TI CDCVF25081DRG4

CDCVF25081
3.3-V PHASED-LOCK LOOP CLOCK DRIVER
SCAS671A – OCTOBER 2001 – REVISED FEBRUARY 2003
D Phase-Locked Loop-Based Zero-Delay
D PACKAGE (SOIC)
PW PACKAGE (TSSOP)
(TOP VIEW)
Buffer
D Operating Frequency: 8 MHz to 200 MHz
D Low Jitter (Cycle-Cycle): ±100 ps Over the
D
D
D
D
D
D
D
D
D
1
2
3
4
5
6
7
8
CLKIN
1Y0
1Y1
VDD
GND
2Y0
2Y1
S2
Range 66 MHz to 200 MHz
Distributes One Clock Input to Two Banks
of Four Outputs
Auto Frequency Detection to Disable
Device (Power Down Mode)
Consumes Less Than 20 µA in Power Down
Mode
Operates From Single 3.3-V Supply
Industrial Temperature Range –40°C to
85°C
25-Ω On-Chip Series Damping Resistors
No External RC Network Required
Spread Spectrum Clock Compatible (SSC)
Available in 16-Pin TSSOP or 16-Pin SOIC
Packages
16
15
14
13
12
11
10
9
FBIN
1Y3
1Y2
VDD
GND
2Y3
2Y2
S1
description
The CDCVF25081 is a high-performance, low-skew, low-jitter, phase-lock loop clock driver. It uses a PLL to
precisely align, in both frequency and phase, the output clocks to the input clock signal. The CDCVF25081
operates from a nominal supply voltage of 3.3 V. The device also includes integrated series-damping resistors
in the output drivers that make it ideal for driving point-to-point loads.
Two banks of four outputs each provide low-skew, low-jitter copies of CLKIN. All outputs operate at the same
frequency. Output duty cycles are adjusted to 50%, independent of duty cycle at CLKIN. The device
automatically goes into power-down mode when no input signal is applied to CLKIN and the outputs go into a
low state. Unlike many products containing PLLs, the CDCVF25081 does not require an external RC network.
The loop filter for the PLL is included on-chip, minimizing component count, space, and cost.
Because it is based on a PLL circuitry, the CDCVF25081 requires a stabilization time to achieve phase lock of
the feedback signal to the reference signal. This stabilization is required following power up and application of
a fixed-frequency signal at CLKIN and any following changes to the PLL reference.
The CDCVF25081 is characterized for operation from -40°C to 85°C.
FUNCTION TABLE
S2
S1
1Y0–1Y3
2Y0–2Y3
OUTPUT SOURCE
PLL SHUTDOWN
0
0
Hi-Z
Hi-Z
Yes
0
1
Active
Hi-Z
N/A.
PLL†
1
0
Active
Active
Input clock (PLL bypass)
PLL†
Yes
No
1
1
Active
Active
† CLK input frequency < 2 MHz switches the outputs to low level
No
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Copyright  2001 – 2003, Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
CDCVF25081
3.3-V PHASED-LOCK LOOP CLOCK DRIVER
SCAS671A – OCTOBER 2001 – REVISED FEBRUARY 2003
Terminal Functions
TERMINAL
2
TYPE
DESCRIPTION
NAME
PIN NO.
1Y[0:3]
2, 3, 14, 15
O
Bank 1Yn clock outputs. These outputs are low-skew copies of CLKIN. Each output has an integrated
25-Ω series-damping resistor.
2Y[0:3]
6, 7, 10, 11
O
Bank 2Yn clock outputs. These outputs are low-skew copies of CLKIN. Each output has an integrated
25-Ω series-damping resistor.
CLKIN
1
I
Clock input. CLKIN provides the clock signal to be distributed by the CDCVF25081 clock driver. CLKIN is
used to provide the reference signal to the integrated PLL that generates the output signal. CLKIN must
have a fixed frequency and phase in order for the PLL to acquire lock. Once the circuit is powered up and
a valid signal is applied, a stabilization time is required for the PLL to phase lock the feedback signal to
CLKIN.
FBIN
16
I
Feedback input. FBIN provides the feedback signal to the internal PLL. FBIN must be wired to one of the
outputs to complete the feedback loop of the internal PLL. The integrated PLL synchronizes the FBIN and
output signal so there is nominally zero-delay from input clock to output clock.
