TI TMS370CX6X

TMS370Cx6x
8-BIT MICROCONTROLLER
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
D
D
D
D
D
D
FN / FZ PACKAGE
( TOP VIEW )
VSS1
C2
C1
MC
C0
B7
B6
B5
B4
B3
B2
B1
B0
T2BIC1/CR
VCC2
VSS2
VCC1
CMOS/EEPROM/EPROM Technologies on a
Single Device
– Mask-ROM Devices for High-Volume
Production
– One-Time-Programmable (OTP) EPROM
Devices for Low-Volume Production
– Reprogrammable EPROM Devices for
Prototyping Purposes
Internal System Memory Configurations
– On-Chip Program Memory Versions
– ROM: 24K, 32K, or 48K Bytes
– EPROM: 32K or 48K Bytes
– Data EEPROM: 256 Bytes
– Static RAM: 1K or 3.5K Bytes
– External Memory / Peripheral Wait States
– Precoded External Chip-Select Outputs
in Microcomputer Mode
Flexible Operating Features
– Low-Power Modes: STANDBY and HALT
– Commercial, Industrial, and Automotive
Temperature Ranges
– Clock Options
– Divide-by-4 (0.5 MHz – 5 MHz SYSCLK)
– Divide-by-1 (2 MHz – 5 MHz SYSCLK)
PLL
– Supply Voltage (VCC): 5 V ± 10%
Eight-Channel 8-Bit Analog-to-Digital
Converter 1 (ADC1)
Three 16-Bit General Purpose Timers
– Software Configurable as
Three 16-Bit Event Counters, or
Three 16-Bit Pulse Accumulators, or
Five 16-Bit Input Capture Functions, or
Six Compare Registers, or
Three Self-Contained PWM Functions
– One Timer Has an 8-Bit Prescaler,
Providing a 24-Bit Real-Time Timer
On-Chip 24-Bit Watchdog Timer
– EPROM / OTP: Standard Watchdog
– Mask-ROM Devices: Hard Watchdog,
Simple Counter, or Standard Watchdog
Serial Communications Interface (SCI1)
– Asynchronous and Isosynchronous†
Modes
– Full Duplex, Double-Buffered RX and TX
– Two Multiprocessor Communication
Formats
C3
C4
C5
C6
C7
VCC2
VSS2
A0
A1
A2
A3
A4
A5
A6
A7
T2AEVT
T2AIC2/PWM
9 8 7 6 5 4 3 2 1 6867 66 65 6463 62 61
10
60
59
11
58
12
13
57
14
56
15
55
54
16
17
53
18
52
19
51
20
50
21
49
22
48
47
23
24
46
25
45
26
44
27 28 2930 31 32 3334 35 3637 38 39 4041 42 43
T2BIC2 / PWM
T2BEVT
D3 / SYSCLK
D4 / R / W
D5 / CSPF
D6/CSH1/EDS
D7/CSE1/WAIT
RESET
INT1
INT2
INT3
SPISOMI
SPISIMO
SPICLK
T1IC/CR
T1PWM
T1EVT
T2AIC1/CR
SCICLK
SCIRXD
SCITXD
XTAL2/CLKIN
XTAL1
V CC1
V CC3
VSS3
AN0
AN1
AN2
AN3
AN4
AN5
AN6
AN7
D
D
D
D
D
D
Serial Peripheral Interface (SPI)
– Variable-Length High-Speed Shift
Register
– Synchronous Master / Slave Operation
Flexible Interrupt Handling
– Two S / W Programmable Interrupt Levels
– Global- and Individual-Interrupt Masking
– Programmable Rising- or Falling-Edge
Detect
TMS370 Series Compatibility
– Register-to-Register Architecture
– 256 General-Purpose Registers
– 14 Powerful Addressing Modes
– Instructions Upwardly Compatible With
All TMS370 Devices
CMOS/Package /TTL-Compatible I / O Pins
– 46 Bidirectional Pins, 9 Input Pins
– 68-Pin Plastic and Ceramic Leaded Chip
Carrier Packages
– All Peripheral Function Pins Are
Software Configurable for Digital I / O
Workstation/PC-Based Development
System
– C Compiler and C Source Debugger
– Real-Time In-Circuit Emulation
– Extensive Breakpoint / Trace Capability
– Software Performance Analysis
– Multi-Window User Interface
– Microcontroller Programmer
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
† Isosynchronous = Isochronous
Copyright  1997, Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
1
TMS370Cx6x
8-BIT MICROCONTROLLER
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁ
ÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁ
ÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁ
ÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Pin Descriptions
PIN
I/O†
DESCRIPTION‡
17
18
19
20
21
22
23
24
I/O
Single-chip mode: Port A is a general-purpose bidirectional I/O port.
Expansion mode: Port A can be individually programmed as the external bidirectional data
bus (DATA0 – DATA7).
ADDR0
ADDR1
ADDR2
ADDR3
ADDR4
ADDR5
ADDR6
ADDR7
65
66
67
68
1
2
3
4
I/O
Single-chip mode: Port B is a general-purpose bidirectional I/O port.
Expansion mode: Port B can be individually programmed as the low-order address output
bus (ADDR0 – ADDR7).
ADDR8
ADDR9
ADDR10
ADDR11
ADDR12
ADDR13
ADDR14
ADDR15
5
7
8
10
11
12
13
14
I/O
Single-chip mode: Port C is a general-purpose bidirectional I/O port.
Expansion mode: Port C can be individually programmed as the high-order address output
bus (ADDR8 – ADDR15).
INT1
INT2
INT3
NMI
—
—
52
51
50
I
I/O
I/O
External (nonmaskable or maskable) interrupt/general-purpose input pin
External maskable interrupt input/general-purpose bidirectional pin
External maskable interrupt input/general-purpose bidirectional pin
AN0
AN1
AN2
AN3
AN4
AN5
AN6
AN7
E0
E1
E2
E3
E4
E5
E6
E7
36
37
38
39
40
41
42
43
I
ALTERNATE
FUNCTION
PLCC
(68)
A0
A1
A2
A3
A4
A5
A6
A7
DATA0
DATA1
DATA2
DATA3
DATA4
DATA5
DATA6
DATA7
B0
B1
B2
B3
B4
B5
B6
B7
C0
C1
C2
C3
C4
C5
C6
C7
NAME
ADC1 analog input (AN0 – AN7) or positive reference pins (AN1 – AN7)
Port E can be programmed individually as general-purpose input pins if not used as ADC1
analog input or positive reference input.
VCC3
VSS3
34
35
RESET
53
I/O
System reset bidirectional pin. RESET, as an input, initializes the microcontroller; as
open-drain output, RESET indicates an internal failure was detected by the watchdog or
oscillator fault circuit.
MC
6
I
Mode control (MC) pin. MC enables EEPROM write-protection override (WPO) mode, also
EPROM VPP.
XTAL2/CLKIN
XTAL1
31
32
I
O
Internal oscillator crystal input / external clock source input
Internal oscillator output for crystal
VCC1
VCC2
ADC1 positive-supply voltage and optional positive-reference input pin
ADC1 ground reference pin
33, 61
Positive supply voltage
15, 63
Positive supply voltage
† I = input, O = output
‡ Ports A, B, C, and D can be configured only as general-purpose I/O pins. Also, port D3 can be configured as SYSCLK.
2
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
TMS370Cx6x
8-BIT MICROCONTROLLER
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Pin Descriptions (Continued)
PIN
ALTERNATE
FUNCTION
NAME
PLCC
(68)
VSS1
VSS2
I/O†
9
DESCRIPTION‡
Ground reference for digital logic
16,62
Ground reference for digital I / O logic
Single-chip mode: Port D is a general-purpose bidirectional I / O port. Each of the
port D pins can be configured individually as a general-purpose I / O pin, primary memory
A) or secondary memory control signal (function B).
B) All chip
control signal (function A),
selects are independent and can be used for memory-bank switching. See Table 1 for
function A memory accesses.
FUNCTION
A
B
D3
SYSCLK
SYSCLK
58
I / O pin A, B: Internal clock signal is 1 / 1 (PLL) or 1 / 4 XTAL2 / CLKIN frequency
D4
R/W
R/W
57
I / O pin A, B: Read / write output pin
D5
CSPF
—
56
I / O pin A: Chip select peripheral output for peripheral file goes low during memory
accesses
I / O pin B: Reserved
I/O
D6
CSH1
EDS
55
I / O pin A: Chip select half output 1 goes low during memory accesses
I / O pin B: External data strobe output goes low during memory accesses from external
memory and has the same timings as the five chip selects.
D7
CSE1
WAIT
54
I / O pin A: Chip select eighth output goes low during memory accesses.
I / O pin B: Wait-input pin extends bus signals.
SCITXD
SCIRXD
SCICLK
SCIIO1
SCIIO2
SCIIO3
30
29
28
I/O
SCI transmit data output pin / general-purpose bidirectional pin§
SCI receive data input pin / general-purpose bidirectional pin
SCI bidirectional serial clock pin / general-purpose bidirectional pin
T1IC / CR
T1PWM
T1EVT
T1IO1
T1IO2
T1IO3
46
45
44
I/O
Timer1 input capture / counter reset input pin / general-purpose bidirectional pin
Timer1 pulse width modulation (PWM) output pin / general-purpose bidirectional pin
Timer1 external event input pin / general-purpose bidirectional pin
T2AIC1 / CR
T2AIC2 / PWM
T2AEVT
T2AIO1
T2AIO2
T2AIO3
27
26
25
I/O
Timer2A input capture 1 / counter-reset input pin / general-purpose bidirectional pin
Timer2A input capture 2 / PWM output pin / general-purpose bidirectional pin
Timer2A external event input pin / general-purpose bidirectional pin
T2BIC1 / CR
T2BIC2 / PWM
T2BEVT
T2BIO1
T2BIO2
T2BIO3
64
60
59
I/O
Timer2B input capture 1 / counter-reset input pin / general-purpose bidirectional pin
Timer2B input capture 2 / PWM output pin / general-purpose bidirectional pin
Timer2B external event input pin / general-purpose bidirectional pin
SPISOMI
SPIIO1
49
SPI slave output pin, master input pin / general-purpose bidirectional pin
SPISIMO
SPIIO2
48
I / O SPI slave input pin, master output pin / general-purpose bidirectional pin
SPICLK
SPIIO3
47
SPI bidirectional serial clock pin / general-purpose bidirectional pin
† I = input, O = output
‡ Ports A, B, C, and D can be configured only as general-purpose I/O pins. Port D3 also can be configured as SYSCLK.
§ The three-pin configuration SCI is referred to as SCI1.
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
Table 1. Function A Memory-Access Locations for ‘x6x Devices
FUNCTION A
’X67
‘X68
‘X69
CSE1
A000h – BFFFh (8K bytes)
A000h – BFFFh (8K bytes)
E000h – EFFFh (4K bytes)
CSH1
C000h – FFFFh (16K bytes)
C000h – FFFFh (16K bytes)
F000h – FFFFh (4K bytes)
CSPF
10C0h – 10FFh (64 bytes)
10C0h – 10FFh (64 bytes)
10C0h – 10FFh (64 bytes)
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
3
TMS370Cx6x
8-BIT MICROCONTROLLER
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
functional block diagram
INT1
INT2
INT3 XTAL1 XTAL2/
CLKIN
Interrupts
MC
E0 – E7
or
AN0 – AN7
RESET
Clock Options:
System Control
Divide-by-4 or
Divide-by-1(PLL)
Analog to Digital
Converter 1
VSS3
Serial
Peripheral
Interface
SPISOMI
SPISIMO
SPICLK
Serial
Communications
Interface 1
SCIRXD
SCITXD
SCICLK
RAM
1K or 3.5K Bytes
CPU
Program Memory
ROM: 24K, 32K, or
48K Bytes
EPROM: 32K or
48K Bytes
Data EEPROM
256 Bytes
Timer 2B
T2BIC1 / CR
T2BEVT
T2BIC2 / PWM
Timer 2A
T2AIC1 / CR
T2AEVT
T2AIC2 / PWM
Timer 1
T1IC / CR
T1EVT
T1PWM
Control
Address MSbyte
Address LSbyte
Data
Memory Expansion
Port A
Port B
Port C
Port D
8
8
8
5
VCC3
Watchdog
VCC1
VSS1
VSS2
VCC2
description
The TMS370C067, TMS370C068, TMS370C069, TMS370C768, TMS370C769, SE370C768, and
SE370C769 devices are members of the TMS370 family of single-chip 8-bit microcontrollers. Unless otherwise
noted, the term TMS370Cx6x refers to these devices. The TMS370 family provides cost-effective real-time
control through integration of advanced peripheral function modules and various on-chip memory
configurations.
The TMS370Cx6x family of devices is implemented using high-performance silicon-gate CMOS EPROM and
EEPROM technologies. The low-operating power, wide-operating temperature range, and noise immunity of
CMOS technology, coupled with the high performance and extensive on-chip peripheral functions, make the
TMS370Cx6x devices attractive in system designs for automotive electronics, industrial motor control,
computer peripheral control, telecommunications, and consumer application.
All TMS370Cx6x devices contain the following on-chip peripheral modules:
D
D
D
4
8-channel, 8-bit analog-to-digital converter 1 (ADC1)
Serial communications interface 1 (SCI1)
Serial peripheral interface (SPI)
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
TMS370Cx6x
8-BIT MICROCONTROLLER
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
description (continued)
D
D
One 24-bit general-purpose watchdog timer
Three 16-bit general-purpose timers (one with an 8-bit prescaler)
Table 2 provides a memory configuration overview of the TMS370Cx6x devices.
Table 2. Memory Configurations
DEVICE
PROGRAM
MEMORY
(BYTES)
OFF-CHIP
MEMORY
EXP (BYTES)
EXP.
DATA MEMORY
(BYTES)
OPERATING
MODES
RAM
EEPROM
µC†
µP†
1K
256
√
√
FN – PLCC
PACKAGES
68-PIN PLCC/CLCC
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁ
ROM
EPROM
TMS370C067A
24K
—
24K
TMS370C068A
32K
48K‡
—
24K
1K
256
√
√
FN – PLCC
TMS370C069A
—
8K
3.5K
256
√
√
FN – PLCC
TMS370C768A
—
24K
1K
256
√
√
FN – PLCC
TMS370C769A
SE370C768A§
—
32K
48K‡
8K
3.5K
256
√
√
FN – PLCC
32K
48K‡
24K
1K
256
√
√
—
FZ – CLCC
§
SE370C769A
—
8K
3.5K
256
√
√
FZ – CLCC
† µC – Microcomputer mode
µP – Microprocessor mode
‡ ’x69 can only operate up to 3 MHz SYSCLK.
§ System evaluators and development tools are for use only in a prototype environment, and their reliability has not been characterized.
The suffix letter (A) appended to the device names shown in the device column of Table 2 indicates the
configuration of the device. ROM or EPROM devices have different configurations as indicated in Table 3. ROM
devices with the suffix letter A are configured through a programmable contact during manufacture.
Table 3. Suffix Letter Configuration
DEVICE¶
WATCHDOG TIMER
CLOCK
LOW-POWER MODE
EPROM A
Standard
Divide-by-4 (Standard oscillator)
Enabled
Divide-by-4 or Divide-by-1 (PLL)
Enabled or disabled
Standard
ROM A
Hard
Simple
¶ Refer to the “device numbering conventions” section for device nomenclature and the “device part numbers” section for ordering.
The mask-programmable ROM in the associated TMS370C06x devices is replaced in the TMS370C76x with
32K or 48K bytes of EPROM while all the other available memory and on-chip peripherals are identical.
One-time-programmable (OTP) (TMS370C768 and TMS370C769) and reprogrammable devices (SE370C768
and SE370C769) are available.
TMS370C768 and TMS370C769 are OTP devices that are available in plastic packages. This microcomputer
is effective to use for immediate production updates for other members of the TMS370Cx6x family or for
low-volume production runs when the mask charge or cycle time for low-cost mask-ROM devices is not
practical.
The SE370C768 and SE370C769 have windowed ceramic packages to allow reprogramming of the program
EPROM memory during the development / prototyping phase of design. The SE370C768 and SE370C769
devices allow quick updates to breadboards and prototype systems while iterating initial designs.
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
5
TMS370Cx6x
8-BIT MICROCONTROLLER
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
description (continued)
The TMS370Cx6x family provides two low-power modes (STANDBY and HALT) for applications where
low-power consumption is critical. Both modes stop all central processing unit (CPU) activity (i.e., no instructions
are executed). In the STANDBY mode, the internal oscillator and the general-purpose timer remain active. In
the HALT mode, all device activity is stopped. The device retains all RAM data and peripheral configuration bits
throughout both low-power modes.
The TMS370Cx6x features advanced register-to-register architecture that allows direct arithmetic and logical
operations without requiring an accumulator (for example, ADD R24, R47; add the contents of register 24 to
the contents of register 47 and store the result in register 47). The TMS370Cx6x family is fully instruction-set
compatible, allowing easy transition between members of the TMS370 8-bit microcontroller family.
The SPI and the two operational modes of the SCI1 allow three methods of serial communications. The SCI1
allows standard RS-232-C communications interface between other common data transmission equipment,
while the SPI gives high-speed communications between simpler shift-register type devices, such as display
drivers, ADC1, phase-locked loop (PLL), I/O expansion, or other microcontrollers in the system.
For large memory applications, the TMS370Cx6x family provides an external bus with non-multiplexed address
and data. Precoded memory chip-select outputs can be enabled, which allows minimum-chip-count system
implementations. Wait-state support facilitates performance matching among the CPU, external memory, and
the peripherals. All pins associated with memory expansion interface are individually software configurable for
general purpose digital input/output (I / O) pins when operating in the microcomputer mode.
The TMS370Cx6x family provides the system designer with an economical, efficient solution to real-time control
applications. The TMS370 family compact development tool (CDT) solves the challenge of efficiently
developing the software and hardware required to design the TMS370Cx6x into an ever-increasing number of
complex applications. The application source code can be written in assembly and C language, and the output
code can be generated by the linker. The TMS370 family CDT development tool can communicate through a
standard RS-232-C interface with an existing personal computer. This allows the use of the personal computer
editors and software utilities already familiar to the designer. The TMS370 family CDT emphasizes extensive
use of menus and screen windowing so that a system designer with minimal training can begin developing
software. Precise real-time in-circuit emulation and extensive symbolic debug and analysis tools ensure
efficient software and hardware implementation as well as reduced time-to-market cycle.
The TMS370Cx6x family together with the TMS370 family CDT370, starter kit, software tools, the SE370C76x
reprogrammable devices, comprehensive product documentation, and customer support provide a complete
solution to the needs of the system designer.
CDT is a trademark of Texas Instruments Incorporated.
6
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
TMS370Cx6x
8-BIT MICROCONTROLLER
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
modes
The TMS370Cx6x has four operating modes, two basic modes with each mode having two memory
configurations. The basic operating modes are the microcomputer and microprocessor modes, which are
selected by the voltage level applied to the dedicated MC pin two cycles before RESET goes inactive. The two
memory configurations then are selected through software programming of the internal system configuration
registers. The four operating modes are the microcomputer single chip, microcomputer with external expansion,
microprocessor without internal program memory, and microprocessor with internal program memory. These
modes are described in the following list.
D
D
D
D
Microcomputer single chip mode:
–
Operates as a self-contained microcomputer with all memory and peripherals on-chip
–
Maximizes the general-purpose I/O capability for real-time control applications
Microcomputer with external expansion mode:
–
Supports bus expansion to external memory or peripherals, while all on-chip memory (RAM, ROM,
EPROM, and data EEPROM) remains active
–
Configures digital I/O ports (ports A, B, C, and D) through software, under control of the associated port
control, to become external memory as follows:
–
Port A: 8-bit data memory
–
Port B and Port C: 16-bit address memory
–
Port D: 5-bit control memory (pin not used as function A or B can be configured as I/O)
–
Utilizes the pins available (not used for address, data, or control memory) as general-purpose
input/output by programming them individually
–
Lowers the system cost by not requiring an external address/data latch (address memory and data
memory are nonmultiplexed)
–
Reduces external interface decode logic by using the precoded chip select outputs that provide direct
memory/peripheral chip select or chip enable functions
–
Function A maps up to 24K bytes of external memory into the address space by using CSE1 and CSH1
as memory-bank selects under software control.
