide-by-4
0.5
5
Divide-by-1
2
5
UNIT
V
V
mA
MHz
recommended EPROM timing requirements for programming
tw(EPGM)
Pulse duration, programming signal (see Note 11)
NOTE 11: Programming pulse is active when both EXE (EPCTL.0) and VPPS (EPCTL.6) are set.
50
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
MIN
NOM
MAX
0.40
0.50
3
UNIT
ms
TMS370Cx7x
8-BIT MICROCONTROLLER
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
switching characteristics and timing requirements† (see Figure 25)
NO.
PARAMETER
5
tc
time SYSCLK (system clock)
Cycle time,
6
tw(SCL)
tw(SCH)
Pulse duration, SYSCLK low
MIN
MAX
Divide-by-4 clock
200
2 000
Divide-by-1-(PLL)
200
500
0.5tc–20
0.5tc
0.5tc
0.5tc+20
7
Pulse duration, SYSCLK high
† tc = system-clock cycle time = 1 / SYSCLK
UNIT
ns
ns
ns
7
5
6
SYSCLK
Figure 25. SYSCLK Timing
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
51
TMS370Cx7x
8-BIT MICROCONTROLLER
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
analog-to-digital converter 1 (ADC1)
The ADC1 has a separate power bus for its analog circuitry. These pins are referred to as VCC3 and VSS3 . The
purpose is to enhance ADC1 performance by preventing digital switching noise in the logic circuitry that can
be present on VSS1 and VCC1 when coupling into the A/D analog stage. All ADC1 specifications are given with
respect to VSS3 unless otherwise noted.
Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-bits (256 values)
Monotonic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Yes
Output conversion mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00h to FFh (00 for VI ≤ VSS3 ≤; FF for VI ≤ Vref)
Conversion time (excluding sample time) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 tc
recommended operating conditions
VCC3
Analog supply voltage
VSS3
Vref
Analog ground
MIN
NOM
MAX
4.5
5
5.5
VCC1–0.3
VSS1–0.3
Non-VCC3 reference†
Analog input for conversion
2.5
UNIT
VCC1+0.3
VSS1+0.3
VCC3
VSS3
† Vref must be stable, within ± 1/2 LSB of the required resolution, during the entire conversion time.
VCC3 + 0.1
Vref
V
V
V
V
operating characteristics over recommended ranges of operating conditions
PARAMETER
Absolute accuracy‡
Differential/integral linearity error‡§
ICC3
Analog supply current
II
Iref
Input current, AN0 – AN7
Zreff
TEST CONDITIONS
MAX
UNIT
± 1.5
LSB
± 0.9
LSB
Converting
2
mA
Nonconverting
5
µA
0 V ≤ VI ≤ 5.5 V
2
µA
VCC3 = 5.5 V
VCC3 = 5.5 V
Vrerf = 5.1 V
Vrerf = 5.1 V
Input charge current
Source impedance of Vreff
MIN
1
mA
SYSCLK ≤ 3 MHz
24
kΩ
3 MHz < SYSCLK ≤ 5 MHz
10
kΩ
‡ Absolute resolution = 20 mV. At Vref = 5 V, this is one LSB. As Vref decreases, LSB size decreases; therefore, the absolute accuracy and
differential/integral linearity errors in terms of LSBs increase.
§ Excluding quantization error of 1/2 LSB
52
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
TMS370Cx7x
8-BIT MICROCONTROLLER
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
analog-to-digital converter 1 (ADC1) (continued)
The ADC1 module allows complete freedom in design of the sources that supply the analog inputs. The period
of the sample time is user-defined so that the high impedance can be accommodated without penalty to the
low-impedance sources. The sample period begins when the SAMPLE START bit of the ADC1 control register
(ADCTL.6) is set to 1. The end of the signal sample period occurs when the conversion bit (CONVERT START,
ADCTL.7) is set to 1. After a hold time, the converter resets the SAMPLE START and CONVERT START bits,
signaling that a conversion has started and that the analog signal can be removed.
analog timing requirements (see Figure 26)
MIN
tsu(S)
th(AN)
Setup time, analog to sample command
0
Hold time, analog input from start of conversion
MAX
UNIT
ns
18tc
1
ns
tw(S)
Pulse duration, sample time per kilohm of source impedance†
µs / kΩ
† The value given is valid for a signal with a source impedance > 1 kΩ. If the source impedance is < 1 kΩ, use a minimum sampling time of 1µs.
