ELPIDA MC-45V16AB642

DATA SHEET
MOS INTEGRATED CIRCUIT
MC-45V16AB642
16M-WORD BY 64-BIT
VirtualChannelTM DYNAMIC RAM MODULE
UNBUFFERED TYPE
Description
The MC-45V16AB642 is a 16,777,216 words by 64 bits VirtualChannel dynamic RAM module on which 8 pieces of
128M VirtualChannel DRAM : µPD45V128821 are assembled.
This module provides high density and large quantities of memory in a small space without utilizing the surface-
mounting technology on the printed circuit board.
Decoupling capacitors are mounted on power supply line for noise reduction.
Features
• 16,777,216 words by 64 bits organization
• Clock frequency and access time from CLK
Part number
Read
Clock
Access time
latency
frequency
from CLK
Maximum supply current mA
Operating
Refresh
MHz (MAX.)
ns (MAX.)
Prefetch Restore
Channel
Auto
Self
1,840
16
read / write (Burst)
MC-45V16AB642KF-A75
2
133
5.4
1,200
520
• Fully Standard Synchronous Dynamic RAM, with all signals referenced to a positive clock edge
• Dual internal banks controlled by BA0 (Bank Select)
• Wrap sequence (interleave)
• Burst length (4)
• Read latency (2)
• Prefetch read latency (4)
• Auto refresh and self refresh
• Single 3.3 V ± 0.3 V power supply
• Interface: LVTTL
• Refresh cycle: 4K cycles/64 ms
• 168-pin dual in-line memory module (Pin pitch = 1.27 mm)
• Unbuffered type
• Serial PD
• Auto precharge and without auto precharge
The information in this document is subject to change without notice. Before using this document, please
confirm that this is the latest version.
Not all devices/types available in every country. Please check with local Elpida Memory, Inc. for
availability and additional information.
Document No. E0027N10 (1st edition)
(Previous No. M15112EJ2V0DS00)
Date Published January 2001 CP (K)
Printed in Japan
This Product became EOL in January, 2003.
Elpida Memory, Inc. is a joint venture DRAM company of NEC Corporation and Hitachi, Ltd.
MC-45V16AB642
Ordering Information
Part number
Clock
Read
frequency
latency
MHz (MAX.)
MC-45V16AB642KF-A75
133
Prefetch
Package
Mounted devices
read
latency
2
4
8 pieces of µPD45V128821G5
168-pin Dual In-line
Memory Module (Socket Type) (10.16 mm (400) TSOP (II))
Edge connector : Gold plated
34.93 mm height
2
E0027N10
MC-45V16AB642
Pin Configuration
168-pin Dual In-line Memory Module Socket Type (Edge connector: Gold plated)
/xxx indicates active low signal.
VSS
DQ0
DQ1
DQ2
DQ3
Vcc
DQ4
DQ5
DQ6
DQ7
1
2
3
4
5
6
7
8
9
10
DQ40
VSS
DQ41
DQ42
DQ43
DQ44
DQ45
Vcc
DQ46
DQ47
NC
NC
VSS
NC
NC
Vcc
/CAS
DQMB4
DQMB5
