Unipolar Driver ICs SI-7300A and SI-7330A ■ Ratings (Ta = 25°C) Absolute maximum rating Supply voltage Output current (A) (V) Junction temperature (°C) Operating ambient temperature (°C) Storage temperature (°C) Type No. VCC1 VCC2 Io Tj Top Tstg SI-7300A 48 8 1.7 +125 –20 to +80 –30 to +100 SI-7330A 42 8 3.2 +125 –20 to +80 –30 to +100 ■ Characteristics Electrical characteristics (Ta = 25°C) Supply voltage Output current VCC2 input current Oscillation frequency (mA/ø) (mA) (kHz) (V) VCC1 VCC2 IO IOM* lCC2 External zener diode breakdown voltage (V) VIL V IH max min typ max min max max typ min max min max min max min max 5.5 200 1500 535 580 625 45 19 21 25 VCC1 +5 70 0.8 2.8 2.2 10.0 3.0 10.0 4.9 10.0 5.5 200 3000 535 580 625 45 19 21 25 VCC1 43 0.3 1.8 Type No. min typ max min typ max min max min typ max SI-7300A 15 30 42 4.5 5 SI-7330A 15 30 35 4.5 5 F VZ Input excitation signal (active high) Input voltage (V) High level input current (mA) Low High Io= Io= Io= Io= level level 0.5A/ø 1.0A/ø 1.5A/ø 3.0A/ø (OFF) (ON) lIH 5 lIH lIH 100 lIH 15 100 40 100 * Measurement conditions are as shown in the external connection diagram. ■ Block diagram SI-7300A Main power supply VCC1 Auxiliary power supply VCC2 Reference voltage Comparator amplifier Zener diode for cancelling counter EMF ZD Current controller M RX Trigger pulse generator circuit Excitation signal amplifier Counter EMF canceller Excitation signal (4-phase) Current detection resistor Rs Rx : Variable current resistor ■ External connection diagram SI-7300A SI-7330A VCC2 VCC1 + 2.2µF 10V ZD 510Ω×4 9 16 A 15 B 3 14 A 4 13 B 1 Excitation signal input (active low) 2 8 TD62302P (Toshiba) (Open collector) PD + 100µ F 50V 10k Rx 1 14 4 8 A 5 12 SI-7300A 7 17 2 A A 1 F.C SPM IO B 18 16 3 13 Excitation signal input (active low) IOM measurement conditions VCC1 = 30V VCC2 = 5V RSA, RSB = 1.8Ω RX : Open SPM : Rm = 3.6Ω/ φ : Lm = 9.0mH/φ ZD : VZ = 60V ZDA A 16 B 2 A 3 TD62302P (Toshiba) (Open collector) 82Ωx4 9 B 15 1 13 16 11 6 13 VCC1 IO F.C SI-7330A 8 12 10 15 2 10kΩ + 100µF 50V ZDB 18 8 A 9 B 4 14 B 4 B 9 11 RSA RSB + 2.2µ F 10V IO 15 10 6 2SC2002 VCC2 RX 17 19 20 14 3 A A B B IO SPM 7 5 PD RSA RSB IOM measurement conditions VCC1 = 30V VCC2 = 5V RSA, RSB = 1.8Ω RX : Open SPM : Rm = 3.6Ω/ φ : Lm = 9.0mH/ φ ZD : VZ = 43V 29 SI-7300 and SI-7330A ■ Equivalent circuit diagram ■ External dimensions SI-7300A (Unit: mm) Plastic package SI-7300A 14 65.0±0.5 R2 2 – φ 4.5 15 D1 30.0±0.5 17 7.8±0.3 59.0±0.4 Q2 Type No. Lot No. 7 D2 4.5 R1 Q1 8.6±1 16 8 D7 D8 11 3.8 P=2.54 21.6±0.5 D9 D10 5 Pin No. 1 • • • • 0.5 2.5 21.6±0.5 • • • • • 18 7 9 D3 D4 D5 Q3 Q4 Q5 D6 6 Q6 SI-7330A Plastic package 4 12 13 R8 R15 R4 R10 Q8 R6 R13 R14 + – + – R11 2 R12 R16 16.6 R7 R5 35.0±0.5 R3 Q7 3.5 Type No. Lot No. 8.0φ 3.4 8.6±1 R9 Trigger pulse generator circuit 1 7.0±0.5 63.0±0.4 3.8 3 69.0±0.5 1.8 10 0.5 3 P=2.54 18 Pin No. 12 1.4 20 ■ Supply voltage vs. Output current SI-7330A SI-7300A 1.6 16 Q10 R1 R2 Q11 Q1 1.4 Q2 R27 R26 1.2 D2 D1 17 19 6 11 D7 10 D10 D9 D8 12 9 D3 D4 Q3 Q4 7 5 D5 D6 Q5 8 Q6 13 4 14 3 Output current IO (A/φ ) 15 18 1.0 VCC2=5V 0.8 Motor 23PM-C108 Rm=3.6Ω/φ Lm=9.0mH/φ 0.6 