Rev.2.1_00 LOW DROPOUT CMOS VOLTAGE REGULATOR S-814 Series The S-814 Series is a low dropout voltage, high output voltage accuracy and low current consumption positive voltage regulator developed utilizing CMOS technology. Built-in low ON-resistance transistors provide low dropout voltage and large output current. A shutdown circuit ensures long battery life. Various types of output capacitors can be used in the S-814 Series compared with the past CMOS voltage regulators. (i.e., Small ceramic capacitors can also be used in the S-814 Series.) The SOT-23-5 miniaturized package and the SOT-89-5 packages are recommended to use for configuring portable devices and large output current applications, respectively. Features • Low current consumption At operation mode: At shutdown mode: • Output voltage: • High accuracy output voltage: • Output current: • • • • • • Typ. 30 μA, Max. 40 μA Typ. 100 nA, Max. 500 nA 0.1 V steps between 2.0 and 6.0 V ±2.0 % 110 mA capable: 3.0 V output product, at VIN=4 V*1 180 mA capable: 5.0 V output product, at VIN=6 V*1 Typ. 170 mV: 5.0 V output product, at IOUT=60 mA Low dropout voltage: Built-in shutdown circuit Built-in short-circuit protection Low ESR capacitor, e.g. a ceramic capacitor of 0.47 μF or more, can be used as the output capacitor. Small package: SOT-23-5 and SOT-89-5 Lead-free products *1. Attention should be paid to the power dissipation of the package when the output current is large. Applications • Power source for battery-powered devices, personal communication devices, and home electric/electronic appliances. Packages Package Name SOT-23-5 SOT-89-5 Package MP005-A UP005-A Drawing Code Tape MP005-A UP005-A Seiko Instruments Inc. Reel MP005-A UP005-A 1 LOW DROPOUT CMOS VOLTAGE REGULATOR S-814 Series Rev.2.1_00 Block Diagram *1 VOUT VIN ON/OFF + Shutdown circuit − Reference voltage VSS *1. Parasitic diode Figure 1 2 Seiko Instruments Inc. Short-circuit protection circuit Rev.2.1_00 LOW DROPOUT CMOS VOLTAGE REGULATOR S-814 Series Product Name Structure 1. Product Name S-814 x xx A xx- xxx T2 G IC direction in tape specifications*1 Product name (Abbreviation)*2 Package name (Abbreviation) MC: SOT-23-5 UC: SOT-89-5 Output voltage 20 to 60 (e.g., When output voltage is 2.0 V, it is expressed as 20.) Product type *3 A: ON / OFF pin positive logic B: ON / OFF pin negative logic *1. Refer to the taping specifications at the end of this book. *2. Refer to the Table 1 in “2. Product name list”. *3. Refer to “3. ON/OFF pin (Shutdown pin)” in “ Operation”. Seiko Instruments Inc. 3 LOW DROPOUT CMOS VOLTAGE REGULATOR S-814 Series Rev.2.1_00 2. Product Name List Table1 Output voltage SOT-23-5 SOT-89-5 S-814A20AMC-BCKT2G S-814A20AUC-BCKT2G 2.0 V±2.0 % S-814A21AMC-BCLT2G S-814A21AUC-BCLT2G 2.1 V±2.0 % S-814A22AMC-BCMT2G S-814A22AUC-BCMT2G 2.2 V±2.0 % S-814A23AMC-BCNT2G S-814A23AUC-BCNT2G 2.3 V±2.0 % S-814A24AMC-BCOT2G S-814A24AUC-BCOT2G 2.4 V±2.0 % S-814A25AMC-BCPT2G S-814A25AUC-BCPT2G 2.5 V±2.0 % S-814A26AMC-BCQT2G S-814A26AUC-BCQT2G 2.6 V±2.0 % S-814A27AMC-BCRT2G S-814A27AUC-BCRT2G 2.7 V±2.0 % S-814A28AMC-BCST2G S-814A28AUC-BCST2G 2.8 V±2.0 % S-814A29AMC-BCTT2G S-814A29AUC-BCTT2G 2.9 V±2.0 % S-814A30AMC-BCUT2G S-814A30AUC-BCUT2G 3.0 V±2.0 % S-814A31AMC-BCVT2G S-814A31AUC-BCVT2G 3.1 V±2.0 % S-814A32AMC-BCWT2G S-814A32AUC-BCWT2G 3.2 V±2.0 % S-814A33AMC-BCXT2G S-814A33AUC-BCXT2G 3.3 V±2.0 % S-814A34AMC-BCYT2G S-814A34AUC-BCYT2G 3.4 V±2.0 % S-814A35AMC-BCZT2G S-814A35AUC-BCZT2G 3.5 V±2.0 % S-814A36AMC-BDAT2G S-814A36AUC-BDAT2G 3.6 V±2.0 % S-814A37AMC-BDBT2G S-814A37AUC-BDBT2G 3.7 V±2.0 % S-814A38AMC-BDCT2G S-814A38AUC-BDCT2G 3.8 V±2.0 % S-814A39AMC-BDDT2G S-814A39AUC-BDDT2G 3.9 V±2.0 % S-814A40AMC-BDET2G S-814A40AUC-BDET2G 