ETC PS5R-A24

Sensors
SA1A and SA1B: High-Speed, Slim Style Photoelectric Sensors
SA1A and SA1B: High-Speed, Slim Style Photoelectric Sensors
General Specifications
Key features of the SA1A and SA1B include:
• Ideal for installations with broad or narrow clearances
• Available with through-beam between the projector and receiver, which
features a sensing range of 6'–6-3/4" (2m)
• Sensing by diffuse-reflected light available, with a sensitivity adjustment for eliminating the interference of
background light
• Through-beam and diffuse-reflected light sensors are featured in
all configurations
• Configurations include NPN or PNP transistor output, with light on or dark
on (senses the presence or absence of an object)
• Adverse results and circuit damage are avoided through protection from
reverse polarity
• High-speed, 1ms response time
• Automatic reset with power-up
• Protection rated IP66
Power Voltage
Operating Voltage
Current Draw
Dielectric Strength
Insulation Resistance
Operating Humidity
Operating Temperature
Storage Temperature
Vibration Resistance
12V to 24V DC
Shock Resistance
Extraneous Light
Immunity
Damage limits: 500m/s2 (approximately 50G), 10 shocks in each of 3 axes
Sunlight: 10,000 lux (maximum), Incandescent light: 3,000 lux (maximum) —
defined as incident or unwanted light received by a sensor, unrelated to the presence or
absence of the intended object
Material
Housing and lens: polycarbonate
Degree of Protection
IP66 — IEC Pub 529, sensors rated IP66 are dust-tight, water-resistant, and perform best
when not subjected to heavy particle or water blasts
Cable
Cable type: 0.2mm2; Vinyl cabtyre cable #26 AWG x 6'–6-3/4" (2m) long
Transmitter: 2-core, Receiver: 4-core
Cable Extension
328' (100m) maximum using #22 AWG (0.3mm2) cabtyre cable or better
Weight
Projector: 40g; Receiver: 45g
10V to 30V DC, (ripple 10% maximum)
25mA (maximum)
Between live and dead parts: 1,000V AC, 50/60Hz, 1 minute
Between live and dead parts: 20MΩ (minimum), with 500V DC megger
35 to 85% RH (avoid condensation)
–15° to +55°C (avoid freezing)
–25° to +65°C
Damage limits: 10 to 55Hz, amplitude 1.5mm p-p, 2 hours in each of 3 axes
www.idec.com
SA1A/B-TN1, -TN2
SA1A/B-DN1, -DN2
SA1A/B-TP1, -TP2
SA1A/B-DP1, -DP2
Detection
Through-beam
Diffuse-reflected
light
Through-beam
Diffuse-reflected
light
Sensitivity
––––
Adjustable
––––
Adjustable
Hysteresis
––––
20% (maximum)
––––
20% (maximum)
Output
NPN transistor open collector
30V DC, 100mA (maximum)
Light Source
Infrared LED (modulation mode)
LED
On: When output is on
Response
1ms (maximum)
PNP transistor open collector
30V DC, 100mA (maximum)
USA: (800) 262-IDEC or (408) 747-0550, Canada: (888) 317-IDEC
Q
Sensors
Function Specifications
Narrow/Flat Type
Q-47
Sensors
SA1A and SA1B: High-Speed, Slim Style Photoelectric Sensors
Part Numbers: SA1A and SA1B Sensors
Part Number
Type
Output
On
SA1A-TN1
NPN
SA1A-TN2
SA1A-TP1
ThroughBeam
PNP
SA1A-TP2
SA1A-DN1
NPN
SA1A-DN2
SA1A-DP1
Reflected
Light
PNP
SA1A-DP2
SA1B-TN1
NPN
SA1B-TN2
SA1B-TP1
ThroughBeam
PNP
SA1B-TP2
SA1B-DN1
NPN
SA1B-DN2
SA1B-DP1
Reflected
Light
PNP
SA1B-DP2
Light On:
No Object Detected
Dark On:
Object Detected
Light On:
No Object Detected
Dark On:
Object Detected
Light On:
Object Detected
Dark On:
No Object Detected
Light On:
Object Detected
Dark On:
No Object Detected
Light On:
No Object Detected
Dark On:
Object Detected
Light On:
No Object Detected
Dark On:
Object Detected
Light On:
Object Detected
Dark On:
No Object Detected
Light On:
Object Detected
Dark On:
No Object Detected
Sensing Range
Detects
6' – 6-3/4" (2m)
Opaque
Objects
Ø 0.20"
(5mm)
Minimum
1.97" (50mm)
Opaque or
Transparent
Objects
Style
Broad
Style
6' – 6-3/4" (2m)
Opaque
Objects
Ø 0.20"
(5mm)
Minimum
1.97" (50mm)
Opaque or
Transparent
Objects
Narrow
Style
All sensors include mounting brackets/screws. Through-beam sensors come with a
crimping tool, and diffuse-reflected sensors include a screwdriver.