0.4 1 Q7 R3 R7 R8 R5 R15 R11 R13 + – 2 R4 R6 + – Trigger pulse generator circuit R9 R10 Q8 R14 R12 R16 0.2 0 0 ■ Case temperature vs. Output current 28 32 36 40 SI-7300A 1.2 VCC1 = 30V VCC2 = 5V Motor Rm = 3.6Ω/ φ Lm = 9.0mH/ φ 1.1 1.0 0.9 0 0 20 40 60 80 Case temperature TC (°C) 100 Chopping frequency F(KHz) Output current Io (A) 24 Supply voltage VCC (V) ■ Case temperature vs. Chopping frequency SI-7300A 30 20 20 24 VCC1 = 30V VCC2 = 5V Motor Rm = 3.6Ω/ φ Lm = 9.0mH/φ 23 22 21 0 0 20 40 60 80 Case temperature Tc (°C) 100 SI-7300 and SI-7330A Application Note ■ Determining the output current IO (motor coil current) ■ Power down mode The graph of this equation is shown below. The SI-7300A can be operated in power down mode. The circuit is shown below. When transistor Tr is switched on, the reference voltage drops and the output current can be decreased. 2 Rx SI-7300A Tr SI-7300A Output current IOH vs. Variable current resistor RX 1.6 1.4 Output current IOH (A) The output current, lo is fixed by the following circuit elements: R S : Current detection resistor VCC2 : Supply voltage R X : Variable current resistor To operate a motor at maximum current level, set Rx = infinity (open). Based on the specifications of SI-7300A, its output current lo can be seen as: lo (rms value): 535 to 625 mA To compute lo when different values are used for Rs and V CC2, use the approximation formula below. The maximum ripple value I OH of the output current waveform can be computed as follows: . 1 (0.233•V CC2–0.026) [A] l OH(max) =. RS . 1 (0.214•V CC2–0.021) [A] l OH(min) =. RS Ω s = 0.7 1.2 max R 1.0 min s = 1Ω max R 0.8 min 0.6 0.4 0.2 IOH 0 0 Waveform of output current 1 2 3 Variable current resistor Rx (kΩ) 4 SI-7330A Output current IOH vs. Variable current resistor RX SI-7300A Output current IOH vs. Current detection resistor Rs 1.6 3 Rs = 0.3Ω Output current IOH (A) 1.2 1.0 0.8 0.6 max min 0.4 VCC Rs = 0.8Ω 1 1.131 IOH(max) 1 VCC2 – 0.026 Rs 4.843+ 4.9 Rx IOH(min) VCC V * V 0 0 1 2 3 Current detection resistor Rs (Ω) 4 SI-7330A Output current IOH vs. Current detection resistor Rs 3 IOH(min) 2 1 (0.233VCC2–0.026) Rs 1 (0.214VCC2–0.021) Rs 1 0 0 1 2 3 Current detection resistor Rs (Ω) 1 2 3 Variable current resistor Rx (kΩ) 4 4 ■ Example of a Frequency vs. Torque characteristic The graph shows the relationship between frequency and pull-out torque of SI-7300A. SI-7300A Pull-out torque τout vs. Response frequency 5 Pull-out torque τout (kg-cm) IOH(max) 1 1.107 VCC2 – 0.021 Rs 5.165+ 5.1 Rx Rx : kΩ 0 0.2 0 2 2=5 2=5 Output current IOH (A) Output current IOH (A) 1.4 4 3 Motor 2 23PM-C108 VCC1=30V IO=1.2A/φ 1 (Fixed) 2-phase excitation VZ=60V 0 500 1000 5000 Response frequency f (pps) 31 SI-7300A and SI-7330A Application Note ■ Thermal design The procedures for the thermal design of the SI-7300A are as follows: (1) As shown in the right figure, the supply current I CC1 and the output current lo are measured at the maximum level of the supply voltage VCC1. However, the motor is in holding mode at the 2-phase excitation. (2) From the above measurements, the internal power dissipation (2 phases) of the hybrid IC can be obtained