4.0 V±2.0 % S-814A41AMC-BDFT2G S-814A41AUC-BDFT2G 4.1 V±2.0 % S-814A42AMC-BDGT2G S-814A42AUC-BDGT2G 4.2 V±2.0 % S-814A43AMC-BDHT2G S-814A43AUC-BDHT2G 4.3 V±2.0 % S-814A44AMC-BDIT2G S-814A44AUC-BDIT2G 4.4 V±2.0 % S-814A45AMC-BDJT2G S-814A45AUC-BDJT2G 4.5 V±2.0 % S-814A46AMC-BDKT2G S-814A46AUC-BDKT2G 4.6 V±2.0 % S-814A47AMC-BDLT2G S-814A47AUC-BDLT2G 4.7 V±2.0 % S-814A48AMC-BDMT2G S-814A48AUC-BDMT2G 4.8 V±2.0 % S-814A49AMC-BDNT2G S-814A49AUC-BDNT2G 4.9 V±2.0 % S-814A50AMC-BDOT2G S-814A50AUC-BDOT2G 5.0 V±2.0 % S-814A51AMC-BDPT2G S-814A51AUC-BDPT2G 5.1 V±2.0 % S-814A52AMC-BDQT2G S-814A52AUC-BDQT2G 5.2 V±2.0 % S-814A53AMC-BDRT2G S-814A53AUC-BDRT2G 5.3 V±2.0 % S-814A54AMC-BDST2G S-814A54AUC-BDST2G 5.4 V±2.0 % S-814A55AMC-BDTT2G S-814A55AUC-BDTT2G 5.5 V±2.0 % S-814A56AMC-BDUT2G S-814A56AUC-BDUT2G 5.6 V±2.0 % S-814A57AMC-BDVT2G S-814A57AUC-BDVT2G 5.7 V±2.0 % S-814A58AMC-BDWT2G S-814A58AUC-BDWT2G 5.8 V±2.0 % S-814A59AMC-BDXT2G S-814A59AUC-BDXT2G 5.9 V±2.0 % S-814A60AMC-BDYT2G S-814A60AUC-BDYT2G 6.0 V±2.0 % Remark Please contact the SII marketing department for type B products. 4 Seiko Instruments Inc. LOW DROPOUT CMOS VOLTAGE REGULATOR S-814 Series Rev.2.1_00 Pin Configurations SOT-23-5 Top view 5 1 4 2 3 Table 2 Pin No. Symbol Pin description 1 VIN Voltage input pin 2 VSS GND pin 3 ON/OFF Shutdown pin 4 NC*1 No connection 5 VOUT Voltage output pin *1. The NC pin is electrically open. The NC pin can be connected to VIN or VSS. Figure 2 SOT-89-5 Top view 5 1 4 2 Table 3 Pin No. Symbol Pin description 1 VOUT Voltage output pin 2 VSS GND pin 3 NC*1 No connection 4 ON/OFF Shutdown pin 5 VIN Voltage input pin *1. The NC pin is electrically open. The NC pin can be connected to VIN or VSS. 3 Figure 3 Seiko Instruments Inc. 5 LOW DROPOUT CMOS VOLTAGE REGULATOR S-814 Series Rev.2.1_00 Absolute Maximum Ratings Table 4 Item Symbol VIN VON/OFF VOUT Input voltage Output voltage SOT-23-5 Power dissipation PD SOT-89-5 (Ta=25°C unless otherwise specified) Absolute maximum rating Unit V VSS−0.3 to VSS+12 V VSS−0.3 to VSS+12 V VSS−0.3 to VIN+0.3 250 (When not mounted on board) mW mW 600*1 500 (When not mounted on board) mW 1000*1 mW °C −40 to +85 °C −40 to +125 Operating ambient temperature Topr Storage temperature Tstg *1. When mounted on board [Mounted on board] (1) Board size : 114.3 mm × 76.2 mm × t1.6 mm (2) Board name : JEDEC STANDARD51-7 Caution The absolute maximum ratings are rated values exceeding which the product could suffer physical damage. These values must therefore not be exceeded under any conditions. Power Dissipation (PD) [mW] 1000 800 SOT-89-5 600 SOT-23-5 400 200 0 0 100 150 50 Ambient Temperature (Ta) [°C] Figure 4 Power Dissipation of Package (When Mounted on Board) 6 Seiko Instruments Inc. LOW DROPOUT CMOS VOLTAGE REGULATOR S-814 Series Rev.2.1_00 Electrical Characteristics Table 5 Item Symbol Output voltage*1 *2 VOUT(E) Output current IOUT Dropout voltage*4 Vdrop Line regulation 1 Line regulation 2 Load regulation Output voltage temperature cofficient*5 Current consumption during operation Current consumption during shutdown Input voltage ON/OFF pin input voltage “H” ON/OFF pin input voltage “L” ON/OFF pin input current “H” ON/OFF pin input current “L” Short current limit Conditions VIN=VOUT(S)+1 V, IOUT=30 mA 2.0 V≤VOUT(S)≤2.9 V 3.0 V≤VOUT(S)≤3.9 V VOUT(S)+1 V≤VIN≤10 V 4.0 V≤VOUT(S)≤4.9 V 5.0 V≤VOUT(S)≤6.0 V 2.0 V≤VOUT(S)≤2.4 V 2.5 V≤VOUT(S)≤2.9 V 3.0 V≤VOUT(S)≤3.4 V 3.5 V≤VOUT(S)≤3.9 V IOUT=60 mA 4.0 V≤VOUT(S)≤4.4 V 4.5 V≤VOUT(S)≤4.9 V 5.0 V≤VOUT(S)≤5.4 V 5.5 V≤VOUT(S)≤6.0 V ΔVOUT1 VOUT(S)+0.5 V≤VIN≤10 V, IOUT=30 mA ΔVIN • VOUT ΔVOUT 2 VOUT(S)+0.5 V≤VIN≤10 V, IOUT=10 μA ΔVIN • VOUT ΔVOUT3 VIN=VOUT(S)+1 V, 10 μA≤IOUT≤80 mA ΔVOUT VIN=VOUT(S)+1 