NC
/RAS
VSS
A1
A3
A5
A7
A9
BA0 (A13)
A11
Vcc
DQ8
VSS
DQ9
DQ10
DQ11
DQ12
DQ13
Vcc
DQ14
DQ15
NC
NC
VSS
NC
NC
Vcc
/WE
DQMB0
DQMB1
/CS0
NC
VSS
A0
A2
A4
A6
A8
A10
A12
Vcc
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
CLK1
NC
VSS
CKE0
NC
DQMB6
DQMB7
NC
Vcc
NC
NC
NC
NC
VSS
DQ48
DQ49
DQ50
DQ51
Vcc
DQ52
NC
NC
NC
VSS
DQ53
DQ54
DQ55
VSS
DQ56
DQ57
DQ58
DQ59
Vcc
DQ60
DQ61
DQ62
DQ63
VSS
CLK3
NC
SA0
SA1
SA2
Vcc
Vcc
CLK0
VSS
NC
/CS2
DQMB2
DQMB3
NC
Vcc
NC
NC
NC
NC
VSS
DQ16
DQ17
DQ18
DQ19
Vcc
DQ20
NC
NC
NC
VSS
DQ21
DQ22
DQ23
VSS
DQ24
DQ25
DQ26
DQ27
Vcc
DQ28
DQ29
DQ30
DQ31
VSS
CLK2
NC
WP
SDA
SCL
Vcc
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
VSS
DQ32
DQ33
DQ34
DQ35
Vcc
DQ36
DQ37
DQ38
DQ39
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
: Address Inputs
[Row: A0 - A12, Column: A0 - A7]
BA0 (A13)
: VirtualChannel DRAM
Bank Select
DQ0 - DQ63
: Data Inputs/Outputs
CLK0 - CLK3
: Clock Input
CKE0
: Clock Enable Input
/CS0, /CS2
: Chip Select Input
/RAS
: Row Address Strobe
/CAS
: Column Address Strobe
E0027N10
/WE
: Write Enable
DQMB0 - DQMB7
: DQ Mask Enable
SA0 - SA2
: Address Input for EEPROM
SDA
: Serial Data I/O for PD
SCL
: Clock Input for PD
VCC
: Power Supply
VSS
: Ground
WP
NC
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
A0 - A12
: Write Protect
: No Connection
3
MC-45V16AB642
Block Diagram
/WE
/CS0
/CS2
DQMB0
DQMB2
DQ 0
DQ 1
DQ 2
DQ 3
DQ 4
DQ 5
DQ 6
DQ 7
DQ 7 DQM /CS
DQ 6
DQ 5
DQ 4
D0
DQ 3
DQ 2
DQ 1
DQ 0
/WE
DQ 7 DQM
/WE
DQ 6
DQ 5
DQ 4
DQ 3
DQ 2
DQ 1
DQ 0
/CS
DQ 40
DQ 41
DQ 42
DQ 43
DQ 44
DQ 45
DQ 46
DQ 47
DQ 4 DQM /CS
DQ 7
DQ 6
DQ 5
D3
DQ 3
DQ 2
DQ 1
DQ 0
/WE
DQ 4 DQM /CS
DQ 7
DQ 6
DQ 5
D4
DQ 3
DQ 2
DQ 1
DQ 0
DQ 7 DQM /CS
DQ 6
DQ 5
DQ 4
D6
DQ 3
DQ 2
DQ 1
DQ 0
/WE
DQ 7 DQM /CS
DQ 6
DQ 5
DQ 4
D7
DQ 3
DQ 2
DQ 1
DQ 0
/WE
DQMB6
/WE
DQ 48
DQ 49
DQ 50
DQ 51
DQ 52
DQ 53
DQ 54
DQ 55
DQMB7
DQ 5 DQM /CS
DQ 7
DQ 6
DQ 4
D5
DQ 3
DQ 2
DQ 1
DQ 0
/WE
CLK : D0, D1, D4, D5
3.3 pF
CLK2
CLK : D2, D3, D6, D7
3.3 pF
CLK1, CLK3
10 pF
DQ 56
DQ 57
DQ 58
DQ 59
DQ 60
DQ 61
DQ 62
DQ 63
A0 - A12
A0 - A12 : D0 - D7
CLK0
/WE
DQMB5
DQ 24
DQ 25
DQ 26
DQ 27
DQ 28
DQ 29
DQ 30
DQ 31
D1
DQMB4
DQ 32
DQ 33
DQ 34
DQ 35
DQ 36
DQ 37
DQ 38
DQ 39
DQ 7 DQM /CS
DQ 6
DQ 5
DQ 4
D2
DQ 3
DQ 2
DQ 1
DQ 0
DQMB3
DQMB1
DQ 8
DQ 9
DQ 10
DQ 11
DQ 12
DQ 13
DQ 14
DQ 15
DQ 16
DQ 17
DQ 18
DQ 19
DQ 20
DQ 21
DQ 22
DQ 23
BA0
A13 : D0 - D7
/RAS
/RAS : D0 - D7
/CAS
/CAS : D0 - D7
CKE0
CKE : D0 - D7
SERIAL PD
SDA
VCC
SCL
D0 - D7
C
VSS
A0
D0 - D7
A1
A2
SA0 SA1 SA2
Remarks 1. The value of all resistors is 10 Ω except WP.