–
Function B maps up to 24K bytes of external memory into the address space by using EDS under
software control.
Microprocessor without internal program memory mode:
–
Ports A, B, C, and D (these ports are not programmable) become the address, data, and control buses
for interface to external memory and peripherals.
–
On-chip RAM and data EEPROM remain active, while the on-chip ROM or EPROM is disabled.
–
Program area and the reset, interrupt, and trap vectors are located in off-chip memory locations.
Microprocessor with internal program memory mode:
–
Configured as the microprocessor without internal program memory mode with respect to the external
bus interface
–
Application program in external memory enables the internal program ROM or EPROM to be active in
the system. (Writing a zero to the MEMORY DISABLED control bit (SCCR1.2) of the SCCR1 control
register accomplishes this.)
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
7
TMS370Cx6x
8-BIT MICROCONTROLLER
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
memory/peripheral wait operation
The TMS370Cx6x enhances interface flexibility by providing WAIT-state support, decoupling the cycle time of
the CPU from the read/write access of the external memory or peripherals. External devices can extend the
read/write accesses indefinitely by placing an active low on the WAIT input pin. The CPU continues to wait as
long as WAIT remains active.
Programmable automatic wait-state generation also is provided by the TMS370Cx6x on-chip bus controller.
Following a hardware reset, the TMS370Cx6x is configured to add one wait state to all external bus transactions
and memory and peripheral accesses, thus making every external access a minimum of three system clock
cycles. The designer can disable the automatic wait-state generation if the AUTOWAIT DISABLE bit in SCCR1
is set to 1. Also, all accesses to the upper four frames of the peripheral file can be extended independently to
four system clock cycles if the PF AUTO WAIT bit in SCCR0 is set to one. Programmable wait states can be
used in conjunction with the external WAIT pin. In applications where the external device read/write access can
interface with the TMS370Cx6x CPU using one wait state, the automatic wait-state generation can eliminate
external WAIT interface logic, lowering system cost.
8
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
TMS370Cx6x
8-BIT MICROCONTROLLER
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
CPU
The CPU used on TMS370Cx6x devices is the high-performance 8-bit TMS370 CPU module. The ’x6x
implements an efficient register-to-register architecture that eliminates the conventional accumulator
bottleneck. The complete ’x6x instruction set is summarized in Table 22. Figure 1 illustrates the CPU registers
and memory blocks.
Program Counter (PC)
15
Stack Pointer (SP)
7
Legend:
C=Carry
N=Negative
Z=Zero
0
Status Register (ST)
C
N
Z
V
7
6
5
4
IE2 IE1
3
2
1
0
V=Overflow
IE2=Level2 interrupts Enable
IE1=Level1 interrupts Enable
0
ÌÌÌÌÌÌÌÌ
1K-Byte RAM (0000h – 03FFh)
3.5K-Byte RAM (0000h – 0DFFh)
Reserved†
Peripheral File
Peripheral Expansion
RAM (Includes 256-Byte Registers File)
0000h
R0(A)
0001h
R1(B)
0002h
R2
0003h
R3
Reserved
0000h
00FFh
0100h
03FFh
0400h
0DFFh
0E00h
0FFFh
1000h
10BFh
10C0h
10FFh
1100h
1EFFh
1F00h
256-Byte Data EEPROM
1FFFh
2000h
24K-Byte ROM (2000h – 7FFFh)
007Fh
R127
Interrupts and Reset Vectors;
Trap Vectors
32K-Byte ROM / EPROM (2000h – 9FFFh)
48K-Byte ROM / EPROM (2000h – DFFFh)
R255
Memory Expansion
00FFh
7FBDh
7FBEh
7FFFh
8000h
9FFFh
A000h
DFFFh
E000h
FFFFh
† Reserved means the address space is reserved for future expansion.
Figure 1. Programmer’s Model
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
9
TMS370Cx6x
8-BIT MICROCONTROLLER
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
CPU (continued)
The ’x6x CPU architecture provides the following components:
D
D
CPU registers:
–
A stack pointer that points to the last entry in the memory stack
–
A status register that monitors the operation of the instructions and contains the global-interrupt-enable
bits
–
A program counter (PC) that points to the memory location of the next instruction to be executed
A memory map that includes :
–
1K- or 3.5K-byte general-purpose RAM that can be used for data-memory storage, program
instructions, general-purpose register, or the stack (can be located only in the first 256 bytes)
–
A peripheral file that provides access to all internal peripheral modules, system-wide control functions,
and EEPROM/EPROM programming control
–
256-byte EEPROM module that provides in-circuit programmability and data retention in power-off
conditions
–
24K-, 32K-, or 48K-byte ROM or 32K-, or 48K-byte EPROM program memory
stack pointer (SP)
The SP is an 8-bit CPU register. The stack operates as a last-in, first-out, read/write memory. The stack is used
typically to store the return address on subroutine calls as well as the status-register contents during interrupt
sequences.
The SP points to the last entry or to the top of the stack. The SP increments automatically before data is pushed
onto the stack and decrements after data is popped from the stack. The stack can be located only in the first
256 bytes of the on-chip RAM memory.
status register (ST)
The ST monitors the operation of the instructions and contains the global-interrupt-enable bits. The ST includes
four status bits (condition flags) and two interrupt-enable bits:
D
D
The four status bits indicate the outcome of the previous instruction; conditional instructions (for example,
the conditional-jump instructions) use these status bits to determine program flow.
The two interrupt-enable bits control the two interrupt levels.
The ST register, status bit notation, and status bit definitions are shown in Table 4.
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
Table 4. Status Registers
7
6
5
4
3
2
1
0
C
N
Z
V
IE2
IE1
Reserved
Reserved
RW-0
RW-0
RW-0
RW-0
RW-0
RW-0
R = read, W = write, 0 = value after reset
10
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
TMS370Cx6x
8-BIT MICROCONTROLLER
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
CPU (continued)
program counter (PC)
The contents of the PC point to the memory location of the next instruction to be executed. The PC consists
of two 8-bit registers in the CPU: the program counter high (PCH) and program counter low (PCL). These
registers contain the most-significant byte (MSbyte) and least-significant byte (LSbyte) of a 16-bit address.
The contents of the reset vector (7FFEh, 7FFFh) are loaded into the program counter during reset. The PCH
(MSbyte of the PC) is loaded with the contents of memory location 7FFEh, and the PCL (LSbyte of the PC) is
loaded with the contents of memory location 7FFFh. Figure 2 shows this operation using an example value of
6000h as the contents of memory locations 7FFEh and 7FFFh (reset vector).
Program Counter
Memory
0000h
7FFEh
60
7FFFh
00
PCH
PCL
60
00
Figure 2. Program Counter After Reset
memory map
The TMS370Cx6x architecture is based on the Von Neuman architecture, where the program memory and data
memory share a common address space. All peripheral input/output is memory mapped in this same common
address space. In the expansion mode, external memory peripherals are also memory-mapped into this
common address. As shown in Figure 3, the TMS370Cx6x provides a 16 bit-address range to access internal
or external RAM, ROM, data EEPROM, EPROM input/output pins, peripheral functions, and system-interrupt
vectors.
The peripheral file contains all input/output port control, on- and off-chip peripheral status and control, EPROM,
EEPROM programming, and system-wide control functions. The peripheral file consists of 256 contiguous
addresses located from 1000h to 10FFh. The 256 contiguous addresses are logically divided into 16 peripheral
file frames of 16 bytes each. Each on-chip peripheral is assigned to a separate frame through which peripheral
control and data information is passed. The TMS370Cx6x has its on-chip peripherals and system control
assigned to peripheral file frames 1 through 8, addresses 1010h through 108Fh.
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
11
TMS370Cx6x
8-BIT MICROCONTROLLER
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
memory map (continued)
ÚÚ
ŠŠ
ÒÒÚÚ
ŠŠ
ÒÒÒ
ÚÚ
ŠŠŠ
ÒÒ
ÚÚÚ
ŠŠ
ÒÒ
ÚÚ
ŠŠ
ÒÒÚÚ
ŠŠ
ÒÒÒ
ÚÚ
ŠŠŠ
ÒÒ
ÚÚÚ
ŠŠ
ÒÒ
ÚÚ
ŠŠ
ÒÒÚÚ
ŠŠ
ÒÒÒ
ÚÚ
ŠŠŠ
ÒÒ
ÚÚÚ
ŠŠ
ÒÒ
ÚÚ
ŠŠ
ÒÒÚÚ
ŠŠ
ÒÒÒ
ÚÚ
ŠŠŠ
ÒÒ
ÚÚÚ
ŠŠ
ÒÒ
ÚÚ
ÚÚ
ÚÚÚ
ÚÚ
ŠŠ
ÒÒÚÚ
ÚÚ
ŠŠ
ÒÒÒ
ÚÚ
ŠŠŠ
ÒÒ
ÚÚÚ
ŠŠ
ÒÒ
ÚÚ
ŠŠ
ÒÒÚÚ
ŠŠ
ÒÒÒ
ÚÚ
ŠŠŠ
ÒÒ
ÚÚÚ
ŠŠ
ÒÒ
ÚÚ
ŠŠ
ÒÒÚÚ
ŠŠ
ÒÒÒ
ÚÚ
ŠŠŠ
ÒÒ
ÚÚÚ
ŠŠ
ÒÒ
ÚÚ
ŠŠ
ÒÒÚÚ
ŠŠ
ÒÒÒ
ÚÚ
ŠŠŠ
ÒÒ
ÚÚÚ
ŠŠ
ÒÒ
ÚÚ
ŠŠ
ÒÒÚÚ
ŠŠ
ÒÒÒ
ÚÚ
ŠŠŠ
ÒÒ
ÚÚÚ
ŠŠ
ÒÒ
ÚÚ
ŠŠ
ÒÒÚÚ
ŠŠ
ÒÒÒ
ÚÚ
ŠŠŠ
ÒÒ
ÚÚÚ
ŠŠ
ÒÒ
ÚÚ
ŠŠ
ÒÒÚÚ
ŠŠ
ÒÒÒ
ÚÚ
ŠŠŠ
ÒÒ
ÚÚ
ŠŠ
ÒÒÚÚ
ŠŠ
ÒÒÒ
ÚÚ
ŠŠŠ
ÒÒ
ÚÚ
ŠŠ
ÒÒÚÚ
ŠŠ
ÒÒÒ
ÚÚ
ŠŠŠ
ÒÒ
ÚÚ
ŠŠ ÚÚ
ŠŠ ÚÚ
ŠŠŠ
ÚÚ ÚÚ ÚÚ
ÚÚ ÚÚ ÚÚ
ÚÚ
ŠŠ
ÚÚ
ŠŠ
’X69
’X68
’X67
’X69
’X68
’X67
’X69
’X68
’X67
’X69
’X68
’X67
0000h
0400h
0E00h
Reserved†
Reserved†
Reserved†
Reserved†
1000h
10C0h
Not Available‡
External§
External§
External§
1100h
Reserved†
Reserved†
Reserved†
Peripheral File Control Registers
0000h
1K-Byte RAM
(0000h–03FFh)
0400h
0E00h
External§
N / A‡
Peripheral File
10C0h
Peripheral Expansion
E000h
FFFFh
Not Available‡
(N / A)
External§
Microcomputer
Single Chip Mode
Microcomputer
Mode With External
Expansion
On-Chip For TMS370Cx69 Devices
External§
Microprocessor With
Internal Program
Memory
1020h–102Fh
SPI Peripheral Control
1030h–103Fh
Timer 1 Peripheral Contr. 1040h–104Fh
1050h–105Fh
ADC1 Peripheral Contr.
1070h–107Fh
Timer 2B Periph. Contr.
1080h–108Fh
Reserved
1090h–109Fh
1100h
Vectors
Reserved
1F00h
256-Byte Data EEPROM
(1F00h–1FFFh)
2000h
24K-Byte ROM
(2000h–7FFFh)
7FBEh
8000h
N / A‡
A000h
1010h–101Fh
Digital Port Control
Timer 2A Peripheral Contr. 1060h–106Fh
1000h
2000h
8000h
1000h–100Fh
SCI1 Peripheral Contr.
Reserved
Reserved†
1F00h
3.5K-Byte RAM
(0000h–0DFFh)
Reserved
System Control
A000h
Interrupts and Reset
Vectors; Trap Vectors
32K-Byte ROM / EPROM
(2000h–9FFFh)
48K-Byte ROM / EPROM
(2000h–DFFFh)
E000h
Memory Expansion
Timer 2B
7FBEh–7FBFh
Trap 15 – 0
7FC0h–7FCFh
Reserved
7FE0h–7FEBh
A / D Converter
7FECh–7FEDh
Timer 2A
7FEEh–7FEFh
Serial Comm I / F TX
7FF0h–7FF1h
Serial Comm I / F RX
7FF2h–7FF3h
Timer 1
7FF4h–7FF5h
Serial Peripferal I / F
7FF6h–7FF7h
Interrupt 3
7FF8h–7FF9h
Interrupt 2
7FFAh–7FFBh
Interrupt 1
7FFCh–7FFDh
Reset
7FFEh–7FFFh
FFFFh
Microprocessor Mode¶
On-Chip For TMS370Cx68 Devices
ÒÒ
ÒÒ
On-Chip For TMS370Cx67 Devices
† Reserved = the address space is reserved for future expansion.
‡ Not available (N /A) = address space is unavailable in the mode illustrated.
§ Precoded chip select outputs available on external expansion bus.
¶ Microprocessor mode is designed for ROM-less devices. ROM and EPROM devices also can be used in this mode, but all on-chip memory is
ignored.
Figure 3. TMS370Cx6x Memory Map
12
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
TMS370Cx6x
8-BIT MICROCONTROLLER
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
RAM/register file (RF)
Locations within RAM address space can serve as either register file or general-purpose read/write memory,
program memory, or stack instructions. The TMS370Cx67 and TMS370Cx68 devices contain 1K bytes of
internal RAM, mapped beginning at location 0000h and continuing through location 03FFh, which is shown in
Table 5 along with ’x69 devices.
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Table 5. RAM Memory Map
‘x67 and ‘x68
‘x69
RAM Size
1K Bytes
3.5K Bytes
Memory Mapped
0000h – 03FFh
0000h – 0DFFh
The first 256 bytes of RAM (0000h – 00FFh) are register files, R0 through R255 (see Figure 1). The first two
registers, R0 and R1, are also called register A and B, respectively. Some instructions implicitly use register A
or B; for example, the instruction LDSP (load SP) assumes that the value to be loaded into the stack pointer
is contained in register B. Registers A and B are the only registers cleared on reset.
peripheral file (PF)
The TMS370Cx6x control registers contain all the registers necessary to operate the system and peripheral
modules on the device. The instruction set includes some instructions that access the PF directly. These
instructions designate the register by the number of the PF relative to 1000h, preceded by P0 for a hexadecimal
designator or by P for a decimal designator. For example, the system control register 0 (SCCR0) is located at
address 1010h; its peripheral file hexadecimal designator is P010, and its decimal designator is P16. Table 6
lists the TMS370Cx6x peripheral files.
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Table 6. TMS370Cx6x Peripheral File Address Map
ADDRESS RANGE
PERIPHERAL FILE
DESIGNATOR
1000h – 100Fh
P000 – P00F
Reserved for factory test
1010h – 101Fh
P010 – P01F
System and EEPROM/EPROM control registers
1020h – 102Fh
P020 – P02F
Digital I/O port control registers
1030h – 103Fh
P030 – P03F
Serial peripheral interface registers
1040h – 104Fh
P040 – P04F
Timer 1 registers
1050h – 105Fh
P050 – P05F
Serial communication interface 1 registers
1060h – 106Fh
P060 – P06F
Timer 2A registers
1070h – 107Fh
P070 – P07F
Analog-to-digital converter 1 registers
1080h – 108Fh
P080 – P08F
Timer 2B registers
1090h – 10BFh
P090 – P0BF
Reserved
10C0h – 10FFh
P0C0 – P0FF
External peripheral control
DESCRIPTION
data EEPROM
The TMS370Cx6x devices contain 256 bytes of data EEPROM, and the memory is mapped beginning at
location 1F00h and continuing through location 1FFFh.
Writing to the data EEPROM module is controlled by the data-EEPROM control register (DEECTL) and the
write-protection register (WPR). Programming algorithm examples are available in the TMS370 Family User’s
Guide (literature number SPNU127) or the TMS370 Data Manual (SPNS014B). The data EEPROM features
include the following:
D
Programming:
–
Bit, byte, and block write/erase modes
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
13
TMS370Cx6x
8-BIT MICROCONTROLLER
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
data EEPROM (continued)
D
D
–
Internal charge pump circuitry. No external EEPROM programming voltage supply is needed.
–
Control register: Data EEPROM programming is controlled by the data EEPROM control register
(DEECTL) located in the PF frame beginning at location P01A.
–
In-circuit programming capability: There is no need to remove the device to program it.
Write-protection: Writes to the data EEPROM are disabled during the following conditions:
–
Reset: All programming of the data EEPROM module is halted.
–
Write protection active: there is one write-protect bit per 32-byte EEPROM block.
–
Low-power mode operation
Write protection can be overridden by applying 12 V to MC.
Table 7 shows the memory map of the control registers.
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Table 7. Data EEPROM and Program EPROM Control Registers Memory Map
ADDRESS
SYMBOL
P014
EPCTLH
P015 – P016
NAME†
Program EPROM control register – high array
Reserved
P017
INT1
External interrupt 1 control register
P018
INT2
External interrupt 2 control register
P019
INT3
External interrupt 3 control register
P01A
DEECTL
P01B
P01C
P01D
Data EEPROM control register
Reserved
EPCTLM
Program EPROM control register – middle array
Reserved
P01E
EPCTLL
Program EPROM control register – low array
† For the 24K- and 32K-byte EPROM device, the program memory is controlled by P01C and P01E; for the 48K-byte EPROM device, the program
memory is controlled by P014, P01C, and P01E.
program EPROM
The ‘370C767 program EPROM consists of 24K bytes that are made up of one 16K-byte array and one 8K-byte
array of EPROM; the 16K-byte array is located at address locations 2000h through 5FFFh, and the 8K-byte
array is located at address locations 6000h through 7FFFh. The ‘370C768 program EPROM consists of 32K
bytes that are made up of two 16K-byte arrays of EPROM; the first 16K-byte array is located at address locations
2000h through 5FFFh, and the second 16K-byte array is located at address locations 6000h through 9FFFh.
The ’370C769 program EPROM consists of 48K bytes that are made up of three 16K-byte arrays of EPROM;
the first 16K-byte array is located at address locations 2000h through 5FFFh, the second 16K-byte array is
located at address locations 6000h through 9FFFh, the third 16K-byte array is located at address locations
A000h through DFFFh as shown in Table 8.
14
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
TMS370Cx6x
8-BIT MICROCONTROLLER
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
program EPROM (continued)
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
Table 8. EPROM Memory Map
EPROM
size
’767
’768
’769
24K Bytes
32K Bytes
48K Bytes
Memory
mapped
16K
2000h – 5FFFh
8K
6000h– 7FFFh
First 16K
2000h – 5FFFh
Second 16K
6000h – 9FFFh
First 16K
2000h – 5FFFh
Second 16K
6000h – 9FFFh
Third 16K
A000h – DFFFh
Contol
registers
EPCTLL
P01E
EPCTLM
P01C
EPCTLL
P01E
EPCTLM
P01C
EPCTLL
P01E
EPCTLM
P01C
EPCTLH
P014
The EPROM memory map in Table 8 expresses the following:
–
For the 24K-byte EPROM, the 16K-byte array is controlled by EPCTLL register, located at 101Eh
(P01E); the 8K-byte array is controlled by EPCTLM register, located at 101Ch (P01C).
–
For the 32K-byte EPROM, the first 16-byte array is controlled by EPCTLL register, located at 101Eh
(P01E); the second 16K-byte array is controlled by EPCTLM register, located at 101Ch (P01C).
–
For the 48K-bytes EPROM, the first 16K-byte array is controlled by EPCTLL register, located at 101Eh
(P01E); the second 16K-byte array is controlled by EPCTLM register, located at 101Ch (P01C); the third
16K-byte array is controlled by EPCTLH register, located at 1014h (P014).
