DATA SHEET 4GB Registered DDR2 SDRAM DIMM EBE41AE4ABHA (512M words × 72 bits, 2 Ranks) Specifications Features • Density: 4GB • Organization 512M words × 72 bits, 2 ranks • Mounting 36 pieces of 1G bits DDR2 SDRAM with sFBGA • Package: 240-pin socket type dual in line memory module (DIMM) PCB height: 30.0mm Lead pitch: 1.0mm Lead-free (RoHS compliant) • Power supply: VDD = 1.8V ± 0.1V • Data rate: 667Mbps (max.) • Eight internal banks for concurrent operation (components) • Interface: SSTL_18 • Burst lengths (BL): 4, 8 • /CAS Latency (CL): 3, 4, 5 • Precharge: auto precharge option for each burst access • Refresh: auto-refresh, self-refresh • Refresh cycles: 8192 cycles/64ms Average refresh period 7.8µs at 0°C ≤ TC ≤ +85°C 3.9µs at +85°C < TC ≤ +95°C • Operating case temperature range TC = 0°C to +95°C • Double-data-rate architecture; two data transfers per clock cycle • The high-speed data transfer is realized by the 4 bits prefetch pipelined architecture • Bi-directional differential data strobe (DQS and /DQS) is transmitted/received with data for capturing data at the receiver • DQS is edge-aligned with data for READs; centeraligned with data for WRITEs • Differential clock inputs (CK and /CK) • DLL aligns DQ and DQS transitions with CK transitions • Commands entered on each positive CK edge; data referenced to both edges of DQS • Posted /CAS by programmable additive latency for better command and data bus efficiency • Off-Chip-Driver Impedance Adjustment and On-DieTermination for better signal quality • /DQS can be disabled for single-ended Data Strobe operation • 1 piece of PLL clock driver, 2 pieces of register driver and 1 piece of serial EEPROM (2K bits EEPROM) for Presence Detect (PD) Document No. E0901E20 (Ver. 2.0) Date Published December 2007 (K) Japan Printed in Japan URL: http://www.elpida.com Elpida Memory, Inc. 2006-2007 EBE41AE4ABHA Ordering Information Part number Data rate Mbps (max.) Component 1 JEDEC speed bin* (CL-tRCD-tRP) EBE41AE4ABHA-6E-E 667 DDR2-667 (5-5-5) Package 240-pin DIMM (lead-free) Contact pad Mounted devices Gold 1G bits DDR2 SDRAM* 2 Notes: 1. Module /CAS latency = component CL + 1. 2. Please refer to 1Gb DDR2 datasheet (E0852E) for electrical characteristics. Pin Configurations Front side 1 pin 121 pin 64 pin 65 pin 120 pin 184 pin 185 pin 240 pin Back side Pin No. Pin name Pin No. Pin name Pin No. Pin name Pin No. Pin name 1 VREF 61 A4 121 VSS 181 VDD 2 VSS 62 VDD 122 DQ4 182 A3 3 DQ0 63 A2 123 DQ5 183 A1 4 DQ1 64 VDD 124 VSS 184 VDD 5 VSS 65 VSS 125 DQS9 185 CK0 6 /DQS0 66 VSS 126 /DQS9 186 /CK0 7 DQS0 67 VDD 127 VSS 187 VDD 8 VSS 68 Par_In 128 DQ6 188 A0 9 DQ2 69 VDD 129 DQ7 189 VDD 10 DQ3 70 A10 130 VSS 190 BA1 11 VSS 71 BA0 131 DQ12 191 VDD 12 DQ8 72 VDD 132 DQ13 192 /RAS 13 DQ9 73 /WE 133 VSS 193 /CS0 14 VSS 74 /CAS 134 DQS10 194 VDD 15 /DQS1 75 VDD 135 /DQS10 195 ODT0 16 DQS1 76 /CS1 136 VSS 196 A13 17 VSS 77 ODT1 137 NC 197 VDD 18 /RESET 78 VDD 138 NC 198 VSS 19 NC 79 VSS 139 VSS 199 DQ36 20 VSS 80 DQ32 140 DQ14 200 DQ37 21 DQ10 81 DQ33 141 DQ15 201 VSS 22 DQ11 82 VSS 142 VSS 202 DQS13 23 VSS 83 /DQS4 143 DQ20 203 /DQS13 24 DQ16 84 DQS4 144 DQ21 204 VSS 25 DQ17 85 VSS 145 VSS 205 DQ38 26 VSS 86 DQ34 146 DQS11 206 DQ39 27 /DQS2 87 DQ35 147 /DQS11 207 VSS Data Sheet E0901E20 (Ver. 2.0) 2 EBE41AE4ABHA Pin No. Pin name Pin No. Pin name Pin No. Pin name Pin No. Pin name 28 DQS2 88 VSS 148 VSS 208 DQ44 29 VSS 89 DQ40 149 DQ22 209 DQ45 30 DQ18 90 DQ41 150 DQ23 210 VSS 31 DQ19 91 VSS 151 VSS 211 DQS14 32 VSS 92 /DQS5 152 DQ28 212 /DQS14 33 DQ24 93 DQS5 153 DQ29 213 VSS 34 DQ25 94 VSS 154 VSS 214 DQ46 35 VSS 95 DQ42 155 DQS12 215 DQ47 36 /DQS3 96 DQ43 156 /DQS12 216 VSS 37 DQS3 97 VSS 157 VSS 217 DQ52 38 VSS 98 DQ48 158 DQ30 218 DQ53 39 DQ26 99 DQ49 159 DQ31 219 VSS 40 DQ27 100 VSS 160 VSS 220 NC 41 VSS 101 SA2 161 CB4 221 NC 42 CB0 102 NC 162 CB5 222 VSS 43 CB1 103 VSS 163 VSS 223 DQS15 44 VSS 104 /DQS6 164 DQS17 224 /DQS15 45 /DQS8 105 DQS6 165 /DQS17 225 VSS 46 DQS8 106 VSS 166 VSS 226 DQ54 47 VSS 107 DQ50 167 CB6 227 DQ55 48 CB2 108 DQ51 168 CB7 228 VSS 49 CB3 109 VSS 169 VSS 229 DQ60 50 VSS 110 DQ56 170 VDD 230 DQ61 51 VDD 111 DQ57 171 CKE1 231 VSS 52 CKE0 112 VSS 172 VDD 232 DQS16 53 VDD 113 /DQS7 173 NC 233 /DQS16 54 BA2 114 DQS7 174 NC 234 VSS 55 /Err_Out 115 VSS 175 VDD 235 DQ62 56 VDD 116 DQ58 176 A12 236 DQ63 57 A11 117 DQ59 177 A9 237 VSS 58 A7 118 VSS 178 VDD 238 VDDSPD 59 VDD 119 SDA 179 A8 239 SA0 60 A5 120 SCL 180 A6 240 SA1 Data Sheet E0901E20 (Ver. 2.0) 3 EBE41AE4ABHA Pin Description Pin name Function A0 to A13 Address input Row address Column address A0 to A13 A0 to A9, A11 A10 (AP) Auto precharge BA0, BA1, BA2 Bank select address DQ0 to DQ63 Data input/output CB0 to CB7 Check bit (Data input/output) /RAS Row address strobe command /CAS Column address strobe command /WE Write enable /CS0, /CS1 Chip select CKE0, CKE1 Clock enable CK0 Clock input /CK0 Differential clock input DQS0 to DQS17, /DQS0 to /DQS17 Input and output data strobe SCL Clock input for serial PD SDA Data input/output for serial PD SA0 to SA2 Serial address input VDD Power for internal circuit VDDSPD Power for serial EEPROM VREF Input reference voltage VSS Ground ODT0, ODT1 ODT control /RESET Reset pin (forces register and PLL inputs low) * Par_In* 2 /Err_Out* 1 Parity bit for the address and control bus 2 NC Parity error found on the address and control bus No connection Notes: 1. Reset pin is connected to both OE of PLL and reset to register. 