Analog Stable
Analog In
tsu(S)
Sample Start
th(AN)
tw(S)
Convert Start
Figure 26. Analog Timing
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
53
TMS370Cx7x
8-BIT MICROCONTROLLER
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
Table 20 is designed to aid the user in referencing a device part number to a mechanical drawing. The table
shows a cross-reference of the device part number to the TMS370 generic package name and the associated
mechanical drawing by drawing number and name.
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Table 20. TMS370Cx7x Family Package Type and Mechanical Cross-Reference
PKG TYPE
(mil pin spacing)
TMS370 GENERIC NAME
PKG TYPE NO. AND
MECHANICAL NAME
DEVICE PART NUMBERS
FN – 68 pin
(50-mil pin spacing)
PLASTIC LEADED CHIP CARRIER
(PLCC)
FN(S-PQCC-J**) PLASTIC J-LEADED
CHIP CARRIER
TMS370C077AFNA
TMS370C077AFNL
TMS370C077AFNT
TMS370C777AFNT
FZ – 68 pin
(50-mil pin spacing)
CERAMIC LEADED CHIP CARRIER
(CLCC)
FZ(S-CQCC-J**) J-LEADED CERAMIC
CHIP CARRIER
SE370C777AFZT
JN – 64 pin
(70-mil pin spacing)
CERAMIC SHRINK DUAL-IN-LINE
PACKAGE (CSDIP)
JN(R-CDIP-T64) CERAMIC DUAL-IN-LINE
PACKAGE
SE370C777AJNT
NM – 64 pin
(70-mil pin spacing)
PLASTIC SHRINK DUAL-IN-LINE
PACKAGE (PSDIP)
NM(R-PDIP-T64) PLASTIC SHRINK
DUAL-IN-LINE PACKAGE
TMS370C077ANMA
TMS370C077ANML
TMS370C077ANMT
TMS370C777ANMT
54
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
TMS370Cx7x
8-BIT MICROCONTROLLER
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
MECHANICAL DATA
FN (S-PQCC-J**)
PLASTIC J-LEADED CHIP CARRIER
20 PIN SHOWN
Seating Plane
0.004 (0,10)
0.180 (4,57) MAX
0.120 (3,05)
0.090 (2,29)
D
D1
0.020 (0,51) MIN
3
1
19
0.032 (0,81)
0.026 (0,66)
4
E
18
D2 / E2
E1
D2 / E2
8
14
0.021 (0,53)
0.013 (0,33)
0.007 (0,18) M
0.050 (1,27)
9
13
0.008 (0,20) NOM
D1 / E1
D/E
D2 / E2
NO. OF
PINS
**
MIN
MAX
MIN
MAX
MIN
MAX
20
0.385 (9,78)
0.395 (10,03)
0.350 (8,89)
0.356 (9,04)
0.141 (3,58)
0.169 (4,29)
28
0.485 (12,32)
0.495 (12,57)
0.450 (11,43)
0.456 (11,58)
0.191 (4,85)
0.219 (5,56)
44
0.685 (17,40)
0.695 (17,65)
0.650 (16,51)
0.656 (16,66)
0.291 (7,39)
0.319 (8,10)
52
0.785 (19,94)
0.795 (20,19)
0.750 (19,05)
0.756 (19,20)
0.341 (8,66)
0.369 (9,37)
68
0.985 (25,02)
0.995 (25,27)
0.950 (24,13)
0.958 (24,33)
0.441 (11,20)
0.469 (11,91)
84
1.185 (30,10)
1.195 (30,35)
1.150 (29,21)
1.158 (29,41)
0.541 (13,74)
0.569 (14,45)
4040005 / B 03/95
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-018
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
55
TMS370Cx7x
8-BIT MICROCONTROLLER
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
MECHANICAL DATA
