SII S-814

Rev.2.1_00
LOW DROPOUT CMOS VOLTAGE REGULATOR
S-814 Series
The S-814 Series is a low dropout voltage, high output
voltage accuracy and low current consumption positive
voltage regulator developed utilizing CMOS technology.
Built-in low ON-resistance transistors provide low dropout
voltage and large output current. A shutdown circuit ensures
long battery life.
Various types of output capacitors can be used in the S-814
Series compared with the past CMOS voltage regulators.
(i.e., Small ceramic capacitors can also be used in the S-814
Series.)
The SOT-23-5 miniaturized package and the SOT-89-5
packages are recommended to use for configuring portable
devices and large output current applications, respectively.
„ Features
• Low current consumption
At operation mode:
At shutdown mode:
• Output voltage:
• High accuracy output voltage:
• Output current:
•
•
•
•
•
•
Typ. 30 μA, Max. 40 μA
Typ. 100 nA, Max. 500 nA
0.1 V steps between 2.0 and 6.0 V
±2.0 %
110 mA capable: 3.0 V output product, at VIN=4 V*1
180 mA capable: 5.0 V output product, at VIN=6 V*1
Typ. 170 mV:
5.0 V output product, at IOUT=60 mA
Low dropout voltage:
Built-in shutdown circuit
Built-in short-circuit protection
Low ESR capacitor, e.g. a ceramic capacitor of 0.47 μF or more, can be used as the output capacitor.
Small package:
SOT-23-5 and SOT-89-5
Lead-free products
*1. Attention should be paid to the power dissipation of the package when the output current is large.
„ Applications
• Power source for battery-powered devices, personal communication devices, and home electric/electronic
appliances.
„ Packages
Package Name
SOT-23-5
SOT-89-5
Package
MP005-A
UP005-A
Drawing Code
Tape
MP005-A
UP005-A
Seiko Instruments Inc.
Reel
MP005-A
UP005-A
1
LOW DROPOUT CMOS VOLTAGE REGULATOR
S-814 Series
Rev.2.1_00
„ Block Diagram
*1
VOUT
VIN
ON/OFF
+
Shutdown
circuit
−
Reference
voltage
VSS
*1. Parasitic diode
Figure 1
2
Seiko Instruments Inc.
Short-circuit
protection
circuit
Rev.2.1_00
LOW DROPOUT CMOS VOLTAGE REGULATOR
S-814 Series
„ Product Name Structure
1. Product Name
S-814 x xx A xx- xxx T2 G
IC direction in tape specifications*1
Product name (Abbreviation)*2
Package name (Abbreviation)
MC: SOT-23-5
UC: SOT-89-5
Output voltage
20 to 60
(e.g., When output voltage is 2.0 V, it is expressed as 20.)
Product type *3
A: ON / OFF pin positive logic
B: ON / OFF pin negative logic
*1. Refer to the taping specifications at the end of this book.
*2. Refer to the Table 1 in “2. Product name list”.
*3. Refer to “3. ON/OFF pin (Shutdown pin)” in “„ Operation”.
Seiko Instruments Inc.
3
LOW DROPOUT CMOS VOLTAGE REGULATOR
S-814 Series
Rev.2.1_00
2. Product Name List
Table1
Output voltage
SOT-23-5
SOT-89-5
S-814A20AMC-BCKT2G
S-814A20AUC-BCKT2G
2.0 V±2.0 %
S-814A21AMC-BCLT2G
S-814A21AUC-BCLT2G
2.1 V±2.0 %
S-814A22AMC-BCMT2G
S-814A22AUC-BCMT2G
2.2 V±2.0 %
S-814A23AMC-BCNT2G
S-814A23AUC-BCNT2G
2.3 V±2.0 %
S-814A24AMC-BCOT2G
S-814A24AUC-BCOT2G
2.4 V±2.0 %
S-814A25AMC-BCPT2G
S-814A25AUC-BCPT2G
2.5 V±2.0 %
S-814A26AMC-BCQT2G
S-814A26AUC-BCQT2G
2.6 V±2.0 %
S-814A27AMC-BCRT2G
S-814A27AUC-BCRT2G
2.7 V±2.0 %
S-814A28AMC-BCST2G
S-814A28AUC-BCST2G
2.8 V±2.0 %
S-814A29AMC-BCTT2G
S-814A29AUC-BCTT2G
2.9 V±2.0 %
S-814A30AMC-BCUT2G
S-814A30AUC-BCUT2G