Modifying Beam Width: Through-Beam
Slit options, ordered separately, modify the beam size of through-beam sensors. Use when interference results from mounting sensors in
close proximity.
Part Number and
Slit Width
Used on One Side
Used on Both Sides
SA9Z-S01
0.02" (0.5mm)
19.69" (0.5m)
11.81" (0.3m)
SA9Z-S02
0.04" (1mm)
39.37" (1m)
23.62" (0.6m)
SA9Z-S03
0.08" (2mm)
59.06" (1.5m)
35.43" (0.9m)
Sensors
Q
Q-48
www.idec.com
USA: (800) 262-IDEC or (408) 747-0550, Canada: (888) 317-IDEC
Sensors
SA1A and SA1B: High-Speed, Slim Style Photoelectric Sensors
Dimensions
SA1A (Broad View):
Through-Beam and Diffuse-Reflected Light
0.07"
(1.8mm)
0.31"
0.87"
(8mm)
(22mm)
0.04"
(1mm)
Center of
Projection
1.50"
Through-Beam
0.79" (20mm)
Diffuse-Reflected
0.65" (16.5mm)
(38mm)
0.75"
(19mm)
0.22"
(5.5mm)
0.98"
0.30"
0.22"
(25mm)
(7.5mm)
(5.5mm)
0.12"
(3mm)
Ø 0.126" x 0.28" Deep
0.63"
(3.2 x 7.1mm)
Two Places
0.55" to 0.87"
(16mm)
SA1B (Narrow View):
Through-Beam and Diffuse-Reflected Light
0.39"
(10mm)
0.04"
(22mm)
(1mm)
0.30"
Center of
Projection
(7.5mm)
0.22"
0.87"
(1mm)
0.04"
Ø 0.126" x 0.28" Deep
(5.5mm)
0.43"
(11mm)
(14 to 22mm)
(3.2 x 7.1mm)
Two Places
Ø 0.12"
(M3)
Two Places
Through-Beam
0.83" (21mm)
Diffuse-Reflected
0.69" (17.5mm)
0.75"
(19mm)
0.98"
1.42"
(36mm)
0.71"
(25mm)
(18mm)
0.12"
(3mm)
0.43"
(11mm)
0.22"
(5.5mm)
Option with Slit:
Modify Beam Size of
Through-Beam Sensor
0.76"
0.24"
(19.2mm)
0.63"
(16mm)
0.18"
(4.5mm)
(6.1mm)
0.35"
Part No. SA9Z–
S01: Ø 0.02" (0.5mm) x 0.20"
(5mm)
S02: Ø 0.04" (1.0mm)
Long Slot
S03: Ø 0.08" (2mm) Two Places
(9mm)
0.28"
(7mm)
2. For through-beam sensors, dimensions
for the projector and receiver are the
same. On all sensors, the cord is Ø
0.16" x 6' – 6-3/4" long (Ø 4mm x 2m).
Q
Sensors
www.idec.com
USA: (800) 262-IDEC or (408) 747-0550, Canada: (888) 317-IDEC
Q-49
Sensors
General Information
General Information
Specifications
Extraneous Light
Do not operate a sensor under any conditions exceeding these specifications.
Bright, extraneous light such as sunlight, incandescent lights, or fluorescent
lights may impair the performance of sensors in detecting color or light.
Do not operate a sensor under current and voltage conditions other than
those for which the individual sensor is rated.
3. SA6A ultrasonic sensors are not affected by extraneous light.
Do not exceed the recommended operating temperature and humidity.
Although sensors are rated for operation below 0°C, this specification does
not imply that performance characteristics will remain constant under prolonged freezing conditions. Continued exposure and the accompanying frost,
ice, dew, and condensation which accumulate on the optical surface will
adversely affect sensor performance.
Make sure that extraneous light does not exceed recommended levels found
in the individual specifications sections. When 500 lux is specified, this is
equal to 50 footcandles. The average factory illumination is ordinarily below
this level, except in areas where visual inspection is being performed. Only in
such brightly lit areas is incident light of particular concern.
To maintain superior performance characteristics, do not exceed vibration and
shock resistance ratings while operating a sensor. In addition, avoid isolated
impacts to the sensor housing which are severe enough to adversely affect
the waterproof characteristics.