2. /Err_Out (Pin No. 55) and Par_In (Pin No. 68) are for optional function to check address and command parity. Data Sheet E0901E20 (Ver. 2.0) 4 EBE41AE4ABHA Serial PD Matrix Byte No. Function described 0 1 Number of bytes utilized by module manufacturer Total number of bytes in serial PD device Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Hex value Comments 1 0 0 0 0 0 0 0 80H 128 bytes 0 0 0 0 1 0 0 0 08H 256 bytes 2 Memory type 0 0 0 0 1 0 0 0 08H DDR2 SDRAM 3 Number of row address 0 0 0 0 1 1 1 0 0EH 14 4 Number of column address 0 0 0 0 1 0 1 1 0BH 11 5 Number of DIMM ranks 0 1 1 1 0 0 0 1 71H Stack/2 ranks 6 Module data width 0 1 0 0 1 0 0 0 48H 72 7 Module data width continuation 0 0 0 0 0 0 0 0 00H 0 8 Voltage interface level of this assembly 0 0 0 0 0 1 0 1 05H SSTL 1.8V 9 DDR SDRAM cycle time, CL = 5 0 0 1 1 0 0 0 0 30H 3.0ns* 10 SDRAM access from clock (tAC) 0 1 0 0 0 1 0 1 45H 0.45ns* 11 DIMM configuration type 0 0 0 0 0 1 1 0 06H ECC, Address/command Parity 12 Refresh rate/type 1 0 0 0 0 0 1 0 82H 7.8µs 13 Primary SDRAM width 0 0 0 0 0 1 0 0 04H ×4 14 Error checking SDRAM width 0 0 0 0 0 1 0 0 04H ×4 Reserved 0 0 0 0 0 0 0 0 00H 0 0 0 0 0 1 1 0 0 0CH 4,8 0 0 0 0 1 0 0 0 08H 8 0 0 1 1 1 0 0 0 38H 3, 4, 5 15 16 17 18 SDRAM device attributes: Burst length supported SDRAM device attributes: Number of banks on SDRAM device SDRAM device attributes: /CAS latency 1 1 19 DIMM Mechanical Characteristics 0 0 0 0 0 0 1 0 02H 5.1mm max. 20 DIMM type information 0 0 0 0 0 0 0 1 01H Registered 21 SDRAM module attributes 0 0 0 0 0 0 0 0 00H Normal 22 SDRAM device attributes: General 0 0 0 0 0 0 1 1 03H Weak Driver 50Ω ODT Support 23 Minimum clock cycle time at CL = 4 0 0 1 1 1 1 0 1 3DH 3.75ns* 24 Maximum data access time (tAC) from clock at CL = 4 0 1 0 1 0 0 0 0 50H 0.5ns* 1 25 Minimum clock cycle time at CL = 3 0 1 0 1 0 0 0 0 50H 5.0ns* 1 26 Maximum data access time (tAC) from clock at CL = 3 0 1 1 0 0 0 0 0 60H 0.6ns* 1 27 Minimum row precharge time (tRP) 0 0 1 1 1 1 0 0 3CH 15ns 28 Minimum row active to row active delay (tRRD) 0 0 0 1 1 1 1 0 1EH 7.5ns 29 Minimum /RAS to /CAS delay (tRCD) 0 0 1 1 1 1 0 0 3CH 15ns 30 Minimum active to precharge time (tRAS) 0 0 1 0 1 1 0 1 2DH 45ns 31 Module rank density 0 0 0 0 0 0 1 0 02H 2GB 0 0 1 0 0 0 0 0 20H 0.20ns* 1 0 0 1 0 0 1 1 1 27H 0.27ns* 1 Data input setup time before clock (tDS) 0 0 0 1 0 0 0 0 10H 0.10ns* 1 32 33 34 Address and command setup time before clock (tIS) Address and command hold time after clock (tIH) Data Sheet E0901E20 (Ver. 2.0) 5 1 EBE41AE4ABHA Byte No. Function described Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Hex value Comments 35 Data input hold time after clock (tDH) 0 0 0 1 0 1 1 1 17H 0.17ns* 36 Write recovery time (tWR) 0 0 1 1 1 1 0 0 3CH 15ns* 0 0 0 1 1 1 1 0 1EH 7.5ns* 1 0 0 0 1 1 1 1 0 1EH 7.5ns* 1 0 0 0 0 0 0 0 0 00H TBD 37 38 Internal write to read command delay (tWTR) Internal read to precharge command delay (tRTP) 1 1 39 Memory analysis probe characteristics 40 Extension of Byte 41 and 42 0 0 0 0 0 1 1 0 06H 41 Active command period (tRC) 0 0 1 1 1 1 0 0 3CH 60ns* 42 Auto refresh to active/ Auto refresh command cycle (tRFC) 0 1 1 1 1 1 1 1 7FH 127.5ns* 43 SDRAM tCK cycle max. (tCK max.) 1 0 0 0 0 0 0 0 80H 8ns* 44 Dout to DQS skew 0 0 0 1 1 0 0 0 18H 0.24ns* 1 45 Data hold skew (tQHS) 0 0 1 0 0 0 1 0 22H 0.34ns* 1 46 PLL relock time 0 0 0 0 1 1 1 1 0FH 15µs 0 0 0 0 0 0 0 0 00H 47 to 61 1 1 1 62 SPD Revision 0 0 0 1 0 0 1 0 12H 63 Checksum for bytes 0 to 62 0 1 0 0 0 0 1 0 42H Rev. 1.2 64 to 65 Manufacturer’s JEDEC ID code 0 1 1 1 1 1 1 1 7FH Continuation code 66 Manufacturer’s JEDEC ID code 1 1 1 1 1 1 1 0 FEH Elpida Memory 67 to 71 Manufacturer’s JEDEC ID code 0 0 0 0 0 0 0 0 00H 72 Manufacturing location × × × × × × × × ×× (ASCII-8bit code) 73 Module part number 0 1 0 0 0 1 0 1 45H E 74 Module part number 0 1 0 0 0 0 1 0 42H B 75 Module part number 0 1 0 0 0 1 0 1 45H E 76 Module part number 0 0 1 1 0 1 0 0 34H 4 77 Module part number 0 0 1 1 0 0 0 1 31H 1 78 Module part number 0 1 0 0 0 0 0 1 41H A 79 Module part number 0 1 0 0 0 1 0 1 45H E 80 Module part number 0 0 1 1 0 1 0 0 34H 4 81 Module part number 0 1 0 0 0 0 0 1 41H A 82 Module part number 0 1 0 0 0 0 1 0 42H B 83 Module part number 0 1 0 0 1 0 0 0 48H H 84 Module part number 0 1 0 0 0 0 0 1 41H A 85 Module part number 0 0 1 0 1 1 0 1 2DH — 86 Module part number 0 0 1 1 0 1 1 0 36H 6 87 Module part number 0 1 0 0 0 1 0 1 45H E 88 Module part number 0 0 1 0 1 1 0 1 2DH — 89 Module part number 0 1 0 0 0 1 0 1 45H E 90 Module part number 0 0 1 0 0 0 0 0 20H (Space) 91 Revision code 0 0 1 1 0 0 0 0 30H Initial 92 Revision code 0 0 1 0 0 0 0 0 20H (Space) 93 Manufacturing date × × × × × × × × ×× Year code (BCD) 94 Manufacturing date × × × × × × × × ×× Week code (BCD) Data Sheet E0901E20 (Ver. 2.0) 6 EBE41AE4ABHA Byte No. Function described 95 to 98 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Hex value Comments Module serial number 99 to 127 Manufacture specific data Note: 1. These specifications are defined based on component specification, not module. Data Sheet E0901E20 (Ver. 2.0) 7 EBE41AE4ABHA Block Diagram VSS /RCS1 /RCS0 DQS0 /DQS0 RS RS DM /CS 4 RS DQ0 to DQ3 DQS1 /DQS1 DQ0 to DQ3 4 DQS2 DQS10 RS DQ0 to DQ3 DQS3 D1 DM /CS DQ0 to DQ3 RS DQ0 to DQ3 D2 DM /CS DQ0 to DQ3 D19 DQS12 /DQS12 4 RS DQ0 to DQ3 D3 DM /CS DQ0 to DQ3 DQS4 4 RS DQ0 to DQ3 DQS /DQS D4 DM /CS DQ0 to DQ3 DQS5 DQS14 /DQS14 4 RS DQ0 to DQ3 DQS /DQS D5 DM /CS DQ0 to DQ3 DQS15 RS /DQS15 DM /CS DQ48 to DQ51 4 RS DQ0 to DQ3 DQS7 4 DQS16 /DQS16 RS DQ0 to DQ3 DQS8 BA0 to BA2 A0 to A13 /RAS /CAS CKE0 CKE1 /WE /ODT0 /ODT1 4 RS RS RS RS RS DQS17 /DQS17 RS DQ0 to DQ3 DQS /DQS D8 DM /CS DQ0 to DQ3 R E G I S T E R /RST RS SCL RBA0 to RBA2 -> BA0 to BA2: SDRAMs D0 to D35 D12 D30 DM /CS DQS /DQS DQ0 to DQ3 D13 4 RS /CS DQS /DQS DQ0 to DQ3 D31 DM /CS DQS /DQS DQ0 to DQ3 D14 D32 RS RS 4 RS /CS DQS /DQS DQ0 to DQ3 DM /CS DQS /DQS DQ0 to DQ3 D15 D33 RS RS 4 RS /CS DQS /DQS DQ0 to DQ3 DM /CS DQS /DQS DQ0 to DQ3 D16 D34 RS RS 4 RS /CS DQS /DQS DQ0 to DQ3 DM /CS DQS /DQS DQ0 to DQ3 D17 SDA D35 D0 to D35: 1G bits DDR2 SDRAM U0: 2k bits EEPROM RS: 22Ω PLL: CUA877 Register: SSTUA32S868 SDA SA0 SA1 SA2 /RCAS -> /CAS: SDRAMs D0 to D35 VDDSPD Serial PD VDD D0 to D35 VREF VSS D0 to D35 RCKE1 -> CKE: SDRAMs D18 to D35 CK0 /CK0 P L L /RESET OE D0 to D35 RODT1 -> ODT: SDRAMs D18 to D35 Signals for Address and Command Parity Function Register Notes: 1. DQ wring may be changed within a nibble. 