KL5KUSB101 USB to Ethernet Controller General Description The Kawasaki KL5KUSB101 Controller is a unique single chip solution to interface peripheral devices to the Universal Serial Bus (USB) and Ethernet. The KL5KUSB101 has been specifically designed to provide a simple solution to communicate with Ethernet applications as well as other USB peripheral devices. This has been accomplished by its highly integrated functionality. The USB controller consists of a central 16-bit processor, mask ROM, RAM buffer, clock generator, Ethernet interface, UART, IRQ, Watchdog Timer, Serial interface, External Memory Interface and SPORT Interface. The SIE (Serial Interface Engine) is fully compatible with the USB specification. This USB to Ethernet controller is ideal for LAN (Local Area Network), HAN (Home Area Network), Cable Modem, Set Top Boxes, or Mobile Networking applications. Features • Advanced 16 Bit processor for USB transaction processing and control data processing • USB interface ver. 1.0/1.1 compliant • Transceivers and SIE (Serial Interface Engine) • Internal Clock Generation • Utilizes low cost external crystal circuitry • 1.5K x 16 Internal RAM buffer • Serial Interface for external EEPROM • Watchdog timer • Fully IEEE 802.3 compliant 10 Mbit/sec Ethernet MAC Layer. Interfaces serially of an external ENDEC PHY. • UART • External memory interface • 100 pin QFP and LQFP package Block Diagram Txd Rxd UART CK EEPROM Serial Interface DIO Timer 0 Watchdog Timer 16 Bit Processor A15-0 Timer 1 SRAM Interface D15-0 Cntrl. 16 Bit Address / Data Bus 2 INT 1-0 8 IRQ 10Mb/s Ethernet Interface RAM (3KB) Mask ROM (8KB) Serial Interface Engine Clock Generator X1 X2 USB Interface Data - Data + Kawasaki LSI • 2570 North First Street • Suite 301 • San Jose, CA 95131 • Tel: (408) 570-0555 • Fax: (408) 570-0567 • www.klsi.com Ver. 2.4 1 KL5KUSB101 USB to Ethernet Controller KL5KUSB101 Application Block Diagram KL5KUSB101 USB USB / Ethernet PHY Transformer Full duplex 10 Base – T Ethernet Serial EEPROM Optional External Memory KL5KUSB101 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 XA_10 XA_9 XA_8 XA_7 XA_6 XA_5 XA_4 XA_3 XA_2 XA_1 nTST nRESET nXROMSEL nXWR nXRD GND nPDN N/C N/C N/C N/C LED_ON nXRAMSEL IGND nXBHE A0 XA_14 OVDD VDD XA_15 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 PHTCLK PHRXCLK PHCRS PH_RXD0 X_PCLK RXD IRQ1 IRQ2 N/C N/C N/C N/C SDA SCL N/C N/C N/C OGND CLK X2 XD_15 VDD VDD GND N/C N/C N/C N/C N/C N/C N/C N/C N/C VDD GND PHTXD0 PHCOL PHTXEN PHRXER PHRXDV PHTXER PHLPBK PHUTP TXD UGND VP VM UVDD N/C N/C 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 XD_14 OGND XD_13 XD_12 IGND XD_11 XD_10 XD_9 XD_8 XD_7 XD_6 XD_5 XD_4 XD_3 XD_2 XD_1 XD_0 XA_13 XA_12 XA_11 Pin Diagram 100QFP Kawasaki LSI • 2570 North First Street • Suite 301 • San Jose, CA 95131 • Tel: (408) 570-0555 • Fax: (408) 570-0567 • www.klsi.com Ver. 2.4 2 KL5KUSB101 USB to Ethernet Controller 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 VDD XD_15 XD_14 OGND XD_13 XD_12 IGND XD_11 XD_10 XD_9 XD_8 XD_7 XD_6 XD_5 XD_4 XD_3 XD_2 XD_1 XD_0 XA_13 XA_12 XA_11 XA_10 XA_9 XA_8 Pin Diagram 100LQFP 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 KL5KUSB101_L XA_7 XA_6 XA_5 XA_4 XA_3 XA_2 XA_1 nTST nRESET nXROMSEL nXWR nXRD GND nPDN N/C N/C N/C N/C LED_ON nXRAMSEL IGND nXBHE A0 XA_14 OVDD UVDD N/C N/C PHTCLK PHRXCLK