V, IOUT=30 mA, ΔTa • VOUT −40°C≤Ta≤85°C (Ta=25°C unless otherwise specified) Test Min. Typ. Max. Units circuit VOUT(S) VOUT(S) VOUT(S) V 1 ×0.98 ×1.02 100*3 mA 3 ⎯ ⎯ 110*3 mA 3 ⎯ ⎯ 135*3 mA 3 ⎯ ⎯ *3 180 mA 3 ⎯ ⎯ 0.51 0.87 V 1 ⎯ 0.38 0.61 V 1 ⎯ 0.30 0.44 V 1 ⎯ 0.24 0.33 V 1 ⎯ 0.20 0.26 V 1 ⎯ 0.18 0.22 V 1 ⎯ 0.17 0.21 V 1 ⎯ 0.17 0.20 V 1 ⎯ ⎯ 0.05 0.2 %/V 1 ⎯ 0.05 0.2 %/V 1 ⎯ 30 50 mV 1 ⎯ ±100 ⎯ ppm/ °C 1 ISS1 VIN=VOUT(S)+1 V, ON/OFF pin=ON, No load ⎯ 30 40 μA 2 ISS2 VIN=VOUT(S)+1 V, ON/OFF pin=OFF, No load ⎯ 0.1 0.5 μA 2 VIN ⎯ VIN=VOUT(S)+1 V, RL=1 kΩ, Judged at VOUT level VIN=VOUT(S)+1 V, RL=1 kΩ, Judged at VOUT level ⎯ ⎯ 10 V 1 1.5 ⎯ ⎯ V 4 ⎯ ⎯ 0.3 V 4 VSH VSL ISH VIN=VOUT(S)+1 V, VON/OFF=7 V −0.1 ⎯ 0.1 μA 4 ISL VIN=VOUT(S)+1 V, VON/OFF=0 V −0.1 ⎯ 0.1 μA 4 70 mA 3 VIN=VOUT(S)+1 V, VOUT pin=0 V ⎯ ⎯ =V +1 V, f=100 Hz, ΔVrip=0.5 Vrms, V IN OUT(S) RR 45 dB 5 Ripple rejection ⎯ ⎯ IOUT=30 mA *1. VOUT(E): Effective output voltage i.e., The output voltage when fixing IOUT(=30 mA) and inputting VOUT(S)+1.0 V. VOUT(S): Specified output voltage *2. Output amperage when output voltage goes below 95 % of VOUT(E) after gradually increasing output current. *3. The output current can be at least this value. Use load amperage not exceeding this value. IOS Seiko Instruments Inc. 7 LOW DROPOUT CMOS VOLTAGE REGULATOR S-814 Series Rev.2.1_00 *4. Vdrop=VIN1*1−(VOUT(E)×0.98) *1. Input voltage at which the output voltage falls 98 % of VOUT(E) after gradually decreasing the input voltage. *5. The change in temperature [mV/°C] is calculated using the following equation. ΔVOUT [mV / °C] *1 = VOUT(S) [V ] *2 × ΔVOUT [ppm / °C] *3 ÷ 1000 ΔTa ΔTa • VOUT *1. Change in temperature of the dropout voltage *2. Specified output voltage *3. Output voltage temperature coefficient 8 Seiko Instruments Inc. LOW DROPOUT CMOS VOLTAGE REGULATOR S-814 Series Rev.2.1_00 Test Circuits 1. VIN + VOUT 2. + VIN A A VOUT + ON/OFF V ON/OFF VSS VSS Set to power Set to ON VIN or GND Figure 5 3. VIN VOUT ON/OFF Figure 6 + 4. VIN A V + VOUT + A VSS V ON/OFF RL VSS Set to power ON Figure 7 Figure 8 5. VIN VOUT + ON/OFF V RL VSS Set to power ON Figure 9 Seiko Instruments Inc. 9 LOW DROPOUT CMOS VOLTAGE REGULATOR S-814 Series Rev.2.1_00 Standard Circuit VIN INPUT VOUT OUTPUT *2 CL *1 CIN VSS Single GND GND *1. CIN is a capacitor used to stabilize input. *2. In addition to a tantalum capacitor, a ceramic capacitor of 0.47 μF or more can be used in CL. Figure 10 Caution The above connection diagram and constant will not guarantees successful operation. Perform through evaluation using the actual application to set the constant. Technical Terms 1. Low dropout voltage regulator The low dropout voltage regulator is a voltage regulator featuring a low dropout voltage characteristic due to its internal low ON-resistance characteristic transistors. 2. Low ESR ESR is the abbreviation for Equivalent Series Resistance. The low ESR output capacitor (CL) can be used in the S-814 Series. 3. Output voltage (VOUT) The accuracy of the output voltage is ensured at ±2.0 % under the specified conditions*1 of input voltage, output current, and temperature, which differ depending upon the product items. *1. The condition differs depending upon each product. Caution If you change the above conditions, the output voltage value may vary out of the accuracy range of the output voltage. Refer to the “ Electrical Characteristics” and “ Characteristics” for details. 4. Line regulation 1 (ΔVOUT1) and Line regulation 2 (ΔVOUT2) Indicate the input voltage dependencies of output voltage. That is, the value shows how much the output voltage changes due to a change in the input voltage with the output current remained unchanged. 