3.0 V±2.0 %
S-814A31AMC-BCVT2G
S-814A31AUC-BCVT2G
3.1 V±2.0 %
S-814A32AMC-BCWT2G
S-814A32AUC-BCWT2G
3.2 V±2.0 %
S-814A33AMC-BCXT2G
S-814A33AUC-BCXT2G
3.3 V±2.0 %
S-814A34AMC-BCYT2G
S-814A34AUC-BCYT2G
3.4 V±2.0 %
S-814A35AMC-BCZT2G
S-814A35AUC-BCZT2G
3.5 V±2.0 %
S-814A36AMC-BDAT2G
S-814A36AUC-BDAT2G
3.6 V±2.0 %
S-814A37AMC-BDBT2G
S-814A37AUC-BDBT2G
3.7 V±2.0 %
S-814A38AMC-BDCT2G
S-814A38AUC-BDCT2G
3.8 V±2.0 %
S-814A39AMC-BDDT2G
S-814A39AUC-BDDT2G
3.9 V±2.0 %
S-814A40AMC-BDET2G
S-814A40AUC-BDET2G
4.0 V±2.0 %
S-814A41AMC-BDFT2G
S-814A41AUC-BDFT2G
4.1 V±2.0 %
S-814A42AMC-BDGT2G
S-814A42AUC-BDGT2G
4.2 V±2.0 %
S-814A43AMC-BDHT2G
S-814A43AUC-BDHT2G
4.3 V±2.0 %
S-814A44AMC-BDIT2G
S-814A44AUC-BDIT2G
4.4 V±2.0 %
S-814A45AMC-BDJT2G
S-814A45AUC-BDJT2G
4.5 V±2.0 %
S-814A46AMC-BDKT2G
S-814A46AUC-BDKT2G
4.6 V±2.0 %
S-814A47AMC-BDLT2G
S-814A47AUC-BDLT2G
4.7 V±2.0 %
S-814A48AMC-BDMT2G
S-814A48AUC-BDMT2G
4.8 V±2.0 %
S-814A49AMC-BDNT2G
S-814A49AUC-BDNT2G
4.9 V±2.0 %
S-814A50AMC-BDOT2G
S-814A50AUC-BDOT2G
5.0 V±2.0 %
S-814A51AMC-BDPT2G
S-814A51AUC-BDPT2G
5.1 V±2.0 %
S-814A52AMC-BDQT2G
S-814A52AUC-BDQT2G
5.2 V±2.0 %
S-814A53AMC-BDRT2G
S-814A53AUC-BDRT2G
5.3 V±2.0 %
S-814A54AMC-BDST2G
S-814A54AUC-BDST2G
5.4 V±2.0 %
S-814A55AMC-BDTT2G
S-814A55AUC-BDTT2G
5.5 V±2.0 %
S-814A56AMC-BDUT2G
S-814A56AUC-BDUT2G
5.6 V±2.0 %
S-814A57AMC-BDVT2G
S-814A57AUC-BDVT2G
5.7 V±2.0 %
S-814A58AMC-BDWT2G
S-814A58AUC-BDWT2G
5.8 V±2.0 %
S-814A59AMC-BDXT2G
S-814A59AUC-BDXT2G
5.9 V±2.0 %
S-814A60AMC-BDYT2G
S-814A60AUC-BDYT2G
6.0 V±2.0 %
Remark Please contact the SII marketing department for type B products.
4
Seiko Instruments Inc.
LOW DROPOUT CMOS VOLTAGE REGULATOR
S-814 Series
Rev.2.1_00
„ Pin Configurations
SOT-23-5
Top view
5
1
4
2
3
Table 2
Pin No.
Symbol
Pin description
1
VIN
Voltage input pin
2
VSS
GND pin
3
ON/OFF
Shutdown pin
4
NC*1
No connection
5
VOUT
Voltage output pin
*1. The NC pin is electrically open.
The NC pin can be connected to VIN or VSS.
Figure 2
SOT-89-5
Top view
5
1
4
2
Table 3
Pin No.
Symbol
Pin description
1
VOUT
Voltage output pin
2
VSS
GND pin
3
NC*1
No connection
4
ON/OFF
Shutdown pin
5
VIN
Voltage input pin
*1. The NC pin is electrically open.
The NC pin can be connected to VIN or VSS.
3
Figure 3
Seiko Instruments Inc.
5
LOW DROPOUT CMOS VOLTAGE REGULATOR
S-814 Series
Rev.2.1_00
„ Absolute Maximum Ratings
Table 4
Item
Symbol
VIN
VON/OFF
VOUT
Input voltage
Output voltage
SOT-23-5
Power dissipation
PD
SOT-89-5
(Ta=25°C unless otherwise specified)
Absolute maximum rating
Unit
V
VSS−0.3 to VSS+12
V
VSS−0.3 to VSS+12
V
VSS−0.3 to VIN+0.3
250 (When not mounted on board)
mW
mW
600*1
500 (When not mounted on board)
mW
1000*1
mW
°C
−40 to +85
°C
−40 to +125
Operating ambient temperature
Topr
Storage temperature
Tstg
*1. When mounted on board
[Mounted on board]
(1) Board size : 114.3 mm × 76.2 mm × t1.6 mm
(2) Board name : JEDEC STANDARD51-7
Caution The absolute maximum ratings are rated values exceeding which the product could suffer
physical damage. These values must therefore not be exceeded under any conditions.
Power Dissipation (PD) [mW]
1000
800
SOT-89-5
600
SOT-23-5
400
200
0
0
100
150
50
Ambient Temperature (Ta) [°C]
Figure 4 Power Dissipation of Package (When Mounted on Board)
6
Seiko Instruments Inc.