FZ (S-CQCC-J**)
J-LEADED CERAMIC CHIP CARRIER
28 LEAD SHOWN
0.040 (1,02)
45°
Seating Plane
0.180 (4,57)
A
0.155 (3,94)
0.140 (3,55)
B
4
1
0.120 (3,05)
26
25
5
A
B
0.050 (1,27)
C
(at Seating
Plane)
0.032 (0,81)
0.026 (0,66)
0.020 (0,51)
0.014 (0,36)
19
11
18
12
0.025 (0,64) R TYP
0.040 (1,02) MIN
0.120 (3,05)
0.090 (2,29)
B
A
C
JEDEC
NO. OF
OUTLINE
PINS**
MIN
MAX
MIN
MAX
MIN
MAX
MO-087AA
28
0.485
(12,32)
0.495
(12,57)
0.430
(10,92)
0.455
(11,56)
0.410
(10,41)
0.430
(10,92)
MO-087AB
44
0.685
(17,40)
0.695
(17,65)
0.630
(16,00)
0.655
(16,64)
0.610
(15,49)
0.630
(16,00)
MO-087AC
52
0.785
(19,94)
0.795
(20,19)
0.730
(18,54)
0.765
(19,43)
0.680
(17,28)
0.740
(18,79)
MO-087AD
68
0.985
(25,02)
0.995
(25,27)
0.930
(23,62)
0.955
(24,26)
0.910
(23,11)
0.930
(23,62)
4040219 / B 03/95
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a ceramic lid using glass frit.
56
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
TMS370Cx7x
8-BIT MICROCONTROLLER
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
MECHANICAL DATA
JN (R-CDIP-T64)
CERAMIC DUAL-IN-LINE PACKAGE
2.424 (61,57)
2.376 (60,35)
64
33
0.750 (19,05)
0.730 (18,54)
1
32
0.040 (1,02) TYP
0.094 (2,39)
0.078 (1,98)
0.760 (19,30)
0.060 (1,52)
0.040 (1,02)
0.740 (18,80)
Seating Plane
0.088 (2,24)
0.072 (1,83)
0.020 (0,51)
0.016 (0,41)
0.175 (4,45) TYP
0.012 (0,31)
0.009 (0,23)
0.070 (1,78)
See Note C
2.178 (55,32)
2.162 (54,91)
4040224/A 09/95
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Each pin centerline located within 0.010 (0,26) of it true longitudinal position.
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
57
TMS370Cx7x
8-BIT MICROCONTROLLER
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
MECHANICAL DATA
NM (R-PDIP-T64)
PLASTIC SHRINK DUAL-IN-LINE PACKAGE
2.280 (57,91) MAX
64
33
0.680 (17,27)
0.670 (17,02)
1
32
0.048 (1,216)
0.032 (0,816)
0.222 (5,64) MAX
0.760 (19,30)
0.020 (0,51) MIN
0.740 (18,80)
Seating Plane
0.070 (1,78)
0.022 (0,56)
0.014 (0,36)
0.125 (3,18) MIN
0.010 (0,25) M
0°– 15°
0.010 (0,25) NOM
4040056 / B 05/95
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
58
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
IMPORTANT NOTICE
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those
pertaining to warranty, patent infringement, and limitation of liability.
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO
BE FULLY AT THE CUSTOMER’S RISK.
In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI’s publication of information regarding any third
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.
Copyright  1998, Texas Instruments Incorporated