5. Load regulation (ΔVOUT3) Indicates the output current dependencies of output voltage. That is, the value shows how much the output voltage changes due to a change in the output current with the input voltage remained unchanged. 10 Seiko Instruments Inc. LOW DROPOUT CMOS VOLTAGE REGULATOR S-814 Series Rev.2.1_00 6. Dropout voltage (Vdrop) Indicates a difference between input voltage (VIN1) and output voltage when output voltage falls by 98 % of VOUT(E) by gradually decreasing the input voltage. Vdrop=VIN1−(VOUT(E)×0.98) ⎛ ΔVOUT ⎞ 7. Temperature coefficient of output voltage ⎜ ⎟ ⎝ ΔTa • VOUT ⎠ The shadowed area in Figure 11 is the range where VOUT varies in the operating temperature range when the temperature coefficient of the output voltage is ±100 ppm/°C. VOUT [V] +0.28 mV/°C VOUT(E) *1 −0.28mV/°C −40 25 85 Ta [°C] *1. The mesurement value of output voltage at 25°C. Figure 11 Typical example of S-814A28A A change in temperatures of output voltage [mV/°C] is calculated using the following equation. ΔVOUT [mV / °C] *1 = VOUT(S)[V ] *2 × ΔVOUT [ppm / °C] *3 ÷ 1000 ΔTa • VOUT ΔTa *1. The change in temperature of the dropout voltage *2. Specified output voltage *3. Output voltage temperature coefficient Seiko Instruments Inc. 11 LOW DROPOUT CMOS VOLTAGE REGULATOR S-814 Series Rev.2.1_00 Operation 1. Basic operation Figure 12 shows the block diagram of the S-814 Series. The error amplifier compares a reference voltage Vref with part of the output voltage divided by the feedback resistors Rs and Rf. It supplies the output transistor with the gate voltage, necessary to ensure certain output voltage free of any fluctuations of input voltage and temperature. VIN *1 Current source Error amplifier Vref − VOUT Rf + Reference voltage circuit Rs VSS *1. Parasitic diode Figure 12 2. Output transistor The S-814 Series uses a low on-resistance Pch MOS FET as the output transistor. Be sure that VOUT does not exceed VIN+0.3 V to prevent the voltage regulator from being broken due to inverse current flowing from VOUT pin through a parasitic diode to VIN pin. 12 Seiko Instruments Inc. LOW DROPOUT CMOS VOLTAGE REGULATOR S-814 Series Rev.2.1_00 3. ON/OFF pin (Shutdown pin) This pin starts and stops the regulator. When the shutdown pin is switched to the shutdown level, the operation of all internal circuits stops, the built-in Pch MOSFET output transistor between VIN pin and VOUT pin is shutdown, allowing current consumption to be drastically reduced. The VOUT pin enters the Vss level due to internally divided resistance of several MΩ between VOUT pin and VSS pin. Furthermore, the structure of the ON/OFF pin is as shown in Figure 13. Since the ON/OFF pin is neither pulled down nor pulled up internally, do not use it in the floating state. In addition, please note that current consumption increases if a voltage of 0.3 V to VIN−0.3 V is applied to the shutdown pin. When the ON/OFF pin is not used, connect it to the VIN pin in case of the product type is ‘”A” and to the VSS pin in case of “B”. VIN ON/OFF VSS Figure 13 Table 6 Product type A A B B ON/OFF pin “H”: Power on “L”: Shutdown “H”: Shutdown “L”: Power on Internal circuit Operating Stop Stop Operating VOUT pin voltage Set value VSS level VSS level Set value Current consumption ISS1 ISS2 ISS2 ISS1 4. Short-circuit protection circuit The S-814 Series incorporates a short-circuit protection circuit to protect the output transistor against short-circuiting between VOUT pin and VSS pin. The short-circuit protection circuit controls output current as shown in “1. Output voltage vs. Output current (When load current increases)” curve in “ Characteristics”, and prevents output current of approx. 