PHCRS PH_RXD0 X_PCLK RXD IRQ1 IRQ2 N/C N/C N/C N/C SDA SCL N/C N/C N/C OGND CLK X2 XA_15 VDD 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 VDD GND N/C N/C N/C N/C N/C N/C N/C N/C N/C VDD GND PHTXD0 PHCOL PHTXEN PHRXER PHRXDV PHTXER PHLPBK PHUTP TXD UGND VP VM Pin Description Pin # QFP 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Pin # LQFP 99 100 1 2 3 4 5 6 7 8 9 10 11 12 I/O Pin Name IN/OUT IN IN GND N/C N/C N/C N/C N/C N/C N/C N/C N/C IN XD_15 VDD VDD AGND N/C N/C N/C N/C N/C N/C N/C N/C N/C VDD Description External Data Pins VDD VDD GND Open connection Open connection Open connection Open connection Open connection Open connection Open connection Open connection Open connection VDD Kawasaki LSI • 2570 North First Street • Suite 301 • San Jose, CA 95131 • Tel: (408) 570-0555 • Fax: (408) 570-0567 • www.klsi.com Ver. 2.4 3 KL5KUSB101 USB to Ethernet Controller Pin # QFP 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 Pin # LQFP 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 I/O Pin Name IN OUT IN OUT IN IN OUT OUT OUT IN/OUT IN IN/OUT IN/OUT IN NC NC IN IN IN IN IN/OUT IN/OUT IN IN NC NC NC NC OUT OUT IN NC NC IN IN OUT OUT IN IN OUT OUT OUT IN OUT OUT N/C N/C N/C N/C OUT GND PHTXD0 PHCOL PHTXEN PHRXER PHRXDV PHTXER PHLPBK PHUTP TXD UGND VP VM UVDD NC NC PHTXCLK PHRXCLK PHCRS PH_RXD0 X_PCLK RXD IRQ1 IRQ2 NC NC NC NC SDA SCL PU#1 NC NC OGND CLK X2 XA_15 VDD OVDD XA_14 XA0 nXBHE IGND nXRAMSEL LED_ON N/C N/C N/C N/C nPDN Description GND Transmit data to PHY Collision input from PHY Transmit Enable to PHY Receive Data Error from PHY Receive Data Valid from PHY Transmit Data Error to PHY Loopback input to PHY UTP/STP input to PHY UART TXD USB GND USB + Pin USB – Pin USB VDD NC NC PHY Transmit Clock PHY Receive Clock PHY Carrier Sense PHY Serial Receive Data External PCLK UART RXD Edge sens. Interrupt Edge sens. Interrupt Open connection Open connection Open connection Open connection SDA / EEPROM Serial Data SCL / EEPROM Serial Clock Pull up to USB + Pin for High Speed Open connection Open connection GND 48MHz Clock/Crystal Input 48MHz Crystal Output External Address Pin VDD VDD External Address Pin External Address Pin External byte High Enable (Active low) GND External RAM CS (Active low) Turns on 3.3V to TX LED Open connection Open connection Open connection Open connection Active low Powerdown mode signal to Phy Kawasaki LSI • 2570 North First Street • Suite 301 • San Jose, CA 95131 • Tel: (408) 570-0555 • Fax: (408) 570-0567 • www.klsi.com Ver. 2.4 4 KL5KUSB101 USB to Ethernet Controller Pin # QFP 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 Pin # LQFP 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 I/O Pin Name IN OUT OUT N/C IN IN OUT OUT OUT OUT OUT OUT OUT OUT OUT OUT OUT OUT OUT IN/OUT IN/OUT IN/OUT IN/OUT IN/OUT IN/OUT IN/OUT IN/OUT IN/OUT IN/OUT IN/OUT IN/OUT IN IN/OUT IN/OUT IN IN/OUT GND nXRD nXWR nXROMSEL nRESET nTST XA_1 XA_2 XA_3 XA_4 XA_5 XA_6 XA_7 XA_8 XA_9 XA_10 XA_11 XA_12 XA_13 XD_0 XD_1 XD_2 XD_3 XD_4 XD_5 XD_6 XD_7 XD_8 XD_9 XD_10 XD_11 IGND XD_12 XD_13 OGND XD_14 Description GND External Memory Read (Active low) External Memory Write (Active low) External ROM CS, active LO Reset Pin Test Pin, Disconnect for Normal Operation External Address Pins External Address Pins External Address Pins External Address Pins External Address Pins External