GND
5, 12
Ground
S1, S2
9, 8
I
VDD
4, 13
Power
Ground
Select pins to determine mode of operation. See the FUNCTION TABLE for mode selection options.
Supply voltage. The supply voltage range is 3 V to 3.6 V
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
CDCVF25081
3.3-V PHASED-LOCK LOOP CLOCK DRIVER
SCAS671A – OCTOBER 2001 – REVISED FEBRUARY 2003
functional block diagram
2
25 Ω
FBIN
CLKIN
16
1
PLL
M
U
X
3
25 Ω
14
25 Ω
15
25 Ω
S2
S1
1Y0
1Y1
1Y2
1Y3
8
9
Input
Select
Decoding
6
25 Ω
7
25 Ω
10
25 Ω
11
25 Ω
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
2Y0
2Y1
2Y2
2Y3
3
CDCVF25081
3.3-V PHASED-LOCK LOOP CLOCK DRIVER
SCAS671A – OCTOBER 2001 – REVISED FEBRUARY 2003
absolute maximum ratings over operating free-air temperature (unless otherwise noted)†
Supply voltage range, VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 4.6 V
Input voltage range, VI (see Notes 1 and 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 4.6 V
Output voltage range, VO (see Notes 1 and 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to VDD + 0.5 V
Input clamp current, IIK (VI < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –50 mA
Output clamp current, IOK (VO < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –50 mA
Continuous total output current, IO (VO = 0 to VDD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –50 mA
Package thermal impedance, θJA (see Note 3): PW package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147°C/W
D package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112°C/W
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to 150°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. This value is limited to 4.6 V maximum.
3. The package thermal impedance is calculated in accordance with JESD 51.
recommended operating conditions
MIN
Supply voltage, VDD
3
NOM
MAX
3.3
3.6
V
0.8
V
Low level input voltage, VIL
High level input voltage, VIH
2
Input voltage, VI
0
UNIT
V
3.6
V
High-level output current, IOH
–12
mA
Low-level output current, IOL
12
mA
Operating free-air temperature, TA
-40
85
°C
timing requirements over recommended ranges of supply voltage, load and operating free-air
temperature
MIN
Clock frequency,
frequency fclk
4
NOM
MAX
CL = 25 pF
8
100
CL = 15 pF
66
200
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
UNIT
MHz
CDCVF25081
3.3-V PHASED-LOCK LOOP CLOCK DRIVER
SCAS671A – OCTOBER 2001 – REVISED FEBRUARY 2003
electrical characteristics over recommended operating free-air temperature range (unless
otherwise noted)
PARAMETER
VIK
II
Input voltage
IPD‡
IOZ
Power down current
CI
Input capacitance at FBIN, CLKIN
CI
Input capacitance at S1, S2
CO
Output capacitance
VOH
VOL
TEST CONDITIONS
Input current
Output 3-state
VDD = 3 V,
VI = 0 V or VDD
II = -18 mA
fCLKIN = 0 MHz,
Vo = 0 V or VDD,
VDD = 3.3 V
VDD = 3.6 V
VI = 0 V or VDD
VI = 0 V or VDD
VI = 0 V or VDD
VDD = min to max,
VDD = 3 V,
VDD = 3 V,
High-level
High
level out
output
ut voltage
VDD = min to max,
VDD = 3 V,
Low-level
output
Low
level out
ut voltage
VDD = 3 V,
VDD = 3 V,
IOH
IOL
MIN
VDD = 3.3 V,
VDD = 3.6 V,
High-level
High
level out
output
ut current
VDD = 3 V,
VDD = 3.3 V,
Low-level output current
VDD = 3.6 V,
IOH = -100 µA
IOH = -12 mA
VDD – 0.2
2.1
IOH = -6 mA
IOL = 100 µA
2.4
TYP†
VO = 3.135 V
VO = 1.95 V
VO = 1.65 V
VO = 0.4 V
UNIT
–1.2
V
±5
µA
20
µA
±5
µA
4
pF
2.2
pF
3
pF
V
0.2
IOL = 12 mA
IOL = 6 mA
VO = 1 V
VO = 1.65 V
MAX
0.8
V
0.55
–24
–30
mA
-15
26
mA
33
14
† All typical values are at respective nominal VDD.