2. /CS0 connects to /DCS on register1 and /CSR on register2 /CS1 connects to /CSR on register1 and /DCS on register2 3. /RESET, PCK10 and /PCK10 connect to all registers. CKE and /ODT connect to a register. Other signals connect to one of two registers. /CS DQS /DQS RS WP A0 A1 A2 /RRAS -> /RAS: SDRAMs D0 to D35 /PCK10*3 D29 RS RA0 to RA13 -> A0 to A13: SDRAMs D0 to D35 RCKE0 -> CKE: SDRAMs D0 to D17 DM DQ0 to DQ3 /CS DQS /DQS DQ0 to DQ3 U0 RODT0 -> ODT: SDRAMs D0 to D17 RS D11 Serial PD SCL /RWE -> /WE: SDRAMs D0 to D35 RS 4 DM CB4 to CB7 /CS DQS /DQS RS DQS /DQS D26 DM RS DM DQ60 to DQ63 D25 /RCS1 -> /CS: SDRAMs D18 to D35 RS /RESET*3 PCK10*3 DQ0 to DQ3 D28 DQ0 to DQ3 /CS DQS /DQS DQ0 to DQ3 DQS /DQS /RCS0 -> /CS: SDRAMs D0 to D17 RS RS D7 DM /CS RS DM /CS RS DQS /DQS RS DM DQ52 to DQ55 D24 RS /DQS8 /CS0*2 /CS1*2 DQ0 to DQ3 D10 RS DQS /DQS RS DM /CS CB0 to CB3 D6 DM /CS RS /DQS7 DQ56 to DQ59 DQS /DQS /CS DQS /DQS RS DM DQ44 to DQ47 D23 DM DQ0 to DQ3 /CS DQS /DQS DQ0 to DQ3 DQS /DQS RS DQS6 /DQS6 RS DM DQ36 to DQ39 D22 RS DM /CS 4 DQS /DQS RS /DQS5 /CS DQS /DQS DQ0 to DQ3 DM DQS13 DM /CS RS RS 4 /DQS13 D27 RS DQ28 to DQ31 RS RS /DQS4 4 DQS /DQS D21 /CS DQS /DQS RS DM DQ20 to DQ23 D20 DM DQ0 to DQ3 D9 RS DQS /DQS RS DQS /DQS /CS DQS /DQS DQ0 to DQ3 DM DQ12 to DQ15 DQS11 DQS /DQS RS DQS /DQS /DQS11 DM /CS DQ40 to DQ43 DQS /DQS RS /DQS3 DQ32 to DQ35 DM 4 DQ4 to DQ7 RS 4 RS DQS /DQS D18 /DQS10 DM /CS DQ24 to DQ27 DM /CS DQ0 to DQ3 RS /DQS2 DQ16 to DQ19 DQS /DQS D0 RS RS DM /CS DQ8 to DQ11 RS DQS9 /DQS9 PAR_IN /QERR Par_In Register 100kΩ PAR_IN /QERR Data Sheet E0901E20 (Ver. 2.0) 8 0Ω /Err_Out PCK0 to PCK9 -> CK: SDRAMs D0 to D35 /PCK0 to /PCK9 -> /CK: SDRAMs D0 to D35 PCK10 -> CK: register /PCK10 -> /CK: register EBE41AE4ABHA Differential Clock Net Wiring (CK0, /CK0) 0ns (nominal) SDRAM stack PLL 120Ω OUT1 SDRAM stack 120Ω CK0 IN Register 1 /CK0 C C OUT'N' 120Ω Feedback in Feedback out Register 2 Notes: 1. The clock delay from the input of the PLL clock to the input of any SDRAM or register willl be set to 0ns (nominal). 2. Input, output and feedback clock lines are terminated from line to line as shown, and not from line to ground. 3. Only one PLL output is shown per output type. Any additional PLL outputs will be wired in a similar manner. 4. Termination resistors for the PLL feedback path clocks are located as close to the input pin of the PLL as possible. Data Sheet E0901E20 (Ver. 2.0) 9 120Ω EBE41AE4ABHA Electrical Specifications • All voltages are referenced to VSS (GND). Absolute Maximum Ratings Parameter Symbol Value Unit Notes Voltage on any pin relative to VSS VT –0.5 to +2.3 V 1 Supply voltage relative to VSS VDD –0.5 to +2.3 V Short circuit output current IOS 50 mA Power dissipation PD 18 W 1 Operating case temperature TC 0 to +95 °C 1, 2 Storage temperature Tstg –55 to +100 °C 1 Notes: 1. DDR2 SDRAM component specification. 2. Supporting 0°C to +85°C and being able to extend to +95°C with doubling auto-refresh commands in frequency to a 32ms period (tREFI = 3.9µs) and higher temperature self-refresh entry via the control of EMRS (2) bit A7 is required. Caution Exposing the device to stress above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational section of this specification. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability. DC Operating Conditions (TC = 0°C to +85°C) (DDR2 SDRAM Component Specification) Parameter Symbol min. typ. max. Unit Notes Supply voltage VDD, VDDQ 1.7 1.8 1.9 V 4 VSS 0 0 0 V 3.6 VDDSPD 1.7 — Input reference voltage VREF 0.49 × VDDQ 0.50 × VDDQ 0.51 × VDDQ V V 1, 2 Termination voltage VTT VREF − 0.04 VREF VREF + 0.04 V 3 DC input logic high VIH (DC) VREF + 0.125 VDDQ + 0.3 V DC input low VIL (DC) −0.3 VREF – 0.125 V AC input logic high VIH (AC) VREF + 0.200 V AC input low VIL (AC) VREF – 0.200 V Notes: 1. The value of VREF may be selected by the user to provide optimum noise margin in the system. Typically the value of VREF is expected to be about 0.5 × VDDQ of the transmitting device and VREF are expected to track variations in VDDQ. 2. Peak to peak AC noise on VREF may not exceed ±2% VREF (DC). 3. VTT of transmitting device must track VREF of receiving device. 4. VDDQ must be equal to VDD. Data Sheet E0901E20 (Ver. 2.0) 10 EBE41AE4ABHA AC Overshoot/Undershoot Specification (DDR2 SDRAM Component Specification) Parameter Pins Specification Unit Maximum peak amplitude allowed for overshoot Command, Address, CKE, ODT 0.5 V 0.5 V 0.8 V-ns 0.8 V-ns 0.5 V 0.5 V 0.23 V-ns 0.23 V-ns 0.5 V 0.5 V 0.23 V-ns 0.23 V-ns Maximum peak amplitude allowed for undershoot Maximum overshoot area above VDD DDR2-667 Maximum undershoot area below VSS DDR2-667 Maximum peak amplitude allowed for overshoot CK, /CK Maximum peak amplitude allowed for undershoot Maximum overshoot area above VDD DDR2-667 Maximum undershoot area below VSS DDR2-667 Maximum peak amplitude allowed for overshoot Maximum peak amplitude allowed for undershoot Maximum overshoot area above VDDQ DDR2-667 Maximum undershoot area below VSSQ DDR2-667 DQ, DQS, /DQS, UDQS, /UDQS, LDQS, /LDQS, RDQS, /RDQS, DM, UDM, LDM Maximum amplitude Overshoot area Volts (V) VDD, VDDQ VSS, VSSQ Undershoot area Time (ns) Overshoot/Undershoot Definition Data Sheet E0901E20 (Ver. 2.0) 11 EBE41AE4ABHA DC Characteristics 1 (TC = 0°C to +85°C, VDD = 1.8V ± 0.1V, VSS = 0V) Parameter Operating current (ACT-PRE) Operating current (ACT-READ-PRE) Precharge power-down standby current Precharge quiet standby current Idle standby current Symbol IDD0 IDD1 IDD2P IDD2Q Grade max 4000 4250 1050 1950 Unit Test condition mA one bank; tCK = tCK (IDD), tRC = tRC (IDD), tRAS = tRAS min.(IDD); CKE is H, /CS is H between valid commands; Address bus inputs are SWITCHING; Data bus inputs are SWITCHING mA one bank; IOUT = 0mA; BL = 4, CL = CL(IDD), AL = 0; tCK = tCK (IDD), tRC = tRC (IDD), tRAS = tRAS min.(IDD); tRCD = tRCD (IDD); CKE is H, /CS is H between valid commands; Address bus inputs are SWITCHING; Data pattern is same as IDD4W mA all banks idle; tCK = tCK (IDD); CKE is L; Other control and address bus inputs are STABLE; Data bus inputs are FLOATING mA all banks idle; tCK = tCK (IDD); CKE is H, /CS is H; Other control and address bus inputs are STABLE; Data bus inputs are FLOATING all banks idle; tCK = tCK (IDD); CKE is H, /CS is H; Other control and address bus inputs are SWITCHING; Data bus inputs are SWITCHING IDD2N 2150 mA IDD3P-F 1950 mA IDD3P-S 1450 mA Active power-down standby current Active standby current Operating current (Burst read operating) Operating current (Burst write operating) IDD3N IDD4R IDD4W 3650 5450 5450 all banks open; tCK = tCK (IDD); CKE is L; Other control and address bus inputs are STABLE; Data bus inputs are FLOATING Fast PDN Exit MRS(12) = 0 Slow PDN Exit MRS(12) = 1 mA all banks open; tCK = tCK (IDD), tRAS = tRAS max.