Reading the program-EPROM modules is identical to reading other internal memory. During programming, the
EPROM is controlled by the EPCTL. The program EPROM modules’ features include:
D
D
Programming
–
In-circuit programming capability if VPP is applied to MC
–
Control register: Program EPROM programming is controlled by the program EPROM control registers
(EPCTLL, EPCTLM, and EPCTLH) located in the PF frame as shown in Table 7.
–
Programming one EPROM module while executing the other
Write protection: Writes to the program EPROM are disabled under the following conditions:
–
Reset: All programming to the EPROM module is halted.
–
Low-power modes
–
13 V not applied to MC
program ROM
The program ROM consists of 24K, 32K or 48K bytes of mask-programmable ROM. The program ROM is used
for permanent storage of data or instructions. Programming of the mask ROM is performed at the time of device
fabrication. Table 9 shows the program ROM memory map.
Table 9. ROM Memory Map†
ÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
‘067
’068
‘069
ROM Size
24K Bytes
32K Bytes
48K Bytes
Memory Mapped
2000h – 7FFFh
2000h – 9FFFh
2000h – DFFFh
† Memory addresses 7FE0h through 7FEBh are reserved for Texas Instruments Incorporated. Memory addresses 7FBEh through 7FBFh and
7FECh through 7FFFh are reserved for interrupts and reset vectors. Trap vectors, used with TRAP0 through TRAP15 instructions, are located
at addresses 7FC0h and 7FCFh.
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
15
TMS370Cx6x
8-BIT MICROCONTROLLER
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
system reset
The system-reset operation ensures an orderly start-up sequence for the TMS370Cx6x CPU-based device.
There are up to three different actions that can cause a system reset to the device. Two of these actions are
internally generated, while one (RESET) is controlled externally. These actions are as follows:
D
D
D
Watchdog (WD) timer. A watchdog-generated reset occurs if an improper value is written to the WD key
register, or if the re-initialization does not occur before the watchdog timer timeout . See the TMS370 Family
User’s Guide (literature number SPNU127) or the TMS370 Family Data Manual (literature number
SPNS014B) for more information.
Oscillator reset. Reset occurs when the oscillator operates outside the recommended operating range. See
the TMS370 Family User’s Guide (literature number SPNU127) or the TMS370 Family Data Manual
(literature number SPNS014B) for more information.
External RESET Pin. A low level signal can trigger an external reset. To ensure a reset, the external signal
should be held low for one SYSCLK cycle. Signals of less than one SYSCLK can generate a reset. See the
TMS370 Family User’s Guide (literature number SPNU127) or the TMS370 Family Data Manual (literature
number SPNS014B) for more information.
Once a reset source is activated, the external RESET pin is driven (active) low for a minimum of eight SYSCLK
cycles. This allows the ’x6x device to reset external system components. Additionally, if a cold start (VCC is off
for several hundred milliseconds) condition or oscillator failure occurs or RESET pin is held low, then the reset
logic holds the device in a reset state for as long as these actions are active.
After a reset, the program can check the oscillator fault flag (OSC FLT FLAG, SCCR0.4), the cold start flag
(COLD START, SCCR0.7) and the watchdog reset (WD OVRFL INT FLAG, T1CTL2.5) to determine the source
of the reset. A reset does not clear these flags. Table 10 lists the reset sources.
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
Table 10. Reset Sources
REGISTER
ADDRESS
PF
BIT NO.
CONTROL BIT
SOURCE OF RESET
SCCR0
1010h
P010
7
COLD START
Cold (power-up)
SCCR0
1010h
P010
4
OSC FLT FLAG
Oscillator out of range
T1CTL2
104Ah
P04A
5
WD OVRFL INT FLAG
Watchdog timer timeout
Once a reset is activated, the following sequence of events occurs:
1. The CPU registers are initialized: ST = 00h, SP = 01h (reset state).
2. Registers A and B are initialized to 00h (no other RAM is changed).
3. The contents of the LSbyte of the reset vector (07FFh) are read and stored in the PCL.
4. The contents of the MSbyte of the reset vector (07FEh) are read and stored in the PCH.
5. Program execution begins with an opcode fetch from the address pointed to by the PC.
The reset sequence takes 20 SYSCLK cycles from the time the reset pulse is released until the first opcode
fetch. During a reset, RAM contents (except for registers A and B) remain unchanged, and the module control
register bits are initialized to their reset state. During RESET, the two basic operating modes which are the
microcomputer and microprocessor modes can be selected by applying the desired voltage level to the
dedicated MC pin two cycles before RESET goes inactive. See the mode section for operating modes
description.
16
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
TMS370Cx6x
8-BIT MICROCONTROLLER
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
interrupts
The TMS370 family software programmable interrupt structure permits flexible on-chip and external interrupt
configurations to meet real-time interrupt-driven application requirements. The hardware interrupt structure
incorporates two priority levels as shown in Figure 4. Interrupt level 1 has a higher priority than interrupt
level 2. The two priority levels can be independently masked by the global-interrupt mask bits (IE1 and IE2) of
the status register.
Each system interrupt is independently configured to either the high- or low-priority chain by the application
program during system initialization. Within each interrupt chain, the interrupt priority is fixed by the position of
the system interrupt. However, since each system interrupt is selectively configured on either the high-or-low
priority interrupt chain, the application program can elevate any system interrupt to the highest priority.
Arbitration between the two priority levels is performed within the CPU. Arbitration within each of the priority
chains is performed within the peripheral modules to support interrupt expansion for future modules. Pending
interrupts are serviced upon completion of current instruction execution, depending on their interrupt mask and
priority conditions.
The TMS370Cx6x has ten hardware system interrupts (plus RESET) as shown in Table 11. Each system
interrupt has a dedicated vector located in program memory through which control is passed to the interrupt
service routines. A system interrupt can have multiple interrupt sources (e.g., SCI RXINT has two interrupt
sources). All of the interrupt sources are individually maskable by local interrupt-enable control bits in the
associated PF. Each interrupt source FLAG bit is individually readable for software polling or to determine which
interrupt source generated the associated system interrupt. Interrupt control block diagram is illustrated in
Figure 4.
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
17
TMS370Cx6x
8-BIT MICROCONTROLLER
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
interrupts (continued)
EXT INT 3
INT 3
EXT INT 2
TIMER 2B
Overflow
TIMER 2A
Overflow
TIMER 1
Overflow
Compare1
Compare1
Compare1
Ext Edge
Ext Edge
Ext Edge
INT2 PRI
Input Capture 1
Input Capture 1
Input Capture 1
Input Capture 2
Input Capture 2
Watchdog
T2B PRI
INT3 PRI
EXT INT1
Compare2
Compare2
Compare2
INT 2
T2A PRI
CPU
INT1
NMI
T1 PRI
INT1 PRI
Priority
Logic
STATUS REG
IE1
IE2
AD INT
AD PRI
A/D
SCI INT
TX
SPI INT
RX
Enable
Level 1 INT
Level 2 INT
SPI PRI
TXPRI
RXPRI
BRKDT
TXRDY
RXRDY
SPI
Figure 4. Interrupt Control
Seven of the system interrupts are generated by on-chip peripheral functions, and three external interrupts are
supported. Software configuration of the external interrupts is performed through the INT1, INT2, and INT3
control registers in PF frame 1. Each external interrupt is individually software configurable for input polarity
(rising or falling edge) for ease of system interface. External interrupt INT1 is software configurable as either
a maskable or non-maskable interrupt. When INT1 is configured as nonmaskable, it cannot be masked by the
individual- or global-enable-mask bits. Recall that the INT1 NMI bit is protected during non-privileged operation
and therefore should be configured during the initialization sequence following reset. To maximize pin flexibility,
external interrupts INT2 and INT3 can be software configured as general-purpose input/output pins if the
interrupt function is not required (INT1 can be similarly configured as an input pin). Table 11 shows the
interrupt-vector sources, corresponding addresses, and hardware priorities.
18
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
TMS370Cx6x
8-BIT MICROCONTROLLER
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
interrupts (continued)
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁ
Table 11. Hardware-System Interrupts
INTERRUPT SOURCE
INTERRUPT FLAG
SYSTEM
INTERRUPT
VECTOR
ADDRESS
PRIORITY†
RESET‡
7FFEh, 7FFFh
1
7FFCh, 7FFDh
2
External RESET
Watchdog overflow
Oscillator fault detect
COLD START
WD OVRFL INT FLAG
OSC FLT FLAG
External INT1
INT1 FLAG
External INT2
INT2 FLAG
INT1‡
INT2‡
7FFAh, 7FFBh
3
External INT3
INT3 FLAG
INT3‡
7FF8h, 7FF9h
4
SPI RX/TX complete
SPI INT FLAG
SPIINT
7FF6h, 7FF7h
5
Timer 1 overflow
Timer 1 compare 1
Timer 1 compare 2
Timer 1 external edge
Timer 1 input capture 1
Watchdog overflow
T1 OVRFL INT FLAG
T1C1 INT FLAG
T1C2 INT FLAG
T1EDGE INT FLAG
T1IC1 INT FLAG
WD OVRFL INT FLAG
T1INT§
7FF4h, 7FF5h
6
SCI RX data register full
SCI RX break detect
RXRDY FLAG
BRKDT FLAG
RXINT‡
7FF2h,7FF3h
7
SCI TX data register empty
TXRDY FLAG
TXINT
7FF0h, 7FF1h
8
Timer 2A overflow
Timer 2A compare 1
Timer 2A compare 2
Timer 2A external edge
Timer 2A input capture 1
Timer 2A input capture 2
T2A OVRFL INT FLAG
T2AC1 INT FLAG
T2AC2 INT FLAG
T2AEDGE INT FLAG
T2AIC1 INT FLAG
T2AIC2 INT FLAG
T2AINT
7FEEh, 7FEFh
9
ADC1 conversion complete
AD INT FLAG
ADINT
7FECh, 7FEDh
10
T2BINT
7FBEh, 7FBFh
11
Timer 2B overflow
T2B OVRFL INT FLAG
Timer 2B compare 1
T2BC1 INT FLAG
Timer 2B compare 2
T2BC2 INT FLAG
Timer 2B external edge
T2BEDGE INT FLAG
Timer 2B input capture 1
T2BIC1 INT FLAG
Timer 2B input capture 2
T2BIC2 INT FLAG
† Relative priority within an interrupt level
‡ Release microcontroller from STANDBY and HALT low-power modes
§ Release microcontroller from STANDBY low-power mode
privileged operation and EEPROM write-protection override
The TMS370Cx6x family has significant flexibility to enable the designer to software-configure the system and
peripherals to meet the requirements of a broad variety of applications. The nonprivileged mode of operation
ensures the integrity of the system configuration, once it is defined for an application. Following a hardware
reset, the TMS370Cx6x operates in the privileged mode, where all peripheral file registers have unrestricted
read/write access, and the application program configures the system during the initialization sequence
following reset. As the last step of system initialization, the PRIVILEGE DISABLE bit (SCCR2.0) should be set
to 1 to enter the nonprivileged mode, disabling write operations to specific configuration control bits within the
peripheral file. Table 12 lists the system configuration bits that are write-protected during the nonprivileged
mode and must be configured by software prior to exiting the privileged mode.
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
19
TMS370Cx6x
8-BIT MICROCONTROLLER
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
privileged operation and EEPROM write-protection override (continued)
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
Table 12. Privileged Bits
REGISTER†
CONTROL BIT
NAME
LOCATION
SCCRO
P010.5
P010.6
PF AUTOWAIT
OSC POWER
SCCR1
P011.2
P011.4
MEMORY DISABLE
AUTOWAIT DISABLE
SCCR2
P012.0
P012.1
P012.3
P012.4
P012.6
P012.7
PRIVILEGE DISABLE
INT1 NMI
CPU STEST
BUS STEST
PWRDWN/IDLE
HALT/STANDBY
SPIPRI
P03F.5
P03F.6
P03F.7
SPI ESPEN
SPI PRIORITY
SPI STEST
SCIPRI
P05F.4
P05F.5
P05F.6
P05F.7
SCI ESPEN
SCIRX PRIORITY
SCITX PRIORITY
SCI STEST
T1PRI
P04F.6
P04F.7
T1 PRIORITY
T1 STEST
T2APRI
P06F.6
P06F.7
T2A PRIORITY
T2A STEST
ADPRI
P07F.5
P07F.6
P07F.7
AD ESPEN
AD PRIORITY
AD STEST
T2BPRI
P08F.6
P08F.7
T2B PRIORITY
T2B STEST
† The privileged bits are shown in a bold typeface in Table 14.
The write-protect override (WPO) mode provides an external hardware method of overriding the
write-protection registers of data EEPROM on the TMS370Cx6x.The WPO mode is entered by applying a 12-V
input to MC after RESET input goes high (logic 1). The high voltage on MC during the WPO mode is not the
programming voltage for the data EEPROM or program EPROM. All EEPROM programming voltages are
generated on-chip. The WPO mode provides hardware system-level capability to modify the content of the data
EEPROM while the device remains in the application but only while requiring a 12-V external input on the MC
pin (normally not available in the end application except in a service or diagnostic environment).
low-power and IDLE modes
The TMS370Cx6x devices have two low-power modes (STANDBY and HALT) and an IDLE mode. For
mask-ROM devices, low-power modes can be disabled permanently through a programmable contact at the
time when the mask is manufactured.
The STANDBY and HALT low-power modes significantly reduce power consumption by reducing or stopping
the activity of the various on-chip peripherals when processing is not required. Each of the low-power modes
is entered by executing the IDLE instruction when the PWRDWN/IDLE bit in SCCR2 has been set to 1. The
HALT / STANDBY bit in SCCR2 controls which low-power mode is entered.
20
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
TMS370Cx6x
8-BIT MICROCONTROLLER
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
low-power and IDLE modes (continued)
In the STANDBY mode (HALT/STANDBY = 0), all CPU activity and most peripheral module activity is stopped;
however, the oscillator, internal clocks, timer 1, and the receive start-bit detection circuit of the serial
communications interface remain active. System processing is suspended until a qualified interrupt (hardware
RESET, external interrupt on INT1, INT2, INT3, timer 1 interrupt, or low level on the receive pin of the serial
communications interface) is detected.
In the HALT mode (HALT/STANDBY = 1), the TMS370Cx6x is placed in its lowest power-consumption mode.
The oscillator and internal clocks are stopped, causing all internal activity to be halted. System activity is
suspended until a qualified interrupt (hardware RESET, external interrupt on the INT1, INT2, INT3, or low level
on the receive pin of the serial communications interface) is detected. The low-power mode selection bits are
summarized in Table 13.
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
Table 13. Low-Power/Idle Control Bits
POWER-DOWN CONTROL BITS
PWRDWN/IDLE
(SCCR2.6)
HALT/STANDBY
(SCCR2.7)
MODE SELECTED
1
0
STANDBY
1
1
HALT
0
X
IDLE
X = don’t care
When low-power modes are disabled through a programmable contact in the mask-ROM devices, writing to the
SCCR2.6– 7 bits is ignored. In addition, if an idle instruction executes when low-power modes are disabled
through a programmable contact, the device always enters the IDLE mode.
To provide a method of always exiting low-power modes for mask-ROM devices, INT1 is automatically enabled
as a nonmaskable interrupt (NMI) during low-power modes when the hard watchdog mode is selected. This
means that the NMI always is generated, regardless of the interrupt-enable flags.
The following information is preserved throughout both the STANDBY and HALT modes: RAM (register file),
CPU registers (stack pointer, program counter, and status register), I/O pin direction and output data, and status
registers of all on-chip peripheral functions. Since all CPU instruction processing is stopped during the
STANDBY and HALT modes, the clocking of the watchdog timer is inhibited.
clock modules
The ‘x6x family provides two clock options which are referred to as divide-by-1 (PLL) and divide-by-4 (standard
oscillator). Both the divide-by-1 and divide-by-4 options are configurable during the manufacturing process of
a TMS370 microcontroller. The ‘x6x ROM-masked devices offer both options to meet system engineering
requirements. Only one of the two clock options is allowed on each ROM device. An EPROM has only the
divide-by-1.
The divide-by-1 clock module option provides the capability for reduced electromagnetic interference (EMI) with
no added cost.
The divide-by-1 provides a 1-to-1 match between the external resonator frequency and the internal system clock
(SYSCLK) frequency. The divide-by-4 produces a SYSCLK which is one-fourth the frequency of the external
resonator. Inside the divide-by-1 module, the frequency of the external resonator is multiplied by four. The clock
module then divides the resulting signal by four to provide the four-phased internal system clock signals. The
resulting SYSCLK is equal to the resonator frequency. The frequencies are formulated as follows:
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
21
TMS370Cx6x
8-BIT MICROCONTROLLER
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
clock modules (continued)
frequency
+ external resonator
+ CLKIN
4
4
external resonator frequency 4
Divide-by-1 option : SYSCLK +
+ CLKIN
4
Divide-by-4 option : SYSCLK
The main advantage of choosing a divide-by-1 oscillator is the improved EMI performance. The harmonics of
low-speed resonators extend through less of the emissions spectrum than the harmonics of faster resonators.
The divide-by-1 provides the capability of reducing the resonator speed by four times, and this results in a
steeper decay of emissions produced by the oscillator.
system configuration registers
Table 14 contains system configuration and control functions and registers for controlling EEPROM
programming. The privileged bits are shown in bold typeface and shaded.
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
Table 14. Peripheral File Frame 1: System Configuration Registers
PF
BIT 7
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
BIT 0
REG
P010
COLD
START
OSC
POWER
PF AUTO
WAIT
OSC FLT
FLAG
MC PIN
WPO
MC PIN
DATA
—
µP/µC
MODE
SCCR0
P011
—
—
—
AUTOWAIT
DISABLE
—
MEMORY
DISABLE
—
—
SCCR1
P012
HALT/
STANDBY
PWRDWN/
IDLE
—
BUS
STEST
CPU
STEST
—
INT1
NMI
PRIVILEGE
DISABLE
SCCR2
BUSY
VPPS
—
—
—
—
W0
EXE
EPCTLH
P013
P014
Reserved
P015
to
P016
Reserved
P017
INT1
FLAG
INT1
PIN DATA
—
—
—
INT1
POLARITY
INT1
PRIORITY
INT1
ENABLE
INT1
P018
INT2
FLAG
INT2
PIN DATA
—
INT2
DATA DIR
INT2
DATA OUT
INT2
POLARITY
INT2
PRIORITY
INT2
ENABLE
INT2
P019
INT3
FLAG
INT3
PIN DATA
—
INT3
DATA DIR
INT3
DATA OUT
INT3
POLARITY
INT3
PRIORITY
INT3
ENABLE
INT3
P01A
BUSY
—
—
—
—
AP
W1W0
EXE
DEECTL
BUSY
VPPS
—
—
—
—
W0
EXE
EPCTLM
—
—
W0
EXE
EPCTLL
P01B
P01C
Reserved
P01D
P01E
P01F
22
Reserved
BUSY
VPPS
—
—
Reserved
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
TMS370Cx6x
8-BIT MICROCONTROLLER
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
digital port control
Peripheral file frame 2 contains the digital I/O pin configuration and control registers. Table 15 lists the specific
addresses, registers, and control bits within this peripheral file frame.
ÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
Á
ÁÁÁÁÁ
ÁÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
Á
ÁÁÁÁÁ
ÁÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
Á
ÁÁÁÁÁ
ÁÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
Table 15. Peripheral File Frame 2: Digital Port Control Registers
PF
BIT 7
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
BIT 0
REG
P020
Reserved
APORT1
P021
Port A Control Register 2
APORT2
P022
Port A Data
P023
Port A Direction
ADATA
P024
Reserved
BPORT1
P025
Port B Control Register 2
BPORT2
P026
Port B Data
P027
Port B Direction
P028
Reserved
CPORT1
P029
Port C Control Register 2
CPORT2
BDATA
P02A
Port C Data
P02B
Port C Direction
P02C
ADIR
BDIR
CDATA
CDIR
Port D Control Register 1
Port D Control Register 2†
—
—
—
DPORT1
P02D
—
—
—
DPORT2
P02E
Port D Data
—
—
—
DDATA
P02F
Port D Direction
—
—
—
DDIR
† To configure pin D3 as SYSCLK, set port D control register 2 = 08h.