Unwanted light interference can often be avoided simply by making sure that
the optical receiver is not aimed directly toward a strong light source. When
mounting direction cannot be adjusted, place a light barrier between all
nearby light sources and the receiver.
Reflected-Light Sensors
IEC (International Electrotechnical Commission) Ratings
When installing sensors which detect reflected light, make sure that
unwanted light reflections from nearby surfaces, such as the floor, walls,
reflective machinery, or stainless steel, do not reach the optical receiver.
Sensors rated IP67 are resistant to moisture when occasionally immersed in
still water. Sensors rated IP64 through IP66 are resistant to moisture when
occasionally subjected to splashing or when located in the vicinity of turbulent waters. These ratings do not imply that a sensor is intended for use
under continual high-pressure water spray. Avoid such applications to maintain optimal sensor performance.
Also, make sure that reflected-light sensors mounted in close proximity do not
cause interfering reflections. When it is not possible to maintain the recommended clearance between sensors, as noted in the individual installation
sections, provide light barriers between sensors.
Sensors rated IP64 through IP67 are dust-tight and water-tight. For best performance, avoid using any sensor in an area where it will be subjected to
heavy particle blasts and where dust, water, or steam will accumulate on the
optical surface.
Through-Beam Sensors
A slit attachment is available to modify the beam size of through-beam sensors. This option is recommended for detecting very small objects (near the
size of the smallest object which a sensor can detect) or for eliminating light
interference when sensors are mounted in close proximity.
Laser Sensors
Start-up
Do not test the housing for dielectric strength and insulation resistance, since
the housing is connected to the electronic circuit ground of a sensor. Do not
perform dielectric strength and insulation resistance tests on electrical systems without disconnecting photoelectric sensors, as such testing may result
in damage to the sensor.
IMPORTANT: Always consider safety when installing a laser sensor of any kind.
Make sure that the laser beam cannot inadvertently shine into the eyes of people
passing by or working in the vicinity. See safety information on page Q-20.
Mounting
Several lines of sensors, as noted in the individual operation sections, are
provided with an internal circuit to turn an output off for a specified amount of
time upon power-up. This delay is normal; it prevents a transient state when
turning power on.
The mounting bracket and hardware are included with sensors, where applicable. Use the appropriate hardware for mounting, along with washers and
spring washers or lock nuts. Do not overtighten attachment hardware. Overtightening causes damage to the housing and will adversely affect the waterproof characteristics of the sensor.
Optimum Performance
Best results can be obtained when the sensor is mounted so that the object
sensed is in the center of the beam, rather than when the object is located
near the edges of the sensing window. In addition, the most reliable sensing
occurs when the majority of the objects being sensed are well within the
sensing range, rather than at the extreme near and far limits.
The optical surface of each sensor must be cleaned on a regular basis for continual superior performance. Use a soft cloth dipped in isopropyl alcohol to
remove dust and moisture build-up.
IMPORTANT: Do not use organic solvents (such as thinner, ammonia, caustic
soda, or benzene) to clean any part of a sensor.
Q
1.
2.
Sensors
All sensors experience signal inconsistencies under the influence of inductive
noise. Do not use sensors in close proximity to transformers, large inductive
motors, or generators. Avoid using sensors in direct contact with sources of
excessive heat. Also avoid operation in close proximity to welding equipment.
Even though the SA6A ultrasonic sensor features protection against noise, there may be adverse effects from strong noise.
It is strongly recommended to avoid using any sensor where it will be continually subjected to elements which impair performance or cause corrosive damage to the sensor. In particular, avoid strong vibrations and shocks, corrosive gases, oils, and chemicals, as well as blasts of water, steam, dust, or other particles.
www.idec.com
USA: (800) 262-IDEC or (408) 747-0550, Canada: (888) 317-IDEC
Q-55
Sensors
General Information
Wiring
Glossary
Avoid running high-voltages or power lines in the same conduit with sensor
signal lines. This prevents inaccurate results or damage from induced noise.
Use a separate conduit when the influence of power lines or electromagnetic
equipment may occur, particularly when the distance of the wiring is extended.
Attenuation: Reduction of beam intensity as a result of environmental factors such as dust, humidity, steam, etc.
IMPORTANT: Connect the sensor cables and wires as noted in the individual
Wiring sections. Failure to connect as shown in wiring diagrams will result in
damage to the internal circuit.
When extending sensor cables and wires, make sure to use cables equal or
superior to that recommended in the individual specifications sections.