‡ For IDD over frequency see Figure 7.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
5
CDCVF25081
3.3-V PHASED-LOCK LOOP CLOCK DRIVER
SCAS671A – OCTOBER 2001 – REVISED FEBRUARY 2003
switching characteristics over recommended operating free-air temperature range (unless
otherwise noted)
PARAMETER
t(lock)
t(phoffset)
TEST CONDITIONS
PLL lock time
MIN
f = 100 MHz
Phase offset (CLKIN to FBIN)
tPLH
tPHL
Low-to-high level output propagation delay
tsk(o)
Output skew (Yn to Yn) (see Note 4)
tsk(pp)
Part to part skew
Part-to-part
High-to-low level output propagation delay
TYP†
MAX
UNIT
µs
10
f = 8 MHz to 66 MHz,
Vth = VDD/2 (see Note 5)
–200
200
f = 66 MHz to 200 MHz,
Vth = VDD/2 (see Note 5)
–150
150
2.5
6
ns
150
ps
S2 = High,
f = 1 MHz,
S1 = Low (PLL by
bypass)
ass)
CL = 25 pF
ps
S2 = high,
S1 = high (PLL mode)
600
S2 = high,
S1 = low (PLL bypass)
700
f = 66 MHz to 200 MHz, CL = 15 pF
±100
±150
tjit(cc)
Jitter (cycle-to-cycle)
f = 66 MHz to 100 MHz, CL = 25 pF
f = 8 MHz to 66 MHz (see Figure 6)
odc
Output duty cycle
f = 8 MHz to 200 MHz
tsk(p)
Pulse skew
S2 = High,
f = 1 MHz,
S1 = low (PLL bypass)
CL = 25 pF
0.8
3.3
Rise time rate
CL = 15 pF,
See Figure 4
tr
CL = 25 pF,
See Figure 4
0.5
2
0.8
3.3
Fall time rate
CL = 15 pF,
See Figure 4
tf
CL = 25 pF,
See Figure 4
0.5
2
43%
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
ps
57%
0.7
† All typical values are at respective nominal VDD.
NOTES: 4. The tsk(o) specification is only valid for equal loading of all outputs.
5. Similar waveform at CLKIN and FBIN are required. For phase displacement between CLKIN and Y-outputs see Figure 5.
6
ps
ns
V/ns
V/ns
CDCVF25081
3.3-V PHASED-LOCK LOOP CLOCK DRIVER
SCAS671A – OCTOBER 2001 – REVISED FEBRUARY 2003
PARAMETER MEASUREMENT INFORMATION
VDD
1000 Ω
From Output Under Test
CL = 25 pF at f = 8 MHz to 100 MHz
CL = 15 pF at f = 66 MHz to 200 MHz
1000 Ω
NOTES: A. CL includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: ZO = 50 Ω, tr < 1.2 ns, tf < 1.2 ns.
C. The outputs are measured one at a time with one transition per measurement.
Figure 1. Test Load Circuit
VDD
50% VDD
CLKIN
0V
t(phoffset)
VOH
50% VDD
FBIN
VOL
Figure 2. Voltage Thresholds for Measurements, Phase Offset (PLL Mode)
50% VDD
Any Y
50% VDD
50% VDD
Any Y
t1
tsk(0)
t2
tsk(0)
NOTE: odc = t1/(t1 + t2) x 100%
Figure 3. Output Skew and Output Duty Cycle (PLL Mode)
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
7
CDCVF25081
3.3-V PHASED-LOCK LOOP CLOCK DRIVER
SCAS671A – OCTOBER 2001 – REVISED FEBRUARY 2003
PARAMETER MEASUREMENT INFORMATION
VDD
50% VDD
CLKIN
0V
tPLH
tPHL
80%
VOH
80%
50% VDD
20%
50% VDD
20%
Any Y
VOL
tr
tf
NOTE: tsk(p)=|tPLH–tPHL|
Figure 4. Propagation Delay and Pulse Skew (Non-PLL Mode)
PHASE DISPLACEMENT
vs
CLOAD
CYCLE-TO-CYCLE JITTER
vs
FREQUENCY
100
500
VDD = 3.3 V
All Outputs Switching
CL(Yn) = 25 pF || 500 Ω
450
VDD = 3 V
400
Cycle-to-Cycle Jitter – ps
Phase Displacement – ps
50
0
VDD = 3.6 V
–50
VDD = 3.3 V
–100
350
300
250
200
150
100
50
–150
–10 –8
–6
–4
–2
0
2
4
6
8
10
0
10
20
Cload Difference Between FBIN and Yn Pins – pF
40
50
60
Figure 5
Figure 6
POST OFFICE BOX 655303
70
f – Frequency – MHz
(CFB + 4 pF) – CYn
8
30
• DALLAS, TEXAS 75265
80
90
100
CDCVF25081
3.3-V PHASED-LOCK LOOP CLOCK DRIVER
SCAS671A – OCTOBER 2001 – REVISED FEBRUARY 2003
PARAMETER MEASUREMENT INFORMATION
SUPPLY CURRENT
vs
FREQUENCY
180
VDD = 3 V to 3.6 V
CL(Yn) = 15 pF || 500 Ω
TA = –40°C to 85°C