70 mA or more from flowing even if VOUT pin and VSS pin are shorted. However, the shortcircuit protection circuit does not protect thermal shutdown. Be sure that input voltage and load current do not exceed the specified power dissipation level. When output current is large and a difference between input and output voltages is large even if not shorted, the short-circuit protection circuit may start functioning and the output current may be controlled to the specified amperage. For details, refer to “3. Maximum output current vs. Input voltage” curve in “ Characteristics”. Seiko Instruments Inc. 13 LOW DROPOUT CMOS VOLTAGE REGULATOR S-814 Series Rev.2.1_00 Selection of Output Capacitor (CL) Mount an output capacitor between VOUT pin and VSS pin for phase compensation. The S-814 Series enables customers to use a ceramic capacitor as well as a tantalum or an aluminum electrolytic capacitor. • A ceramic capacitor or an OS capacitor: Use a capacitor of 0.47 μF or more. • A tantalum or an aluminum electrolytic capacitor: Use a capacitor of 0.47 μF or more and ESR of 10 Ω or less. Pay special attention not to cause an oscillation due to an increase in ESR at low temperatures, when you use the aluminum electrolytic capacitor. Evaluate the capacitor taking into consideration its performance including temperature characteristics. Overshoot and undershoot characteristics differ depending upon the type of the output capacitor you select. Refer to “CL dependencies of overshoot” and “CL dependencies of undershoot” in “ Transient Response Characteristics”. Precautions • Wiring patterns for VIN pin, VOUT pin and GND pin should be designed so that the impedance is low. When mounting an output capacitor, the distance from the capacitor to the VOUT pin and the VSS pin should be as short as possible. • Note that output voltage may increase when a series regulator is used at low load current (Less than 10 μA). • Generally, a series regulator may cause oscillation, depending on the selection of external parts. The following conditions are recommended for this IC. However, be sure to perform sufficient evaluation under the actual usage conditions to select the series regulator. 0.47 μF or more Output capacitor (CL): Equivalent Series Resistance (ESR): 10 Ω or less Input series resistance (RIN): 10 Ω or less • The voltage regulator may oscillate when the impedance of the power supply is high and the input capacitor is small or an input capacitor is not connected. • The application conditions for input voltage and load current do not exceed the power dissipation level of the package. • In determining the output current, attention should be paid to the output current value specified and footnote *3 in Table 5 in the “ Electrical Characteristics”. • Do not apply an electrostatic discharge to this IC that exceeds the performance ratings of the built-in electrostatic protection circuit. • SII claims no responsibility for any and all disputes arising out of or in connection with any infringement by products including this IC of patents owned by a third party. 14 Seiko Instruments Inc. LOW DROPOUT CMOS VOLTAGE REGULATOR S-814 Series Rev.2.1_00 Characteristics (Typical data) 1. Output voltage (VOUT) vs. Output current (IOUT) (When load current increases) S-814A20A S-814A30A (Ta=25°C) (Ta=25°C) 3.0 2.0 3V VIN=2.3 V 10 V 1.0 5V 10 V VOUT [V] VOUT [V] 4V 2.5 V 2.0 4V 3.5 V 6V VIN=3.3 V 1.0 0 0 0 50 100 150 200 0 250 100 IOUT [mA] 200 IOUT [mA] 300 400 S-814A50A (Ta=25°C) Remark In determining the output current, attention should be paid to the following. 5.0 10 V VOUT [V] 4.0 7V 6V 8V 3.0 1. The minimum output current value and footnote *3 in Table 5 in the “ Electrical characteristics”. 