SANKEN SI7330A

Unipolar Driver ICs
SI-7300A and SI-7330A
■ Ratings
(Ta = 25°C)
Absolute
maximum
rating
Supply voltage
Output
current
(A)
(V)
Junction
temperature
(°C)
Operating
ambient
temperature (°C)
Storage
temperature
(°C)
Type No.
VCC1
VCC2
Io
Tj
Top
Tstg
SI-7300A
48
8
1.7
+125
–20 to +80
–30 to +100
SI-7330A
42
8
3.2
+125
–20 to +80
–30 to +100
■ Characteristics
Electrical
characteristics
(Ta = 25°C)
Supply voltage
Output current
VCC2 input
current
Oscillation
frequency
(mA/ø)
(mA)
(kHz)
(V)
VCC1
VCC2
IO
IOM*
lCC2
External
zener diode
breakdown
voltage
(V)
VIL
V IH
max
min
typ max
min
max
max
typ
min max min max min max min max
5.5 200 1500 535 580 625
45
19
21
25
VCC1
+5
70
0.8
2.8
2.2 10.0 3.0 10.0 4.9 10.0
5.5 200 3000 535 580 625
45
19
21
25
VCC1
43
0.3
1.8
Type No.
min typ max min typ max min max min typ max
SI-7300A
15
30
42 4.5
5
SI-7330A
15
30
35 4.5
5
F
VZ
Input excitation signal (active high)
Input voltage (V)
High level input current (mA)
Low
High
Io=
Io=
Io=
Io=
level
level
0.5A/ø 1.0A/ø 1.5A/ø 3.0A/ø
(OFF)
(ON)
lIH
5
lIH
lIH
100
lIH
15 100 40 100
* Measurement conditions are as shown in the external connection diagram.
■ Block diagram
SI-7300A
Main power
supply VCC1
Auxiliary power
supply VCC2
Reference
voltage
Comparator
amplifier
Zener diode for
cancelling counter EMF
ZD
Current
controller
M
RX
Trigger pulse
generator
circuit
Excitation
signal
amplifier
Counter EMF
canceller
Excitation signal
(4-phase)
Current detection
resistor Rs
Rx : Variable current resistor
■ External connection diagram
SI-7300A
SI-7330A
VCC2
VCC1
+
2.2µF
10V
ZD
510Ω×4
9
16
A
15
B
3
14
A
4
13
B
1
Excitation
signal input
(active low)
2
8
TD62302P
(Toshiba)
(Open collector)
PD
+
100µ F
50V
10k
Rx
1
14
4
8
A
5
12 SI-7300A 7
17
2
A
A 1
F.C
SPM
IO
B
18 16 3 13
Excitation
signal input
(active low)
IOM measurement conditions
VCC1 = 30V
VCC2 = 5V
RSA, RSB = 1.8Ω
RX : Open
SPM : Rm = 3.6Ω/ φ
: Lm = 9.0mH/φ
ZD : VZ = 60V
ZDA
A
16
B 2
A 3
TD62302P
(Toshiba)
(Open collector)
82Ωx4
9
B
15
1
13
16
11 6
13
VCC1
IO
F.C
SI-7330A
8
12
10
15
2
10kΩ
+
100µF
50V
ZDB
18
8
A 9
B
4
14
B 4
B
9
11
RSA RSB
+
2.2µ F
10V
IO
15
10
6
2SC2002
VCC2
RX
17 19 20 14 3
A
A
B
B
IO
SPM
7
5
PD
RSA RSB
IOM measurement conditions
VCC1 = 30V
VCC2 = 5V
RSA, RSB = 1.8Ω
RX : Open
SPM : Rm = 3.6Ω/ φ
: Lm = 9.0mH/ φ
ZD : VZ = 43V
29
SI-7300 and SI-7330A
■ Equivalent circuit diagram
■ External dimensions
SI-7300A
(Unit: mm)
Plastic package
SI-7300A
14
65.0±0.5
R2
2 – φ 4.5
15
D1
30.0±0.5
17
7.8±0.3
59.0±0.4
Q2
Type No.
Lot No.
7
D2
4.5
R1
Q1
8.6±1
16
8
D7 D8
11
3.8
P=2.54
21.6±0.5
D9 D10
5
Pin No.
1
•
•
•
•
0.5
2.5
21.6±0.5
•
•
•
•
•
18
7
9
D3
D4
D5
Q3
Q4
Q5
D6
6
Q6
SI-7330A
Plastic package
4
12
13
R8
R15
R4
R10
Q8
R6
R13
R14
+
–
+
–
R11
2
R12
R16
16.6
R7
R5
35.0±0.5
R3
Q7
3.5
Type No.