LOW DROPOUT CMOS VOLTAGE REGULATOR
S-814 Series
Rev.2.1_00
„ Electrical Characteristics
Table 5
Item
Symbol
Output voltage*1
*2
VOUT(E)
Output current
IOUT
Dropout voltage*4
Vdrop
Line regulation 1
Line regulation 2
Load regulation
Output voltage
temperature
cofficient*5
Current
consumption during
operation
Current
consumption during
shutdown
Input voltage
ON/OFF pin input
voltage “H”
ON/OFF pin input
voltage “L”
ON/OFF pin input
current “H”
ON/OFF pin input
current “L”
Short current limit
Conditions
VIN=VOUT(S)+1 V, IOUT=30 mA
2.0 V≤VOUT(S)≤2.9 V
3.0 V≤VOUT(S)≤3.9 V
VOUT(S)+1 V≤VIN≤10 V
4.0 V≤VOUT(S)≤4.9 V
5.0 V≤VOUT(S)≤6.0 V
2.0 V≤VOUT(S)≤2.4 V
2.5 V≤VOUT(S)≤2.9 V
3.0 V≤VOUT(S)≤3.4 V
3.5 V≤VOUT(S)≤3.9 V
IOUT=60 mA
4.0 V≤VOUT(S)≤4.4 V
4.5 V≤VOUT(S)≤4.9 V
5.0 V≤VOUT(S)≤5.4 V
5.5 V≤VOUT(S)≤6.0 V
ΔVOUT1
VOUT(S)+0.5 V≤VIN≤10 V, IOUT=30 mA
ΔVIN • VOUT
ΔVOUT 2
VOUT(S)+0.5 V≤VIN≤10 V, IOUT=10 μA
ΔVIN • VOUT
ΔVOUT3
VIN=VOUT(S)+1 V, 10 μA≤IOUT≤80 mA
ΔVOUT
VIN=VOUT(S)+1 V, IOUT=30 mA,
ΔTa • VOUT −40°C≤Ta≤85°C
(Ta=25°C unless otherwise specified)
Test
Min.
Typ.
Max. Units
circuit
VOUT(S) VOUT(S) VOUT(S)
V
1
×0.98
×1.02
100*3
mA
3
⎯
⎯
110*3
mA
3
⎯
⎯
135*3
mA
3
⎯
⎯
*3
180
mA
3
⎯
⎯
0.51
0.87
V
1
⎯
0.38
0.61
V
1
⎯
0.30
0.44
V
1
⎯
0.24
0.33
V
1
⎯
0.20
0.26
V
1
⎯
0.18
0.22
V
1
⎯
0.17
0.21
V
1
⎯
0.17
0.20
V
1
⎯
⎯
0.05
0.2
%/V
1
⎯
0.05
0.2
%/V
1
⎯
30
50
mV
1
⎯
±100
⎯
ppm/
°C
1
ISS1
VIN=VOUT(S)+1 V, ON/OFF pin=ON, No load
⎯
30
40
μA
2
ISS2
VIN=VOUT(S)+1 V, ON/OFF pin=OFF, No load
⎯
0.1
0.5
μA
2
VIN
⎯
VIN=VOUT(S)+1 V, RL=1 kΩ,
Judged at VOUT level
VIN=VOUT(S)+1 V, RL=1 kΩ,
Judged at VOUT level
⎯
⎯
10
V
1
1.5
⎯
⎯
V
4
⎯
⎯
0.3
V
4
VSH
VSL
ISH
VIN=VOUT(S)+1 V, VON/OFF=7 V
−0.1
⎯
0.1
μA
4
ISL
VIN=VOUT(S)+1 V, VON/OFF=0 V
−0.1
⎯
0.1
μA
4
70
mA
3
VIN=VOUT(S)+1 V, VOUT pin=0 V
⎯
⎯
=V
+1
V,
f=100
Hz,
ΔVrip=0.5
Vrms,
V
IN
OUT(S)
RR
45
dB
5
Ripple rejection
⎯
⎯
IOUT=30 mA
*1. VOUT(E): Effective output voltage
i.e., The output voltage when fixing IOUT(=30 mA) and inputting VOUT(S)+1.0 V.
VOUT(S): Specified output voltage
*2. Output amperage when output voltage goes below 95 % of VOUT(E) after gradually increasing output current.
*3. The output current can be at least this value.
Use load amperage not exceeding this value.
IOS
Seiko Instruments Inc.
7
LOW DROPOUT CMOS VOLTAGE REGULATOR
S-814 Series
Rev.2.1_00
*4. Vdrop=VIN1*1−(VOUT(E)×0.98)
*1. Input voltage at which the output voltage falls 98 % of VOUT(E) after gradually decreasing the input
voltage.
*5. The change in temperature [mV/°C] is calculated using the following equation.
ΔVOUT
[mV / °C] *1 = VOUT(S) [V ] *2 × ΔVOUT [ppm / °C] *3 ÷ 1000
ΔTa
ΔTa • VOUT
*1. Change in temperature of the dropout voltage
*2. Specified output voltage
*3. Output voltage temperature coefficient
8
Seiko Instruments Inc.
LOW DROPOUT CMOS VOLTAGE REGULATOR
S-814 Series
Rev.2.1_00
„ Test Circuits
1.
VIN
+
VOUT
2.
+
VIN
A
A
VOUT
+
ON/OFF
V
ON/OFF
VSS
VSS
Set to power
Set to
ON
VIN or GND
Figure 5
3.
VIN
VOUT
ON/OFF
Figure 6
+
4.
VIN
A
V
+
VOUT
+
A
VSS
V
ON/OFF
RL
VSS
Set to power
ON
Figure 7
Figure 8
5.
VIN
VOUT
+
ON/OFF
V
RL
VSS
Set to
power ON
Figure 9
Seiko Instruments Inc.
9
LOW DROPOUT CMOS VOLTAGE REGULATOR
S-814 Series
Rev.2.1_00
„ Standard Circuit
VIN
INPUT
VOUT
OUTPUT
*2
CL
*1
CIN
VSS
Single GND
GND
*1. CIN is a capacitor used to stabilize input.
*2. In addition to a tantalum capacitor, a ceramic capacitor of 0.47 μF or more can be used in CL.
Figure 10
Caution The above connection diagram and constant will not guarantees successful operation.
Perform through evaluation using the actual application to set the constant.
„ Technical Terms
1. Low dropout voltage regulator
The low dropout voltage regulator is a voltage regulator featuring a low dropout voltage characteristic due
to its internal low ON-resistance characteristic transistors.