2. The package power dissipation. 5.5 V 2.0 VIN=5.3 V 1.0 0 0 200 400 IOUT [mA] 600 800 2. Output voltage (VOUT) vs. Input voltage (VIN) S-814A20A (Ta = 25°C) S-814A30A (Ta = 25°C) 3.5 IOUT = 10 μA 100 μA 2.0 VOUT (V) VOUT (V) 2.5 60 mA 1.5 30 mA 3.0 60 mA 2.5 30 mA IOUT = 10 μA 100 μA 1 mA 2.0 1 mA 11.0 1.5 1 3 2 4 VIN (V) 2 3 4 5 VIN (V) S-814A50A (Ta = 25°C) 5.5 VOUT (V) 60 mA 5.0 30 mA IOUT = 10 μA 100 μA 1 mA 4.5 4.0 4 5 6 7 VIN (V) Seiko Instruments Inc. 15 LOW DROPOUT CMOS VOLTAGE REGULATOR S-814 Series Rev.2.1_00 3. Maximum output current (IOUTmax) vs. Input voltage (VIN) S-814A20A S-814A30A Ta=−40°C 200 25°C 85°C Ta=−40°C IOUTmax [mA] IOUTmax [mA] 600 300 100 400 25°C 85°C 200 0 0 1 2 3 4 5 6 VIN [V] 7 8 9 10 2 3 4 5 6 7 VIN [V] 8 9 10 S-814A50A IOUTmax [mA] 800 Remark In determining the output current, attention should be paid to the following. Ta=−40°C 600 25°C 1. The minimum output current value and footnote *3 in Table 5 in the “ Electrical characteristics”. 2. The package power dissipation. 85°C 400 200 0 4 5 6 7 VIN [V] 8 9 10 4. Dropout voltage (Vdrop) vs. Output current (IOUT) S-814A30A 120 Ta=−40°C 150 100 Vdrop [mV] Vdrop [mV] S-814A20A 300 250 200 25°C 5 10 15 20 IOUT [mA] 25 30 S-814A50A 160 Vdrop [mV] 25°C Ta=−40°C 0 0 85°C 120 80 25°C Ta=−40°C 40 0 0 16 60 30 85°C 50 0 85°C 90 10 20 30 40 IOUT [mA] 50 60 Seiko Instruments Inc. 0 5 10 15 20 IOUT [mA] 25 30 LOW DROPOUT CMOS VOLTAGE REGULATOR S-814 Series Rev.2.1_00 5. Output voltage (VOUT) vs. Ambient temperature (Ta) S-814A20A S-814A30A VIN=3V, IOUT=30mA 2.04 3.03 VOUT [V] VOUT [V] 2.02 2.00 1.98 1.96 −50 VIN=4V, IOUT=30mA 3.06 3.00 2.97 2.94 0 50 100 Ta [°C] −50 0 50 100 Ta [°C] S-814A50A VIN=6V, IOUT=30mA 5.10 VOUT [V] 5.05 5.00 4.95 4.90 −50 0 50 100 Ta [°C] 6. Line regulation (ΔVOUT1) vs. Ambient temperature (Ta) ΔVOUT1 [mV] S-814A20A/S-814A30A/S-814A50A VIN=VOUT(S)+0.5↔10 V, IOUT=30 mA 35 30 25 3V 5V 20 15 10 VOUT=2 V 5 0 0 −50 50 100 Ta [°C] Seiko Instruments Inc. 17 LOW DROPOUT CMOS VOLTAGE REGULATOR S-814 Series Rev.2.1_00 7. Load regulation (ΔVOUT3) vs. Ambient temperature (Ta) ΔVOUT3 [mV] S-814A20A/S-814A30A/S-814A50A VIN=VOUT(S)+1 V, IOUT=10 μA↔80 mA 50 3V 40 30 5V 20 VOUT=2 V 10 0 −50 0 50 100 Ta [°C] 8. Current consumption (ΔISS1) vs. Input voltage (VIN) S-814A20A S-814A30A 40 85 °C 30 ΔISS1 (μA) ΔISS1 (μA) 40 25 °C 20 Ta = −40 °C 10 25 °C 20 Ta = −40 °C 0 0 2 4 6 8 10 VIN (V) 40 30 85 °C 20 25 °C Ta = −40 °C 10 0 0 2 4 6 0 2 4 6 VIN (V) S-814A50A ΔISS1 (μA) 30 10 0 8 10 VIN (V) 18 85 °C Seiko Instruments Inc. 8 10 LOW DROPOUT CMOS VOLTAGE REGULATOR S-814 Series Rev.2.1_00 9. Threshold voltage of shutdown pin (VSH/VSL) vs. Input voltage (VIN) S-814A30A 2.5 2.5 2.0 2.0 VSH VSH/VSL [V] VSH/VSL [V] S-814A20A 1.5 1.0 VSH 1.5 1.0 0.5 0.5 VSL 0 2 4 6 VIN [V] VSL 0 8 10 9 10 3 5 7 VIN [V] 8 10 S-814A50A 2.5 VSH/VSL [V] 2.0 VSH 1.5 1.0 0.5 VSL 0 5 6 8 VIN [V] Seiko Instruments Inc. 19 LOW DROPOUT CMOS VOLTAGE REGULATOR S-814 Series Rev.2.1_00 Reference Data 1. Transient Response Characteristics (S-814A30A, Typical data, Ta=25°C) Input voltage or Load current Overshoot Output volatage Undershoot 1-1. At power on Output voltage (VOUT) – Time (t) VIN=0→10 V, IOUT=30 mA VOUT [0.5V/div] 10 V 0V CL=1 μF VIN CL=4.7 μF VOUT 0V t [50 μs/div] CL dependencies of overshoot 0.8 1.0 5V Overshoot [V] Overshoot [V] Load dependencies of overshoot VIN=0→VOUT(S)+1 V, CL=1 μF 0.6 3V 0.4 VOUT=2 V 0.2 5V 0.6 0.4 0.2 VOUT=2 V 0 1.E−05 1.E−04 1.E−03 1.E−02 1.E−01 1.E+00 0.1 IOUT [A] 0.4 0.2 0 0 2 4 6 VDD [V] 10 100 8 10 Temperature dependencies of overshoot VIN=0→VOUT(S)+1 V, IOUT=30 mA, CL=1 μF 1.0 5V 0.8 3V 0.6 Overshoot [V] VOUT=2 V 0.6 1 CL [uF] VDD dependencies of overshoot VIN=0→VDD, IOUT=30 