Table 16. Port Configuration Register Setup
INPUT
OUTPUT
FUNCTION A
FUNCTION B
(µP MODE)
XPORT1 = 0‡
XPORT2 = 1
XDATA = x
XDIR = x
XPORT1 = 1‡
XPORT2 = 1
XDATA = x
XDIR = x
PORT
PIN
XPORT1 = 0‡
XPORT2 = 0
XDATA = y
XDIR = 0
XPORT1 = 0‡
XPORT2 = 0
XDATA = q
XDIR = 1
A
0–7
Data In y
Data Out q
Data Bus
Reserved
B
0–7
Data In y
Data Out q
Low ADDR
Reserved
C
0–7
Data In y
Data Out q
Hi ADDR
Reserved
D
3
4
5
6
7
Data Out q
SYSCLK
R/W
CSPF
CSH1
CSE1
SYSCLK
R/W
—
EDS
WAIT
Data In y
XPORT1 = 1
XPORT2 =0
Not defined
XDATA = x
XDIR = x
‡ DPORT only
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
23
TMS370Cx6x
8-BIT MICROCONTROLLER
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
timer 1 module
The programmable timer 1 (T1) module of the TMS370Cx6x provides the designer with the enhanced timer
resources required to perform real-time system control. The T1 module contains the general-purpose timer and
the watchdog (WD) timer. The two independent 16-bit timers (T1 and WD) allow program selection of input clock
sources (real-time, external-event, or pulse-accumulate) with multiple 16-bit registers (input-capture and
compare) for special timer function control. The T1 module includes three external device pins that can be used
for multiple counter functions (operation mode dependent) or used as general-purpose I/O pins. The T1 module
is shown in Figure 5.
T1IC/CR
MUX
T1EVT
Edge
Select
16-Bit
Capt/Comp
Register
16-Bit
Counter
16
16-Bit
Compare
Register
8-Bit
Prescaler
16-Bit
Watchdog Counter
(Aux. Timer)
MUX
PWM
Toggle
T1PWM
Interrupt
Logic
Interrupt
Logic
Figure 5. Timer 1 Block Diagram
D
D
D
D
D
D
D
24
Three T1 I/O pins
–
T1IC/CR: Timer 1 input capture/counter reset input pin, or general-purpose bidirectional I/O pin
–
T1PWM: Timer 1 pulse-width-modulation (PWM) output pin, or general-purpose bidirectional I/O pin
–
T1EVT: Timer 1 event input pin, or general-purpose bidirectional I/O pin
Two operation modes:
–
Dual–compare mode: Provides PWM signal
–
Capture/compare mode: Provides input capture pin
One 16-bit general-purpose resettable counter
One 16-bit compare register with associated compare logic
One 16-bit capture / compare register, which, depending on the mode of operation, operates as either
capture or compare register
One 16-bit watchdog counter can be used as an event counter, a pulse accumulator, or an interval timer
if watchdog feature is not needed.
Prescaler/ clock sources that determine one of eight clock sources for general-purpose timer
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
TMS370Cx6x
8-BIT MICROCONTROLLER
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
timer 1 module (continued)
D
D
D
Selectable edge-detection circuitry that, depending on the mode of operation, senses active transitions on
the input capture pins (T1IC/CR)
Interrupts that can be generated on the occurrence of:
–
A capture
–
A compare equal
–
A counter overflow
–
An external edge detection
Sixteen T1 module control registers: Located in the PF frame beginning at address P040
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
25
TMS370Cx6x
8-BIT MICROCONTROLLER
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
timer 1 module (continued)
Table 17 shows the T1 module control register memory map.
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
Table 17. Timer 1 Module Register Memory Map
PF
BIT 7
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
BIT 0
REG
Modes: Dual-Compare and Capture/Compare
P040
Bit 15
T1 Counter MSbyte
Bit 8 T1CNTR
P041
Bit 7
T1 Counter LSbyte
Bit 0
P042
Bit 15
Compare Register MSbyte
Bit 8 T1C
P043
Bit 7
Compare Register LSbyte
Bit 0
P044
Bit 15
Capture/Compare Register MSbyte
Bit 8 T1CC
P045
Bit 7
Capture/Compare Register LSbyte
Bit 0
P046
Bit 15
Watchdog Counter MSbyte
Bit 8 WDCNTR
P047
Bit 7
Watchdog Counter LSbyte
Bit 0
P048
Bit 15
Watchdog Reset Key
P049
WD OVRFL
TAP SEL†
WD
INPUT
SELECT2†
P04A
WD OVRFL
RST ENA†
WD OVRFL
INT ENA
WD
INPUT
SELECT1†
WD
INPUT
SELECT0†
WD OVRFL
INT FLAG
Bit 0 WDRST
—
T1
INPUT
SELECT2
T1
INPUT
SELECT1
T1 INPUT
SELECT0
T1CTL1
T1 OVRFL
INT ENA
T1 OVRFL
INT FLAG
—
—
T1 SW
RESET
T1CTL2
Mode: Dual-Compare
P04B
T1EDGE
INT FLAG
T1C2
INT FLAG
T1C1
INT FLAG
—
—
T1EDGE
INT ENA
T1C2
INT ENA
T1C1
INT ENA
T1CTL3
P04C
T1
MODE = 0
T1C1
OUT ENA
T1C2
OUT ENA
T1C1
RST ENA
T1CR
OUT ENA
T1EDGE
POLARITY
T1CR
RST ENA
T1EDGE
DET ENA
T1CTL4
Mode: Capture/Compare
P04B
T1EDGE
INT FLAG
—
T1C1
INT FLAG
—
—
T1EDGE
INT ENA
—
T1C1
INT ENA
T1CTL3
P04C
T1
MODE = 1
T1C1
OUT ENA
—
T1C1
RST ENA
—
T1EDGE
POLARITY
—
T1EDGE
DET ENA
T1CTL4
Modes: Dual-Compare and Capture/Compare
P04D
—
—
—
—
T1EVT
DATA IN
T1EVT
DATA OUT
T1EVT
FUNCTION
T1EVT
DATA DIR
T1PC1
P04E
T1PWM
DATA IN
T1PWM
DATA OUT
T1PWM
FUNCTION
T1PWM
DATA DIR
T1IC/CR
DATA IN
T1IC/CR
DATA OUT
T1IC/CR
FUNCTION
T1IC/CR
DATA DIR
T1PC2
P04F
T1 STEST
T1
PRIORITY
—
—
—
—
—
—
T1PRI
† Once the WD OVRFL RST ENA bit is set, these bits cannot be changed until a reset; this applies only to the standard
watchdog and to simple counter. In the hard watchdog, these bits can be modified at any time; the WD INPUT SELECT2
bits are ignored.
26
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
TMS370Cx6x
8-BIT MICROCONTROLLER
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
timer 1 module (continued)
The timer 1 capture/compare mode block diagram is illustrated in Figure 6. The annotations in Figure 6 identify
the register and the bit(s) in the peripheral frame. For example, the actual address of T1CTL2.0 is 104Ah,
bit 0, in the T1CTL2 register.
Prescale
Clock
Source
16-Bit
LSB
Capt/Comp
Register MSB
T1C1
OUT ENA
T1CTL4.6
Toggle
T1CC.15-0
T1PC2.7-4
T1PWM
T1CNTR.15-0
LSB 16-Bit
MSB Counter
16
ÏÏÏÏ
ÏÏÏÏ
T1 PRIORITY
T1C1 INT FLAG
Compare=
T1CTL3.5
Reset
T1PRI.6
0
Level 1 Int
1
Level 2 Int
T1CTL3.0
T1C.15-0
T1 SW
RESET
T1CTL2.0
T1C1
RST ENA
T1C1 INT ENA
16-Bit LSB
Compare
Register MSB
T1 OVRFL INT FLAG
T1CTL2.3
T1CTL4.4
T1CTL2.4
T1 OVRFL INT ENA
T1PC2.3-0
T1IC/CR
T1EDGE DET ENA
Edge
Select
T1EDGE INT FLAG
T1CTL3.7
T1CTL4.0
T1CTL3.2
T1EDGE INT ENA
T1CTL4.2
T1EDGE POLARITY
Figure 6. Capture/Compare Mode
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
27
TMS370Cx6x
8-BIT MICROCONTROLLER
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
timer 1 module (continued)
The timer 1 dual-compare mode block diagram is illustrated in Figure 7. The annotations in Figure 7 identify the
register and the bit(s) in the peripheral frame. For example, the actual address of T1CTL2.0 is 104Ah,
bit 0, in the T1CTL2 register.
T1CC.15-0
16-Bit LSB
Capt/Comp
Register MSB
MSB
T1CTL2.0
Compare=
T1CTL4.4
T1CTL4.5
T1PC2.7-4
16
T1C1 INT FLAG
T1CTL3.5
Compare=
T1C1
RST ENA
Output
Enable
T1C2 OUT ENA
16-Bit
Counter
Reset
T1 SW
RESET
T1CTL3.6
T1CTL3.1
T1C2 INT ENA
T1CNTR.15-0
LSB
T1C2 INT FLAG
T1CTL3.0
T1CTL4.6
Toggle
Prescaler
Clock
Source
T1PWM
T1C1 OUT ENA
T1CTL4.3
T1C.15-0
T1C1 INT ENA
16-Bit LSB
Compare
Register MSB
T1CR OUT ENA
T1 OVRFL INT FLAG
T1PC2.3-0
T1IC/CR
T1CTL4.1
T1CR
RST ENA
T1CTL2.3
T1CTL2.4
T1 OVRFL INT ENA
Edge
Select
T1 PRIORITY
T1CTL4.0
T1EDGE DET ENA
T1EDGE INT FLAG
T1CTL4.2
T1EDGE POLARITY
T1CTL3.7
T1CTL3.2
T1EDGE INT ENA
Figure 7. Dual-Compare Mode
28
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
T1PRI.6
0
1
Level 1 Int
Level 2 Int
TMS370Cx6x
8-BIT MICROCONTROLLER
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
timer 1 module (continued)
The TMS370Cx6x device includes a 24-bit watchdog (WD) timer, contained in the T1 module, which can be
software programmed as an event counter, pulse accumulator, or interval timer if the watchdog function is not
desired. The WD function is to monitor software and hardware operation and to implement a system reset when
the WD counter is not serviced properly (WD counter overflow or WD counter is reinitialized by an incorrect
value). The WD can be configured as one of three mask options: standard watchdog, hard watchdog, or simple
counter.
D
Standard watchdog configuration (see Figure 8) – for ’76xA EPROM and mask-ROM devices
–
–
Watchdog mode
–
Ten different WD overflow rates ranging from 6.55 ms to 3.35 s at 5-MHz SYSCLK
–
A WD reset key (WDRST) register is used to clear the watchdog counter (WDCNTR) when a correct
value is written.
–
Generates a system reset if an incorrect value is written to the watchdog reset key or if the counter
overflows
–
A watchdog overflow flag (WD OVRFL INT FLAG) bit that indicates whether the WD timer initiated a
system reset
Non-watchdog mode
–
Watchdog timer can be configured as an event counter, pulse accumulator, or an interval timer.
WDCNTR.15-0
WD OVRFL
INT FLAG
16-Bit
Watchdog Counter
T1CTL2.6
T1CTL2.5
Reset
Clock
Prescaler
Interrupt
WD OVRFL
T1CTL1.7
T1CTL2.7
WD OVRFL
TAP SEL
System Reset
WD OVRFL
RST ENA
Watchdog Reset Key
WDRST.7-0
Figure 8. Standard Watchdog
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
29
TMS370Cx6x
8-BIT MICROCONTROLLER
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
timer 1 module (continued)
D
Hard watchdog configuration (see Figure 9) – for mask-ROM devices
–
Eight different WD overflow rates ranging from 26.2 ms to 3.35 s at 5-MHz SYSCLK
–
A WD reset key (WDRST) register is used to clear the watchdog counter (WDCNTR) when a correct
value is written.
–
Generates a system reset if an incorrect value is written to the watchdog reset key or if the counter
overflows
–
Automatic activation of the WD timer upon power-up reset
–
INT1 is enabled as nonmaskable interrupt during low-power modes
–
A watchdog overflow flag (WD OVRFL INT FLAG) bit that indicates whether the WD timer initiated a
system reset
WDCNTR.15-0
WD OVRFL
INT FLAG
16-Bit
Watchdog Counter
T1CTL2.5
Reset
Clock
Prescaler
T1CTL1.7
WD OVRFL
TAP SEL
Watchdog Reset Key
WDRST.7-0
Figure 9. Hard Watchdog
30
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
System Reset
TMS370Cx6x
8-BIT MICROCONTROLLER
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
timer 1 module (continued)
D
Simple-counter configuration (see Figure 10) – for mask-ROM devices only
–
Simple counter can be configured as an event counter, pulse accumulator, or an interval timer
WDCNTR.15-0
WD OVFL
INT FLAG
16-Bit
Watchdog Counter
T1CTL2.6
Interrupt
T1CTL2.5
WD OVRFL
INT ENA
Reset
Clock
Prescaler
T1CTL1.7
WD OVRFL
TAP SEL
Watchdog Reset Key
WDRST.7-0
Figure 10. Simple Counter
timer 2n modules (T2A and T2B)
The TMS370Cx6x device includes two 16-bit general-purpose timer 2 modules (T2A and T2B). The T2A or T2B
are referred to as T2n throughout this section. The T2n module contains a 16-bit resettable counter, 16-bit
compare register with associated compare logic, 16-bit capture register, and a 16-bit register that functions as
a capture register in one mode and as a compare register in the other mode. The T2n module adds additional
timers that provide event counts, input captures, and compare functions. The T2n module includes three
external-device pins that can be dedicated as timer functions or used as general-purpose I/O pins. The T2n
module is shown in Figure 11.
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
31
TMS370Cx6x
8-BIT MICROCONTROLLER
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
timer 2n modules (T2A and T2B) (continued)
Edge
Detect
T2nIC1 / CR
16–Bit
Capt/Comp
Register
Edge
Detect
T2nIC2 / PWM
(Dual-Capture Mode)
16–Bit
Capture
Register
INT
Logic
PWM
Toggle
T2nIC2/PWM
(Dual-Compare Mode)
16
T2nEVT
Clock
Select
16–Bit
Compare
Register
16–Bit
Counter
Figure 11. Timer 2n Block Diagram
The T2n module features include the following:
D
D
D
D
D
D
D
32
Three T2A I/O pins
–
T2nIC1/CR: Timer 2n input capture 1 / counter-reset input pin, or general-purpose bidirectional I/O pin
–
T2nIC2/PWM: Timer 2n input capture 2 / pulse-width-modulation (PWM) output pin, or general-purpose
bidirectional I/O pin
–
T2nEVT: Timer 2n event-input pin, or general-purpose bidirection I/O pin
Two operation modes:
–
Dual-compare mode: Provides PWM signal
–
Dual-capture mode: Provides input-capture pin
One 16-bit general-purpose resettable counter
One 16-bit compare register with associated compare logic
One 16-bit capture register with associated capture logic
One 16-bit capture/compare register, which, depending on the mode of operation, operates as either
capture or compare registers
T2n clock sources can be any of the following:
–
System clock
–
No clock (the counter is stopped)
–
External clock synchronized to the system clock (event counter)
–
System clock while external input is high (pulse accumulation)
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
TMS370Cx6x
8-BIT MICROCONTROLLER
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
timer 2n modules (T2A and T2B) (continued)
D
D
D
Selectable edge-detection circuitry that, depending on the mode of operation, senses active transitions on
the input-capture pins (T2nIC1/CR)
Interrupts that can be generated on the occurrence of:
–
A compare equal for dedicated-compare register
–
A compare equal for capture-compare register
–
A counter overflow
–
An external edge 1 detection
–
An external edge 2 detection
Fourteen control registers for each Timer 2 module: Located in the PF frame beginning at address P060
and P080 for T2A and T2B, respectively.
The timer 2n module control registers are illustrated in Table 18.
ÁÁÁ
ÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁ
Á
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
Table 18. Timer 2n Module Register Memory Map
PF
PF
BIT 7
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
BIT 0
REG
Modes: Dual-Compare and Dual-Capture
P060
P080
Bit 15
T2n Counter MSbyte
Bit 8
P061
P081
Bit 7
T2n Counter LSbyte
Bit 0
P062
P082
Bit 15
Compare Register MSbyte
Bit 8
P063
P083
Bit 7
Compare Register LSbyte
Bit 0
P064
P084
Bit 15
Capture/Compare Register MSbyte
Bit 8
P065
P085
Bit 7
Capture/Compare Register LSbyte
Bit 0
P066
P086
Bit 15
Capture Register 2 MSbyte
Bit 8
P067
P087
Bit 7
Capture Register 2 LSbyte
Bit 0
P06A
P08A
—
T2nCNTR
T2nC
T2nCC
T2nIC
—
—
T2n OVRFL
INT ENA
T2n
OVRFL
INT FLAG
T2n
INPUT
SELECT1
T2n INPUT
SELECT0
T2n SW
RESET
T2nCTL1
Mode: Dual-Compare
P06B
P08B
T2nEDGE1
INT FLAG
T2nC2
INT FLAG
T2nC1
INT FLAG
—
—
T2nEDGE1
INT ENA
T2nC2
INT ENA
T2nC1
INT ENA
T2nCTL2
P06C
P08C
T2n
MODE = 0
T2nC1
OUT ENA
T2nC2
OUT ENA
T2nC1
RST ENA
T2nEDGE1
OUT ENA
T2nEDGE1
POLARITY
T2nEDGE1
RST ENA
T2nEDGE1
DET ENA
T2nCTL3
Mode: Dual-Capture
P06B
P08B
T2nEDGE1
INT FLAG
T2nEDGE2
INT FLAG
T2nC1
INT FLAG
—
—
T2nEDGE1
INT ENA
T2nEDGE2
INT ENA
T2nC1
INT ENA
T2nCTL2
P06C
P08C
T2n
MODE = 1
—
—
T2nC1
RST ENA
T2nEDGE2
POLARITY
T2nEDGE1
POLARITY
T2nEDGE2
DET ENA
T2nEDGE1
DET ENA
T2nCTL3
Modes: Dual-Compare and Dual-Capture
P06D
P08D
—
—
—
—
T2nEVT
DATA IN
T2nEVT
DATA OUT
T2nEVT
FUNCTION
T2nEVT
DATA DIR
T2nPC1
P06E
P08E
T2nIC2 / PWM
DATA IN
T2nIC2 / PWM
DATA OUT
T2nIC2 / PWM
FUNCTION
T2nIC2 / PWM
DATA DIR
T2nIC1/CR
DATA IN
T2nIC1/CR
DATA OUT
T2nIC1/CR
FUNCTION
T2nIC1/CR
DATA DIR
T2nPC2
P06F
P08F
T2n STEST
T2n
PRIORITY
—
—
—
—
—
—
T2nPRI
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
33
TMS370Cx6x
8-BIT MICROCONTROLLER
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
timer 2n modules (T2A and T2B) (continued)
The timer 2n dual-compare mode block diagram is illustrated in Figure 12. The annotations on the diagram
identify the register and the bit(s) in the peripheral frame. For example, the actual address of T2nCTL2.0 is
106Bh (n = A) or 108Bh (n = B), bit 0, in the T2nCTL2 register.
T2nCC.15-0
16-Bit
Capt/Comp LSB
Register MSB
Clock
Source
T2nC2 INT FLAG
Output
Enable
T2nCTL2.6
LSB
MSB
T2n SW
RESET
T2nCTL1.0
T2nPC2.3-0
T2nIC1/CR
T2nC2 INT ENA
16-Bit
Counter
Reset
T2nCTL2.1
16
T2nC1 INT FLAG
T2nCTL2.5
Compare=
T2nC.15-0
T2nC1
RST ENA
16-Bit LSB
T2nCTL3.4
Compare
Register MSB
T2nC2 OUT ENA
T2nCTL3.6
T2nCTL2.0
T2nC1 OUT ENA
T2nC1 INT ENA
T2nCTL3.3
T2nPC2.7-4
T2nIC2/PWM
T2nEDGE1
OUT ENA
T2n OVRFL INT FLAG
T2n CTL1.3
T2nCTL3.1
T2nEDGE1
RST ENA
T2nCTL1.4
T2n OVRFL INT ENA
Edge 1
Select
T2n PRIORITY
T2nCTL3.0
T2nEDGE1 DET ENA
T2nEDGE1 INT FLAG
T2n CTL2.7
T2nCTL3.2
T2nCTL2.2
T2nEDGE1 POLARITY
T2nEDGE1 INT ENA
Figure 12. Dual-Compare Mode
34
T2nCTL3.5
Toggle
T2nCNTR.15-0
Compare=
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
T2nPRI.6
0
Level 1 Int
1
Level 2 Int
TMS370Cx6x
8-BIT MICROCONTROLLER
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
timer 2n modules (T2A and T2B) (continued)
The timer 2n dual-capture mode block diagram is illustrated in Figure 13. The annotations on the diagram
identify the register and the bit(s) in the peripheral frame. For example, the actual address of T2nCTL2.0 is
106Bh (n = A) or 108Bh (n = B), bit 0, in the T2nCTL2 register.