2. Low ESR
ESR is the abbreviation for Equivalent Series Resistance. The low ESR output capacitor (CL) can be
used in the S-814 Series.
3. Output voltage (VOUT)
The accuracy of the output voltage is ensured at ±2.0 % under the specified conditions*1 of input voltage,
output current, and temperature, which differ depending upon the product items.
*1. The condition differs depending upon each product.
Caution If you change the above conditions, the output voltage value may vary out of the
accuracy range of the output voltage. Refer to the “„ Electrical Characteristics” and “„
Characteristics” for details.
4. Line regulation 1 (ΔVOUT1) and Line regulation 2 (ΔVOUT2)
Indicate the input voltage dependencies of output voltage. That is, the value shows how much the output
voltage changes due to a change in the input voltage with the output current remained unchanged.
5. Load regulation (ΔVOUT3)
Indicates the output current dependencies of output voltage. That is, the value shows how much the
output voltage changes due to a change in the output current with the input voltage remained unchanged.
10
Seiko Instruments Inc.
LOW DROPOUT CMOS VOLTAGE REGULATOR
S-814 Series
Rev.2.1_00
6. Dropout voltage (Vdrop)
Indicates a difference between input voltage (VIN1) and output voltage when output voltage falls by 98 %
of VOUT(E) by gradually decreasing the input voltage.
Vdrop=VIN1−(VOUT(E)×0.98)
⎛ ΔVOUT ⎞
7. Temperature coefficient of output voltage ⎜
⎟
⎝ ΔTa • VOUT ⎠
The shadowed area in Figure 11 is the range where VOUT varies in the operating temperature range when
the temperature coefficient of the output voltage is ±100 ppm/°C.
VOUT [V]
+0.28 mV/°C
VOUT(E)
*1
−0.28mV/°C
−40
25
85
Ta [°C]
*1. The mesurement value of output voltage at 25°C.
Figure 11 Typical example of S-814A28A
A change in temperatures of output voltage [mV/°C] is calculated using the following equation.
ΔVOUT
[mV / °C] *1 = VOUT(S)[V ] *2 × ΔVOUT [ppm / °C] *3 ÷ 1000
ΔTa • VOUT
ΔTa
*1. The change in temperature of the dropout voltage
*2. Specified output voltage
*3. Output voltage temperature coefficient
Seiko Instruments Inc.
11
LOW DROPOUT CMOS VOLTAGE REGULATOR
S-814 Series
Rev.2.1_00
„ Operation
1. Basic operation
Figure 12 shows the block diagram of the S-814 Series.
The error amplifier compares a reference voltage Vref with part of the output voltage divided by the
feedback resistors Rs and Rf. It supplies the output transistor with the gate voltage, necessary to ensure
certain output voltage free of any fluctuations of input voltage and temperature.
VIN
*1
Current source
Error amplifier
Vref
−
VOUT
Rf
+
Reference voltage
circuit
Rs
VSS
*1. Parasitic diode
Figure 12
2. Output transistor
The S-814 Series uses a low on-resistance Pch MOS FET as the output transistor.
Be sure that VOUT does not exceed VIN+0.3 V to prevent the voltage regulator from being broken due to
inverse current flowing from VOUT pin through a parasitic diode to VIN pin.
12
Seiko Instruments Inc.
LOW DROPOUT CMOS VOLTAGE REGULATOR
S-814 Series
Rev.2.1_00
3. ON/OFF pin (Shutdown pin)
This pin starts and stops the regulator.
When the shutdown pin is switched to the shutdown level, the operation of all internal circuits stops, the
built-in Pch MOSFET output transistor between VIN pin and VOUT pin is shutdown, allowing current
consumption to be drastically reduced. The VOUT pin enters the Vss level due to internally divided
resistance of several MΩ between VOUT pin and VSS pin.
Furthermore, the structure of the ON/OFF pin is as shown in Figure 13. Since the ON/OFF pin is neither
pulled down nor pulled up internally, do not use it in the floating state. In addition, please note that current
consumption increases if a voltage of 0.3 V to VIN−0.3 V is applied to the shutdown pin. When the
ON/OFF pin is not used, connect it to the VIN pin in case of the product type is ‘”A” and to the VSS pin in
case of “B”.
VIN
ON/OFF
VSS
Figure 13
Table 6
Product type
A
A
B
B
ON/OFF pin
“H”: Power on
“L”: Shutdown
“H”: Shutdown
“L”: Power on
Internal circuit
Operating
Stop
Stop
Operating
VOUT pin voltage
Set value
VSS level
VSS level
Set value
Current consumption
ISS1
ISS2
ISS2
ISS1
4. Short-circuit protection circuit
The S-814 Series incorporates a short-circuit protection circuit to protect the output transistor against
short-circuiting between VOUT pin and VSS pin.
The short-circuit protection circuit controls output current as shown in “1. Output voltage vs. Output
current (When load current increases)” curve in “„ Characteristics”, and prevents output current of
approx. 70 mA or more from flowing even if VOUT pin and VSS pin are shorted. However, the shortcircuit protection circuit does not protect thermal shutdown. Be sure that input voltage and load current do
not exceed the specified power dissipation level.
When output current is large and a difference between input and output voltages is large even if not
shorted, the short-circuit protection circuit may start functioning and the output current may be controlled
to the specified amperage. For details, refer to “3. Maximum output current vs. Input voltage” curve in
“„ Characteristics”.
Seiko Instruments Inc.