mA, CL=1 μF 1.0 3V 5V 0.8 Overshoot [V] 3V 0.8 0 20 VIN=0→VOUT(S)+1 V, IOUT=30 mA 0.4 0.2 VOUT=2 V 0 0 −50 Seiko Instruments Inc. 50 Ta [°C] 100 LOW DROPOUT CMOS VOLTAGE REGULATOR S-814 Series Rev.2.1_00 1-2. At power on/off control Output voltage (VOUT) – Time (t) VIN=10 V, ON/OFF=0→10 V, IOUT=30 mA VOUT [0.5 V/div] 10 V CL=1 μF 0V ON/OFF VOUT CL=4.7 μF 0V t [50 μs/div] Load dependencies of overshoot VIN=VOUT(S)+1 V, CL=1 μF, ON/OFF=0→VOUT(S)+1 V VIN=VOUT(S)+1 V, IOUT=30 mA, ON/OFF=0→VOUT(S)+1V 1.0 5V Overshoot [V] Overshoot [V] 0.8 CL dependencies of overshoot 0.6 3V 0.4 VOUT=2 V 0.2 0.8 0.6 0.4 VOUT=2 V 0.2 0 0 0.1 1.E−05 1.E−04 1.E−03 1.E−02 1.E−01 1.E+00 1 10 VDD dependencies of overshoot Temperature dependencies of overshoot 0.6 0.4 VOUT=2 V 1.0 Overshoot [V] VIN=VDD, IOUT=30 mA, CL=1 μF, ON/OFF=0→VDD 1.0 5V 3V 0.8 Overshoot [V] 100 CL [μF] IOUT [A] 0.2 5V 3V VIN=VOUT(S)+1 V, IOUT=30 mA, CL=1 μF, ON/OFF=0→VOUT(S)+1V 5V 0.8 0.6 0.4 0.2 0 3V VOUT=2 V 0 0 2 4 6 VDD [V] 8 10 −50 0 50 100 Ta [°C] Seiko Instruments Inc. 21 LOW DROPOUT CMOS VOLTAGE REGULATOR S-814 Series Rev.2.1_00 1-3. At power fluctuation Output voltage (VOUT) – Time (t) VIN=10→4.0 V, IOUT=30 mA VIN=4.0→10 V, IOUT=30 mA 10 V VOUT [0.5 V/div] VOUT [0.5 V/div] 10 V 4V VIN CL=1 μF CL=4.7 μF VOUT 3V 4V VIN CL=4.7 μF VOUT 3V CL=1 μF t [50 μs/div] t [50 μs/div] Load dependencies of overshoot VIN=VOUT(S)+1 V→VOUT(S)+2 V, CL=1 μF VIN=VOUT(S)+1 V→VOUT(S)+2 V, IOUT=30 mA 3V Overshoot [V] Overshoot [V] 0.8 CL dependencies of overshoot 0.6 0.4 0.2 VOUT=2 V 5V 0 1.E−05 1.E−04 1.E−03 1.E−02 1.E−01 1.E+00 1.4 5V 1.2 1.0 0.8 0.6 0.4 VOUT=2 V 0.2 0 0.1 1 VIN=VOUT(S)+1 V→VDD, IOUT=30 mA, CL=1 μF 2.0 3V 1.5 VOUT=2 V 0.5 5V VIN=VOUT(S)+1 V→VOUT(S)+2 V, IOUT=30 mA, CL=1 μF 1.0 3V 0.8 0.6 0.4 VOUT=2 V 5V 0.2 0 0 0 2 4 6 VDD [V] 8 −50 10 VIN=VOUT(S)+2 V→VOUT(S)+1 V, CL=1 μF 5V 0.4 VOUT=2 V 0.2 0 1.E−05 1.E−04 1.E−03 1.E−02 1.E−01 1.E+00 IOUT [A] Undershoot [V] 3V 50 CL dependencies of undershoot 0.8 0.6 0 100 Ta [°C] Load dependencies of undershoot Undershoot [V] 100 Temperature dependencies of overshoot Overshoot [V] Overshoot [V] VDD dependencies of overshoot 22 10 CL [μF] IOUT [A] 1.0 3V VIN=VOUT(S)+2 V→VOUT(S)+1 V, IOUT=30 mA 1.4 5V 1.2 1.0 3V 0.8 0.6 0.4 VOUT=2 V 0.2 0 0.1 1 10 100 CL [μF] Seiko Instruments Inc. LOW DROPOUT CMOS VOLTAGE REGULATOR S-814 Series Rev.2.1_00 VDD dependencies of undershoot VIN=VDD→VOUT(S)+1 V, IOUT=30 mA, CL=1 μF Temperature dependencies of undershoot VIN=VOUT(S)+2 V→VOUT(S)+1 V, IOUT=30 mA, CL=1 μF 1.0 3V 0.8 Undershoot [V] Undershoot [V] 1.0 VOUT=2 V 0.6 0.4 5V 0.2 0.8 3V 5V 0.6 0.4 0.2 VOUT=2 V 0 0 0 2 4 6 VDD [V] 8 10 −50 0 50 100 Ta [°C] Seiko Instruments Inc. 23 LOW DROPOUT CMOS VOLTAGE REGULATOR S-814 Series Rev.2.1_00 1-4. At load fluctuation Output voltage (VOUT) – Time (t) IOUT=30 mA→10 μA, VIN=4 V IOUT=10 μA→30 mA, VIN=4 V 30 mA IOUT 10 μA VOUT [0.1 V/div] VOUT [0.2 V/div] 30 mA CL=1 μF 3V VOUT CL=4.7 μF IOUT 10 μA CL=4.7 μF 3V VOUT t [20 μs/div] t [20 ms/div] CL dependencies of overshoot Load current dependencies of overshoot VIN=VOUT(s)+1 V, IOUT=30 mA→10 μA 1.0 VIN=VOUT(S)+1 V, CL=1 μF Overshoot [V] Overshoot [V] 1 0.8 3V 0.6 5V 0.4 VOUT=2 V 0.2 0 1.E−03 1.E−02 CL=1 μF 1.E−01 0.8 5V 0.6 3V 0.4 0.2 VOUT=2 V 0 1 0.1 1.E+00 CL [μF] 10 100 ΔIOUT [A] Remark ΔIOUT shows larger load current at load current fluctuation. Smaller current at load current fluctuation is fixed to 10 µA. i.e. ΔIOUT=1.E−02 [A] means load current fluctuation from 10 mA to 10 µA. VDD dependencies of overshoot 1.0 0.8 0.6 5V VOUT=2 V VIN=VOUT(S)+1 V, IOUT=30 mA→10 μA, CL=1 μF 1.0 Overshoot [V] Overshoot [V] Temperature dependencies of overshoot VIN=VDD, IOUT=30 mA→10 μA, CL=1 μF 3V 