IDD – Supply current – mA
160
VDD = 3.6 V
TA = 85°C
140
VDD = 3.6 V
TA = –40°C
120
100
VDD = 3 V
TA = –40°C
80
60
VDD = 3 V
TA = 85°C
40
20
0
0
20
40
60
80 100 120 140 160 180 200
f – Frequency – MHz
Figure 7
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
9
PACKAGE OPTION ADDENDUM
www.ti.com
11-Dec-2006
PACKAGING INFORMATION
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
CDCVF25081D
ACTIVE
SOIC
D
16
40
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CDCVF25081DG4
ACTIVE
SOIC
D
16
40
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CDCVF25081DR
ACTIVE
SOIC
D
16
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CDCVF25081DRG4
ACTIVE
SOIC
D
16
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CDCVF25081PW
ACTIVE
TSSOP
PW
16
90
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CDCVF25081PWG4
ACTIVE
TSSOP
PW
16
90
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CDCVF25081PWR
ACTIVE
TSSOP
PW
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CDCVF25081PWRG4
ACTIVE
TSSOP
PW
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
Lead/Ball Finish
MSL Peak Temp (3)
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in
a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check
http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS
compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder
temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited
information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI
to Customer on an annual basis.
Addendum-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com
14-Jul-2012
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device
Package Package Pins
Type Drawing
SPQ
Reel
Reel
A0
Diameter Width (mm)
(mm) W1 (mm)
B0
(mm)
K0
(mm)
P1
(mm)
W
Pin1
(mm) Quadrant
CDCVF25081DR
SOIC
D
16
2500
330.0
16.4
6.5
10.3
2.1
8.0
16.0
Q1
CDCVF25081PWR
TSSOP
PW
16
2000
330.0
12.4
6.9
5.6
1.6
8.0
12.0
Q1
Pack Materials-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com
14-Jul-2012
*All dimensions are nominal
Device
Package Type
Package Drawing
Pins
SPQ
Length (mm)
Width (mm)
Height (mm)
CDCVF25081DR
SOIC
D
16
2500
367.0
367.0
38.0
CDCVF25081PWR
TSSOP
PW
16
2000
367.0
367.0
35.0
Pack Materials-Page 2
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All
semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time
of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which
have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such
components to meet such requirements.
Products
Applications
Audio
www.ti.com/audio
Automotive and Transportation www.ti.com/automotive
Amplifiers
amplifier.ti.com
Communications and Telecom www.ti.com/communications
Data Converters
dataconverter.ti.com
Computers and Peripherals
www.ti.com/computers
DLP® Products
www.dlp.com
Consumer Electronics
www.ti.com/consumer-apps
DSP
dsp.ti.com
Energy and Lighting
www.ti.com/energy
Clocks and Timers
www.ti.com/clocks
Industrial
www.ti.com/industrial
Interface
interface.ti.com
Medical
www.ti.com/medical
Logic
logic.ti.com
Security
www.ti.com/security
Power Mgmt
power.ti.com
Space, Avionics and Defense
www.ti.com/space-avionics-defense
Microcontrollers
microcontroller.ti.com
Video and Imaging
www.ti.com/video
RFID
www.ti-rfid.com
OMAP Mobile Processors
www.ti.com/omap
TI E2E Community
e2e.ti.com
Wireless Connectivity
www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2012, Texas Instruments Incorporated