2. D0 - D7: µPD45V128821 (8M words × 8 bits × 2 banks)
4
WP
47 kΩ
E0027N10
MC-45V16AB642
Electrical Specifications
• All voltages are referenced to VSS (GND).
• After power up, wait more than 100 µs and then, execute power on sequence and auto refresh before proper device
operation is achieved.
Absolute Maximum Ratings
Parameter
Symbol
Voltage on power supply pin relative to GND
Unit
VCC
–0.5 to +4.6
V
Voltage on input pin relative to GND
VT
–0.5 to +4.6
V
Short circuit output current
IO
50
mA
Power dissipation
PD
8
W
Operating ambient temperature
TA
0 to 70
°C
Storage temperature
Tstg
–55 to +125
°C
Rating
Caution
Condition
Exposing the device to stress above those listed in Absolute Maximum Ratings could cause
permanent damage. The device is not meant to be operated under conditions outside the limits
described in the operational section of this specification. Exposure to Absolute Maximum Rating
conditions for extended periods may affect device reliability.
Recommended Operating Conditions
Supply voltage
High level input voltage
Low level input voltage
Parameter
Operating ambient temperature
Symbol
Condition
MIN.
TYP.
MAX.
Unit
VCC
3.0
3.3
3.6
V
VIH
2.0
VCC + 0.3
V
VIL
−0.3
+0.8
V
TA
0
70
°C
MAX.
Unit
pF
Capacitance (TA = 25°°C, f = 1 MHz)
Input capacitance
Data input/output capacitance
Symbol
Test condition
MIN.
TYP.
CI1
A0 - A12, BA0 (A13), /RAS, /CAS, /WE
38
62
CI2
CLK0, CLK2
24
40
CI3
CKE0
32
52
CI4
/CS0, /CS2
17
29
CI5
DQMB0 - DQMB7
7
13
CI/O
DQ0 - DQ63
7
13
Parameter
pF
E0027N10
5
MC-45V16AB642
DC Characteristics (Recommended Operating Conditions Unless Otherwise Noted)
Parameter
Symbol Test condition
Operating current (Prefetch
ICC1P
mode at one bank active)
Grade
tRC ≥ tRC (MIN.)
MIN.
MAX.
Unit Notes
-A75
1,200
mA
1
-A75
1,200
mA
1
9.6
mA
Prefetch is executed one time during tRC.
Operating current (Restore
ICC1R
tRC ≥ tRC (MIN.)
ICC2P
CKE ≤ VIL (MAX.), tCK = 15 ns
mode at one bank active)
Precharge standby current
ICC2PS CKE ≤ VIL (MAX.), tCK = ∞
in power down mode
Precharge standby current
ICC2N
power down mode
Active standby current in
ICC2NS CKE ≥ VIH (MIN.), tCK = ∞ , Input signals are stable.
ICC3P
ICC3N
CKE ≤ VIL (MAX.), tCK = 15 ns
48
48
CKE ≥ VIH (MIN.), tCK = 15 ns, /CS ≥ VIH (MIN.),
ICC4
tCK ≥ tCK (MIN.), IO = 0 mA
mA
160
-A75
520
mA
2
-A75
1,840
mA
3
-A75
16
mA
–8
+8
µA
+1.5
µA
Background : precharge standby
ICC5
tRCF ≥ tRCF
Self refresh current
ICC6
CKE ≤ 0.2 V
Input leakage current
II (L)
VI = 0 to 3.6 V, All other pins not under test = 0 V
(MIN.)