T2nCC.15 – 0
16-Bit
Capt/Comp
Register 1
Clock
Source
T2nIC.15–0
LSB
MSB
16-Bit
Capture
Register 23
LSB
MSB
T2nCNTR.15–0
LSB
MSB
16-Bit
Counter
16
T2n PRIORITY
T2nC1 INT FLAG
Compare =
T2nCTL2.5
Reset
T2n SW
RESET
Level 1 Int
Level 2 Int
T2nC1 INT ENA
16-Bit
Compare
Register
T2nC1
RST ENA
T2nCTL1.0
0
1
T2nCTL2.0
T2nC.15–0
T2nPRI.6
LSB
MSB
T2n OVRFL INT FLAG
T2nCTL1.3
T2nCTL1.4
T2nCTL3.4
T2nPC2.3–0
T2nIC1/CR
T2n OVRFL INT ENA
T2nCTL3.0
T2nEDGE1 DET ENA
Edge1
Select
T2nCTL3.1
T2nEDGE2 DET ENA
T2nIC2/PWM
Edge 2
Select
T2nCTL2.7
T2nCTL2.2
T2nEDGE1 INT ENA
T2nCTL3.2
T2nEDGE1 POLARITY
T2nPC2.7–4
T2nEDGE1 INT FLAG
T2nEDGE2 INT FLAG
T2nCTL2.6
T2nCTL3.3
T2nCTL2.1
T2nEDGE2 POLARITY
T2nEDGE2 INT ENA
Figure 13. Dual-Capture Mode
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
35
TMS370Cx6x
8-BIT MICROCONTROLLER
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
serial peripheral interface (SPI) module
The SPI is a high-speed, synchronous, serial I/O port that allows a serial bit stream of programmed length
(1 to 8 bits) to be shifted into and out of the device at a programmable bit-transfer rate.The SPI is used normally
for communications between the microcontroller and external peripherals or another microcontroller. Typical
applications include external I/O or peripheral expansion using devices such as shift registers, display drivers,
and analog-to-digital (A/D) converters. The master/slave operation of the SPI supports multi-device
communications. The SPI module features include the following:
D
D
D
Three external pins:
–
SPISOMI: SPI slave output/master input pin or general-purpose bidirectional I/O pin
–
SPISIMO: SPI slave input/master output pin or general-purpose bidirectional I/O pin
–
SPICLK: SPI serial-clock pin or general-purpose bidirectional I/O pin
Two operational modes: master and slave
Baud rate: Eight different programmable rates
–
Maximum baud rate in master mode: 2.5M bps at 5-MHz SYSCLK
SPI BAUD RATE
+ SYSCLK
2 2
b
where b = bit rate in SPICCR.5-3 (range 0–7)
–
Maximum baud rate in slave mode: 625K bps at 5-MHz SYSCLK
For maximum slave SPI BAUD RATE < SYSCLK/8
D
D
D
D
36
Data-word format: one to eight data bits
Simultaneous receiver and transmitter operation (transmit function can be disabled in software)
Transmitter and receiver operations are accomplished through either interrupt-driven or polled algorithms.
Seven SPI module-control registers: located in control register frame beginning at address P030h
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
TMS370Cx6x
8-BIT MICROCONTROLLER
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
serial peripheral interface (SPI) module (continued)
The SPI module control registers are illustrated in Table 19.
Table 19. SPI Module Control Register Memory Map
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁÁÁ
ÁÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
Á
ÁÁÁÁÁ
ÁÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
Á
ÁÁÁÁÁ
ÁÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
Á
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
PF
BIT 7
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
BIT 0
P030
SPI SW
RESET
CLOCK
POLARITY
SPI BIT
RATE2
SPI BIT
RATE1
SPI BIT
RATE0
SPI
CHAR2
SPI
CHAR1
SPI
CHAR0
SPICCR
P031
RECEIVER
OVERRUN
SPI INT
FLAG
—
—
—
MASTER/
SLAVE
TALK
SPI INT
ENA
SPICTL
RCVD3
RCVD2
RCVD1
RCVD0
SPIBUF
SDAT2
SDAT1
SDAT0
SPIDAT
P032
to
P036
P037
Reserved
RCVD7
RCVD6
RCVD5
RCVD4
P038
P039
REG
Reserved
SDAT7
SDAT6
SDAT5
SDAT4
P03A
to
P03C
SDAT3
Reserved
P03D
—
—
—
—
SPICLK
DATA IN
SPICLK
DATA OUT
SPICLK
FUNCTION
SPICLK
DATA DIR
SPIPC1
P03E
SPISIMO
DATA IN
SPISIMO
DATA OUT
SPISIMO
FUNCTION
SPISIMO
DATA DIR
SPISOMI
DATA IN
SPISOMI
DATA OUT
SPISOMI
FUNCTION
SPISOMI
DATA DIR
SPIPC2
P03F
SPI
STEST
SPI
PRIORITY
SPI
ESPEN
—
—
—
—
—
SPIPRI
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
37
TMS370Cx6x
8-BIT MICROCONTROLLER
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
serial peripheral interface (SPI) module (continued)
The SPI block diagram is illustrated in Figure 14.
SPIBUF.7-0
RECEIVER
OVERRUN
SPIBUF Buffer
Register
SPICTL.7
SPIPRI.6
8
SPI INT FLAG
SPICTL.0
0
SPICTL.6
1
SPIINT ENA
Level 1 INT
Level 2 INT
SPIPC2.7-4
SPIDAT
Data Register
SPIDAT.7-0
SPISIMO
SPICTL.1
SPIPC2.3-0
SPISOMI
TALK
State Control
MASTER/SLAVE†
SPI CHAR
SPICCR.2-0
2
System
Clock
1
SPICTL.2
0
SPIPC1.3-0
SPICCR.6
SPICCR.5-3
5
4
SPICLK
CLOCK POLARITY
3
SPI BIT RATE
† The diagram is shown in slave mode.
Figure 14. SPI Block Diagram
serial communications interface 1 (SCI1) module
The TMS370x6x devices include a serial communications interface (SCI1) module. The SCI1 module supports
digital communications between the TMS370 devices and other asynchronous peripherals and uses the
standard non-return-to-zero (NRZ) format. The SCI1’s receiver and transmitter are double buffered, and each
has its own separate enable and interrupt bits. Both can be operated independently or simultaneously in the
full-duplex mode. To ensure data integrity, the SCI1 checks received data for break detection, parity, overrun,
and framing errors. The speed of bit rate (baud) is programmable to over 65,000 different speeds through a
16-bit baud-select register.
38
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
TMS370Cx6x
8-BIT MICROCONTROLLER
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
serial communications interface 1 (SCI1) module (continued)
Features of the SCI1 module include:
D
D
D
Three external pins:
–
SCITXD: SCI transmit output pin or general-purpose bidirectional I/O pin
–
SCIRXD: SCI receive input pin or general-purpose bidirectional I/O pin
–
SCICLK: SCI bidirectional serial clock pin, or general-purpose bidirectional I/O pin
Two communications modes: asynchronous and isosynchronous†
Baud rate: 64K different programmable rates
–
Asynchronous mode: 3 bps to 156K bps at 5-MHz SYSCLK
ASYNCHRONOUS BAUD
–
+ (BAUD SYSCLK
REG ) 1)
Isosynchronous mode: 39 bps to 2.5M bps at 5-MHz SYSCLK
ISOSYNCHRONOUS BAUD
D
D
D
D
D
D
D
32
+ (BAUDSYSCLK
REG ) 1)
2
Data-word format
–
One start bit
–
Data-word length programmable from one to eight bits
–
Optional even/odd/no parity bit
–
One or two stop bits
Four error-detection flags: parity, overrun, framing, and break detection
Two wake-up multiprocessor modes: Idle-line and address bit
Half or full-duplex operation
Double-buffered receive and transmit functions
Interrupt driven or polled algorithms with status flags accomplish transmitter and receiver operations.
–
Transmitter: TXRDY flag (transmitter buffer register is ready to receive another character) and TX
EMPTY flag (transmitter shift register is empty)
–
Receiver: RXRDY flag (receive buffer register ready to receive another character), BRKDT flag (break
condition occurred), and RX ERROR monitoring four interrupt conditions
–
Separate enable bits for transmitter and receiver interrupts
–
NRZ (non-return-to-zero) format
Eleven SCI1 module control registers are located in control register frame beginning at address P050h.
† Isosynchronous = Isochronous
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
39
TMS370Cx6x
8-BIT MICROCONTROLLER
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
serial communications interface 1 (SCI1) module (continued)
The SCI1 module control registers are illustrated in Table 20.
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
Table 20. SCI1 Module Control Register Memory Map
PF
BIT 7
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
BIT 0
P050
STOP BITS
EVEN/ODD
PARITY
PARITY
ENABLE
ASYNC/
ISOSYNC
ADDRESS/
IDLE WUP
SCI CHAR2
SCI CHAR1
SCI CHAR0
SCICCR
P051
—
—
SCI SW
RESET
CLOCK
TXWAKE
SLEEP
TXENA
RXENA
SCICTL
P052
BAUDF
(MSB)
BAUDE
BAUDD
BAUDC
BAUDB
BAUDA
BAUD9
BAUD8
BAUD MSB
P053
BAUD7
BAUD6
BAUD5
BAUD4
BAUD3
BAUD2
BAUD1
BAUD0
(LSB)
BAUD LSB
P054
TXRDY
TX EMPTY
—
—
—
—
—
SCI TX
INT ENA
TXCTL
P055
RX
ERROR
RXRDY
BRKDT
FE
OE
PE
RXWAKE
SCI RX
INT ENA
RXCTL
RXDT3
RXDT2
RXDT1
RXDT0
RXBUF
TXDT2
TXDT1
TXDT0
TXBUF
P056
P057
Reserved
RXDT7
RXDT6
RXDT5
RXDT4
P058
P059
REG
Reserved
TXDT7
TXDT6
TXDT5
TXDT4
P05A
P05B
P05C
TXDT3
Reserved
P05D
—
—
—
—
SCICLK
DATA IN
SCICLK
DATA OUT
SCICLK
FUNCTION
SCICLK
DATA DIR
SCIPC1
P05E
SCITXD
DATA IN
SCITXD
DATA OUT
SCITXD
FUNCTION
SCITXD
DATA DIR
SCIRXD
DATA IN
SCIRXD
DATA OUT
SCIRXD
FUNCTION
SCIRXD
DATA DIR
SCIPC2
P05F
SCI STEST
SCITX
PRIORITY
SCIRX
PRIORITY
SCI
ESPEN
—
—
—
—
SCIPRI
The SCI1 module block diagram is illustrated in Figure 15.
40
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
TMS370Cx6x
8-BIT MICROCONTROLLER
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
serial communications interface 1 (SCI1) module (continued)
Frame Format and Mode
TXWAKE
SCICTL.3
PARITY
EVEN / ODD ENABLE
TXBUF.7 – 0
SCI TX Interrupt
Transmit Data
Buffer Reg.
1
TXRDY
TXCTL.7
SCICCR.6 SCICCR.5
WUT
ÏÏÏ
ÏÏÏ
SCITX PRIORITY
SCI TX INT ENA
SCIPRI.6
0
1
TXCTL.0
8
Level 1 INT
Level 2 INT
TX EMPTY
TXCTL.6
TXENA
BAUD MSB. 7 – 0
Baud Rate
MSbyte Reg.
TXSHF Reg.
SCIPC2.7 – 4
SCITXD
SCITXD
SCICTL.1
CLOCK
SCIPC1.3 – 0
SYSCLK
BAUD LSB. 7 – 0
SCICLK
SCICTL.4
Baud Rate
LSbyte Reg.
SCIPC2.3 – 0
SCIRXD
RXSHF Reg.
SCIRXD
RXWAKE
RXCTL.1
SCI RX Interrupt
RXENA
RX ERROR
RXCTL.7
RXCTL.4 – 2
ERR
FE OE PE
SCICTL.0
RXRDY
RXCTL.6
8
SCI RX INT ENA
RXCTL.0
Receive Data
Buffer Reg.
ÏÏÏÏ
ÏÏÏÏ
SCIRX PRIORITY
SCIPRI.5
0
1
Level 1 INT
Level 2 INT
BRKDT
RXCTL.5
RXBUF.7 – 0
Figure 15. SCI1 Block Diagram
analog-to-digital converter 1 (ADC1) module
The analog-to-digital (ADC1) converter module is an 8-bit, successive approximation converter with internal
sample-and-hold circuitry. The module has eight multiplexed analog input channels that allow the processor to
convert the voltage levels from up to eight different sources. The ADC1 module features include the following:
D
D
Minimum conversion time: 32.8 µs at 5-MHz SYSCLK
Ten external pins:
–
Eight analog input channels (AN0–AN7), any of which can be software configured as digital inputs
(E0– E7) if not needed as analog channels
–
AN1– AN7 also can be configured as positive-input voltage reference.
–
VCC3: ADC1 module high-voltage reference input
–
VSS3: ADC1 module low-voltage reference input
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
41
TMS370Cx6x
8-BIT MICROCONTROLLER
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
analog-to-digital converter 1 (ADC1) module (continued)
D
D
D
The ADDATA register, which contains the digital result of the last ADC1 conversion
ADC1 operations can be accomplished through either interrupt driven or polled algorithms.
Six ADC1 module control registers are located in the control register frame beginning at address 1070h.
The ADC1 module control registers are illustrated in Table 21.
ÁÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
Á
ÁÁÁÁÁ
ÁÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
Á
ÁÁÁÁÁ
ÁÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
Á
ÁÁÁÁÁ
ÁÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
Table 21. ADC1 Module Control Register Memory Map
PF
BIT 7
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
BIT 0
P070
CONVERT
START
SAMPLE
START
REF VOLT
SELECT2
REF VOLT
SELECT1
REF VOLT
SELECT0
AD INPUT
SELECT2
AD INPUT
SELECT1
AD INPUT
SELECT0
ADCTL
P071
—
—
—
—
—
AD READY
AD INT
FLAG
AD INT
ENA
ADSTAT
P072
A-to-D Conversion Data Register
P073
to
P07C
Reserved
P07D
Port E Data Input Register
P07E
P07F
42
ADDATA
ADIN
Port E Input Enable Register
AD STEST
AD
PRIORITY
AD ESPEN
—
POST OFFICE BOX 1443
—
REG
ADENA
—
• HOUSTON, TEXAS 77251–1443
—
—
ADPRI
TMS370Cx6x
8-BIT MICROCONTROLLER
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
analog-to-digital converter 1 (ADC1) module (continued)
The ADC1 module block diagram is illustrated in Figure 16.
Port E Input
ENA 0
ADENA.0
Port E Data
AN 0
ADIN.0
0
SAMPLE
START
CONVERT
START
ADCTL.2 – 0
ADCTL.6
ADCTL.7
2
1
AN0
Port E Input
ENA 1
ADENA.1
Port E Data
AN 1
AD INPUT SELECT
ADIN.1
AN1
Port E Input
ENA 2
ADENA.2
Port E Data
AN 2
ADIN.2
AN2
Port E Input
ENA 3
ADENA.3
Port E Data
AN 3
ADIN.3
AN3
Port E Input
ENA 4
ADENA.4
ADC1
Port E Data
AN 4
ADIN.4
AN4
ADDATA.7 – 0
Port E Input
ENA 5
ADENA.5
Port E Data
AN 5
A-to-D
Conversion
Data Register
ADIN.5
AN5
Port E Input
ENA 6
ADENA.6
ADIN.6
AN6
Port E Input
ENA 7
ADENA.7
AD READY
Port E Data
AN 6
ADSTAT.2
5
4
3
ADCTL.5 – 3
Port E Data
AN 7
REF VOLTS SELECT
AD PRIORITY
ADPRI.6
0 Level 1 INT
1 Level 2 INT
ADIN.7
AN7
VCC3
AD INT FLAG
VSS3
ADSTAT.1
ADSTAT.0
AD INT ENA
Figure 16. ADC1 Block Diagram
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
43
TMS370Cx6x
8-BIT MICROCONTROLLER
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
instruction set overview
Table 22 provides an opcode-to-instruction cross-reference of all 73 instructions and 274 opcodes of the
‘370Cx6x instruction set. The numbers at the top of this table represent the most significant nibble of the opcode
while the numbers at the left side of the table represent the least significant nibble. The instruction of these two
opcode nibbles contains the mnemonic, operands, and byte / cycle particular to that opcode.
For example, the opcode B5h points to the CLR A instruction. This instruction contains one byte and executes
in eight SYSCLK cycles.