through the following formula. Method for measuring current SI-7300A Pdiss = VCC1 • I CC1 – 2Io2(RL + RS) Where RL: coil resistance of the motor per phase VCC2 Shown in the lower graphs are sample calculations of Pdiss vs. Io. (3) The heatsink area corresponding to the ambient temperature can be obtained from the SI-7300A derating curve shown in the lower right. (4) Verify that the temperature of the aluminum base plate of the hybrid IC or adjacent heatsinks is below 85°C (equivalent to max. ambient temperature) when operating under actual conditions. 510Ω×4 9 Excitation signal input (Active low) 1 14 16 A 2 15 B 3 14 A 10 6 4 13 B 12 SI-7300A 4 10kΩ Rx ZD 8 IO A 15 A 8 TD62302P (Toshiba) (Open collector) PD + 100 µ F 50V ICC1 1 SPM B 18 16 3 13 A 5 7 17 2 2SC2002 B 9 11 RSA RSB SI-7330A Derating curve 30 2 8 SI-7300A Aluminium heatsink Using silicone grease Unit : mm 28 3 7 10 0× 5 0× 8 No hea 2 2 12 2 0× 0× 15 10 0× 16 0× 20 10 SI-7330A Heat dissipation per phase vs. output current 10 ×2 00 0.2 0.4 0.6 0.8 1.0 1.2 1.4 16 2 0 0× 0 15 1 ×2 00 Motor 3.6Ω/ φ 9.0mH/φ No load Excitation signal 1-phase, holding mode 2 20 0× 3 1 40V 2 30V 3 20V 2 0× VCC1 10 4 25 24 2 0× 5 SI-7300A Aluminium heatsink Using silicone grease Unit : mm 10 6 Internal heat dissipation Pdiss (W) 1 9 Output current Io (A/ φ) Heat dissipation per phase Pdiss (W) SI-7300A Derating curve 10 Heat dissipation per phase Pdiss (W) SI-7300A Heat dissipation per phase vs. output current 10 15 0× 10 0× 2 10 0× 5 0× 10 No tsin k hea 2 5 tsin k 4 14 12 0 10 Condition VCC2=5V 1-phase, holding mode Motor Rm=0.85Ω/ φ Lm=1.45mH/ φ 6 4 2 0 0 20 40 60 Ambient temperature Ta (°C) 8 0 0.5 1.0 1.5 2.0 2.5 3.0 Output current Io (A/ φ) 32 A For details on thermal design, refer to the technical data. Internal heat dissipation Pdiss (W) * VCC1 + 2.2µ F 10V 3.5 80 0 0 20 40 60 Ambient temperature Ta (°C) 80 SI-7200M, SI-7230M, SI-7115B, SI-7300A, SI-7330A, SI-7500A and SI-7502 Handling Precautions (Note: The SI-7502 is applicable for item (2) only.) For details, refer to the relevant product specifications. (1) Tightening torque: The torque to be applied in tightening screws when mounting the IC on a heatsink should be below 49N•m. (2) Solvent: Do not use the following solvents: Substances that Chlorine-based solvents : Trichloroethylene, dissolve the package Trichloroethane, etc. Aromatic hydrogen compounds : Benzene, Toluene, Xylene, etc. Ketone and Acetone group solvents Substances that weaken the package Gasoline, Benzine and Kerosene (3) Silicone grease: The silicone grease to be used between the aluminum base plate of the hybrid IC and the heatsink should be any of the following: • G-746 SHINETSU CHEMICAL INDUSTRIES CO., LTD. • YG6260 TOSHIBA SILICONE CO., LTD. • SC102 DOW CORNING TORAY SILICONE CO., LTD. Please pay sufficient attention in selecting silicone grease since oil in some grease may penetrate the product, which will result in an extremely short product life. Others • Resistance against radiation Resistance against radiation was not considered in the development of these ICs because it is assumed that they will be used in ordinary environment. 54