Low level output voltage
240
ICC3NS CKE ≥ VIH (MIN.), tCK = ∞, Input signals are stable.
Auto Refresh current
High level output voltage
mA
Input signals are changed one time during 30 ns.
(Burst mode)
Output leakage current
mA
80
ICC3PS CKE ≤ VIL (MAX.), tCK = ∞
non power down mode
Operating current
160
Input signals are changed one time during 30 ns.
in non power down mode
Active standby current in
9.6
CKE ≥ VIH (MIN.), tCK = 15 ns, /CS ≥ VIH (MIN.),
IO (L)
DOUT is disabled, VO = 0 to 3.6 V
–1.5
VOH
IO = – 4.0 mA
2.4
VOL
IO = + 4.0 mA
V
0.4
V
Notes 1. ICC1 depends on output loading and cycle rates. Specified values are obtained with the output open. In
addition to this, ICC1 is measured on condition that addresses are changed only one time during tCK (MIN.).
2. ICC4 depends on output loading and cycle rates. Specified values are obtained with the output open. In
addition to this, ICC4 is measured on condition that addresses are changed only one time during tCK (MIN.).
3. ICC5 is measured on condition that addresses are changed only one time during tCK (MIN.).
6
E0027N10
MC-45V16AB642
AC Characteristics (Recommended Operating Conditions unless otherwise noted)
Test Conditions
• AC measurements assume tT = 1 ns.
• Reference level for measuring timing of input signals is 1.4 V. Transition times are measured between VIH and VIL.
• If tT is longer than 1 ns, reference level for measuring timing of input signals is VIH (MIN.) and VIL (MAX.).
• An access time is measured at 1.4 V.
tCK
tCK
tCL
tCH
tCL
CLK
tCKH
tCKS
CKE
tH
tS
Command
Address
DQM
(Input)
Valid
tDS
Valid
tDH
Valid
tAC
tAC
tLZ
Data (Output)
tDS
Data (Input)
tDH
Hi-Z
tOH
Valid
Valid
tHZ
Hi-Z
E0027N10
7
MC-45V16AB642
AC characteristics
Parameter
Symbol
-A75
Unit
MIN.
MAX.
tCK2
7.5
−
ns
Access time from CLK
tAC2
−
5.4
ns
CLK high level width
tCH
2.5
−
ns
CLK low level width
tCL
2.5
−
ns
Data-out hold time
tOH
2.7
−
ns
Data-out low-impedance time
tLZ
0
−
ns
Data-out high-impedance time
tHZ2
2.5
5.4
ns
Data-in setup time
tDS
1.5
−
ns
Data-in hold time
tDH
0.8
−
ns
Address, Command, DQM setup time
tS
1.5
−
ns
Address, Command, DQM hold time
tH
0.8
−
ns
tCKS
1.5
−
ns
Clock cycle time
CKE setup time
CKE hold time
tCKH
0.8
−
ns
CKE setup time (Power down exit)
tCKSP
1.5
−
ns
tT
0.5
30
ns
Refresh time (4,096 refresh cycle)
tREF
−
64
ms
Mode register set cycle time
tRSC
2
−
CLK
Transition time
1
1
Note 1. Output load.
Note
Z = 50 Ω
Output
50 pF
8
E0027N10
MC-45V16AB642
AC characteristics (Background to Background operation)
Parameter
Symbol
-A75
Unit
MIN.
MAX.