13
LOW DROPOUT CMOS VOLTAGE REGULATOR
S-814 Series
Rev.2.1_00
„ Selection of Output Capacitor (CL)
Mount an output capacitor between VOUT pin and VSS pin for phase compensation. The S-814 Series
enables customers to use a ceramic capacitor as well as a tantalum or an aluminum electrolytic capacitor.
• A ceramic capacitor or an OS capacitor:
Use a capacitor of 0.47 μF or more.
• A tantalum or an aluminum electrolytic capacitor:
Use a capacitor of 0.47 μF or more and ESR of 10 Ω or less.
Pay special attention not to cause an oscillation due to an increase in ESR at low temperatures, when
you use the aluminum electrolytic capacitor. Evaluate the capacitor taking into consideration its
performance including temperature characteristics.
Overshoot and undershoot characteristics differ depending upon the type of the output capacitor you
select. Refer to “CL dependencies of overshoot” and “CL dependencies of undershoot” in
“„ Transient Response Characteristics”.
„ Precautions
• Wiring patterns for VIN pin, VOUT pin and GND pin should be designed so that the impedance is low.
When mounting an output capacitor, the distance from the capacitor to the VOUT pin and the VSS pin
should be as short as possible.
• Note that output voltage may increase when a series regulator is used at low load current (Less than 10
μA).
• Generally, a series regulator may cause oscillation, depending on the selection of external parts. The
following conditions are recommended for this IC. However, be sure to perform sufficient evaluation under
the actual usage conditions to select the series regulator.
0.47 μF or more
Output capacitor (CL):
Equivalent Series Resistance (ESR): 10 Ω or less
Input series resistance (RIN):
10 Ω or less
• The voltage regulator may oscillate when the impedance of the power supply is high and the input
capacitor is small or an input capacitor is not connected.
• The application conditions for input voltage and load current do not exceed the power dissipation level of
the package.
• In determining the output current, attention should be paid to the output current value specified and
footnote *3 in Table 5 in the “„ Electrical Characteristics”.
• Do not apply an electrostatic discharge to this IC that exceeds the performance ratings of the built-in
electrostatic protection circuit.
• SII claims no responsibility for any and all disputes arising out of or in connection with any infringement by
products including this IC of patents owned by a third party.
14
Seiko Instruments Inc.
LOW DROPOUT CMOS VOLTAGE REGULATOR
S-814 Series
Rev.2.1_00
„ Characteristics (Typical data)
1. Output voltage (VOUT) vs. Output current (IOUT) (When load current increases)
S-814A20A
S-814A30A
(Ta=25°C)
(Ta=25°C)
3.0
2.0
3V
VIN=2.3 V
10 V
1.0
5V
10 V
VOUT [V]
VOUT [V]
4V
2.5 V
2.0
4V
3.5 V
6V
VIN=3.3 V
1.0
0
0
0
50
100
150
200
0
250
100
IOUT [mA]
200
IOUT [mA]
300
400
S-814A50A
(Ta=25°C)
Remark In determining the output current, attention
should be paid to the following.
5.0
10 V
VOUT [V]
4.0
7V
6V
8V
3.0
1. The minimum output current value and footnote *3
in Table 5 in the “„ Electrical characteristics”.
2. The package power dissipation.
5.5 V
2.0
VIN=5.3 V
1.0
0
0
200
400
IOUT [mA]
600
800
2. Output voltage (VOUT) vs. Input voltage (VIN)
S-814A20A (Ta = 25°C)
S-814A30A (Ta = 25°C)
3.5
IOUT = 10 μA
100 μA
2.0
VOUT (V)
VOUT (V)
2.5
60 mA
1.5
30 mA
3.0
60 mA
2.5
30 mA
IOUT = 10 μA
100 μA
1 mA
2.0
1 mA
11.0
1.5
1
3
2
4
VIN (V)
2
3
4
5
VIN (V)
S-814A50A (Ta = 25°C)
5.5
VOUT (V)
60 mA
5.0
30 mA
IOUT = 10 μA
100 μA
1 mA
4.5
4.0
4
5
6
7
VIN (V)
Seiko Instruments Inc.
15
LOW DROPOUT CMOS VOLTAGE REGULATOR
S-814 Series
Rev.2.1_00
3. Maximum output current (IOUTmax) vs. Input voltage (VIN)
S-814A20A
S-814A30A
Ta=−40°C
200
25°C
85°C
Ta=−40°C
IOUTmax [mA]
IOUTmax [mA]
600
300
100
400
25°C
85°C
200
0
0
1
2
3
4
5 6
VIN [V]
7
8
9 10
2
3
4
5
6 7
VIN [V]
8
9
10
S-814A50A
IOUTmax [mA]
800
Remark In determining the output current, attention
should be paid to the following.
Ta=−40°C
600
25°C
1. The minimum output current value and footnote *3
in Table 5 in the “„ Electrical characteristics”.
2. The package power dissipation.
85°C
400
200
0
4
5
6
7
VIN [V]
8
9
10
4. Dropout voltage (Vdrop) vs. Output current (IOUT)
S-814A30A
120
Ta=−40°C
150
100
Vdrop [mV]
Vdrop [mV]
S-814A20A
300
250
200
25°C
5
10 15 20
IOUT [mA]
25
30
S-814A50A
160
Vdrop [mV]
25°C
Ta=−40°C
0
0
85°C
120
80
25°C
Ta=−40°C
40
0
0
16
60
30
85°C
50
0
85°C
90
10
20 30 40
IOUT [mA]
50
60
Seiko Instruments Inc.