Lot No.
8.0φ
3.4
8.6±1
R9
Trigger pulse
generator circuit
1
7.0±0.5
63.0±0.4
3.8
3
69.0±0.5
1.8
10
0.5
3
P=2.54
18
Pin No.
12
1.4
20
■ Supply voltage vs. Output current
SI-7330A
SI-7300A
1.6
16
Q10
R1
R2
Q11
Q1
1.4
Q2
R27
R26
1.2
D2
D1
17
19
6
11
D7
10
D10
D9
D8
12
9
D3
D4
Q3
Q4
7
5
D5
D6
Q5
8
Q6
13
4
14
3
Output current IO (A/φ )
15
18
1.0
VCC2=5V
0.8
Motor 23PM-C108
Rm=3.6Ω/φ
Lm=9.0mH/φ
0.6
0.4
1
Q7 R3
R7
R8
R5
R15
R11 R13
+
–
2
R4
R6
+
–
Trigger pulse
generator circuit
R9
R10
Q8
R14 R12
R16
0.2
0
0
■ Case temperature vs. Output
current
28
32
36
40
SI-7300A
1.2
VCC1 = 30V VCC2 = 5V Motor Rm = 3.6Ω/ φ Lm = 9.0mH/ φ
1.1
1.0
0.9
0
0
20
40
60
80
Case temperature TC (°C)
100
Chopping frequency F(KHz)
Output current Io (A)
24
Supply voltage VCC (V)
■ Case temperature vs. Chopping
frequency
SI-7300A
30
20
20
24
VCC1 = 30V VCC2 = 5V Motor Rm = 3.6Ω/ φ Lm = 9.0mH/φ
23
22
21
0
0
20
40
60
80
Case temperature Tc (°C)
100
SI-7300 and SI-7330A
Application Note
■ Determining the output
current IO (motor coil current)
■ Power down mode
The graph of this equation is shown below.
The SI-7300A can be operated in power down mode. The
circuit is shown below. When transistor Tr is switched on,
the reference voltage drops and the output current can be
decreased.
2
Rx
SI-7300A
Tr
SI-7300A Output current IOH vs. Variable current resistor RX
1.6
1.4
Output current IOH (A)
The output current, lo is fixed by the following circuit elements:
R S : Current detection resistor
VCC2 : Supply voltage
R X : Variable current resistor
To operate a motor at maximum current level, set Rx =
infinity (open). Based on the specifications of SI-7300A, its
output current lo can be seen as:
lo (rms value): 535 to 625 mA
To compute lo when different values are used for Rs and
V CC2, use the approximation formula below. The maximum
ripple value I OH of the output current waveform can be
computed as follows:
. 1
(0.233•V CC2–0.026) [A]
l OH(max) =.
RS
. 1
(0.214•V CC2–0.021) [A]
l OH(min) =.
RS
Ω
s = 0.7
1.2
max R
1.0
min
s = 1Ω
max R
0.8
min
0.6
0.4
0.2
IOH
0
0
Waveform of output current
1
2
3
Variable current resistor Rx (kΩ)
4
SI-7330A Output current IOH vs. Variable current resistor RX
SI-7300A Output current IOH vs. Current detection resistor Rs
1.6
3
Rs =
0.3Ω
Output current IOH (A)
1.2
1.0
0.8
0.6
max
min
0.4
VCC
Rs = 0.8Ω
1
1.131
IOH(max) 1
VCC2 – 0.026
Rs 4.843+ 4.9
Rx
IOH(min)
VCC
V
*
V
0
0
1
2
3
Current detection resistor Rs (Ω)
4
SI-7330A Output current IOH vs. Current detection resistor Rs
3
IOH(min)
2
1 (0.233VCC2–0.026)
Rs
1 (0.214VCC2–0.021)
Rs
1
0
0
1
2
3
Current detection resistor Rs (Ω)
1
2
3
Variable current resistor Rx (kΩ)
4
4
■ Example of a Frequency vs.
Torque characteristic
The graph shows the relationship between frequency and
pull-out torque of SI-7300A.
SI-7300A Pull-out torque τout
vs. Response frequency
5
Pull-out torque τout (kg-cm)
IOH(max)
1
1.107
VCC2 – 0.021
Rs 5.165+ 5.1
Rx
Rx : kΩ
0
0.2
0
2
2=5
2=5
Output current IOH (A)
Output current IOH (A)
1.4
4
3
Motor
2 23PM-C108
VCC1=30V
IO=1.2A/φ
1 (Fixed)
2-phase excitation
VZ=60V
0
500
1000
5000
Response frequency f (pps)
31
SI-7300A and SI-7330A
Application Note
■ Thermal design
The procedures for the thermal design of the SI-7300A are
as follows:
(1) As shown in the right figure, the supply current I CC1 and
the output current lo are measured at the maximum
level of the supply voltage VCC1. However, the motor is
in holding mode at the 2-phase excitation.