Notes
tRC
67.5
−
ns
REF to REF / ACT Command period
tRCF
67.5
−
ns
ACT to PRE Command period
tRAS
52.5
120,000
ns
PRE to ACT / REF Command period
tRP
20
−
ns
ACT to PFC / PFCA Command delay time
tAPD
15
−
ns
ACT to PFR Command delay time (Prefetch Read Operation)
tAPRD
15
−
ns
PFC to PRE Command delay time
tPPL
22.5
−
ns
PFCA / PFR to ACT / REF Command delay time
tPAL
45
−
ns
RST / RSTA to ACT(R) Note1 Command delay time
tRAD
7.5
30
ns
tRPD
37.5
−
ns
tPPD
22.5
−
ns
ACT to ACT / ACT(R) or ACT(R) to ACT Command delay time
tRRD
15
−
ns
ACT(R) to ACT(R) Command delay time
tRRDR
30
−
ns
PFC / PFCA to RST / RSTA Command delay time
tPRD
22.5
−
ns
ACT to ACT / REF Command period
2
ACT(R)
Note1
to PFC / PFCA / PFR Command delay time
PFC to PFC / PFCA Command delay time
Notes 1. ACT (R) command is ACT command after RST command.
2. The another background operation and same channel foreground operation are illegal while tRAD period.
E0027N10
9
MC-45V16AB642
AC characteristics (Foreground to Foreground operation)
Parameter
READ/WRITE to READ/WRITE Command delay time
Symbol
tCCD
-A75
Unit
MIN.
MAX.
7.5
−
Note
ns
AC characteristics (Background to Foreground operation)
(after same channel Prefetch/Restore)
Parameter
Symbol
-A75
Unit
MIN.
MAX.
PFC/PFCA to READ/WRITE Command delay time
tPCD
15
−
ns
ACT(R) to READ/WRITE Command delay time
tRCD
30
−
ns
Note
1
Note 1. ACT (R) command is ACT command after RST command.
10
E0027N10
MC-45V16AB642
Serial PD
(1/2)
Byte No.
0
Function Described
Defines the number of bytes written
Hex
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Notes
80H
1
0
0
0
0
0
0
0
128 bytes
08H
0
0
0
0
1
0
0
0
256 bytes
into serial PD memory
1
Total number of bytes of serial PD
memory
Fundamental memory type
08H
0
0
0
0
1
0
0
0
VC DRAM
3
Number of row addresses
0DH
0
0
0
0
1
1
0
1
13 rows
4
Number of column addresses
08H
0
0
0
0
1
0
0
0
8 columns
5
Number of banks
01H
0
0
0
0
0
0
0
1
1 bank
6
Data width
40H
0
1
0
0
0
0
0
0
64 bits
7
Data width (continued)
00H
0
0
0
0
0
0
0
0
0
8
Voltage interface standard
01H
0
0
0
0
0
0
0
1
LVTTL
9
Read latency (/CAS latency) = 2
-A75
75H
0
1
1
1
0
1
0
1
7.5 ns
-A75
54H
0
1
0
1
0
1
0
0
5.4 ns
00H
0
0
0
0
0
0
0
0
None
2
cycle time
10
Read latency (/CAS latency) = 2
access time
11
DIMM configuration type
Refresh rate / type
80H
1
0
0
0
0
0
0
0
Normal
13
VC DRAM width
08H
0
0
0
0
1
0
0
0
×8
14
Error checking DRAM width
00H
0
0
0
0
0
0
0
0
None
15
Minimum clock delay
01H
0
0
0
0
0
0
0
1
1 clock
16
Burst length supported
04H
0
0
0
0
0
1
0
0
4
17
Number of banks on each VC DRAM
02H
0
0
0
0
0
0
1
0
2 banks
18
Read latency (/CAS latency) supported
02H
0
0
0
0
0
0
1
0
2
19
/CS latency supported
01H
0
0
0
0
0
0
0
1
0
20
/WE latency supported
01H
0
21
VC DRAM module attributes
00H
0
22
VC DRAM device attributes : general
0EH
0
00H
0
27
tRP (MIN.)
-A75
14H
0
28
tRRD (MIN.)
-A75
0FH
0
12
0
0
0
1
29
tAPD (MIN.)
-A75
0FH
0
0
0
0
1
30
tRAS (MIN.)