Address Pins External Address Pins External Address Pins External Address Pins External Address Pins External Address Pins External Address Pins External Address Pins External Data Pins External Data Pins External Data Pins External Data Pins External Data Pins External Data Pins External Data Pins External Data Pins External Data Pins External Data Pins External Data Pins External Data Pins GND External Data Pins External Data Pins GND External Data Pins Kawasaki LSI • 2570 North First Street • Suite 301 • San Jose, CA 95131 • Tel: (408) 570-0555 • Fax: (408) 570-0567 • www.klsi.com Ver. 2.4 5 KL5KUSB101 USB to Ethernet Controller Function Description 16 Bit Processor The integrated 16 bit processor serves as a micro controller for USB peripherals. The processor can execute approximately five million instructions per second. With this processing power it allows the design of intelligent peripherals that can process data prior to passing it on to the host PC, thus improving overall performance of the system. The masked ROM (4K X 16) in the KL5KUSB101 or external memory contains a specialized instruction set that has been designed for highly efficient coding of processing algorithms and USB transaction processing. The 16-bit processor is designed for efficient data execution by having direct access to the RAM Buffer, external memory, I/O interfaces, and all the control and status registers. The divide/multiply feature expands the capability of USB peripherals. The processor supports prioritized vectored hardware interrupts. In addition, as many as 240 software interrupt vectors are available. The processor provides six addressing modes, supporting memory-to-memory, memoryto-register, register-to-register, immediate-to-register or immediate-to-memory operations. Register, direct, immediate, indirect, and indirect indexed addressing modes are supported. In addition, there is an auto-increment mode in which a register, used as an address pointer is automatically incremented after each use, making repetitive operations more efficient both from a programming and a performance standpoint. The processor features a full set of program control, logical, and integer arithmetic instructions. All instructions are sixteen bits wide, although some instructions require operands, which may occupy another one or two words. Several special “ short immediate” instructions are available, so that certain frequently used operations with small constant operand will fit into a 16-bit instruction. The Processor – Divide/Multiply function The processor’s divide/multiply function contains all the instructions of the base processor that additionally includes integer divide and multiply instructions. A signed multiply an instruction take two 16-bit operands and returns a 32-bit result. A signed divide instruction divides a 32-bit operand by a 16-bit operand. RAM Buffer The USB controller contains a 3K byte (1.5K X 16) internal buffer memory. The memory is used to buffer data and USB packets and accessed by the 16 Bit processor and the SIE. USB transactions are automatically routed to the memory buffer. The 16-bit processor has the ability to set up pointers and block sizes in buffer memory for USB transactions. Data is read from the interface and is processed and packetized by the 16bit I/O processor. Kawasaki LSI • 2570 North