44
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
Table 22. TMS370 Family Opcode/Instruction Map†
MSN
0
2
3
4
5
6
7
8
INCW
#ra,Rd
3/11
MOV
Ps,A
2/8
0
JMP
#ra
2/7
1
JN
ra
2/5
2
JZ
ra
2/5
MOV
Rs,A
2/7
MOV
#n,A
2/6
MOV
Rs,B
2/7
MOV
Rs,Rd
3/9
MOV
#n,B
2/6
MOV
B,A
1/8
MOV
#n,Rd
3/8
3
JC
ra
2/5
AND
Rs,A
2/7
AND
#n,A
2/6
AND
Rs,B
2/7
AND
Rs,Rd
3/9
AND
#n,B
2/6
AND
B,A
1/8
AND
#n,Rd
3/8
AND
A,Pd
2/9
4
JP
ra
2/5
OR
Rs,A
2/7
OR
#n,A
2/6
OR
Rs,B
2/7
OR
Rs,Rd
3/9
OR
#n,B
2/6
OR
B,A
1/8
OR
#n,Rd
3/8
5
JPZ
ra
2/5
XOR
Rs,A
2/7
XOR
#n,A
2/6
XOR
Rs,B
2/7
XOR
Rs,Rd
3/9
XOR
#n,B
2/6
XOR
B,A
1/8
6
JNZ
ra
2/5
BTJO
Rs,A,ra
3/9
BTJO
#n,A,ra
3/8
BTJO
Rs,B,ra
3/9
BTJO
Rs,Rd,ra
4/11
BTJO
#n,B,ra
3/8
7
JNC
ra
2/5
BTJZ
Rs.,A,ra
3/9
BTJZ
#n,A,ra
3/8
BTJZ
Rs,B,ra
3/9
BTJZ
Rs,Rd,ra
4/11
8
JV
ra
2/5
ADD
Rs,A
2/7
ADD
#n,A
2/6
ADD
Rs,B
2/7
9
JL
ra
2/5
ADC
Rs,A
2/7
ADC
#n,A
2/6
A
JLE
ra
2/5
SUB
Rs,A
2/7
B
JHS
ra
2/5
SBB
Rs,A
2/7
MOV
A,Pd
2/8
MOV
B,Pd
2/8
MOV
Rs,Pd
3/10
9
A
B
C
D
E
F
CLRC /
TST A
1/9
MOV
A,B
1/9
MOV
A,Rd
2/7
TRAP
15
1/14
LDST
n
2/6
MOV
B,Rd
2/7
TRAP
14
1/14
MOV
#ra[SP],A
2/7
MOV
Ps,B
2/7
MOV
Ps,Rd
3/10
DEC
A
1/8
DEC
B
1/8
DEC
Rd
2/6
TRAP
13
1/14
MOV
A,*ra[SP]
2/7
AND
B,Pd
2/9
AND
#n,Pd
3/10
INC
A
1/8
INC
B
1/8
INC
Rd
2/6
TRAP
12
1/14
CMP
*n[SP],A
2/8
OR
A,Pd
2/9
OR
B,Pd
2/9
OR
#n,Pd
3/10
INV
A
1/8
INV
B
1/8
INV
Rd
2/6
TRAP
11
1/14
extend
inst,2
opcodes
XOR
#n,Rd
3/8
XOR
A,Pd
2/9
XOR
B,Pd
2/9
XOR
#n,Pd
3/10
CLR
A
1/8
CLR
B
1/8
CLR
Rn
2/6
TRAP
10
1/14
BTJO
B,A,ra
2/10
BTJO
#n,Rd,ra
4/10
BTJO
A,Pd,ra
3/11
BTJO
B,Pd,ra
3/10
BTJO
#n,Pd,ra
4/11
XCHB
A
1/10
XCHB A /
TST B
1/10
XCHB
Rn
2/8
TRAP
9
1/14
IDLE
BTJZ
#n,B,ra
3/8
BTJZ
B,A,ra
2/10
BTJZ
#n,Rd,ra
4/10
BTJZ
A,Pd,ra
3/10
BTJZ
B,Pd,ra
3/10
BTJZ
#n,Pd,ra
4/11
SWAP
A
1/11
SWAP
B
1/11
SWAP
Rn
2/9
TRAP
8
1/14
MOV
#n,Pd
3/10
ADD
Rs,Rd
3/9
ADD
#n,B
2/6
ADD
B,A
1/8
ADD
#n,Rd
3/8
MOVW
#16,Rd
4/13
MOVW
Rs,Rd
3/12
MOVW
#16[B],Rpd
4/15
PUSH
A
1/9
PUSH
B
1/9
PUSH
Rd
2/7
TRAP
7
1/14
SETC
ADC
Rs,B
2/7
ADC
Rs,Rd
3/9
ADC
#n,B
2/6
ADC
B,A
1/8
ADC
#n,Rd
3/8
JMPL
lab
3/9
JMPL
*Rp
2/8
JMPL
*lab[B]
3/11
POP
A
1/9
POP
B
1/9
POP
Rd
2/7
TRAP
6
1/14
RTS
SUB
#n,A
2/6
SUB
Rs,B
2/7
SUB
Rs,Rd
3/9
SUB
#n,B
2/6
SUB
B,A
1/8
SUB
#n,Rd
3/8
MOV
& lab,A
3/10
MOV
*Rp,A
2/9
MOV
*lab[B],A
3/12
DJNZ
A,#ra
2/10
DJNZ
B,#ra
2/10
DJNZ
Rd,#ra
3/8
TRAP
5
1/14
RTI
1/12
SBB
#n,A
2/6
SBB
Rs,B
2/7
SBB
Rs,Rd
3/9
SBB
#n,B
2/6
SBB
B,A
1/8
SBB
#n,Rd
3/8
MOV
A, & lab
3/10
MOV
A, *Rp
2/9
MOV
A,*lab[B]
3/12
COMPL
A
1/8
COMPL
B
1/8
COMPL
Rd
2/6
TRAP
4
1/14
PUSH
ST
1/8
1/6
1/7
1/9
45
TMS370Cx6x
8-BIT MICROCONTROLLER
† All conditional jumps (opcodes 01 – 0F), BTJO, BTJZ, and DJNZ instructions use two additional cycles if the branch is taken. The BTJO, BTJZ, and DJNZ
instructions have a relative address as the last operand.
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251–1443
L
S
N
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
C
JNV
ra
2/5
MPY
Rs,A
2/46
MPY
#n,A
2/45
MPY
Rs,B
2/46
MPY
Rs,Rd
3/48
MPY
#n,B
2/45
MPY
B,A
1/47
MPY
#n,Rs
3/47
BR
lab
3/9
BR
*Rp
2/8
BR
*lab[B]
3/11
RR
A
1/8
RR
B
1/8
RR
Rd
2/6
TRAP
3
1/14
POP
ST
1/8
JGE
ra
2/5
CMP
Rs,A
2/7
CMP
#n,A
2/6
CMP
Rs,B
2/7
CMP
Rs,Rd
3/9
CMP
#n,B
2/6
CMP
B,A
1/8
CMP
#n,Rd
3/8
CMP
& lab,A
3/11
CMP
*Rp,A
2/10
CMP
*lab[B],A
3/13
RRC
A
1/8
RRC
B
1/8
RRC
Rd
2/6
TRAP
2
1/14
LDSP
D
DAC
Rs,A
2/9
DAC
#n,A
2/8
DAC
Rs,B
2/9
DAC
Rs,Rd
3/11
DAC
#n,B
2/8
DAC
B,A
1/10
DAC
#n,Rd
3/10
CALL
lab
3/13
CALL
*Rp
2/12
CALL
*lab[B]
3/15
RL
A
1/8
RL
B
1/8
RL
Rd
2/6
TRAP
1
1/14
STSP
E
JG
ra
2/5
DSB
Rs,A
2/9
DSB
#n,A
2/8
DSB
Rs,B
2/9
DSB
Rs,Rd
3/11
DSB
#n,B
2/8
DSB
B,A
1/10
DSB
#n,Rd
3/10
CALLR
lab
3/15
CALLR
*Rp
2/14
CALLR
*lab[B]
3/17
RLC
A
1/8
RLC
B
1/8
RLC
Rd
2/6
TRAP
0
1/14
NOP
F
JLO
ra
2/5
F4
8
MOVW
*n[Rn]
4/15
DIV
Rn.A
3/14-63
F4
9
JMPL
*n[Rn]
4/16
F4
A
MOV
*n[Rn],A
4/17
F4
B
MOV
A,*n[Rn]
4/16
F4
C
BR
*n[Rn]
4/16
F4
D
CMP
*n[Rn],A
4/18
F4
E
CALL
*n[Rn]
4/20
F4
F
CALLR
*n[Rn]
4/22
L
S
N
Second byte of two-byte instructions (F4xx):
POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251–1443
Legend:
*
= Indirect addressing operand prefix
& = Direct addressing operand prefix
# = immediate operand
#16 = immediate 16-bit number
lab = 16-label
n = immediate
i
di t 8-bit
8 bit number
b
Pd = Peripheral register containing destination type
Pn = Peripheral register
Ps = Peripheral
Peri heral register containing source byte
ra = Relative address
Rd = Register containing destination type
Rn = Register file
Rp = Register pair
Rpd = Destination register pair
Rps = Source Register pair
Rs = Register containing source byte
1/7
1/8
1/7
† All conditional jumps (opcodes 01 – 0F), BTJO, BTJZ, and DJNZ instructions use two additional cycles if the branch is taken. The BTJO, BTJZ, and DJNZ
instructions have a relative address as the last operand.
Template Release Date: 7–11–94
1
TMS370C6x
8-BIT MICROCONTROLLER
MSN
0
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
46
Table 22. TMS370 Family Opcode/Instruction Map† (Continued)
TMS370Cx6x
8-BIT MICROCONTROLLER
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
development system support
The TMS370 family development support tools include an assembler, a C compiler, a linker, compact
development tool, and an EEPROM / UVEPROM programmer.
D
D
D
Assembler/ linker (Part No. TMDS3740850–02 for PC)
–
Provides extensive macro capability
–
Allows high-speed operation
–
Includes format conversion utilities for popular formats
ANSI C Compiler (Part No. TMDS3740855–02 for PC, Part No. TMDS3740555–09 for HP700, Sun-3
or Sun-4)
–
Generates assembly code for the TMS370 that can be inspected easily
–
Improves code execution speed and reduces code size with optional optimizer pass
–
Enables the user to directly reference the TMS370 port registers by using a naming convention
–
Provides flexibility in specifying the storage for data objects
–
Interfaces C functions and assembly functions easily
–
Includes assembler and linker
CDT370 (compact development tool) Timer real-time in-circuit emulation
–
Base (Part No. EDSCDT37T – for PC, requires cable)
–
D
–
Provides EEPROM and EPROM programming support
–
Allows inspection and modification of memory locations
–
Uploads/ downloads program and data memory
–
Executes programs and software routines
–
Includes 1 024 samples trace buffer
–
Includes single-step executable instructions
–
Uses software breakpoints to halt program execution at selected address
Microcontroller programmer
–
Base (Part No. TMDS3760500A – for PC, requires programmer head)
–
–
D
Cable for 68-pin PLCC (Part No. EDSTRG68PLCC)
Single unit head for 68-pin PLCC (Part No. TMDS3780510A)
PC-based, window / function-key-oriented user interface for ease of use and rapid learning environment
Starter Kit (Part No. TMDS37000 – for PC)
–
Includes TMS370 Assembler diskette and documentation
–
Includes TMS370 Simulator
–
Includes programming adapter board and programming software
–
Not included – to be supplied by the user:
HP700 is a trademark of Hewlett-Packard Company.
Sun-3 and Sun-4 are trademarks of Sun Microsystems, Inc.
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
47
TMS370Cx6x
8-BIT MICROCONTROLLER
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
development system support (continued)
–
+ 5 V power supply
–
ZIF sockets
–
9-pin RS232 cable
device numbering conventions
Figure 17 illustrates the numbering and symbol nomenclature for the TMS370Cx6x family.
TMS 370 C 0 6 7
A FN L
Prefix: TMS = Standard prefix for fully qualified devices
SE = System evaluator (window EPROM) that is used for
prototyping purpose.
Family:
Technology:
Program Memory Types:
Device Type:
Memory Size:
Temperature Ranges:
Packages:
ROM and EPROM Option:
370 = TMS370 8-Bit Microcontroller Family
C = CMOS
0 = Mask ROM
7 = EPROM
6 = x6x device containing the following modules:
– Timer 1
– Timer 2A
– Timer 2B
– Serial Peripheral Interface
– Serial Communications Interface (SCI1)
– Analog-to-Digital Converter (ADC1)
7 = 24K Bytes
8 = 32K Bytes
9 = 48K Bytes
A = – 40°C to
85°C
L =
0°C to
70°C
T = – 40°C to 105°C
FN = Plastic Leaded Chip Carrier
FZ = Ceramic Leaded Chip Carrier
A = For ROM device, the watchdog timer can be configured
as one of the three different mask options:
– A standard watchdog
– A hard watchdog
– A simple watchdog
The clock can be either:
– Divide-by-4 clock
– Divide-by-1 (PLL) clock
The low-power modes can be either:
– Enabled
– Disabled
A = For EPROM device, a standard watchdog, a divide-by4 clock, and low-power modes are enabled
Figure 17. TMS370Cx6x Family Nomenclature
48
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
TMS370Cx6x
8-BIT MICROCONTROLLER
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
device part numbers
Table 23 lists all the ‘x6x devices available. The device part number nomenclature is designed to assist ordering.
Upon ordering, the customer must specify not only the device part number, but also the clock and watchdog
timer options desired. Remember that each device can have only one of the possible three watchdog timer
options and one of the two clock options. The options to be specified pertain solely to orders involving ROM
devices.
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
Table 23. Device Part Numbers
DEVICE PART NUMBERS
FOR 68 PINS
TMS370C067AFNA
TMS370C067AFNL
TMS370C067AFNT
TMS370C068AFNA
TMS370C068AFNL
TMS370C068AFNT
TMS370C069AFNA
TMS370C069AFNL
TMS370C069AFNT
TMS370C768AFNT
TMS370C769AFNT
SE370C768AFZT†
SE370C769AFZT†
† System evaluators are for use only in prototype environment and
their reliability has not been characterized.
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
49
TMS370Cx6x
8-BIT MICROCONTROLLER
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
new code release form
Figure 18 shows a sample of the new code release form.
NEW CODE RELEASE FORM
TEXAS INSTRUMENTS
TMS370 MICROCONTROLLER PRODUCTS
DATE:
To release a new customer algorithm to TI incorporated into a TMS370 family microcontroller, complete this form and submit with the following information:
1. A ROM description in object form on Floppy Disk, Modem XFR, or EPROM (Verification file will be returned via same media)
2. An attached specification if not using TI standard specification as incorporated in TI’s applicable device data book.
Company Name:
Street Address:
Street Address:
City:
Contact Mr./Ms.:
Phone: (
State
Zip
)
Ext.:
Customer Purchase Order Number:
Customer Print Number *Yes:
#
No:
(Std. spec to be followed)
*If Yes: Customer must provide ”print” to TI w/NCRF for approval before ROM
code processing starts.
Customer Part Number:
Customer Application:
TMS370 Device:
TI Customer ROM Number:
(provided by Texas Instruments)
CONTACT OPTIONS FOR THE ’A’ VERSION TMS370 MICROCONTROLLERS
OSCILLATOR FREQUENCY
MIN
TYP
MAX
[] External Drive (CLKIN)
[] Crystal
[] Ceramic Resonator
[] Supply Voltage MIN:
(std range: 4.5V to 5.5V)
Low Power Modes
[] Enabled
[] Disabled
Watchdog counter
[] Standard
[] Hard Enabled
[] Simple Counter
Clock Type
[] Standard (/4)
[] PLL (/1)
NOTE:
Non ’A’ version ROM devices of the TMS370 microcontrollers will have the
“Low-power modes Enabled”, “Divide-by-4” Clock, and “Standard” Watchdog
options. See the TMS370 Family User’s Guide (literature number SPNU127)
or the TMS370 Family Data Manual (literature number SPNS014B).
MAX:
TEMPERATURE RANGE
[] ’L’:
0° to 70°C (standard)
[] ’A’:
–40° to 85°C
[] ’T’:
–40° to 105°C
PACKAGE TYPE
[] ’N’ 28-pin PDIP
[] “FN” 44-pin PLCC
[] “FN” 28-pin PLCC
[] “FN” 68-pin PLCC
[] “N” 40-pin PDIP
[] “NM” 64-pin PSDIP
[] “NJ” 40-pin PSDIP (formerly known as N2)
SYMBOLIZATION
BUS EXPANSION
[] TI standard symbolization
[] TI standard w/customer part number
[] Customer symbolization
(per attached spec, subject to approval)
[] YES
[] NO
NON-STANDARD SPECIFICATIONS:
ALL NON-STANDARDS SPECIFICATIONS MUST BE APPROVED BY THE TI ENGINEERING STAFF: If the customer requires expedited production material
(i.e., product which must be started in process prior to prototype approval and full production release) and non-standard spec issues are not resolved to the
satisfaction of both the customer and TI in time for a scheduled shipment, the specification parameters in question will be processed/tested to the standard
TI spec. Any such devices which are shipped without conformance to a mutually approved spec, will be identified by a ’P’ in the symbolization preceding the
TI part number.
RELEASE AUTHORIZATION:
This document, including any referenced attachments, is and will be the controlling document for all orders placed for this TI custom device. Any changes must
be in writing and mutually agreed to by both the customer and TI. The prototype cycletime commences when this document is signed off and the verification
code is approved by the customer.
1. Customer:
Date:
2. TI: Field Sales:
Marketing:
Prod. Eng.:
Proto. Release:
Figure 18. Sample New Code Release Form
50
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
TMS370Cx6x
8-BIT MICROCONTROLLER
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
Table 24 is a collection of all the peripheral file frames using the ’Cx6x, (provided for a quick reference).
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁ
Table 24. Peripheral File Frame Compilation
PF
BIT 7
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
BIT 0
REG
System Configuration Registers
P010
OSC
POWER
PF AUTO
WAIT
OSC FLT
FLAG
MC PIN
WPO
MC PIN
DATA
—
µP/µC
MODE
SCCR0
—
—
AUTOWAIT
DISABLE
—
MEMORY
DISABLE
—
—
SCCR1
HALT/
STANDBY
PWRDWN/
IDLE
—
BUS
STEST
CPU
STEST
—
INT1
NMI
PRIVILEGE
DISABLE
SCCR2
BUSY
VPPS
—
—
—
—
W0
EXE
EPCTLH
COLD
START
P011
P012
P013
P014
Reserved
P015
to
P016
Reserved
P017
INT1
FLAG
INT1
PIN DATA
—
—
—
INT1
POLARITY
INT1
PRIORITY
INT1
ENABLE
INT1
P018
INT2
FLAG
INT2
PIN DATA
—
INT2
DATA DIR
INT2
DATA OUT
INT2
POLARITY
INT2
PRIORITY
INT2
ENABLE
INT2
P019
INT3
FLAG
INT3
PIN DATA
—
INT3
DATA DIR
INT3
DATA OUT
INT3
POLARITY
INT3
PRIORITY
INT3
ENABLE
INT3
P01A
BUSY
—
—
—
—
AP
W1W0
EXE
DEECTL
BUSY
VPPS
—
—
—
—
W0
EXE
EPCTLM
BUSY
VPPS
—
—
—
—
W0
EXE
EPCTLL
P01B
P01C
Reserved
P01D
P01E
Reserved
P01F
Reserved
Digital Port Control Registers
P020
Reserved
APORT1
P021
Port A Control Register 2
APORT2
P022
Port A Data
P023
Port A Direction
ADATA
ADIR
P024
Reserved
BPORT1
P025
Port B Control Register 2
BPORT2
P026
Port B Data
P027
Port B Direction
P028
Reserved
CPORT1
CPORT2
P029
Port C Control Register 2
P02A
Port C Data
P02B
Port C Direction
BDATA
BDIR
CDATA
CDIR
P02C
Port D Control Register 1
—
—
—
DPORT1
P02D
Port D Control Register 2†
—
—
—
DPORT2
P02E
Port D Data
—
—
—
DDATA
P02F
Port D Direction
—
—
—
DDIR
† To configure pin D3 as SYSCLK, set port D control register 2 = 08h.
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
51
TMS370Cx6x
8-BIT MICROCONTROLLER
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
Table 24. Peripheral File Frame Compilation (Continued)
ÁÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
Á
ÁÁÁÁÁ
ÁÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
Á
ÁÁÁÁÁ
ÁÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
Á
ÁÁÁÁÁ
ÁÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
PF
BIT 7
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
BIT 0
REG
SPI Module Control Memory Map
P030
SPI SW
RESET
CLOCK
POLARITY
SPI BIT
RATE2
SPI BIT
RATE1
SPI BIT
RATE0
SPI
CHAR2
SPI
CHAR1
SPI
CHAR0
SPICCR
P031
RECEIVER
OVERRUN
SPI INT
FLAG
—
—
—
MASTER/
SLAVE
TALK
SPI INT
ENA
SPICTL
RCVD3
RCVD2
RCVD1
RCVD0
SPIBUF
SDAT2
SDAT1
SDAT0
SPIDAT
P032
to
P036
P037
Reserved
RCVD7
RCVD6
RCVD5
RCVD4
SDAT7
SDAT6
SDAT5
SDAT4
P038
P039
Reserved
P03A
to
P03C
SDAT3
Reserved
P03D
—
—
—
—
SPICLK
DATA IN
SPICLK
DATA OUT
SPICLK
FUNCTION
SPICLK
DATA DIR
SPIPC1
P03E
SPISIMO
DATA IN
SPISIMO
DATA OUT
SPISIMO
FUNCTION
SPISIMO
DATA DIR
SPISOMI
DATA IN
SPISOMI
DATA OUT
SPISOMI
FUNCTION
SPISOMI
DATA DIR
SPIPC2
P03F
SPI
STEST
SPI
PRIORITY
SPI
ESPEN
—
—
—
—
—
SPIPRI
Timer 1 Module Register Memory Map
Modes: Dual-Compare and Capture/Compare
P040
Bit 15
T1 Counter MSbyte
Bit 8
P041
Bit 7
T1 Counter LSbyte
Bit 0
P042
Bit 15
Compare Register MSbyte
Bit 8
P043
Bit 7
Compare Register LSbyte
Bit 0
P044
Bit 15
Capture/Compare Register MSbyte
Bit 8
P045
Bit 7
Capture/Compare Register LSbyte
Bit 0
P046
Bit 15
Watchdog Counter MSbyte
Bit 8
P047
Bit 7
Watchdog Counter LSbyte
Bit 0
P048
Bit 15
Watchdog Reset Key
P049
WD OVRFL
TAP SEL†
WD
INPUT
SELECT2†
P04A
WD OVRFL
RST ENA†
WD OVRFL
INT ENA
WD
INPUT
SELECT1†
WD
INPUT
SELECT0†
WD OVRFL
INT FLAG
Bit 0
T1CNTR
T1C
T1CC
WDCNTR
WDRST
—
T1
INPUT
SELECT2
T1
INPUT
SELECT1
T1 INPUT
SELECT0
T1CTL1
T1 OVRFL
INT ENA
T1 OVRFL
INT FLAG
—
—
T1 SW
RESET
T1CTL2
Mode: Dual-Compare
P04B
T1EDGE
INT FLAG
T1C2
INT FLAG
T1C1
INT FLAG
—
—
T1EDGE
INT ENA
T1C2
INT ENA
T1C1
INT ENA
T1CTL3
P04C
T1
MODE = 0
T1C1
OUT ENA
T1C2
OUT ENA
T1C1
RST ENA
T1CR
OUT ENA
T1EDGE
POLARITY
T1CR
RST ENA
T1EDGE
DET ENA
T1CTL4
T1C1
INT FLAG
—
—
T1EDGE
INT ENA
—
T1C1
INT ENA
T1CTL3
Mode: Capture/Compare
P04B
T1EDGE
INT FLAG
—
† Once the WD OVRFL RST ENA bit is set, these bits cannot be changed until a reset; this applies only to the standard
watchdog and to simple counter. In the hard watchdog, these bits can be modified at any time; the WD INPUT
SELECT2 bits are ignored.