-A75
34H
0
0
1
1
0
23-26
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
0
0
0
0
0
0
1
0
1
0
0
20 ns
1
1
1
15 ns
1
1
1
15 ns
1
0
0
52.5 ns
E0027N10
0
0
11
MC-45V16AB642
(2/2)
Byte No.
Function Described
31
Module bank density
32
Address and command signal
Hex
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Notes
20H
0
0
1
0
0
0
0
0
128M bytes
-A75
15H
0
0
0
1
0
1
0
1
1.5 ns
-A75
08H
0
0
0
0
1
0
0
0
0.8 ns
input setup time
33
Address and command signal
input hold time
Data signal input setup time
-A75
15H
0
0
0
1
0
1
0
1
1.5 ns
35
Data signal input hold time
-A75
08H
0
0
0
0
1
0
0
0
0.8 ns
36
Prefetch read latency
-A75
04H
0
0
0
0
0
1
0
0
4 clocks
37
tPCD (MIN.)
-A75
0FH
0
0
0
0
1
1
1
1
15 ns
38
Number of segment addresses
02H
0
0
0
0
0
0
1
0
2 bits
39
Number of channels
04H
0
0
0
0
0
1
0
0
16
40
Depth of channels
08H
0
0
0
0
1
0
0
0
256 bits
2.0
34
62
63
41-61
64-71
72
SPD revision
Checksum for bytes 0 - 62
-A75
02H
0
0
0
0
0
0
1
0
34H
0
0
1
1
0
1
0
0
Manufacture’s JEDEC ID code
Manufacturing location
73-90
Manufacture’s P/N
91-92
Revision code
93-94
Manufacturing date
95-98
Assembly serial number
99-125
Mfg specific
Timing Charts
Please refer to the µPD45V128421, 45V128821, 45V128161 Data sheet (E0025N).
12
E0027N10
MC-45V16AB642
Package Drawing
168 PIN DUAL IN-LINE MODULE (SOCKET TYPE)
A (AREA B)
Z1
Z2
Y1
Y2
R2
N
F2
F1
Q
R1
L
A
B
H
S
(OPTIONAL HOLES)
K
C
J
B
I
G
U
T
E
D
A1 (AREA A)
M2 (AREA A)
M1 (AREA B)
M
detail of A part
detail of B part
D2
W
V
X
MILLIMETERS
133.35
133.35±0.13
11.43
36.83
6.35
2.0
3.125
54.61
2.44
3.18
6.35
1.27 (T.P.)
8.89
24.495
42.18
17.78
34.93±0.13
15.15
19.78
3.0 MAX.
1.0
R2.0
4.0±0.10
9.53
φ 3.0
1.27±0.1
4.0 MIN.
0.2±0.15
1.0±0.05
2.54±0.10
3.0 MIN.
P
ITEM
A
A1
B
C
D
D1
D2
E
F1
F2
G
H
I
J
K
L
M
M1
M2
N
P
Q
R1
R2
S
T
U
V
W
D1
X
Y1
Y2
Z1
Z2
E0027N10
2.26
3.0 MIN.
2.26
13
MC-45V16AB642
Edition / Date
Page
This edition
Description
Previous
Type of
edition
edition
−
−
Location
NEC Corporation (M15112E)
1st edition /
−
Sep. 2000
2nd edition /
p.1, 2
p.1, 2
Dec. 2000
−
Deletion
p.6, 8, 9, 10, p.6, 8, 9, 10,
11, 12
11, 12
-A10
-A10 specs
Elpida Memory, Inc. (E0027N)
1st edition /
−
−
−
Republished by Elpida Memory, Inc.
Jan. 2001
14
E0027N10
MC-45V16AB642
NOTES FOR CMOS DEVICES
1
PRECAUTION AGAINST ESD FOR SEMICONDUCTORS
Note:
Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and
ultimately degrade the device operation. Steps must be taken to stop generation of static electricity
as much as possible, and quickly dissipate it once, when it has occurred. Environmental control
must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using
insulators that easily build static electricity. Semiconductor devices must be stored and transported
in an anti-static container, static shielding bag or conductive material. All test and measurement
tools including work bench and floor should be grounded. The operator should be grounded using
wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need
to be taken for PW boards with semiconductor devices on it.