First Street • Suite 301 • San Jose, CA 95131 • Tel: (408) 570-0555 • Fax: (408) 570-0567 • www.klsi.com Ver. 2.4 6 KL5KUSB101 USB to Ethernet Controller USB Interface The USB controller meets the Universal Serial Bus (USB) specification ver 1.0. The transceiver is capable of transmitting and receiving serial data at the USB’s full speed, 12 Mbits/sec data rate. The driver portion of the transceiver is differential, while the receive section is comprised of a differential receiver and two single ended receivers. Internally, the transceiver interfaces to the SIE logic. Externally, the transceiver connects to the physical layer of the USB. 10Mb/sec Ethernet Interface The KL5KUSB101 Controller has a built in 10 Mbit/sec 10-base T Ethernet MAC (Media Access Controller) which is fully compliant with the IEEE 802.3 Ethernet standard. The KL5KUSB101 connects externally to a 10 Base -T ENDEC PHY. The KL5KUSB101 Controller 16-bit processor has direct access to the registers of the MAC. UART Interface Supports a transfer rate of 900 to 115.2K baud. Serial EEPROM Support The USB Controller serial interface is used to provide access to external EEPROM’s. The interface can support a variety of serial EEPROM formats. SRAM Interface An address port and 16-bit data port has been provided to interface to an external SRAM. DC CHARACTERISTICS U2E is implemented with Kawasaki’s 0.5um CMOS CBA and Embedded Memory KZ300EM Technology. The followings are the description of chip electric characteristics. 1. Absolute Maximum Ratings Table 5.1 Absolute Maximum Ratings Parameter Symbol Ratings Supply Voltage Vdd –0.3 ~ 4.0 Input Voltage Vin –0.3 ~ 7.3 DC Output Current Iout ±15 Storage Temperature Tstg –55 ~ 125 Unit V V mA °C Kawasaki LSI • 2570 North First Street • Suite 301 • San Jose, CA 95131 • Tel: (408) 570-0555 • Fax: (408) 570-0567 • www.klsi.com Ver. 2.4 7 KL5KUSB101 USB to Ethernet Controller 2. Recommended Operating Conditions Table 5.2 Recommended Operating Conditions Parameter Symbol Min Typ Operating supply voltage Vdd 3.0 – Operating ambient temperature Ta 0 – Max 3.6 70 Unit V °C 3. I/O Electrical DC Characteristics (Over Recommended Range) Table 3.1 DC Characteristics (over recommended range) Parameter Symbol Min Typ Max Unit Test Conditions Input low voltage VIL – – 0.8 V Input high voltage VIH 2.0 – – V Input low current IIL –10 – 10 uA VIN = Gnd Input high current IIH –10 – 10 uA VIN = Vdd Output low voltage VOL – – 0.4 V IOL = 4mA Output high voltage VOH 2.4 – – V IOH = –4mA 3-state leak current IOZ –10 – 10 uA VOH = Gnd or VOL = Vdd Active pull-up current IPU –25 –66 –160 uA VIN = Gnd or VOH = Gnd VIN = Gnd or Vdd Standby current IDDS – 80 100 uA No inputs are cycling. Outputs open. Same conditions as Suspend current ISUSP – 350 450 uA IDDS except for CLKI input buffer 48MHz toggling. IDDOP1 Outputs open. (in busy) – 80 100 mA Vdd = Max. dynamic operating FCLKI = FMAX ( current IDDOP2 (in idle) – 40 50 mA 48MHz ) Input capacitance Output capacitance CIN – – 15 pF COUT – – 15 pF Fpin=1MHz, VIN = Gnd. Vin = 100 mVrms Kawasaki LSI • 2570 North First Street • Suite 301 • San Jose, CA 95131 • Tel: (408) 570-0555 • Fax: (408) 570-0567 • www.klsi.com Ver. 2.4 8 KL5KUSB101 USB to Ethernet Controller AC CHARACTERISTICS U2E chip has 4 types of interfaces – USB port, Ethernet PHY port, SRAM port and Serial EEPROM port. AC timing of these interfaces are described below along with appropriate timing charts. Chip also requires the AC timing of system clock input CLKI and system reset RESETN. 