(IDD), tRP = tRP (IDD); CKE is H, /CS is H between valid commands; Other control and address bus inputs are SWITCHING; Data bus inputs are SWITCHING mA all banks open, continuous burst reads, IOUT = 0mA; BL = 4, CL = CL(IDD), AL = 0; tCK = tCK (IDD), tRAS = tRAS max.(IDD), tRP = tRP (IDD); CKE is H, /CS is H between valid commands; Address bus inputs are SWITCHING; Data pattern is same as IDD4W mA all banks open, continuous burst writes; BL = 4, CL = CL(IDD), AL = 0; tCK = tCK (IDD), tRAS = tRAS max.(IDD), tRP = tRP (IDD); CKE is H, /CS is H between valid commands; Address bus inputs are SWITCHING; Data bus inputs are SWITCHING Data Sheet E0901E20 (Ver. 2.0) 12 EBE41AE4ABHA Parameter Auto-refresh current Self-refresh current Operating current (Bank interleaving) Symbol Grade max IDD5 8200 IDD6 550 IDD7 8200 Unit Test condition mA tCK = tCK (IDD); Refresh command at every tRFC (IDD) interval; CKE is H, /CS is H between valid commands; Other control and address bus inputs are SWITCHING; Data bus inputs are SWITCHING mA Self Refresh Mode; CK and /CK at 0V; CKE ≤ 0.2V; Other control and address bus inputs are FLOATING; Data bus inputs are FLOATING mA all bank interleaving reads, IOUT = 0mA; BL = 4, CL = CL(IDD), AL = tRCD (IDD) −1 × tCK(IDD); tCK = tCK (IDD), tRC = tRC (IDD), tRRD = tRRD (IDD), tFAW = tFAW (IDD), tRCD = 1 × tCK (IDD); CKE is H, /CS is H between valid commands; Address bus inputs are STABLE during DESELECTs; Data pattern is same as IDD4W; Notes: 1. 2. 3. 4. IDD specifications are tested after the device is properly initialized. Input slew rate is specified by AC Input Test Condition. IDD parameters are specified with ODT disabled. Data bus consists of DQ, DM, DQS, /DQS, RDQS and /RDQS. IDD values must be met with all combinations of EMRS bits 10 and 11. 5. Definitions for IDD L is defined as VIN ≤ VIL (AC) (max.) H is defined as VIN ≥ VIH (AC) (min.) STABLE is defined as inputs stable at an H or L level FLOATING is defined as inputs at VREF = VDDQ/2 SWITCHING is defined as: inputs changing between H and L every other clock cycle (once per two clocks) for address and control signals, and inputs changing between H and L every other data transfer (once per clock) for DQ signals not including masks or strobes. 6. Refer to AC Timing for IDD Test Conditions. AC Timing for IDD Test Conditions For purposes of IDD testing, the following parameters are to be utilized. DDR2-667 Parameter 5-5-5 Unit CL (IDD) 5 tCK tRCD (IDD) 15 ns tRC (IDD) 60 ns tRRD (IDD) 7.5 ns tFAW (IDD) 37.5 ns tCK (IDD) 3 ns tRAS (min.)(IDD) 45 ns tRAS (max.)(IDD) 70000 ns tRP (IDD) 15 ns tRFC (IDD) 127.5 ns Data Sheet E0901E20 (Ver. 2.0) 13 EBE41AE4ABHA DC Characteristics 2 (TC = 0°C to +85°C, VDD, VDDQ = 1.8V ± 0.1V) (DDR2 SDRAM Component Specification) Parameter Symbol Value Unit Notes Input leakage current ILI 2 µA VDD ≥ VIN ≥ VSS Output leakage current ILO 5 µA VDDQ ≥ VOUT ≥ VSS VTT + 0.603 V 5 VTT − 0.603 V 5 Output timing measurement reference level VOTR 0.5 × VDDQ V 1 Output minimum sink DC current IOL +13.4 mA 3, 4, 5 Output minimum source DC current IOH −13.4 mA 2, 4, 5 Minimum required output pull-up under AC VOH test load Maximum required output pull-down under VOL AC test load Notes: 1. 2. 3. 4. 5. The VDDQ of the device under test is referenced. VDDQ = 1.7V; VOUT = 1.42V. VDDQ = 1.7V; VOUT = 0.28V. The DC value of VREF applied to the receiving device is expected to be set to VTT. After OCD calibration to 18Ω at TC = 25°C, VDD = VDDQ = 1.8V. DC Characteristics 3 (TC = 0°C to +85°C, VDD, VDDQ = 1.8V ± 0.1V) (DDR2 SDRAM Component Specification) Parameter Symbol min. max. Unit Notes AC differential input voltage VID (AC) 0.5 VDDQ + 0.6 V 1, 2 AC differential cross point voltage VIX (AC) 0.5 × VDDQ − 0.175 0.5 × VDDQ + 0.175 V 2 AC differential cross point voltage VOX (AC) 0.5 × VDDQ − 0.125 0.5 × VDDQ + 0.125 V 3 Notes: 1. VID (AC) specifies the input differential voltage |VTR -VCP| required for switching, where VTR is the true input signal (such as CK, DQS, RDQS) and VCP is the complementary input signal (such as /CK, /DQS, /RDQS). The minimum value is equal to VIH (AC) − VIL (AC). 2. The typical value of VIX(AC) is expected to be about 0.5 × VDDQ of the transmitting device and VIX(AC) is expected to track variations in VDDQ . VIX(AC) indicates the voltage at which differential input signals must cross. 3. The typical value of VOX(AC) is expected to be about 0.5 × VDDQ of the transmitting device and VOX(AC) is expected to track variations in VDDQ . VOX(AC) indicates the voltage at which differential output signals must cross VDDQ VTR Crossing point VID VIX or VOX VCP VSSQ 1, 2 Differential Signal Levels* Data Sheet E0901E20 (Ver. 2.0) 14 EBE41AE4ABHA ODT DC Electrical Characteristics (TC = 0°C to +85°C, VDD, VDDQ = 1.8V ± 0.1V) (DDR2 SDRAM Component Specification) Parameter Symbol min. typ. max. Unit Note Rtt effective impedance value for EMRS (A6, A2) = 0, 1; 75 Ω Rtt1 (eff) 60 75 90 Ω 1 Rtt effective impedance value for EMRS (A6, A2) = 1, 0; 150 Ω Rtt2 (eff) 120 150 180 Ω 1 Rtt effective impedance value for EMRS (A6, A2) = 1, 1; 50 Ω Rtt3 (eff) 40 50 60 Ω 1 Deviation of VM with respect to VDDQ/2 ∆VM −6 +6 % 1 Note: 1. Test condition for Rtt measurements. Measurement Definition for Rtt (eff) Apply VIH (AC) and VIL (AC) to test pin separately, then measure current I(VIH(AC)) and I(VIL(AC)) respectively. VIH(AC), and VDDQ values defined in SSTL_18. Rtt (eff ) = VIH ( AC ) − VIL( AC ) I (VIH ( AC )) − I (VIL( AC )) Measurement Definition for ∆VM Measure voltage (VM) at test pin (midpoint) with no load. 2 × VM - 1 × 100 ∆VM = VDDQ OCD Default Characteristics (TC = 0°C to +85°C, VDD, VDDQ = 1.8V ± 0.1V) (DDR2 SDRAM Component Specification) Parameter min. typ. max. Unit Notes Output impedance 12.6 18 23.4 Ω 1, 5 Pull-up and pull-down mismatch 0 4 Ω 1, 2 Output slew rate 1.5 5 V/ns 3, 4 Notes: 1. Impedance measurement condition for output source DC current: VDDQ = 1.7V; VOUT = 1420mV; (VOUT−VDDQ)/IOH must be less than 23.4Ω for values of VOUT between VDDQ and VDDQ−280mV. Impedance measurement condition for output sink DC current: VDDQ = 1.7V; VOUT = 280mV; VOUT/IOL must be less than 23.4Ω for values of VOUT between 0V and 280mV. 2. Mismatch is absolute value between pull up and pull down, both are measured at same temperature and voltage. 