0
5
10 15 20
IOUT [mA]
25
30
LOW DROPOUT CMOS VOLTAGE REGULATOR
S-814 Series
Rev.2.1_00
5. Output voltage (VOUT) vs. Ambient temperature (Ta)
S-814A20A
S-814A30A
VIN=3V, IOUT=30mA
2.04
3.03
VOUT [V]
VOUT [V]
2.02
2.00
1.98
1.96
−50
VIN=4V, IOUT=30mA
3.06
3.00
2.97
2.94
0
50
100
Ta [°C]
−50
0
50
100
Ta [°C]
S-814A50A
VIN=6V, IOUT=30mA
5.10
VOUT [V]
5.05
5.00
4.95
4.90
−50
0
50
100
Ta [°C]
6. Line regulation (ΔVOUT1) vs. Ambient temperature (Ta)
ΔVOUT1 [mV]
S-814A20A/S-814A30A/S-814A50A
VIN=VOUT(S)+0.5↔10 V, IOUT=30 mA
35
30
25
3V
5V
20
15
10
VOUT=2 V
5
0
0
−50
50
100
Ta [°C]
Seiko Instruments Inc.
17
LOW DROPOUT CMOS VOLTAGE REGULATOR
S-814 Series
Rev.2.1_00
7. Load regulation (ΔVOUT3) vs. Ambient temperature (Ta)
ΔVOUT3 [mV]
S-814A20A/S-814A30A/S-814A50A
VIN=VOUT(S)+1 V, IOUT=10 μA↔80 mA
50
3V
40
30
5V
20
VOUT=2 V
10
0
−50
0
50
100
Ta [°C]
8. Current consumption (ΔISS1) vs. Input voltage (VIN)
S-814A20A
S-814A30A
40
85 °C
30
ΔISS1 (μA)
ΔISS1 (μA)
40
25 °C
20
Ta = −40 °C
10
25 °C
20
Ta = −40 °C
0
0
2
4
6
8
10
VIN (V)
40
30
85 °C
20
25 °C
Ta = −40 °C
10
0
0
2
4
6
0
2
4
6
VIN (V)
S-814A50A
ΔISS1 (μA)
30
10
0
8
10
VIN (V)
18
85 °C
Seiko Instruments Inc.
8
10
LOW DROPOUT CMOS VOLTAGE REGULATOR
S-814 Series
Rev.2.1_00
9. Threshold voltage of shutdown pin (VSH/VSL) vs. Input voltage (VIN)
S-814A30A
2.5
2.5
2.0
2.0
VSH
VSH/VSL [V]
VSH/VSL [V]
S-814A20A
1.5
1.0
VSH
1.5
1.0
0.5
0.5
VSL
0
2
4
6
VIN [V]
VSL
0
8
10
9
10
3
5
7
VIN [V]
8
10
S-814A50A
2.5
VSH/VSL [V]
2.0
VSH
1.5
1.0
0.5
VSL
0
5
6
8
VIN [V]
Seiko Instruments Inc.
19
LOW DROPOUT CMOS VOLTAGE REGULATOR
S-814 Series
Rev.2.1_00
„ Reference Data
1. Transient Response Characteristics (S-814A30A, Typical data, Ta=25°C)
Input voltage
or
Load current
Overshoot
Output volatage
Undershoot
1-1. At power on
Output voltage (VOUT) – Time (t)
VIN=0→10 V, IOUT=30 mA
VOUT [0.5V/div]
10 V
0V
CL=1 μF
VIN
CL=4.7 μF
VOUT
0V
t [50 μs/div]
CL dependencies of overshoot
0.8
1.0
5V
Overshoot [V]
Overshoot [V]
Load dependencies of overshoot
VIN=0→VOUT(S)+1 V, CL=1 μF
0.6
3V
0.4
VOUT=2 V
0.2
5V
0.6
0.4
0.2
VOUT=2 V
0
1.E−05 1.E−04 1.E−03 1.E−02 1.E−01 1.E+00
0.1
IOUT [A]
0.4
0.2
0
0
2
4
6
VDD [V]
10
100
8
10
Temperature dependencies of overshoot
VIN=0→VOUT(S)+1 V, IOUT=30 mA, CL=1 μF
1.0
5V
0.8
3V
0.6
Overshoot [V]
VOUT=2 V
0.6
1
CL [uF]
VDD dependencies of overshoot
VIN=0→VDD, IOUT=30 mA, CL=1 μF
1.0
3V 5V
0.8
Overshoot [V]
3V
0.8
0
20
VIN=0→VOUT(S)+1 V, IOUT=30 mA
0.4
0.2 VOUT=2 V
0
0
−50
Seiko Instruments Inc.
50
Ta [°C]
100
LOW DROPOUT CMOS VOLTAGE REGULATOR
S-814 Series
Rev.2.1_00
1-2. At power on/off control
Output voltage (VOUT) – Time (t)
VIN=10 V, ON/OFF=0→10 V, IOUT=30 mA
VOUT [0.5 V/div]
10 V
CL=1 μF
0V
ON/OFF
VOUT
CL=4.7 μF
0V
t [50 μs/div]
Load dependencies of overshoot
VIN=VOUT(S)+1 V, CL=1 μF, ON/OFF=0→VOUT(S)+1 V
VIN=VOUT(S)+1 V, IOUT=30 mA, ON/OFF=0→VOUT(S)+1V
1.0
5V
Overshoot [V]
Overshoot [V]
0.8
CL dependencies of overshoot
0.6
3V
0.4
VOUT=2 V
0.2
0.8
0.6
0.4
VOUT=2 V
0.2
0
0
0.1
1.E−05 1.E−04 1.E−03 1.E−02 1.E−01 1.E+00
1
10
VDD dependencies of overshoot
Temperature dependencies of overshoot
0.6
0.4
VOUT=2 V
1.0
Overshoot [V]
VIN=VDD, IOUT=30 mA, CL=1 μF, ON/OFF=0→VDD
1.0
5V
3V
0.8
Overshoot [V]
100
CL [μF]
IOUT [A]
0.2
5V
3V
VIN=VOUT(S)+1 V, IOUT=30 mA, CL=1 μF,
ON/OFF=0→VOUT(S)+1V
5V
0.8
0.6
0.4
0.2
0
3V
VOUT=2 V
0
0
2
4
6
VDD [V]
8
10
−50
0
50
100
Ta [°C]
Seiko Instruments Inc.