52
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
TMS370Cx6x
8-BIT MICROCONTROLLER
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
Table 24. Peripheral File Frame Compilation (Continued)
ÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
Á
ÁÁÁÁÁ
ÁÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
Á
ÁÁÁÁÁ
ÁÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
Á
ÁÁÁÁÁ
ÁÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
PF
BIT 7
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
BIT 0
REG
Modes: Dual-Compare and Capture/Compare
P04C
T1
MODE = 1
T1C1
OUT ENA
—
T1C1
RST ENA
—
T1EDGE
POLARITY
—
T1EDGE
DET ENA
T1CTL4
P04D
—
—
—
—
T1EVT
DATA IN
T1EVT
DATA OUT
T1EVT
FUNCTION
T1EVT DATA
DIR
T1PC1
P04E
T1PWM
DATA IN
T1PWM
DATA OUT
T1PWM
FUNCTION
T1PWM
DATA DIR
T1IC/CR
DATA IN
T1IC/CR
DATA OUT
T1IC/CR
FUNCTION
T1IC/CR
DATA DIR
T1PC2
P04F
T1 STEST
T1
PRIORITY
—
—
—
—
—
—
T1PRI
P050
STOP BITS
EVEN/ODD
PARITY
PARITY
ENABLE
ASYNC/
ISOSYNC
ADDRESS/
IDLE WUP
SCI CHAR2
SCI CHAR1
SCI CHAR0
SCICCR
P051
—
—
SCI SW
RESET
CLOCK
TXWAKE
SLEEP
TXENA
RXENA
SCICTL
P052
BAUDF
(MSB)
BAUDE
BAUDD
BAUDC
BAUDB
BAUDA
BAUD9
BAUD8
BAUD MSB
P053
BAUD7
BAUD6
BAUD5
BAUD4
BAUD3
BAUD2
BAUD1
BAUD0
(LSB)
BAUD LSB
P054
TXRDY
TX EMPTY
—
—
—
—
—
SCI TX
INT ENA
TXCTL
P055
RX
ERROR
RXRDY
BRKDT
FE
OE
PE
RXWAKE
SCI RX
INT ENA
RXCTL
RXDT7
RXDT6
RXDT5
RXDT4
RXDT3
RXDT2
RXDT1
RXDT0
RXBUF
TXDT7
TXDT6
TXDT5
TXDT4
TXDT2
TXDT1
TXDT0
TXBUF
Serial Communications Interface 1 Memory Map
P056
P057
Reserved
P058
P059
Reserved
P05A
P05B
P05C
TXDT3
Reserved
P05D
—
—
—
—
SCICLK
DATA IN
SCICLK
DATA OUT
SCICLK
FUNCTION
SCICLK
DATA DIR
SCIPC1
P05E
SCITXD
DATA IN
SCITXD
DATA OUT
SCITXD
FUNCTION
SCITXD
DATA DIR
SCIRXD
DATA IN
SCIRXD
DATA OUT
SCIRXD
FUNCTION
SCIRXD
DATA DIR
SCIPC2
P05F
SCI STEST
SCITX
PRIORITY
SCIRX
PRIORITY
SCI
ESPEN
—
—
—
—
SCIPRI
Timer 2A Control Registers Memory Map
Modes: Dual-Compare and Dual-Capture
P060
Bit 15
T2A Counter MSbyte
Bit 8
P061
Bit 7
T2A Counter LSbyte
Bit 0
P062
Bit 15
Compare Register MSbyte
Bit 8
P063
Bit 7
Compare Register LSbyte
Bit 0
P064
Bit 15
Capture/Compare Register MSbyte
Bit 8
P065
Bit 7
Capture/Compare Register LSbyte
Bit 0
P066
Bit 15
Capture Register 2 MSbyte
Bit 8
P067
Bit 7
Capture Register 2 LSbyte
Bit 0
P06A
—
—
—
T2A OVRFL
INT ENA
POST OFFICE BOX 1443
T2A OVRFL
INT FLAG
T2A
INPUT
SELECT1
• HOUSTON, TEXAS 77251–1443
T2A INPUT
SELECT0
T2A SW
RESET
T2ACNTR
T2AC
T2ACC
T2AIC
T2ACTL1
53
TMS370Cx6x
8-BIT MICROCONTROLLER
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
Table 24. Peripheral File Frame Compilation (Continued)
ÁÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
Á
ÁÁÁÁÁ
ÁÁÁÁ
Á
ÁÁÁÁÁ
ÁÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
Á
ÁÁÁÁÁ
ÁÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
PF
BIT 7
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
BIT 0
REG
Mode: Dual-Compare
P06B
T2AEDGE1
INT FLAG
T2AC2
INT FLAG
T2AC1
INT FLAG
—
—
T2AEDGE1
INT ENA
T2AC2
INT ENA
T2AC1
INT ENA
T2ACTL2
P06C
T2A
MODE = 0
T2AC1
OUT ENA
T2AC2
OUT ENA
T2AC1
RST ENA
T2AEDGE1
OUT ENA
T2AEDGE1
POLARITY
T2AEDGE1
RST ENA
T2AEDGE1
DET ENA
T2ACTL3
Mode: Dual-Capture
P06B
T2AEDGE1
INT FLAG
T2AEDGE2
INT FLAG
T2AC1
INT FLAG
—
—
T2AEDGE1
INT ENA
T2AEDGE2
INT ENA
T2AC1
INT ENA
T2ACTL2
P06C
T2A
MODE = 1
—
—
T2AC1
RST ENA
T2AEDGE2
POLARITY
T2AEDGE1
POLARITY
T2AEDGE2
DET ENA
T2AEDGE1
DET ENA
T2ACTL3
Modes: Dual-Compare and Dual-Capture
P06D
—
—
—
—
T2AEVT
DATA IN
T2AEVT
DATA OUT
T2AEVT
FUNCTION
T2AEVT
DATA DIR
T2APC1
P06E
T2AIC2 / PWM
DATA IN
T2AIC2 / PWM
DATA OUT
T2AIC2 / PWM
FUNCTION
T2AIC2 / PWM
DATA DIR
T2AIC1/CR
DATA IN
T2AIC1/CR
DATA OUT
T2AIC1/CR
FUNCTION
T2AIC1/CR
DATA DIR
T2APC2
P06F
T2A STEST
T2A
PRIORITY
—
—
—
—
—
—
T2APRI
P070
CONVERT
START
SAMPLE
START
REF VOLT
SELECT2
REF VOLT
SELECT1
REF VOLT
SELECT0
AD INPUT
SELECT2
AD INPUT
SELECT1
AD INPUT
SELECT0
ADCTL
P071
—
—
—
—
—
AD READY
AD INT
FLAG
AD INT
ENA
ADSTAT
Analog-To-Digital Converter 1 Control Registers
P072
A-to-D Conversion Data Register
P073
to
P07C
Reserved
P07D
Port E Data Input Register
P07E
Port E Input Enable Register
P07F
AD STEST
AD
PRIORITY
AD ESPEN
—
ADDATA
ADIN
ADENA
—
—
—
—
ADPRI
Timer 2B Control Registers Memory Map
Modes: Dual-Compare and Dual-Capture
P080
BIT 15
T2B Counter MSbyte
BIT 8
P081
BIT 7
T2B Counter LSbyte
BIT 0
P082
BIT 15
Compare Register MSbyte
BIT 8
P083
BIT 7
Compare Register LSbyte
BIT 0
P084
BIT 15
Capture/Compare Register MSbyte
BIT 8
P085
BIT 7
Capture/Compare Register LSbyte
BIT 0
P086
BIT 15
Capture Register 2 MSbyte
BIT 8
P087
BIT 7
Capture Register 2 LSbyte
BIT 0
P08A
54
—
—
—
T2B OVRFL
INT ENA
POST OFFICE BOX 1443
T2B
OVRFL INT
FLAG
T2B INPUT
SELECT1
• HOUSTON, TEXAS 77251–1443
T2B INPUT
SELECT0
T2B SW
RESET
T2BCNTR
T2BC
T2BCC
T2BIC
T2BCTL1
TMS370Cx6x
8-BIT MICROCONTROLLER
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
Table 24. Peripheral File Frame Compilation (Continued)
ÁÁÁ
Á
ÁÁÁÁÁ
ÁÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
Á
ÁÁÁÁÁ
ÁÁÁÁ
Á
ÁÁÁÁÁ
ÁÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
Á
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
PF
BIT 7
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
BIT 0
REG
Mode: Dual-Compare
P08B
T2BEDGE1
INT FLAG
T2BC2
INT FLAG
T2BC1
INT FLAG
—
—
T2BEDGE1
INT ENA
T2BC2
INT ENA
T2BC1
INT ENA
T2BCTL2
P08C
T2B
MODE = 0
T2BC1
OUT ENA
T2BC2
OUT ENA
T2BC1
RST ENA
T2BEDGE1
OUT ENA
T2BEDGE1
POLARITY
T2BEDGE1
RST ENA
T2BEDGE1
DET ENA
T2BCTL3
Mode: Dual-Capture
P08B
T2BEDGE1
INT FLAG
T2BEDGE2
INT FLAG
T2BC1
INT FLAG
—
—
T2BEDGE1
INT ENA
T2BEDGE2
INT ENA
T2BC1
INT ENA
T2BCTL2
P08C
T2B
MODE = 1
—
—
T2BC1
RST ENA
T2BEDGE2
POLARITY
T2BEDGE1
POLARITY
T2BEDGE2
DET ENA
T2BEDGE1
DET ENA
T2BCTL3
Modes: Dual-Compare and Dual-Capture
P08D
—
—
—
—
T2BEVT
DATA IN
T2BEVT
DATA OUT
T2BEVT
FUNCTION
T2BEVT
DATA DIR
T2BPC1
P08E
T2BIC2 / PWM
DATA IN
T2BIC2 / PWM
DATA OUT
T2BIC2 / PWM
FUNCTION
T2BIC2 / PWM
DATA DIR
T2BIC1/CR
DATA IN
T2BIC1/CR
DATA OUT
T2BIC1/CR
FUNCTION
T2BIC1/CR
DATA DIR
T2BPC2
P08F
T2B STEST
T2B
PRIORITY
—
—
—
—
—
—
T2BPRI
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Supply voltage range‡,VCC1, VCC2, VCC3 (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.6 V to 7 V
Input voltage range, All pins except MC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.6 V to 7 V
MC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.6 V to 14 V
Input clamp current, IIK (VI < 0 or VI > VCC1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 20 mA
Output clamp current, IOK (VO < 0 or VO > VCC1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 20 mA
Continuous output current per buffer, IO (VO = 0 to VCC1)(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . ± 10 mA
Maximum ICC current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 mA
Maximum ISS current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 170 mA
Continuous power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 W
Operating free-air temperature range, TA: L version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C
A version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 40°C to 85°C
T version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 40°C to 105°C
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 65°C to 150°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
‡ VCC1 = VCC
NOTE 1: Electrical characteristics are specified with all output buffers loaded with the specified IO current. Exceeding the specified IO current
in any buffer can affect the levels on other buffers.
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
55
TMS370Cx6x
8-BIT MICROCONTROLLER
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
recommended operating conditions
VCC1
Supply voltage (see Note 2)
RAM data-retention supply voltage (see Note 3)
MIN
NOM
MAX
4.5
5
5.5
3
5.5
UNIT
V
VCC2
VCC3
Digital I/O supply voltage (see Note 2)
4.5
5
5.5
Analog supply voltage (see Note 2)
4.5
5
5.5
VSS2
VSS3
Digital I/O supply ground
– 0.3
0
0.3
V
Analog supply ground
– 0.3
0
0.3
V
VIL
Low level input voltage
Low-level
0.8
V
0.3
V
All pins except MC
MC, normal operation
All pins except MC, XTAL2 / CLKIN, and
RESET
VIH
High-level
input voltage
g
g
MC (non-WPO mode)
XTAL2 / CLKIN
RESET
MC ((mode control)) voltage
g
(see Note 4)
EPROM programming voltage (VPP)
Operating free-air temperature
VCC1
VCC1 – 0.3
0.8 VCC1
VCC1 + 0.3
VCC1
11.7
12
13
13.2
VCC1 – 0.3
VSS1
Microprocessor
Microcomputer
TA
2
0.7 VCC1
EEPROM write protect override (WPO)
VMC
VSS1
VSS1
V
V
VCC1
13
13.5
VCC1 + 0.3
0.3
L version
0
70
A version
– 40
85
T version
– 40
105
V
°C
NOTES: 2. Unless otherwise noted, all voltage values are with respect to VSS1.
3. RESET must be activated externally when VCC1 or SYSCLK is out of the recommended operating range.
4. The basic microcomputer and microprocessor operating modes are selected by the voltage level applied to the dedicated MC pin
two system-clock cycles (tc) before RESET goes inactive (high). The WPO mode can be selected anytime that a sufficient voltage
is present on MC.
56
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
TMS370Cx6x
8-BIT MICROCONTROLLER
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
electrical characteristics over recommended operating free-air temperature range (unless
otherwise noted)
PARAMETER
VOL
Low-level output voltage
VOH
High level output voltage
High-level
II
Input current
TEST CONDITIONS
IOL = 1.4 mA
IOH = – 50 µA
IOL
Low-level output current
IOH
High level output current
High-level
0.9VCC1
UNIT
V
V
2.4
10
50
VCC1–0.3 V ≤ VI ≤ VCC1+0.3 V
VCC1 + 0.3 V < VI ≤ 13 V
10
650
(See Note 6)
50
0 V ≤ VI ≤ VCC1
± 10
VOL = 0.4 V
VOH = 0.9 VCC1
1.4
VOH = 2.4 V
µA
mA
µA
mA
– 50
µA
–2
mA
TMS370Cx67A
TMS370Cx68A
SYSCLK = 5 MHz
See Notes 7 and 8
35
56
mA
TMS370Cx67A
TMS370Cx68A
SYSCLK = 3 MHz
See Notes 7 and 8
25
36
mA
TMS370Cx69A
SYSCLK = 3 MHz
See Notes 5 and 7
46
55
mA
TMS370Cx67A
TMS370Cx68A
SYSCLK = 0.5 MHz
See Notes 7 and 8
13
18
TMS370Cx69A
SYSCLK = 0.5 MHz
See Notes 5 and 7
22
28
Su ly current (STANDBY mode)
Supply
OSC POWER bit = 0
(see Note 10)
SYSCLK = 5 MHz
See Notes 7 and 8
12
17
SYSCLK = 3 MHz
See Notes 7 and 8
8
11
SYSCLK = 0.5 MHz
See Notes 7 and 8
2.5
3.5
Supply
y current (STANDBY
(
mode))
OSC POWER bit = 1 (see Note 11)
SYSCLK = 3 MHz
See Notes 7 and 8
6
8.6
SYSCLK = 0.5 MHz
See Notes 7 and 8
2
3
Supply current (HALT mode)
XTAL2 / CLKIN < 0.2 V
See Note 7
2
30
Supply current
(operating
(o
erating mode)
OSC POWER bit = 0
(see Note 9)
ICC
MAX
0.3 V < VI < VCC1 – 0.3 V
12 V ≤ VI ≤ 13 V
I / O pins
TYP
0.4
IOH = – 2 mA
0 V < VI ≤ 0.3 V
MC
MIN
mA
mA
mA
µA
NOTES: 5. ’x69 operates up to 3 MHz SYSCLK. XTAL2/CLKIN is driven with an external square wave signal with 50% duty cycle and rise and
fall times less than 10 ns.
6. Input current IPP is a maximum of 50 mA only when programming EPROM.
7. Single chip mode, ports configured as inputs or outputs with no load. All inputs ≤ 0.2 V or ≥ VCC1 – 0.2V.
8. XTAL2/CLKIN is driven with an external square wave signal with 50% duty cycle and rise and fall times less than 10 ns. Current
can be higher with a crystal oscillator. At 5 MHz SYSCLK, this extra current = 0.01 mA x (total load capacitance + crystal capacitance
in pF).
9. Maximum operating current for TMS370Cx6x = 10 (SYSCLK) + 5.8 mA.
10. Maximum standby current for TMS370Cx6x = 3 (SYSCLK) + 2 mA. (OSC POWER bit = 0).
11. Maximum standby current for TMS370Cx6x = 2.24 (SYSCLK) + 1.9 mA. (OSC POWER bit = 1, only valid up to 3 MHz SYSCLK).
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
57
TMS370Cx6x
8-BIT MICROCONTROLLER
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
PARAMETER MEASUREMENT INFORMATION
XTAL2/CLKIN
C1
(see Note B)
XTAL1
Crystal/Ceramic
Resonator
(see Note A)
XTAL2/CLKIN
C2
(see Note B)
XTAL1
C3
(see Note B)
External
Clock Signal
NOTES: A. The crystal/ceramic resonator frequency is four times the reciprocal of the system clock period.
B. The values of C1 and C2 typically are 15 pF and the value of C3 is typically 50pF. See the manufacturer’s recommendations for
ceramic resonators.
Figure 19. Recommended Crystal/Clock Connections (See Note A)
Load Voltage
1.2 kΩ
VO
20 pF
Case 1: VO = VOH = 2.4 V; Load Voltage = 0 V
Case 2: VO = VOL = 0.4 V; Load Voltage = 2.1 V
NOTE A: All measurements are made with the pin loading as shown unless otherwise noted. All measurements are made with XTAL2/CLKIN
driven by an external square wave signal with a 50% duty cycle and rise and fall times less than 10 ns unless otherwise stated.
Figure 20. Typical Output Load Circuit
VCC
VCC
300 Ω
Pin Data
30 Ω
Output
Enable
I/O
6 kΩ
INT 1
20 Ω
20 Ω
GND
GND
Figure 21. Typlcal Buffer Circuitry
58
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
TMS370Cx6x
8-BIT MICROCONTROLLER
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
PARAMETER MEASUREMENT INFORMATION
timing parameter symbology
Timing parameter symbols have been created in accordance with JEDEC Standard 100. In order to shorten the
symbols, some of the pin names and other related terminology have been abbreviated as follows:
A
Address
RXD
SCIRXD
AR
Array
S
Slave mode
B
Byte
SC
SYSCLK
CI
XTAL2/CLKIN
SCC
SCICLK
D
Data
SIMO
SPISIMO
E
EDS
SOMI
SPISOMI
FE
Final
SPC
SPICLK
IE
Initial
TXD
SCITXD
M
Master mode
W
Write
PGM
Program
WT
WAIT
R
Read
Lowercase subscripts and their meanings are:
c
cycle time (period)
r
rise time
d
delay time
su
setup time
f
fall time
v
valid time
h
hold time
w
pulse duration (width)
The following additional letters are used with these meanings:
H
High
L
Low
V
Valid
Z
High impedance
All timings are measured between high and low measurement points as indicated in Figure 22 and Figure 23.
0.8 VCC V (High)
2 V (High)
0.8 V (Low)
0.8 V (Low)
Figure 22. XTAL2/CLKIN Measurement Points
POST OFFICE BOX 1443
Figure 23. General Measurement Points
• HOUSTON, TEXAS 77251–1443
59
TMS370Cx6x
8-BIT MICROCONTROLLER
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
external clocking requirements for clock divided by 4† (see Figure 24)
NO.