3. Slew rate measured from VIL(AC) to VIH(AC). 4. The absolute value of the slew rate as measured from DC to DC is equal to or greater than the slew rate as measured from AC to AC. This is guaranteed by design and characterization. 5. DRAM I/O specifications for timing, voltage, and slew rate are no longer applicable if OCD is changed from default settings. Pin Capacitance (TA = 25°C, VDD = 1.8V ± 0.1V) Parameter Symbol Pins min. max. Unit Notes Input capacitance CI1 Address, /RAS, /CAS, /WE, /CS, CKE, ODT 2.5 3.5 pF 1 Input capacitance CI2 CK, /CK 2 3 pF 2 CI/O DQ, DQS, /DQS, UDQS, /UDQS, LDQS, /LDQS, RDQS, /RDQS, DM, UDM, LDM, CB 2.5 3.5 pF 3 Input/output pin capacitance Notes: 1. Register component specification. 2. PLL component specification. 3. DDR2 SDRAM component specification. Data Sheet E0901E20 (Ver. 2.0) 15 EBE41AE4ABHA AC Characteristics (TC = 0°C to +85°C, VDD, VDDQ = 1.8V ± 0.1V, VSS, VSSQ = 0V) (DDR2 SDRAM Component Specification) • New units tCK(avg) and nCK, are introduced in DDR2-800 and DDR2-667 tCK(avg): actual tCK(avg) of the input clock under operation. nCK: one clock cycle of the input clock, counting the actual clock edges. -6E Frequency (Mbps) 667 Parameter Symbol min. max. Unit Notes /CAS latency CL 5 5 nCK Active to read or write command delay tRCD 15 ns Precharge command period tRP 15 ns Active to active/auto-refresh command time tRC 60 ns DQ output access time from CK, /CK tAC −450 +450 ps 10 DQS output access time from CK, /CK tDQSCK −400 +400 ps 10 CK high-level width tCH (avg) 0.48 0.52 tCK (avg) 13 CK low-level width tCL(avg) 0.48 0.52 tCK (avg) 13 CK half period tHP Min.(tCL(abs), tCH(abs)) ps 6, 13 Clock cycle time tCK (avg) 3000 8000 ps 13 DQ and DM input hold time tDH (base) 175 ps 5 DQ and DM input setup time tDS (base) 100 ps 4 Control and Address input pulse width for each input tIPW 0.6 tCK (avg) DQ and DM input pulse width for each input tDIPW 0.35 tCK (avg) Data-out high-impedance time from CK,/CK tHZ tAC max. ps 10 DQS, /DQS low-impedance time from CK,/CK tLZ (DQS) tAC min. tAC max. ps 10 DQ low-impedance time from CK,/CK tLZ (DQ) 2 × tAC min. tAC max. ps 10 DQS-DQ skew for DQS and associated DQ signals tDQSQ 240 ps DQ hold skew factor tQHS 340 ps 7 DQ/DQS output hold time from DQS tQH tHP – tQHS ps 8 DQS latching rising transitions to associated clock edges tDQSS −0.25 +0.25 tCK (avg) DQS input high pulse width tDQSH 0.35 tCK (avg) DQS input low pulse width tDQSL 0.35 tCK (avg) DQS falling edge to CK setup time tDSS 0.2 tCK (avg) DQS falling edge hold time from CK tDSH 0.2 tCK (avg) Mode register set command cycle time tMRD 2 nCK Write postamble tWPST 0.4 0.6 tCK (avg) Write preamble tWPRE 0.35 tCK (avg) Address and control input hold time tIH (base) 275 ps 5 Address and control input setup time tIS (base) 200 ps 4 Read preamble tRPRE 0.9 1.1 tCK (avg) 11 Read postamble tRPST 0.4 0.6 tCK (avg) 12 Active to precharge command tRAS 45 70000 ns Active to auto-precharge delay tRAP tRCD min. ns Active bank A to active bank B command period tRRD 7.5 ns Data Sheet E0901E20 (Ver. 2.0) 16 EBE41AE4ABHA -6E Frequency (Mbps) 667 Parameter Symbol min. max. Unit Four active window period tFAW 37.5 ns /CAS to /CAS command delay tCCD 2 nCK Write recovery time tWR 15 ns Auto precharge write recovery + precharge time tDAL WR + RU (tRP/tCK(avg)) nCK Internal write to read command delay tWTR 7.5 ns Internal read to precharge command delay tRTP 7.5 ns Exit self-refresh to a non-read command tXSNR tRFC + 10 ns Exit self-refresh to a read command tXSRD 200 nCK Notes 1, 9 Exit precharge power down to any non-read command tXP 2 nCK Exit active power down to read command tXARD 2 nCK 3 Exit active power down to read command (slow exit/low power mode) tXARDS 7 − AL nCK 2, 3 CKE minimum pulse width (high and low pulse width) tCKE 3 nCK Output impedance test driver delay tOIT 0 12 ns MRS command to ODT update delay tMOD 0 12 ns Auto-refresh to active/auto-refresh command time tRFC 127.5 ns Average periodic refresh interval (0°C ≤ TC ≤ +85°C) tREFI 7.8 µs tREFI 3.9 µs tDELAY tIS + tCK(avg) + tIH (+85°C < TC ≤ +95°C) Minimum time clocks remains ON after CKE asynchronously drops low ns Notes: 1. 2. 3. 4. For each of the terms above, if not already an integer, round to the next higher integer. AL: Additive Latency. MRS A12 bit defines which active power down exit timing to be applied. The figures of Input Waveform Timing 1 and 2 are referenced from the input signal crossing at the VIH(AC) level for a rising signal and VIL(AC) for a falling signal applied to the device under test. 5. The figures of Input Waveform Timing 1 and 2 are referenced from the input signal crossing at the VIL(DC) level for a rising signal and VIH(DC) for a falling signal applied to the device under test. DQS CK /DQS /CK tDS tDH tDS tIS tDH tIH tIS tIH VDDQ VIH (AC)(min.) VIH (DC)(min.) VREF VIL (DC)(max.) VIL (AC)(max.) VSS VDDQ VIH (AC)(min.) VIH (DC)(min.) VREF VIL (DC)(max.) VIL (AC)(max.) VSS Input Waveform Timing 1 (tDS, tDH) Input Waveform Timing 2 (tIS, tIH) Data Sheet E0901E20 (Ver. 2.0) 17 EBE41AE4ABHA 6. tHP is the minimum of the absolute half period of the actual input clock. tHP is an input parameter but not an input specification parameter. It is used in conjunction with tQHS to derive the DRAM output timing tQH. The value to be used for tQH calculation is determined by the following equation; tHP = min ( tCH(abs), tCL(abs) ), where, tCH(abs) is the minimum of the actual instantaneous clock high time; tCL(abs) is the minimum of the actual instantaneous clock low time; 7. tQHS accounts for: a. The pulse duration distortion of on-chip clock circuits, which represents how well the actual tHP at the input is transferred to the output; and b. The worst case push-out of DQS on one transition followed by the worst case pull-in of DQ on the next transition, both of which are independent of each other, due to data pin skew, output pattern effects, and p-channel to n-channel variation of the output drivers. 8. tQH = tHP – tQHS, where: tHP is the minimum of the absolute half period of the actual input clock; and tQHS is the specification value under the max column. {The less half-pulse width distortion present, the larger the tQH value is; and the larger the valid data eye will be.