21
LOW DROPOUT CMOS VOLTAGE REGULATOR
S-814 Series
Rev.2.1_00
1-3. At power fluctuation
Output voltage (VOUT) – Time (t)
VIN=10→4.0 V, IOUT=30 mA
VIN=4.0→10 V, IOUT=30 mA
10 V
VOUT [0.5 V/div]
VOUT [0.5 V/div]
10 V
4V
VIN
CL=1 μF
CL=4.7 μF
VOUT
3V
4V
VIN
CL=4.7 μF
VOUT
3V
CL=1 μF
t [50 μs/div]
t [50 μs/div]
Load dependencies of overshoot
VIN=VOUT(S)+1 V→VOUT(S)+2 V, CL=1 μF
VIN=VOUT(S)+1 V→VOUT(S)+2 V, IOUT=30 mA
3V
Overshoot [V]
Overshoot [V]
0.8
CL dependencies of overshoot
0.6
0.4
0.2
VOUT=2 V
5V
0
1.E−05 1.E−04 1.E−03 1.E−02 1.E−01 1.E+00
1.4
5V
1.2
1.0
0.8
0.6
0.4 VOUT=2 V
0.2
0
0.1
1
VIN=VOUT(S)+1 V→VDD, IOUT=30 mA, CL=1 μF
2.0
3V
1.5
VOUT=2 V
0.5
5V
VIN=VOUT(S)+1 V→VOUT(S)+2 V, IOUT=30 mA, CL=1 μF
1.0
3V
0.8
0.6
0.4
VOUT=2 V
5V
0.2
0
0
0
2
4
6
VDD [V]
8
−50
10
VIN=VOUT(S)+2 V→VOUT(S)+1 V, CL=1 μF
5V
0.4
VOUT=2 V
0.2
0
1.E−05 1.E−04 1.E−03 1.E−02 1.E−01 1.E+00
IOUT [A]
Undershoot [V]
3V
50
CL dependencies of undershoot
0.8
0.6
0
100
Ta [°C]
Load dependencies of undershoot
Undershoot [V]
100
Temperature dependencies of overshoot
Overshoot [V]
Overshoot [V]
VDD dependencies of overshoot
22
10
CL [μF]
IOUT [A]
1.0
3V
VIN=VOUT(S)+2 V→VOUT(S)+1 V, IOUT=30 mA
1.4
5V
1.2
1.0
3V
0.8
0.6
0.4
VOUT=2 V
0.2
0
0.1
1
10
100
CL [μF]
Seiko Instruments Inc.
LOW DROPOUT CMOS VOLTAGE REGULATOR
S-814 Series
Rev.2.1_00
VDD dependencies of undershoot
VIN=VDD→VOUT(S)+1 V, IOUT=30 mA, CL=1 μF
Temperature dependencies of undershoot
VIN=VOUT(S)+2 V→VOUT(S)+1 V, IOUT=30 mA, CL=1 μF
1.0
3V
0.8
Undershoot [V]
Undershoot [V]
1.0
VOUT=2 V
0.6
0.4
5V
0.2
0.8
3V
5V
0.6
0.4
0.2
VOUT=2 V
0
0
0
2
4
6
VDD [V]
8
10
−50
0
50
100
Ta [°C]
Seiko Instruments Inc.
23
LOW DROPOUT CMOS VOLTAGE REGULATOR
S-814 Series
Rev.2.1_00
1-4. At load fluctuation
Output voltage (VOUT) – Time (t)
IOUT=30 mA→10 μA, VIN=4 V
IOUT=10 μA→30 mA, VIN=4 V
30 mA
IOUT
10 μA
VOUT [0.1 V/div]
VOUT [0.2 V/div]
30 mA
CL=1 μF
3V
VOUT
CL=4.7 μF
IOUT
10 μA
CL=4.7 μF
3V
VOUT
t [20 μs/div]
t [20 ms/div]
CL dependencies of overshoot
Load current dependencies of overshoot
VIN=VOUT(s)+1 V, IOUT=30 mA→10 μA
1.0
VIN=VOUT(S)+1 V, CL=1 μF
Overshoot [V]
Overshoot [V]
1
0.8
3V
0.6
5V
0.4
VOUT=2 V
0.2
0
1.E−03
1.E−02
CL=1 μF
1.E−01
0.8
5V
0.6
3V
0.4
0.2 VOUT=2 V
0
1
0.1
1.E+00
CL [μF]
10
100
ΔIOUT [A]
Remark ΔIOUT shows larger load current at load
current fluctuation. Smaller current at load
current fluctuation is fixed to 10 µA.
i.e. ΔIOUT=1.E−02 [A] means load current
fluctuation from 10 mA to 10 µA.