1
2
3
4
PARAMETER
MIN
MAX
20
UNIT
tw(Cl)
tr(Cl)
Pulse duration, XTAL2/CLKIN (see Note 12)
Rise time, XTAL2/CLKIN
30
ns
tf(CI)
td(CIH-SCL)
CLKIN§
Fall time, XTAL2/CLKIN
30
ns
Delay time, XTAL2/CLKIN rise to SYSCLK fall
Crystal operating frequency
System clock‡
2
ns
100
ns
20
MHz
SYSCLK¶
0.5
5
MHz
† For VIL and VIH, refer to recommended operating conditions table.
‡ SYSCLK = CLKIN/4
§ ’x69A operates up to 12 MHz CLKIN
¶ ’x69A operates up to 3 MHz SYSCLK
NOTE 12: This pulse can be either a high pulse, which extends from the earliest valid high to the final valid high in an XTAL2/CLKIN cycle, or a
low pulse, which extends from the earliest valid low to the final valid low in an XTAL2/CLKIN cycle.
1
XTAL2/CLKIN
2
3
4
SYSCLK
Figure 24. External Clock Divide-by-4
external clocking requirements for clock divided by 1 (PLL)† (see Figure 25)
NO.
1
2
3
4
PARAMETER
MIN
MAX
Pulse duration, XTAL2/CLKIN (see Note 12)
Rise time, XTAL2/CLKIN
30
ns
tf(CI)
td(CIH-SCH)
CLKIN#
Fall time, XTAL2/CLKIN
30
ns
100
ns
SYSCLK¶
20
UNIT
tw(Cl)
tr(Cl)
Delay time, XTAL2/CLKIN rise to SYSCLK rise
Crystal operating frequency
System clock||
ns
2
5
2
5
MHz
MHz
† For VIL and VIH, refer to recommended operating conditions table.
¶ ’x69A operates up to 3 MHz SYSCLK
# ’x69A operates up to 3 MHz CLKIN (for divide-by-1 clock option)
|| SYSCLK = CLKIN/1
NOTE 12: This pulse can be either a high pulse, which extends from the earliest valid high to the final valid high in an XTAL2/CLKIN cycle, or a
low pulse, which extends from the earliest valid low to the final valid low in an XTAL2/CLKIN cycle.
1
XTAL2/CLKIN
2
3
4
SYSCLK
Figure 25. External Clock Divide-by-1
60
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
TMS370Cx6x
8-BIT MICROCONTROLLER
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
general purpose output signal switching time requirements (see Figure 26)
MIN
tr
tf
NOM
MAX
UNIT
Rise time
30
ns
Fall time
30
ns
tr
tf
Figure 26. Signal Switching Timing
recommended EEPROM timing requirements for programming
MIN
tw(PGM)B
tw(PGM)AR
MAX
UNIT
Pulse duration, programming signal to ensure valid data is stored (byte mode)
10
ms
Pulse duration, programming signal to ensure valid data is stored (array mode)
20
ms
recommended EPROM operating conditions for programming
VCC1
VPP
Supply voltage
IPP
Supply current at MC pin during programming (VPP = 13 V)
SYSCLK
System clock
Supply voltage at MC pin
MIN
NOM
MAX
4.75
5.5
6
13
13.2
13.5
30
50
Divide-by-4
0.5
5
Divide-by-1
2
5
UNIT
V
V
mA
MHz
recommended EPROM timing requirements for programming
tw(EPGM)
Pulse duration, programming signal (see Note 13)
NOTE 13: Programming pulse is active when both EXE (EPCTL.0) and VPPS (EPCTL.6) are set.
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
MIN
NOM
MAX
0.40
0.50
3
UNIT
ms
61
TMS370Cx6x
8-BIT MICROCONTROLLER
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
switching characteristics and timing requirements for external read and write† (see Figure 27 and
Figure 28)
NO.
PARAMETER
5
tc
Cycle time,
time SYSCLK (system clock)
6
tw(SCL)
tw(SCH)
Pulse duration, SYSCLK low
7
8
td(SCL-A)
Delay time, SYSCLK low to address R / W and OCF
valid
9
tv(A)
Valid time, address to EDS, CSE1, CSH1, and CSPF
low
10
tsu(D)
Setup time, write data time to EDS high
11
th(EH-A)
Hold time, address, R / W and OCF from EDS, CSE1,
CSH1 and CSPF high
12
th(EH-D)W
13
td(DZ-EL)
14
15
16
17
18
19
20
21
22
23
MIN
MAX
Divide-by-4 clock
200
2 000
Divide-by-1 PLL
200
500
0.5tc–25
0.5tc
0.5tc
0.5tc+20
ns
0.25tc+75
ns
Pulse duration, SYSCLK high
UNIT
ns
ns
0.5tc–90
ns
0.75tc–80‡
ns
0.5tc–60
ns
Hold time, write data time from EDS high
0.75tc+15
ns
Delay time, data bus high impedance to EDS low (read
cycle)
0.25tc–35
ns
td(EH-D)
td(EL-DV)R
Delay time, EDS high to data bus enable (read cycle)
1.25tc–40
th(EH-D)R
tsu(WT-SCH)
Hold time, read time from EDS high
th(SCH-WT)
td(EL-WTV)
Hold time, WAIT time from SYSCLK high
tw
td(AV-DV)R
Pulse duration, EDS, CSE1, CSH1 and CSPF low
td(AV-WTV)
td(AV-EH)
Delay time, address valid to WAIT valid
ns
tc–95‡
Delay time, EDS low to read data valid
0
ns
0.25tc+70§
Setup time, WAIT time to SYSCLK high
tc–80‡
Delay time, address valid to read data valid
1.5tc–85‡
ns
0.5tc–60
tc+40‡
1.5tc–115‡
ns
tc–115
ns
ns
ns
ns
† tc = system-clock cycle time = 1 / SYSCLK
‡ If wait states, PFWait, or the autowait feature is used, add tc to this value for each wait state invoked.
§ If the autowait feature is enabled, the WAIT input can assume a “don’t care” condition until the third cycle of the access. The WAIT signal must
be synchronized with the high pulse of the SYSCLK signal while still conforming to the minimum set-up time.
62
Delay time, address valid to EDS high (end of write)
ns
0
Delay time, EDS low to WAIT valid
ns
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
TMS370Cx6x
8-BIT MICROCONTROLLER
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
7
5
6
SYSCLK
8
ADDRESS
11
20
EDS, CSE1, CSH1, CSPF
14
9
21
13
16
15
DATA
370 Drives Data
Read Data Drive
Read Data
Valid
Read Data
Disable
370 Drives
Data
19
22
17
18
WAIT
R/W
OCF
Figure 27. External-Read Timing
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
63
TMS370Cx6x
8-BIT MICROCONTROLLER
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
7
5
6
SYSCLK
8
ADDRESS
11
EDS, CSE1, CSH1, CSPF
20
9
10
23
12
DATA
19
22
17
18
WAIT
R/W
Figure 28. External-Write Timing
64
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
TMS370Cx6x
8-BIT MICROCONTROLLER
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
SCI1 isosynchronous-mode timing characteristics and requirements for internal clock
(see Note 14 and Figure 29)
NO.
24
25
26
27
28
29
MIN
tc(SCC)
tw(SCCL)
Cycle time, SCICLK
2tc
tc – 45
tw(SCCH)
td(SCCL-TXDV)
Pulse duration, SCICLK high
tv(SCCH-TXD)
tsu(RXD-SCCH)
Valid time, SCITXD data valid after SCICLK high
Pulse duration, SCICLK low
tc – 45
– 50
Delay time, SCITXD valid after SCICLK low
Setup time, SCIRXD to SCICLK high
30
tv(SCCH-RXD)
Valid time, SCIRXD data valid after SCICLK high
NOTE 14: tc = system-clock cycle time = 1 / SYSCLK
tw(SCCH) – 50
0.25 tc + 145
0
MAX
UNIT
131 072tc
ns
0.5tc(SCC)+45
0.5tc(SCC)+45
ns
60
ns
ns
ns
ns
ns
24
26
25
SCICLK
28
27
Data Valid
SCITXD
29
30
SCIRXD
Data Valid
Figure 29. SCI1 Isosynchronous-Mode Timing for Internal Clock
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
65
TMS370Cx6x
8-BIT MICROCONTROLLER
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
SCI1 isosynchronous-mode timing characteristics and requirements for external clock
(see Note 14 and Figure 30)
NO.
31
32
33
34
35
36
MIN
tc(SCC)
tw(SCCL)
Cycle time, SCICLK
tw(SCCH)
td(SCCL-TXDV)
Pulse duration, SCICLK high
tv(SCCH-TXD)
tsu(SIMO-SCCH)
Valid time, SCITXD data valid after SCICLK high
Pulse duration, SCICLK low
37
tv(SCCH-RXD)
Valid time, SCIRXD data after SCICLK high
NOTE 14: tc = system-clock cycle time = 1 / SYSCLK
tw(SCCH)
40
2tc
31
33
32
SCICLK
35
34
Data Valid
36
37
SCIRXD
Data Valid
Figure 30. SCI1 Isosynchronous-Mode Timing for External Clock
66
POST OFFICE BOX 1443
ns
ns
4.25tc + 145
Setup time, SCIRXD to SCICLK high
• HOUSTON, TEXAS 77251–1443
UNIT
ns
tc + 120
Delay time, SCITXD valid after SCICLK low
SCITXD
MAX
10tc
4.25tc + 120
ns
ns
ns
ns
TMS370Cx6x
8-BIT MICROCONTROLLER
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
SPI-master mode external timing characteristics and requirements (see Note 14 and Figure 31)
NO.
38
39
40
41
MIN
tc(SPC)M
tw(SPCL)M
Cycle time, SPICLK
2tc
tc – 45
tw(SPCH)M
td(SPCL-SIMOV)M
Pulse duration, SPICLK high
Pulse duration, SPICLK low
Delay time, SPISIMO valid after SPICLK low (polarity = 1)
42
tv(SPCH-SIMO)M
Valid time, SPISIMO data valid after SPICLK high
(polarity =1)
43
tsu(SOMI-SPCH)M
Setup time, SPISOMI to SPICLK high (polarity = 1)
tv(SPCH-SOMI)M
Valid time, SPISOMI data valid after SPICLK high
(polarity = 1)
44
tc – 55
– 65
MAX
UNIT
256tc
ns
0.5tc(SPC)+45
0.5tc(SPC)+45
ns
50
ns
ns
tw(SPCH) – 50
ns
0.25 tc + 150
ns
0
ns
NOTE 14: tc = system-clock cycle time = 1 / SYSCLK
38
40
39
SPICLK
41
42
Data Valid
SPISIMO
43
44
SPISOMI
Data Valid
NOTE A: The diagram shows polarity = 1. SPICLK is inverted when polarity = 0.
Figure 31. SPI-Master External Timing
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
67
TMS370Cx6x
8-BIT MICROCONTROLLER
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
SPI-slave mode external timing characteristics and requirements (see Note 14 and Figure 32)
NO.
45
46
47
48
49
50
MIN
tc(SPC)S
tw(SPCL)S
Cycle time, SPICLK
Pulse duration, SPICLK low
8tc
4tc – 45
tw(SPCH)S
td(SPCL-SOMIV)S
Pulse duration, SPICLK high
4tc – 45
tv(SPCH-SOMI)S
tsu(SIMO-SPCH)S
Valid time, SPISOMI data valid after SPICLK high (polarity =1)
Delay time, SPISOMI valid after SPICLK low (polarity = 1)
Setup time, SPISIMO to SPICLK high (polarity = 1)
SPICLK
49
Data Valid
50
51
Data Valid
NOTE A: The diagram shows polarity = 1. SPICLK is inverted when polarity = 0.
68
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
ns
3.25tc + 130
ns
ns
ns
47
Figure 32. SPI-Slave External Timing
0.5tc(SPC)S+45
0.5tc(SPC)S+45
3tc + 100
46
SPISOMI
ns
ns
45
SPISIMO
UNIT
tw(SPCH)S
0
51
tv(SPCH-SIMO)S
Valid time, SPISIMO data after SPICLK high (polarity = 1)
NOTE 14: tc = system-clock cycle time = 1 / SYSCLK
48
MAX
ns
TMS370Cx6x
8-BIT MICROCONTROLLER
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
analog-to-digital converter 1 (ADC1)
The ADC1 converter has a separate power bus for its analog circuitry. These pins are referred to as VCC3 and
VSS3 . The purpose is to enhance ADC1 performance by preventing digital switching noise of the logic circuitry
that can be present on VSS1 and VCC1 from coupling into the ADC1 analog stage. All ADC1 specifications are
given with respect to VSS3 unless otherwise noted.
Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-bits (256 values)
Monotonic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Yes
Output conversion mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00h to FFh (00 for VI ≤ VSS3 ≤; FF for VI ≤ Vref)
Conversion time (excluding sample time) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 tc
recommended operating conditions
VCC3
Analog supply voltage
VSS3
Vref
Analog ground
MIN
NOM
MAX
4.5
5
5.5
VCC1–0.3
VSS1–0.3
Non-VCC3 reference†
Analog input for conversion
2.5
UNIT
VCC 1+ 0.3
VSS 1+0.3
VCC3
VSS3
† Vref must be stable, within ± 1/2 LSB of the required resolution, during the entire conversion time.
VCC3 + 0.1
Vref
V
V
V
V
operating characteristics over recommended ranges operating conditions
PARAMETER
MIN
Absolute accuracy‡
II
Zreff
UNIT
± 1.5
LSB
± 0.9
LSB
Converting
2
mA
Nonconverting
5
µA
0 V ≤ VI ≤ 5.5 V
2
µA
1
mA
SYSCLK ≤ 3 MHz
24
kΩ
3 MHz < SYSCLK ≤ 5 MHz
10
VCC3 = 5.5 V
VCC3 = 5.5 V
Differential/integral linearity error‡§
ICC3
MAX
Analog supply current
Input current, AN0 – AN7
Vrerf = 5.1 V
Vrerf = 5.1 V
Iref input charge current
Source impedance of Vreff
kΩ
‡ Absolute resolution = 20 mV. At Vref = 5 V, this is one LSB. As Vref decreases, LSB size decreases. Therefore, the absolute accuracy and
differential/integral linearity errors in terms of LSBs increase.
§ Excluding quantization error of 1/2 LSB
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
69
TMS370Cx6x
8-BIT MICROCONTROLLER
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
analog-to-digital converter 1 (ADC1) (continued)
The ADC1 module allows complete freedom in design of the sources for the analog inputs. The period of the
sample time is user-defined so that the high-impedance can be accommodated without penalty to the
low-impedance sources. The sample period begins when the SAMPLE START bit of the ADC1 control register
(ADCTL.6) is set to 1. The end of the signal sample period occurs when the conversion bit (CONVERT START,
ADCTL.7) is set to 1. After a hold time, the converter will reset the SAMPLE START and CONVERT START bits,
signaling that a conversion has started and that the analog signal can be removed.
analog timing requirements
MIN
tsu(S)
th(AN)
Setup time, analog to sample command
MAX
0
Hold time, analog input from start of conversion
UNIT
ns
18tc
1
ns
tw(S)
Pulse duration, sample time per kilohm of source impedance†
µs/kΩ
† The value given is valid for a signal with a source impedance > 1 kΩ. If the source impedance is < 1kΩ, use a minimum sampling time of 1µs.
Analog Stable
Analog In
tsu(S)
Sample Start
th(AN)
tw(S)
Convert Start
Figure 33. Analog Timing
Table 25 is designed to aid the user in referencing a device part number to a mechanical drawing. The table
shows a cross-reference of the device part number to the TMS370 generic package name and the associated
mechanical drawing by drawing number and name.
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Table 25. TMS370Cx6x Family Package Type and Mechanical Cross-Reference
PKG TYPE
(mil pin spacing)
TMS370 GENERIC NAME
PKG TYPE NO. AND
MECHANICAL NAME
DEVICE PART NUMBERS
FN – 68 pin
(50-mil pin spacing)
PLASTIC LEADED CHIP CARRIER
(PLCC)
FN(S-PQCC-J**) PLASTIC J-LEADED
CHIP CARRIER
TMS370C067AFNA
TMS370C067AFNL
TMS370C067AFNT
TMS370C068AFNA
TMS370C068AFNL
TMS370C068AFNT
TMS370C069AFNA
TMS370C069AFNL
TMS370C069AFNT
TMS370C768AFNT
TMS370C769AFNT
FZ – 68 pin
(50-mil pin spacing)
CERAMIC LEADED CHIP CARRIER
(CLCC)
FZ(S-CQCC-J**) J-LEADED CERAMIC
CHIP CARRIER
SE370C768AFZT
SE370C769AFZT
70
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
TMS370Cx6x
8-BIT MICROCONTROLLER
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
MECHANICAL DATA
FN (S-PQCC-J**)
PLASTIC J-LEADED CHIP CARRIER
20 PIN SHOWN
Seating Plane
0.004 (0,10)
0.180 (4,57) MAX
0.120 (3,05)
0.090 (2,29)
D
D1
0.020 (0,51) MIN
3
1
19
0.032 (0,81)
0.026 (0,66)
4
E
18
D2 / E2
E1
D2 / E2
8
14
0.021 (0,53)
0.013 (0,33)
0.007 (0,18) M
0.050 (1,27)
9
13
0.008 (0,20) NOM
D1 / E1
D/E
D2 / E2
NO. OF
PINS
**
MIN
MAX
MIN
MAX
MIN
MAX
20
0.385 (9,78)
0.395 (10,03)
0.350 (8,89)
0.356 (9,04)
0.141 (3,58)
0.169 (4,29)
28
0.485 (12,32)
0.495 (12,57)
0.450 (11,43)
0.456 (11,58)
0.191 (4,85)
0.219 (5,56)
44
0.685 (17,40)
0.695 (17,65)
0.650 (16,51)
0.656 (16,66)
0.291 (7,39)
0.319 (8,10)
52
0.785 (19,94)
0.795 (20,19)
0.750 (19,05)
0.756 (19,20)
0.341 (8,66)
0.369 (9,37)
68
0.985 (25,02)
0.995 (25,27)
0.950 (24,13)
0.958 (24,33)
0.441 (11,20)
0.469 (11,91)
84
1.185 (30,10)
1.195 (30,35)
1.150 (29,21)
1.158 (29,41)
0.541 (13,74)
0.569 (14,45)
4040005 / B 03/95
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-018
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
71
TMS370Cx6x
8-BIT MICROCONTROLLER
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997
MECHANICAL DATA
FZ (S-CQCC-J**)
J-LEADED CERAMIC CHIP CARRIER
28 LEAD SHOWN
0.040 (1,02)
45°
Seating Plane
0.180 (4,57)
A
0.155 (3,94)
0.140 (3,55)
B
4
1
0.120 (3,05)
26
25
5
A
B
0.050 (1,27)
C
(at Seating
Plane)
0.032 (0,81)
0.026 (0,66)
0.020 (0,51)
0.014 (0,36)
19
11
18
12
0.025 (0,64) R TYP
0.040 (1,02) MIN
0.120 (3,05)
0.090 (2,29)
B
A
C
JEDEC
NO. OF
OUTLINE
PINS**
MIN
MAX
MIN
MAX
MIN
MAX
MO-087AA
28
0.485
(12,32)
0.495
(12,57)
0.430
(10,92)
0.455
(11,56)
0.410
(10,41)
0.430
(10,92)
MO-087AB
44
0.685
(17,40)
0.695
(17,65)
0.630
(16,00)
0.655
(16,64)
0.610
(15,49)
0.630
(16,00)
MO-087AC
52
0.785
(19,94)
0.795
(20,19)
0.730
(18,54)
0.765
(19,43)
0.680
(17,28)
0.740
(18,79)
MO-087AD
68
0.985
(25,02)
0.995
(25,27)
0.930
(23,62)
0.955
(24,26)
0.910
(23,11)
0.930
(23,62)
4040219 / B 03/95
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a ceramic lid using glass frit.
72
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
IMPORTANT NOTICE
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those
pertaining to warranty, patent infringement, and limitation of liability.
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO
BE FULLY AT THE CUSTOMER’S RISK.
In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI’s publication of information regarding any third
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.
Copyright  1998, Texas Instruments Incorporated