} Examples: a. If the system provides tHP of 1315ps into a DDR2-667 SDRAM, the DRAM provides tQH of 975ps (min.) b. If the system provides tHP of 1420ps into a DDR2-667 SDRAM, the DRAM provides tQH of 1080ps (min.) 9. RU stands for round up. WR refers to the tWR parameter stored in the MRS. 10. When the device is operated with input clock jitter, this parameter needs to be derated by the actual tERR(6-10per) of the input clock. (output deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2-667 SDRAM has tERR(6-10per) min. = −272ps and tERR(6-10per) max. = +293ps, then tDQSCK min.(derated) = tDQSCK min. − tERR(6-10per) max. = −400ps − 293ps = −693ps and tDQSCK max.(derated) = tDQSCK max. − tERR(6-10per) min. = 400ps + 272ps = +672ps. Similarly, tLZ(DQ) for DDR2-667 derates to tLZ(DQ) min.(derated) = −900ps − 293ps = −1193ps and tLZ(DQ) max.(derated)= 450ps + 272ps = +722ps. 11. When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT(per) of the input clock. (output deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2-667 SDRAM has tJIT(per) min. = −72ps and tJIT(per) max. = +93ps, then tRPRE min.(derated) = tRPRE min. + tJIT(per) min. = 0.9 × tCK(avg) − 72ps = +2178ps and tRPRE max.(derated) = tRPRE max. + tJIT(per) max. = 1.1 × tCK(avg) + 93ps = +2843ps. 12. When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT(duty) of the input clock. (output deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2-667 SDRAM has tJIT(duty) min. = −72ps and tJIT(duty) max. = +93ps, then tRPST min.(derated) = tRPST min. + tJIT(duty) min. = 0.4 × tCK(avg) − 72ps = +928ps and tRPST max.(derated) = tRPST max. + tJIT(duty) max. = 0.6 × tCK(avg) + 93ps = +1592ps. 13. Refer to the Clock Jitter table. Data Sheet E0901E20 (Ver. 2.0) 18 EBE41AE4ABHA ODT AC Electrical Characteristics (DDR2 SDRAM Component Specification) Parameter Symbol min. max. Unit ODT turn-on delay tAOND 2 2 tCK ODT turn-on tAON tAC(min) tAC(max) + 700 ps ODT turn-on (power down mode) tAONPD tAC(min) + 2000 2tCK + tAC(max) + 1000 ps ODT turn-off delay tAOFD 2.5 2.5 tCK 5 ODT turn-off tAOF tAC(min) tAC(max) + 600 ps 2, 4, 5 ODT turn-off (power down mode) tAOFPD tAC(min) + 2000 2.5tCK + tAC(max) + 1000 ps ODT to power down entry latency tANPD 3 3 tCK ODT power down exit latency tAXPD 8 8 tCK Notes 1, 3 Notes: 1. ODT turn on time min is when the device leaves high impedance and ODT resistance begins to turn on. ODT turn on time max is when the ODT resistance is fully on. Both are measured from tAOND. 2. ODT turn off time min is when the device starts to turn off ODT resistance. ODT turn off time max is when the bus is in high impedance. Both are measured from tAOFD. 3. When the device is operated with input clock jitter, this parameter needs to be derated by the actual tERR(6-10per) of the input clock. (output deratings are relative to the SDRAM input clock.) 4. When the device is operated with input clock jitter, this parameter needs to be derated by {−tJIT(duty) max. − tERR(6-10per) max. } and { −tJIT(duty) min. − tERR(6-10per) min. } of the actual input clock.(output deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2-667 SDRAM has tERR(6-10per) min. = −272ps, tERR(6-10per) max. = +293ps, tJIT(duty) min. = −106ps and tJIT(duty) max. = +94ps, then tAOF min.(derated) = tAOF min. + { −tJIT(duty) max. − tERR(6-10per) max. } = −450ps + { −94ps − 293ps} = −837ps and tAOF max.(derated) = tAOF max. + { −tJIT(duty) min. − tERR(6-10per) min. } = 1050ps + { 106ps + 272ps} = +1428ps. 5. For tAOFD of DDR2-667, the 1/2 clock of nCK in the 2.5 × nCK assumes a tCH(avg), average input clock high pulse width of 0.5 relative to tCK(avg). tAOF min. and tAOF max. should each be derated by the same amount as the actual amount of tCH(avg) offset present at the DRAM input with respect to 0.5. For example, if an input clock has a worst case tCH(avg) of 0.48, the tAOF min. should be derated by subtracting 0.02 × tCK(avg) from it, whereas if an input clock has a worst case tCH(avg) of 0.52, the tAOF max. should be derated by adding 0.02 × tCK(avg) to it. Therefore, we have; tAOF min.(derated) = tAC min. − [0.5 − Min.(0.5, tCH(avg) min.)] × tCK(avg) tAOF max.(derated) = tAC max. + 0.6 + [Max.(0.5, tCH(avg) max.) − 0.5] × tCK(avg) or tAOF min.(derated) = Min.(tAC min., tAC min. − [0.5 − tCH(avg) min.] × tCK(avg)) tAOF max.(derated) = 0.6 + Max.(tAC max., tAC max. + [tCH(avg) max. − 0.5] × tCK(avg)) where tCH(avg) min. and tCH(avg) max. are the minimum and maximum of tCH(avg) actually measured at the DRAM input balls. Data Sheet E0901E20 (Ver. 2.0) 19 EBE41AE4ABHA AC Input Test Conditions (DDR2 SDRAM Component Specification) Parameter Symbol Value Unit Notes Input reference voltage VREF 0.5 × VDDQ V 1 Input signal maximum peak to peak swing VSWING(max.) 1.0 V 1 Input signal minimum slew rate SLEW 1.0 V/ns 2, 3 Notes: 1. Input waveform timing is referenced to the input signal crossing through the VIH/IL (AC) level applied to the device under test. 2. The input signal minimum slew rate is to be maintained over the range from VREF to VIH(AC) (min.) for rising edges and the range from VREF to VIL(AC) (max.) for falling edges as shown in the below figure. 3. AC timings are referenced with input waveforms switching from VIL(AC) to VIH(AC) on the positive transitions and VIH(AC) to VIL(AC) on the negative transitions. VDDQ VIH (AC)(min.) VIH (DC)(min.) VSWING(max.) VREF VIL (DC)(max.) VIL (AC)(max.) Falling slew = VREF VSS ∆TR ∆TF − VIL (AC)(max.) Rising slew = ∆TF AC Input Test Signal Wave forms Measurement point DQ VTT RT =25 Ω Output Load Data Sheet E0901E20 (Ver. 2.0) 20 VIH (AC) min. − VREF ∆TR EBE41AE4ABHA Clock Jitter [DDR2-667] -6E Frequency (Mbps) 667 Parameter Symbol min. max. Unit Notes Average clock period tCK (avg) 3000 8000 ps 1 Clock period jitter tJIT (per) −125 125 ps 5 Clock period jitter during DLL locking period tJIT (per, lck) −100 100 ps 5 Cycle to cycle period jitter tJIT (cc) 250 ps 6 Cycle to cycle clock period jitter during DLL locking period tJIT (cc, lck) 200 ps 6 Cumulative error across 2 cycles tERR (2per) −175 175 ps 7 Cumulative error across 3 cycles tERR (3per) −225 225 ps 7 