1. CLKI and RESETN Signal Figure 1.1 CLKI and RESETN AC Timing Tckh CLKI (IN) Tpck Tckl RESETN (IN) Tprst Table 1.1 CLKI AC Characteristics (over recommended range) Symbol Parameter Min Typ Max Unit Not e Tpck CLKI one cycle time – 20.83 – ns 1 Fck CLKI frequency – 48 – MH 1 z Tckh CLKI high time 10 – – ns 1 Tckl CLKI low time 10 – – ns 1 Note: 1) The clock is used as an USB sampling clock and to generate the internal 32MHz clock pulse. Table 1.2 RESETN AC characteristics (over recommended range) Symbol Parameter Min Typ Max Unit Not e Tprst RESETN low pulse 10 – – Tpc 2 width k Note: 2) RESETN is an asynchronous, low assert, reset signal. Minimum assertion is 10 times of Tpck (210 ns). 2. USB Interface The USB signals – VP and VM are the pair signals of the differential output driver and receiver. The USB to Ethernet operates under USB Full speed (12Mb/s). USB signals are fully compatible with USB spec rev 1.1. Kawasaki LSI • 2570 North First Street • Suite 301 • San Jose, CA 95131 • Tel: (408) 570-0555 • Fax: (408) 570-0567 • www.klsi.com Ver. 2.4 9 KL5KUSB101 USB to Ethernet Controller 3. PHY Interface USB to Ethernet exchanges the serial bit data and messages to the external PHY chip. 3.1 U2E to PHY transmit Figure 3.1.1 USB to Ethernet to PHY Transmit AC Timing Ttch Ttck PHYTCLK (IN) Ttcl Tden1 Tden2 PHYTEN (OUT) Tdtd1 PHYTXD Tdtd2 first last (OUT) 98.09.02 updated Table 3.1.1 PHY Transmit AC Characteristics (over recommended range) Symbol Parameter Min Typ Max Unit Not e Ttck PHYTCLK period – 100 – ns 1 Ftck PHYTCLK frequency – 10 – MH 1 z Ttch PHYTCLK high width – 50 – ns – Ttcl PHYTCLK low width – 50 – ns – Tden1 PHYTEN assert delay from PHYTCLK rise – – 30 ns 2 Tden2 PHYTEN negate delay from PHYTCLK fall 0 – – ns 2 Tdtd1 PHYTXD valid delay from PHYTCLK rise – – 28 ns 2 Tdtd2 PHYTEN valid delay from PHYTCLK fall 0 – – ns 2 Note: 1) PHY generates the 10MHz clock. 2) 30pF capacitor external load is assumed. Figure 3.1.2 PHY SQE function AC Timing at Transmit PHYTEN (OUT) Tcol Tpco PHYCOL (IN) Kawasaki LSI • 2570 North First Street • Suite 301 • San Jose, CA 95131 • Tel: (408) 570-0555 • Fax: (408) 570-0567 • www.klsi.com Ver. 2.4 10 KL5KUSB101 USB to Ethernet Controller Table 3.1.2 PHY SQE Transmit AC Characteristics (over recommended range) Symbol Parameter Min Typ Max Unit Not e Tcol PHYCOL assert delay – – 1.6 us – from PHYTEN fall Tpco PHYCOL low width 0.5 – – us – 3.2 U2E to PHY receive Figure 3.2.1 U2E from PHY Receive AC Timing Trck Trch PHYRCLK (IN) Trcl Tscd Thcd PHYCD (IN) Thrd Tsrd PHYRXD first last (IN) Table 3.2.1 Receive from PHY AC Characteristics (over recommended range) Symbol Parameter Min Typ Max Unit Not e Trck PHYRCLK period – 100 – ns 1 Frck PHYRCLK frequency – 10 – MH 1 z Trch PHYRCLK high width – 50 – ns – Trcl PHYRCLK low width – 50 – ns – Tscd PHYCD setup time to PHYRCLK rise 20 – – ns – Thcd PHYCD hold time from PHYTCLK rise 10 – – ns – Tsrd PHYRXD setup time to PHYRCLK fall 20 – – ns – Thrd PHYRXD hold time from PHYRCLK fall 10 – – ns – Note: 1) PHY generates the 10MHz clock. Kawasaki LSI • 2570 North First Street • Suite 301 • San Jose, CA 95131 • Tel: (408) 570-0555 • Fax: (408) 570-0567 • www.klsi.com Ver. 2.4 11 KL5KUSB101 USB to Ethernet Controller 4. SRAM Interface 4.1 SRAM Read Access Figure 4.1.1 SRAM Read AC Timing Trc SRAMA14-0 (OUT) valid Taa Thad SRAMWEN (OUT) Tpoe SRAMOEN (OUT) Thoe Toe Tpcs SRAMCSN (OUT) SRAMD7-0 Thcs Tacs don't care valid (IN) Table 4.1.1 SRAM Read AC Characteristics (over recommended range) Symbol Parameter Min Typ Max Unit Not e Trc SRAM read cycle 31.25 – – ns 1,2 Frc SRAM read frequency – – 32 MH 1,2 z Taa SRAMA valid to SRAMD – – 17 ns 2 delay (address access) Thad SRAMD hold time from SRAMD invalid 2 – – ns 2 Tpoe SRAMOEN low width 31.25 – – ns 2 Toe SRAMOEN assert to SRAMD delay – – 10 ns 2 Thoe SRAMD hold time from SRAMOEN rise 0 – – ns 2 Tpcs SRAMCSN low width 31.25 – – ns 1,2 Tacs SRAMCSN assert to SRAMD delay – – 17 ns 2 Thcs SRAMD hold time from SRAMCSN rise 0 – – ns 2 Note: 1) Same as the USB to Ethernet internal clock cycle time 1T (31.25 ns). 2) Outputs are assumed to have 30pF external capacitive load. Kawasaki LSI • 2570 North First Street • Suite 301 • San Jose, CA 95131 • Tel: (408) 570-0555 • Fax: (408) 570-0567 • www.klsi.com Ver. 2.4 12 KL5KUSB101 USB to Ethernet Controller 4.2 SRAM Write Access Figure 4.2.1 SRAM Write AC Timing Twc valid SRAMA14-0 (OUT) Tdaw Tdwa Tdcw Tdwc SRAMOEN (OUT) SRAMCSN (OUT) Tpwe SRAMWEN (OUT) Tdrv SRAMD7-0 Tval Tts valid (OUT) Table 4.2.1 SRAM Write AC Characteristics (over recommended range) Symbol Parameter Min Typ Max Unit Not e Twc SRAM write cycle 31.25 – – ns 1,2 Fwc SRAM write frequency – – 32 MH 1,2 z Tdaw SRAMWEN assert delay 0 – – ns 2 from SRAMA valid Tdwa SRAMA invalid delay from SRAMWEN 0 – – ns 2 negate Tdcw SRAMWEN assert delay 0 – – ns 2 from SRAMCSN assert Tdwc SRAMCSN negate delay 0 – – ns 2 from SRAMWEN negate Tpwe SRAMWEN low width 25 – – ns 2 Tdrv SRAMD drive delay from SRAMWEN 0 – – ns 2 assert Tval SRAMD valid from SRAMWEN – – 15 ns 2 assert Tts SRAMD hold time from SRAMWEN rise 0 – – ns 2 Note: 1) Same as the USB to Ethernet internal clock cycle time 1T (31.25 ns). 2) Outputs are assumed to have 30pF external capacitive load. Kawasaki LSI • 2570 North First Street • Suite 301 • San Jose, CA 95131 • Tel: (408) 570-0555 • Fax: (408) 570-0567 • www.klsi.com Ver. 2.4 13 KL5KUSB101 USB to Ethernet Controller 5. Serial EEPROM interface The USB to Ethernet device communicates with the Serial EEPROM (SEP) through I²C™ bus. 5.1 Serial EEPROM Access Start Figure 5.1.1 SEP Access Start AC Timing SEPSCL (OUT) Tdckr(st) Tdckf(st) SEPSDA (OUT) Table 5.1.1 SEP Access Start AC Characteristics (over recommended range) Symbol Parameter Min Typ Max Unit Not e Tdckr(st) SEPSDA fall delay 4.7 – – us 1 from SEPSCL rise Tdckf(st) SEPSCL fall delay 4.0 – – us 1 from SEPSDA fall Note: 1) 30pF external capacitive load is assumed. 5.2 Serial EEPROM Access Stop Figure 5.2.1 SEP Access Stop AC Timing SEPSCL (OUT) Tdckr(sp) SEPSDA (OUT) Table 5.2.1 SEP access stop AC characteristics (over recommended range) Symbol Parameter Min Typ Max Unit Not e Tdckr(sp) SEPSDA rise delay 4.0 – – us 1 from SEPSCL rise Note: 1) 30pF external capacitive load is assumed. Kawasaki LSI • 2570 North First Street • Suite 301 • San Jose, CA 95131 • Tel: (408) 570-0555 • Fax: (408) 570-0567 • www.klsi.com Ver. 2.4 14 KL5KUSB101 USB to Ethernet Controller 5.3 Serial EEPROM Read Access Figure 5.3.1 SEP Read Access AC Timing SEPSCL (OUT) Tsd Thd valid SEPSDA (IN) Table 5.3.1 SEP read access AC characteristics (over recommended range) Symbol Parameter Min Typ Max Unit Not e Tsd SEPSDA setup time 20 – – ns 1 from SEPSCL rise Thd SEPSDA hold time 0 – – ns 1 from SEPSCL fall Note: 1) 30pF external capacitive load is assumed. 