(2) From the above measurements, the internal power dissipation (2 phases) of the hybrid IC can be obtained
through the following formula.
Method for measuring current SI-7300A
Pdiss = VCC1 • I CC1 – 2Io2(RL + RS)
Where RL: coil resistance of the motor per phase
VCC2
Shown in the lower graphs are sample calculations of
Pdiss vs. Io.
(3) The heatsink area corresponding to the ambient temperature can be obtained from the SI-7300A derating
curve shown in the lower right.
(4) Verify that the temperature of the aluminum base plate
of the hybrid IC or adjacent heatsinks is below 85°C
(equivalent to max. ambient temperature) when operating under actual conditions.
510Ω×4
9
Excitation
signal input
(Active low)
1
14
16
A
2
15
B
3
14
A
10
6
4
13
B
12 SI-7300A
4
10kΩ
Rx
ZD
8
IO
A
15
A
8
TD62302P
(Toshiba)
(Open collector)
PD
+
100 µ F
50V
ICC1
1
SPM
B
18 16 3 13
A
5
7
17
2
2SC2002
B
9
11
RSA RSB
SI-7330A Derating curve
30
2
8
SI-7300A
Aluminium heatsink
Using silicone grease
Unit : mm
28
3
7
10
0×
5
0×
8
No
hea
2
2
12
2
0×
0×
15
10
0×
16
0×
20
10
SI-7330A Heat dissipation per phase
vs. output current
10
×2
00
0.2 0.4 0.6 0.8 1.0 1.2 1.4
16
2
0
0×
0
15
1
×2
00
Motor
3.6Ω/ φ 9.0mH/φ
No load
Excitation signal
1-phase, holding
mode
2
20
0×
3
1 40V
2 30V
3 20V
2
0×
VCC1
10
4
25
24
2
0×
5
SI-7300A
Aluminium heatsink
Using silicone grease
Unit : mm
10
6
Internal heat dissipation Pdiss (W)
1
9
Output current Io (A/ φ)
Heat dissipation per phase Pdiss (W)
SI-7300A Derating curve
10
Heat dissipation per phase Pdiss (W)
SI-7300A Heat dissipation per phase
vs. output current
10
15
0×
10
0×
2
10
0×
5
0×
10
No
tsin
k
hea
2
5
tsin
k
4
14
12
0
10
Condition
VCC2=5V
1-phase, holding
mode
Motor
Rm=0.85Ω/ φ
Lm=1.45mH/ φ
6
4
2
0
0
20
40
60
Ambient temperature Ta (°C)
8
0
0.5
1.0
1.5
2.0
2.5
3.0
Output current Io (A/ φ)
32
A
For details on thermal design, refer to the technical
data.
Internal heat dissipation Pdiss (W)
*
VCC1
+
2.2µ F
10V
3.5
80
0
0
20
40
60
Ambient temperature Ta (°C)
80
SI-7200M, SI-7230M, SI-7115B, SI-7300A,
SI-7330A, SI-7500A and SI-7502
Handling Precautions
(Note: The SI-7502 is applicable for item (2) only.)
For details, refer to the relevant product specifications.
(1) Tightening torque:
The torque to be applied in tightening screws when mounting the IC on a
heatsink should be below 49N•m.
(2) Solvent:
Do not use the following solvents:
Substances that
Chlorine-based solvents
: Trichloroethylene,
dissolve the package
Trichloroethane, etc.
Aromatic hydrogen compounds : Benzene, Toluene,
Xylene, etc.
Ketone and Acetone group solvents
Substances that
weaken the package
Gasoline, Benzine and Kerosene
(3) Silicone grease:
The silicone grease to be used between the aluminum base plate of the hybrid
IC and the heatsink should be any of the following:
• G-746
SHINETSU CHEMICAL INDUSTRIES CO., LTD.
• YG6260
TOSHIBA SILICONE CO., LTD.
• SC102
DOW CORNING TORAY SILICONE CO., LTD.
Please pay sufficient attention in selecting silicone grease since oil in some
grease may penetrate the product, which will result in an extremely short
product life.
Others
• Resistance against radiation
Resistance against radiation was not considered in the development of these ICs
because it is assumed that they will be used in ordinary environment.
54