When wiring terminals, be sure to prevent contact between adjoining terminals. When using ring or fork lug terminals, use the insulated sleeve style
only. Each sensor terminal can accept only one ring of fork lug terminal.
On ISF series photoelectric sensors, use recommended cable, along with the
attached packing gland and washer, when wiring the terminals. This ensures
waterproof and dustproof characteristics.
Power Supply
Noise resistance characteristics are improved when a sensor is grounded to
the 0V power terminal. If the 0V power terminal is not at ground potential, use
a ceramic 0.01µF capacitor which can withstand 250V AC minimum.
When using a switching power supply, be sure to ground the FG terminal to
eliminate high-frequency noise. The power supply should include an insulating transformer, not an autotransformer.
On ISF series photoelectric sensors, the power supply should be sized according to the voltage drop through the lead wire when using a long extension for
the DC type (328' or 100m maximum extension).
Dark on: Output energized when light is not detected by the receiving element. For through-beam sensors, light from the projector is not detected by
the receiver when an object is present. For reflected light sensors, light is
not detected when it is not reflected from an object surface.
Diffuse-reflected light sensors: Sensors that detect all scattered,
reflected light. Light reflected from nearby surfaces, as well as intended
object surface, is detected. Diffuse-reflected light sensors are often called
“proximity switches,” since they switch when any object is near. Also use
to detect color contrast when colors reflect light intensity differently (green
LED recommended for this application).
EEPROM: Acronym which stands for electronically erasable, programmable, read only memory.
Excess gain: Ratio of optical power available at a given projector-toreceiver range divided by the minimum optical power required to trigger
the receiver.
Extraneous light: Incident light received by a sensor, irrelated to the presence or absence of object being detected. Extraneous light is usually
unwanted background light such as sunlight and incandescent lamps in
close proximity.
∆E: The measurement of color difference as a three-variable function,
located on an XYZ axis of light, hue, and chroma values.
Hysteresis: Operating point and release point at different levels. For solid
state sensors, this is accomplished electrically. For mechanical switches, it
results from storing potential energy before the transition occurs.
Power Supply
Light on: Output energized when light is detected by receiving element.
For through-beam sensors, light from the projector is detected by the
receiver when an object is not present. For reflected light sensors, light is
detected when it is reflected from an object surface.
The compact PS5R-A power supply is the perfect companion item for most
IDEC sensors. This power supply is only 1.77" (45mm) wide, 3.15" (80mm) tall,
and 2.76" (70mm) deep. Call an IDEC representative for more details.
Linearity: Measurement of how nearly linear, that is, how accurate actual
analog output is, with respect to distance.
Part Number
Output Ratings
PS5R-A12
12V DC, 0.62A
PS5R-A24
24V DC, 0.32A
NPN/PNP: Types of open collector transistors. NPN is a sink transistor;
output on establishes negative potential difference. PNP is a source transistor; output on establishes positive potential difference.
Polarizing: Filtering out all reflected light except that which is projected in
one plane only. Polarized retro-reflected light sensors detect the light from
corner-cube type reflectors when an object is not present.
Reflected-light sensors: Sensors with the projector and receiver in one
housing. Light is projected by the light source, and reflected light is
received by the optical surface. Includes diffuse-reflected, retro-reflected,
limited-reflected, and spot-reflected sensors.
Miscellaneous
Repeatability: Ability of a sensor to reproduce output readings consistently when the same value is applied consecutively, in the same direction,
for a specified number of cycles, or for a specified time duration.
Strong magnetic fields may detract from the accuracy of the sensing measurement. Avoid mounting a sensor directly to machinery, since the housing is connected to the electronic circuit ground of the sensor. If it is necessary to mount
a sensor on machinery, use the insulating plate and sleeve provided.
Resolution: Overall dimension of the smallest object which can be
detected (when sensing the presence of an object) or smallest increment of
distance which can be distinguished with reliable results (when sensing
the position of an object).
Response time: Time elapsed between input and output. Total response
time is the sum of object detection, amplifier response, and output
response times.
Retro-reflective scan: This type of reflected light sensor uses a special
reflector to return projected light when an object is not present. Sensor
detects the presence of an object when the light is reflected differently.
Q
Sensors
Through-beam sensors: Sensors with a separate projector and receiver.
The light source from the projector is detected by the receiver, except when
an object is present.
Transient: Undesirable surge of current (many times larger than normal
current) for a very short period, such as during the start-up of an inductive
motor.
Q-56
www.idec.com
USA: (800) 262-IDEC or (408) 747-0550, Canada: (888) 317-IDEC