2
HANDLING OF UNUSED INPUT PINS FOR CMOS
Note:
No connection for CMOS device inputs can be cause of malfunction. If no connection is provided
to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence
causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels
of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused
pin should be connected to V DD or GND with a resistor, if it is considered to have a possibility of
being an output pin. All handling related to the unused pins must be judged device by device and
related specifications governing the devices.
3
STATUS BEFORE INITIALIZATION OF MOS DEVICES
Note:
Power-on does not necessarily define initial status of MOS device. Production process of MOS
does not define the initial operation status of the device. Immediately after the power source is
turned ON, the devices with reset function have not yet been initialized. Hence, power-on does
not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the
reset signal is received. Reset operation must be executed immediately after power-on for devices
having reset function.
E0027N10
15
MC-45V16AB642
The names of the companies, products, and logos described herein are the trademarks or registered trademarks of
each company.
CAUTION FOR HANDLING MEMORY MODULES
When handling or inserting memory modules, be sure not to touch any components on the modules, such as
the memory IC, chip capacitors and chip resistors. It is necessary to avoid undue mechanical stress on these
components to prevent damaging them.
When re-packing memory modules, be sure the modules are NOT touching each other. Modules in contact
with other modules may cause excessive mechanical stress, which may damage the modules.
• The information in this document is current as of December, 2000. The information is subject to
change without notice. For actual design-in, refer to the latest publications of Elpida's data sheets or
data books, etc., for the most up-to-date specifications of Elpida semiconductor products. Not all
products and/or types are available in every country. Please check with an Elpida Memory, Inc. for
availability and additional information.
• No part of this document may be copied or reproduced in any form or by any means without prior
written consent of Elpida. Elpida assumes no responsibility for any errors that may appear in this document.
• Elpida does not assume any liability for infringement of patents, copyrights or other intellectual property rights of
third parties by or arising from the use of Elpida semiconductor products listed in this document or any other
liability arising from the use of such products. No license, express, implied or otherwise, is granted under any
patents, copyrights or other intellectual property rights of Elpida or others.
• Descriptions of circuits, software and other related information in this document are provided for illustrative
purposes in semiconductor product operation and application examples. The incorporation of these
circuits, software and information in the design of customer's equipment shall be done under the full
responsibility of customer. Elpida assumes no responsibility for any losses incurred by customers or third
parties arising from the use of these circuits, software and information.
• While Elpida endeavours to enhance the quality, reliability and safety of Elpida semiconductor products,
customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To
minimize risks of damage to property or injury (including death) to persons arising from defects in Elpida
semiconductor products, customers must incorporate sufficient safety measures in their design, such as
redundancy, fire-containment, and anti-failure features.
• Elpida semiconductor products are classified into the following three quality grades:
"Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products
developed based on a customer-designated "quality assurance program" for a specific application. The
recommended applications of a semiconductor product depend on its quality grade, as indicated below.
Customers must check the quality grade of each semiconductor product before using it in a particular
application.
"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio
and visual equipment, home electronic appliances, machine tools, personal electronic equipment
and industrial robots
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support)
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems and medical equipment for life support, etc.
The quality grade of Elpida semiconductor products is "Standard" unless otherwise expressly specified in
Elpida's data sheets or data books, etc. If customers wish to use Elpida semiconductor products in
applications not intended by Elpida, they must contact an Elpida Memory, Inc. in advance to determine
Elpida's willingness to support a given application.
(Note)
(1) "Elpida" as used in this statement means Elpida Memory, Inc. and also includes its majority-owned
subsidiaries.
(2) "Elpida semiconductor products" means any semiconductor product developed or manufactured by or
for Elpida (as defined above).
M8E 00. 4