VDD dependencies of overshoot
1.0
0.8
0.6
5V
VOUT=2 V
VIN=VOUT(S)+1 V, IOUT=30 mA→10 μA, CL=1 μF
1.0
Overshoot [V]
Overshoot [V]
Temperature dependencies of overshoot
VIN=VDD, IOUT=30 mA→10 μA, CL=1 μF
3V
0.4
0.2
0.8
0.6
0.4
0.2
0
0
24
2
4
6
VDD [V]
8
5V
3V
10
VOUT=2 V
0
0
−50
50
Ta [°C]
Seiko Instruments Inc.
100
LOW DROPOUT CMOS VOLTAGE REGULATOR
S-814 Series
Rev.2.1_00
Load current dependencies of undershoot
1.4
1.2
1
3V
0.8
5V
0.6
0.4
0.2
VOUT=2 V
1.E−02
1.E−01
5V
1.0
0.8
3V
0.6
0.4
VOUT=2 V
0.2
0
0.1
0
1.E−03
VIN=VOUT(S)+1 V, IOUT=10 μA→30 mA
1.2
Undershoot [V]
Undershoot [V]
CL dependence of undershoot
VIN=VOUT(S)+1 V, CL=1 μF
1.E+00
1
10
100
CL [μF]
ΔIOUT [A]
Remark ΔIOUT shows larger load current at load
current fluctuation. Lower current at load
current fluctuation is fixed to 10 µA.
i.e. ΔIOUT=1.E−02 [A] means load current
fluctuation from 10 µA to 10 mA.
VDD dependencies of undershoot
0.8
3V
0.6
VIN=VOUT(S)+1 V, IOUT=10 μA→30 mA, CL=1 μF
1.0
Undershoot [V]
1.0
Undershoot [V]
Temperature dependencies of undershoot
VIN=VDD, IOUT=10 μA→30 mA, CL=1 μF
5V
VOUT=2 V
0.4
0.2
0.8
5V
3V
0.6
0.4
0.2
0
VOUT=2 V
0
0
2
4
6
VDD [V]
8
10
−50
0
50
100
Ta [°C]
Seiko Instruments Inc.
25
2.9±0.2
1.9±0.2
4
5
1
2
+0.1
0.16 -0.06
3
0.95±0.1
0.4±0.1
No. MP005-A-P-SD-1.2
TITLE
No.
SOT235-A-PKG Dimensions
MP005-A-P-SD-1.2
SCALE
UNIT
mm
Seiko Instruments Inc.
4.0±0.1(10 pitches:40.0±0.2)
+0.1
ø1.5 -0
2.0±0.05
+0.2
ø1.0 -0
0.25±0.1
4.0±0.1
1.4±0.2
3.2±0.2
3 2 1
4
5
Feed direction
No. MP005-A-C-SD-2.1
TITLE
SOT235-A-Carrier Tape
No.
MP005-A-C-SD-2.1
SCALE
UNIT
mm
Seiko Instruments Inc.
12.5max.
9.0±0.3
Enlarged drawing in the central part
ø13±0.2
(60°)
(60°)
No. MP005-A-R-SD-1.1
SOT235-A-Reel
TITLE
No.
MP005-A-R-SD-1.1
SCALE
QTY.
UNIT
mm
Seiko Instruments Inc.
3,000
4.5±0.1
1.5±0.1
1.6±0.2
5
1
4
2
3
1.5±0.1 1.5±0.1
0.4±0.05
0.3
0.4±0.1
0.4±0.1
45°
0.45±0.1
No. UP005-A-P-SD-1.1
TITLE
SOT895-A-PKG Dimensions
UP005-A-P-SD-1.1
No.
SCALE
UNIT
mm
Seiko Instruments Inc.
4.0±0.1(10 pitches : 40.0±0.2)
ø1.5 +0.1
-0
2.0±0.05
5° max.
ø1.5 +0.1
-0
0.3±0.05
8.0±0.1
2.0±0.1
4.75±0.1
3 2 1
4
5
Feed direction
No. UP005-A-C-SD-1.1
TITLE
SOT895-A-Carrier Tape
UP005-A-C-SD-1.1
No.
SCALE
UNIT
mm
Seiko Instruments Inc.
16.5max.
13.0±0.3
Enlarged drawing in the central part
(60°)
(60°)
No. UP005-A-R-SD-1.1
TITLE
SOT895-A-Reel
No.
UP005-A-R-SD-1.1
SCALE
QTY.
UNIT
mm
Seiko Instruments Inc.
1,000
•
•
•
•
•
•
The information described herein is subject to change without notice.
Seiko Instruments Inc. is not responsible for any problems caused by circuits or diagrams described herein
whose related industrial properties, patents, or other rights belong to third parties. The application circuit
examples explain typical applications of the products, and do not guarantee the success of any specific
mass-production design.
When the products described herein are regulated products subject to the Wassenaar Arrangement or other
agreements, they may not be exported without authorization from the appropriate governmental authority.
Use of the information described herein for other purposes and/or reproduction or copying without the
express permission of Seiko Instruments Inc. is strictly prohibited.
The products described herein cannot be used as part of any device or equipment affecting the human
body, such as exercise equipment, medical equipment, security systems, gas equipment, or any apparatus
installed in airplanes and other vehicles, without prior written permission of Seiko Instruments Inc.
Although Seiko Instruments Inc. exerts the greatest possible effort to ensure high quality and reliability, the
failure or malfunction of semiconductor products may occur. The user of these products should therefore
give thorough consideration to safety design, including redundancy, fire-prevention measures, and
malfunction prevention, to prevent any accidents, fires, or community damage that may ensue.