Cumulative error across 4 cycles tERR (4per) −250 250 ps 7 Cumulative error across 5 cycles tERR (5per) −250 250 ps 7 Cumulative error across n=6,7,8,9,10 cycles Cumulative error across n=11, 12,…49,50 cycles tERR (6-10per) tERR (11-50per) −350 350 ps 7 −450 450 ps 7 Average high pulse width tCH (avg) 0.48 0.52 tCK (avg) 2 Average low pulse width tCL (avg) 0.48 0.52 tCK (avg) 3 Duty cycle jitter tJIT (duty) −125 125 ps 4 Notes: 1. tCK (avg) is calculated as the average clock period across any consecutive 200cycle window. N tCK (avg ) = ∑ tCKj N j =1 N = 200 2. tCH (avg) is defined as the average high pulse width, as calculated across any consecutive 200 high pulses. N tCH (avg ) = ∑ tCHj (N × tCK (avg )) j =1 N = 200 3. tCL (avg) is defined as the average low pulse width, as calculated across any consecutive 200 low pulses. N tCL(avg ) = ∑ tCLj (N × tCK (avg )) j =1 N = 200 4. tJIT (duty) is defined as the cumulative set of tCH jitter and tCL jitter. tCH jitter is the largest deviation of any single tCH from tCH (avg). tCL jitter is the largest deviation of any single tCL from tCL (avg). tJIT (duty) is not subject to production test. tJIT (duty) = Min./Max. of {tJIT (CH), tJIT (CL)}, where: tJIT (CH) = {tCHj- tCH (avg) where j = 1 to 200} tJIT (CL) = {tCLj − tCL (avg) where j = 1 to 200} 5. tJIT (per) is defined as the largest deviation of any single tCK from tCK (avg). tJIT (per) = Min./Max. of { tCKj − tCK (avg) where j = 1 to 200} tJIT (per) defines the single period jitter when the DLL is already locked. tJIT (per, lck) uses the same definition for single period jitter, during the DLL locking period only. tJIT (per) and tJIT (per, lck) are not subject to production test. Data Sheet E0901E20 (Ver. 2.0) 21 EBE41AE4ABHA 6. tJIT (cc) is defined as the absolute difference in clock period between two consecutive clock cycles: tJIT (cc) = Max. of |tCKj+1 − tCKj| tJIT (cc) is defines the cycle to cycle jitter when the DLL is already locked. tJIT (cc, lck) uses the same definition for cycle to cycle jitter, during the DLL locking period only. tJIT (cc) and tJIT (cc, lck) are not subject to production test. 7. tERR (nper) is defined as the cumulative error across multiple consecutive cycles from tCK (avg). tERR (nper) is not subject to production test. n tERR(nper ) = ∑ tCKj − n × tCK(avg )) j =1 2 ≤ n ≤ 50 for tERR (nper) 8. These parameters are specified per their average values, however it is understood that the following relationship between the average timing and the absolute instantaneous timing hold at all times. (minimum and maximum of spec values are to be used for calculations in the table below.) Parameter Symbol min. max. Absolute clock period tCK (abs) tCK (avg) min. + tJIT (per) min. tCK (avg) max. + tJIT (per) max. ps tCH (avg) min. × tCK (avg) min. + tJIT (duty) min. tCL (avg) min. × tCK (avg) min. + tJIT (duty) min. tCH (avg) max. × tCK (avg) max. ps + tJIT (duty) max. tCL (avg) max. × tCK (avg) max. ps + tJIT (duty) max. Absolute clock high pulse width Absolute clock low pulse width tCH (abs) tCL (abs) Example: For DDR2-667, tCH(abs) min. = ( 0.48 × 3000 ps ) - 125ps = 1315ps Data Sheet E0901E20 (Ver. 2.0) 22 Unit EBE41AE4ABHA Pin Functions CK, /CK (input pin) The CK and the /CK are the master clock inputs. All inputs except DMs, DQSs and DQs are referred to the cross point of the CK rising edge and the VREF level. When a read operation, DQSs and DQs are referred to the cross point of the CK and the /CK. When a write operation, DQs are referred to the cross point of the DQS and the VREF level. DQSs for write operation are referred to the cross point of the CK and the /CK. /CS (input pin) When /CS is low, commands and data can be input. When /CS is high, all inputs are ignored. However, internal operations (bank active, burst operations, etc.) are held. /RAS, /CAS, and /WE (input pins) These pins define operating commands (read, write, etc.) depending on the combinations of their voltage levels. See “Command operation”. A0 to A13 (input pins) Row address (AX0 to AX13) is determined by the A0 to the A13 level at the cross point of the CK rising edge and the VREF level in a bank active command cycle. Column address (AY0 to AY9, AY11) is loaded via the A0 to the A9 and A11 at the cross point of the CK rising edge and the VREF level in a read or a write command cycle. This column address becomes the starting address of a burst operation. A10 (AP) (input pin) A10 defines the precharge mode when a precharge command, a read command or a write command is issued. If A10 = high when a precharge command is issued, all banks are precharged. If A10 = low when a precharge command is issued, only the bank that is selected by BA1, BA0 is precharged. If A10 = high when read or write command, auto-precharge function is enabled. While A10 = low, auto-precharge function is disabled. BA0, BA1, BA2 (input pin) BA0, BA1 and BA2 are bank select signals (BA). The memory array is divided into 8 banks: bank 0 to bank 7. (See Bank Select Signal Table) [Bank Select Signal Table] BA0 BA1 BA2 Bank 0 L L L Bank 1 H L L Bank 2 L H L Bank 3 H H L Bank 4 L L H Bank 5 H L H Bank 6 L H H Bank 7 H H H Remark: H: VIH. L: VIL. Data Sheet E0901E20 (Ver. 2.0) 23 EBE41AE4ABHA CKE (input pin) CKE controls power down and self-refresh. The power down and the self-refresh commands are entered when the CKE is driven low and exited when it resumes to high. The CKE level must be kept for 1 CK cycle at least, that is, if CKE changes at the cross point of the CK rising edge and the VREF level with proper setup time tIS, at the next CK rising edge CKE level must be kept with proper hold time tIH. DQ, CB (input and output pins) Data are input to and output from these pins. DQS (input and output pin) DQS and /DQS provide the read data strobes (as output) and the write data strobes (as input). VDD (power supply pins) 1.8V is applied. (VDD is for the internal circuit.) VDDSPD (power supply pin) 1.8V is applied (For serial EEPROM). VSS (power supply pin) Ground is connected. /RESET(input pin) LVCMOS reset input. When /RESET is Low, all registers are reset. Par_IN (Parity input pin) Parity bit for the address and control bus. /Err_Out (Error output pin) Parity error found on the address and