5.4 Serial EEPROM Write Access Figure 5.4.1 SEP Write Access AC Timing Tckf Tpckh SEPSCL (OUT) Tpckl Tdd SEPSDA valid (OUT) Table 5.4.1 SEP Write Access AC Characteristics (over recommended range) Symbol Parameter Min Typ Max Unit Not e Tsck SEPSCL clock period 10 – – us 1 Fsck SEPSCL frequency – – 100 kHz 1 Tpckl SEPSCL low width 4.7 – – us 1 Tpckh SEPSCL high width 4.0 – – us 1 Tdd SEPSDA valid delay 2 – 20 ns 1 from SEPSCL fall Note: 1) 30pF external capacitive load is assumed. Kawasaki LSI • 2570 North First Street • Suite 301 • San Jose, CA 95131 • Tel: (408) 570-0555 • Fax: (408) 570-0567 • www.klsi.com Ver. 2.4 15 KL5KUSB101 USB to Ethernet Controller 6. Serial EEPROM Access Timing Serial EEPROM Byte Write, Page Write, Current Address Read, Random Read and Sequential Read Timings are shown below. Please refer to Serial EEPROM datasheet ([12] 3-b) for more detail. 6.1 Serial EEPROM Byte Write Figure 6.1.1 SEP Byte Write Timings SEPSCL (OUT) SEPSDA (L) (I/O) status (L) (L) b2b1b0 0 Aa7a6a5a4a3a2a1a0 Ad7d6d5d4d3d2d1d0 A S idle S 1 0 1 0 byte data T control byte K word address K KP (H) S control T idle NS KT (L) control A K Twr = max 10ms for internal wr operation (ack polling needed to start next tran) 6.2 Serial EEPROM Page Write (up to 16 bytes) Figure 6.2.1 SEP Page Write Timings status w A dat N idle S control A T K addrN K (L) (L) A K (L) dat N+1 A K dat N+1 (L) A K (L) max N+15 A S idle (internal programming cycle) KP (L) 6.3 Serial EEPROM Byte Read from current address Figure 6.3.1 SEP Byte Read Timings SEPSCL (OUT) SEPSDA (I/O) status (L)( 7 () 6 )( 5 () 4 () 3 () 2 () 1 )( 0 ) idle S 1 0 1 0 b2 b1b0 1 Ad7d6d5d4 d3 d2d1d0 N S control byte read data T K KP Kawasaki LSI • 2570 North First Street • Suite 301 • San Jose, CA 95131 • Tel: (408) 570-0555 • Fax: (408) 570-0567 • www.klsi.com Ver. 2.4 16 KL5KUSB101 USB to Ethernet Controller 6.4 Serial EEPROM Byte Random Read Figure 6.4.1 SEP Byte Random Read Timings SEPSCL (OUT) SEPSDA (I/O) status (L) idle (L)(7)(6)(5)(4)(3)(2)(1)(0) (L) S 1 0 1 0 b2b1b0 0 Aa7 a6 a5a4a3 a2a1a0 A S 1 0 1 0 b2b1b0 1 Ad7 d6d5d4d3 d2d1d0 N S T control byte K word address K T control byte K read data KP 6.5 Serial EEPROM Sequential Read (up to final address) Figure 6.5.1 SEP Sequential Read Timings status w A S cntrl r idle S cntrl w A T K addrN K T (L) (L) A input K L input L (L) (dat N) AK(dat N+1)AK dat N+1 L last in HS P AK NK Kawasaki LSI assumes no responsibility or liability for (1) any errors or inaccuracies contained in the information herein and (2) the use of the information or a portion thereof in any application, including any claim for (a) copyright or patent infringement or (b) direct, indirect, special or consequential damages. There are no warranties extended or granted by this document. The information herein is subject to change without notice form Kawasaki LSI November 1998 • Copyright 1998 • Kawasaki LSI • Printed in U.S.A Kawasaki LSI • 2570 North First Street • Suite 301 • San Jose, CA 95131 • Tel: (408) 570-0555 • Fax: (408) 570-0567 • www.klsi.com Ver. 2.4 17