0.4 0.2 0.8 0.6 0.4 0.2 0 0 24 2 4 6 VDD [V] 8 5V 3V 10 VOUT=2 V 0 0 −50 50 Ta [°C] Seiko Instruments Inc. 100 LOW DROPOUT CMOS VOLTAGE REGULATOR S-814 Series Rev.2.1_00 Load current dependencies of undershoot 1.4 1.2 1 3V 0.8 5V 0.6 0.4 0.2 VOUT=2 V 1.E−02 1.E−01 5V 1.0 0.8 3V 0.6 0.4 VOUT=2 V 0.2 0 0.1 0 1.E−03 VIN=VOUT(S)+1 V, IOUT=10 μA→30 mA 1.2 Undershoot [V] Undershoot [V] CL dependence of undershoot VIN=VOUT(S)+1 V, CL=1 μF 1.E+00 1 10 100 CL [μF] ΔIOUT [A] Remark ΔIOUT shows larger load current at load current fluctuation. Lower current at load current fluctuation is fixed to 10 µA. i.e. ΔIOUT=1.E−02 [A] means load current fluctuation from 10 µA to 10 mA. VDD dependencies of undershoot 0.8 3V 0.6 VIN=VOUT(S)+1 V, IOUT=10 μA→30 mA, CL=1 μF 1.0 Undershoot [V] 1.0 Undershoot [V] Temperature dependencies of undershoot VIN=VDD, IOUT=10 μA→30 mA, CL=1 μF 5V VOUT=2 V 0.4 0.2 0.8 5V 3V 0.6 0.4 0.2 0 VOUT=2 V 0 0 2 4 6 VDD [V] 8 10 −50 0 50 100 Ta [°C] Seiko Instruments Inc. 25 2.9±0.2 1.9±0.2 4 5 1 2 +0.1 0.16 -0.06 3 0.95±0.1 0.4±0.1 No. MP005-A-P-SD-1.2 TITLE No. SOT235-A-PKG Dimensions MP005-A-P-SD-1.2 SCALE UNIT mm Seiko Instruments Inc. 4.0±0.1(10 pitches:40.0±0.2) +0.1 ø1.5 -0 2.0±0.05 +0.2 ø1.0 -0 0.25±0.1 4.0±0.1 1.4±0.2 3.2±0.2 3 2 1 4 5 Feed direction No. MP005-A-C-SD-2.1 TITLE SOT235-A-Carrier Tape No. MP005-A-C-SD-2.1 SCALE UNIT mm Seiko Instruments Inc. 12.5max. 9.0±0.3 Enlarged drawing in the central part ø13±0.2 (60°) (60°) No. MP005-A-R-SD-1.1 SOT235-A-Reel TITLE No. MP005-A-R-SD-1.1 SCALE QTY. UNIT mm Seiko Instruments Inc. 3,000 4.5±0.1 1.5±0.1 1.6±0.2 5 1 4 2 3 1.5±0.1 1.5±0.1 0.4±0.05 0.3 0.4±0.1 0.4±0.1 45° 0.45±0.1 No. UP005-A-P-SD-1.1 TITLE SOT895-A-PKG Dimensions UP005-A-P-SD-1.1 No. SCALE UNIT mm Seiko Instruments Inc. 4.0±0.1(10 pitches : 40.0±0.2) ø1.5 +0.1 -0 2.0±0.05 5° max. ø1.5 +0.1 -0 0.3±0.05 8.0±0.1 2.0±0.1 4.75±0.1 3 2 1 4 5 Feed direction No. UP005-A-C-SD-1.1 TITLE SOT895-A-Carrier Tape UP005-A-C-SD-1.1 No. SCALE UNIT mm Seiko Instruments Inc. 16.5max. 13.0±0.3 Enlarged drawing in the central part (60°) (60°) No. UP005-A-R-SD-1.1 TITLE SOT895-A-Reel No. UP005-A-R-SD-1.1 SCALE QTY. UNIT mm Seiko Instruments Inc. 1,000 • • • • • • The information described herein is subject to change without notice. Seiko Instruments Inc. is not responsible for any problems caused by circuits or diagrams described herein whose related industrial properties, patents, or other rights belong to third parties. The application circuit examples explain typical applications of the products, and do not guarantee the success of any specific mass-production design. When the products described herein are regulated products subject to the Wassenaar Arrangement or other agreements, they may not be exported without authorization from the appropriate governmental authority. Use of the information described herein for other purposes and/or reproduction or copying without the express permission of Seiko Instruments Inc. is strictly prohibited. The products described herein cannot be used as part of any device or equipment affecting the human body, such as exercise equipment, medical equipment, security systems, gas equipment, or any apparatus installed in airplanes and other vehicles, without prior written permission of Seiko Instruments Inc. Although Seiko Instruments Inc. exerts the greatest possible effort to ensure high quality and reliability, the failure or malfunction of semiconductor products may occur. The user of these products should therefore give thorough consideration to safety design, including redundancy, fire-prevention measures, and malfunction prevention, to prevent any accidents, fires, or community damage that may ensue.