control bus. Detailed Operation Part and Timing Waveforms Refer to the EDE1104ABSE, EDE1108ABSE, EDE1116ABSE datasheet (E0852E). DM pins of component device fixed to VSS level on the module board. DIMM /CAS latency = component CL + 1 for registered type. Data Sheet E0901E20 (Ver. 2.0) 24 EBE41AE4ABHA Physical Outline Unit: mm 5.10 max 4.00 min (DATUM -A-) Component area (Front) 1 120 B A 63.00 1.27 ± 0.10 55.00 4.00 Component area (Back) FULL R 30.00 240 17.80 121 10.00 133.35 3.00 Detail B (DATUM -A-) 1.00 4.00 0.20 ± 0.15 2.50 ± 0.20 Detail A 2.50 FULL R 0.80 ± 0.05 3.80 5.00 1.50 ± 0.10 ECA-TS2-0095-02 Data Sheet E0901E20 (Ver. 2.0) 25 EBE41AE4ABHA CAUTION FOR HANDLING MEMORY MODULES When handling or inserting memory modules, be sure not to touch any components on the modules, such as the memory ICs, chip capacitors and chip resistors. It is necessary to avoid undue mechanical stress on these components to prevent damaging them. In particular, do not push module cover or drop the modules in order to protect from mechanical defects, which would be electrical defects. When re-packing memory modules, be sure the modules are not touching each other. Modules in contact with other modules may cause excessive mechanical stress, which may damage the modules. MDE0202 NOTES FOR CMOS DEVICES 1 PRECAUTION AGAINST ESD FOR MOS DEVICES Exposing the MOS devices to a strong electric field can cause destruction of the gate oxide and ultimately degrade the MOS devices operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it, when once it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. MOS devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. MOS devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor MOS devices on it. 2 HANDLING OF UNUSED INPUT PINS FOR CMOS DEVICES No connection for CMOS devices input pins can be a cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. The unused pins must be handled in accordance with the related specifications. 3 STATUS BEFORE INITIALIZATION OF MOS DEVICES Power-on does not necessarily define initial status of MOS devices. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the MOS devices with reset function have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. MOS devices are not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for MOS devices having reset function. CME0107 Data Sheet E0901E20 (Ver. 2.0) 26 EBE41AE4ABHA The information in this document is subject to change without notice. Before using this document, confirm that this is the latest version. No part of this document may be copied or reproduced in any form or by any means without the prior written consent of Elpida Memory, Inc. Elpida Memory, Inc. does not assume any liability for infringement of any intellectual property rights (including but not limited to patents, copyrights, and circuit layout licenses) of Elpida Memory, Inc. or third parties by or arising from the use of the products or information listed in this document. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of Elpida Memory, Inc. or others. Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of the customer's equipment shall be done under the full responsibility of the customer. Elpida Memory, Inc. assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information. [Product applications] Be aware that this product is for use in typical electronic equipment for general-purpose applications. Elpida Memory, Inc. makes every attempt to ensure that its products are of high quality and reliability. However, users are instructed to contact Elpida Memory's sales office before using the product in aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment, medical equipment for life support, or other such application in which especially high quality and reliability is demanded or where its failure or malfunction may directly threaten human life or cause risk of bodily injury. [Product usage] Design your application so that the product is used within the ranges and conditions guaranteed by Elpida Memory, Inc., including the maximum ratings, operating supply voltage range, heat radiation characteristics, installation conditions and other related characteristics. Elpida Memory, Inc. bears no responsibility for failure or damage when the product is used beyond the guaranteed ranges and conditions. Even within the guaranteed ranges and conditions, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as fail-safes, so that the equipment incorporating Elpida Memory, Inc. products does not cause bodily injury, fire or other consequential damage due to the operation of the Elpida Memory, Inc. product. [Usage environment] Usage in environments with special characteristics as listed below was not considered in the design. Accordingly, our company assumes no responsibility for loss of a customer or a third party when used in environments with the special characteristics listed below. Example: 1) Usage in liquids, including water, oils, chemicals and organic solvents. 2) Usage in exposure to direct sunlight or the outdoors, or in dusty places. 3) Usage involving exposure to significant amounts of corrosive gas, including sea air, CL 2 , H 2 S, NH 3 , SO 2 , and NO x . 4) Usage in environments with static electricity, or strong electromagnetic waves or radiation. 5) Usage in places where dew forms. 6) Usage in environments with mechanical vibration, impact, or stress. 7) Usage near heating elements, igniters, or flammable items. If you export the products or technology described in this document that are controlled by the Foreign Exchange and Foreign Trade Law of Japan, you must follow the necessary procedures in accordance with the relevant laws and regulations of Japan. Also, if you export products/technology controlled by U.S. export control regulations, or another country's export control laws or regulations, you must follow the necessary procedures in accordance with such laws or regulations. If these products/technology are sold, leased, or transferred to a third party, or a third party is granted license to use these products, that third party must be made aware that they are responsible for compliance with the relevant laws and regulations. M01E0706 Data Sheet E0901E20 (Ver. 2.0) 27